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Voronoi diagram of orthogonal polyhedra
in two and three dimensions
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2 ATHENA Research and Innovation Center, Maroussi, Greece
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Abstract. Voronoi diagrams are a fundamental geometric data struc-
ture for obtaining proximity relations. We consider collections of axis-
aligned orthogonal polyhedra in two and three-dimensional space under
the max-norm, which is a particularly useful scenario in certain applica-
tion domains. We construct the exact Voronoi diagram inside an orthog-
onal polyhedron with holes defined by such polyhedra. Our approach
avoids creating full-dimensional elements on the Voronoi diagram and
yields a skeletal representation of the input object. We introduce a com-
plete algorithm in 2D and 3D that follows the subdivision paradigm re-
lying on a bounding-volume hierarchy; this is an original approach to the
problem. The complexity is adaptive and comparable to that of previous
methods. Under a mild assumption it is O(n/∆) in 2D or O(nα2/∆2)
in 3D, where n is the number of sites, namely edges or facets resp.,
∆ is the maximum cell size for the subdivision to stop, and α bounds
vertex cardinality per facet. We also provide a numerically stable, open-
source implementation in Julia, illustrating the practical nature of our
algorithm.

Keywords: max norm · axis-aligned · rectilinear · straight skeleton ·
subdivision method · numeric implementation

1 Introduction

Orthogonal shapes are ubiquitous in numerous applications including raster
graphics and VLSI design. We address Voronoi diagrams of 2- and 3-dimensional
orthogonal shapes. We focus on the L∞ metric which is used in the relevant ap-
plications and has been studied much less than L2.

A Voronoi diagram partitions space into regions based on distances to a
given set S of geometric objects in Rd. Every s ∈ S is a Voronoi site (or simply
a site) and its Voronoi region under metric µ, is Vµ(s) = {x ∈ Rd | µ(s, x) <
µ(x, s′), s′ ∈ S \ s}. The Voronoi diagram is the set Vµ(S) = Rd \

⋃
s∈S Vµ(s),

consisting of all points that attain their minimum distance to S by at least two
Voronoi sites. For general input, the Voronoi diagram is a collection of faces of
dimension 0, 1, . . . , d− 1. A face of dimension k comprises points equidistant to
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at least d + 1 − k sites. Faces of dimension 0 and 1 are called Voronoi vertices
and Voronoi edges respectively. The union of Voronoi edges and vertices is the 1-
skeleton. Equivalently, a Voronoi diagram is defined as the minimization diagram
of the distance functions to the sites. The diagram is a partitioning of space into
regions, each region consisting of points where some function has lower value
than any other function.

Fig. 1: Voronoi diagram of a rec-
tilinear polygon with 2 holes.

In this paper, we study Voronoi diagrams
in the interior of an axis-aligned orthogonal
polyhedron; its faces meet at right angles, and
the edges are aligned with the axes of a co-
ordinate system. It may have arbitrarily high
genus with holes defined by axis-aligned or-
thogonal polyhedra, not necessarily convex.
Facets are simply connected (without holes)
for simplicity. The sites are the facets on the
boundary of all polyhedra.

The distance of two points x, y ∈ Rd un-
der L∞ is µ∞(x, y) = maxi{|xi− yi|} and the
distance of x to a set S ⊂ Rd is µ∞(x, S) =
inf{µ∞(x, y) | y ∈ S}. In Fig. 1, the Voronoi
diagram3 of a rectilinear polygon with 2 holes is shown in blue. Our algorithm
follows the Subdivision Paradigm and handles 2D and 3D sites. It reads in a
region bounding all input sites and performs a recursive subdivision into cells
(using quadtrees or octrees). Then, a reconstruction technique is applied to pro-
duce an isomorphic representation of the Voronoi diagram.

Previous Work. If V is the number of polyhedral vertices, the combinatorial
complexity of our Voronoi diagrams equals O(V ) in 2D [13] and O(V 2) in 3D
[4]. In 3D, it is estimated experimentally to be, in general, O(V ) [12].

Related work in 2D concerns L∞ Voronoi diagrams of segments. In [13],
they introduce an O(n log n) sweep-line algorithm, where n is the number of
segments; they offer a robust implementation for segments with O(1) number of
orientations. Another algorithm implemented in library CGAL [6] is incremental.
The L∞ Voronoi diagram of orthogonal polyhedra (with holes) is addressed in
[12] in view of generalizing the sweep-line paradigm to 3D: in 2D it runs in
O(n log n) as in [13], and in 3D the sweep-plane version runs in O(kV ), where
k = O(V 2) is the number of events.

When the diagram is restricted in the interior of a polygon or polyhedron,
it serves as a skeletal representation. A skeleton reduces the dimension of the
input capturing its boundary’s geometric and topological properties. In particu-
lar, straight skeletons are very related to the L∞ Voronoi diagram of rectilinear
polygons [2]. An algorithm for the straight skeleton of a simple polygon (not nec-

essarily rectilinear) has complexity O(V
17
11 +ε) for fixed ε > 0 [9]. For x-monotone

3 computed by our software and visualized with Axl viewer.
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rectilinear polygons, a linear time algorithm was recently introduced [7]. In 3D,
an analogous equivalence of the straight skeleton of orthogonal polyhedra and
the L∞ Voronoi diagram exists [4] and a complete analysis of 3D straight skele-
tons is provided in [3]. Specifically for 3D orthogonal polyhedra, in [4] they of-

fer two algorithms that construct the skeleton in O(min{V 2 log V, k logO(1) V }),
where k = O(V 2) is the number of skeleton features. Both algorithms are rather
theoretical and follow a wavefront propagation process. Recently, the straight
skeleton of a 3D polyhedral terrain was addressed [11].

A Voronoi diagram can contain full-dimensional faces, as part of a bisector.
Under L∞, when two points have same coordinate value, their bisector is full
dimensional (Fig. 2a). Conventions have been adopted, to ensure bisectors be-
tween sites are not full-dimensional [13, 12, 6]. We address this issue in the next
section. Subdivision algorithms for Voronoi diagrams are numerous, e.g. [5, 8,
15]; our work is related to [15, 5]. These algorithms are quite efficient, since they
adapt to the input, and rather simple to implement. None exists for our problem.

Our contribution. We express the problem by means of the minimization dia-
gram of a set of algebraic functions with restricted domain, that express the L∞
distance of points to the boundary. The resulting Voronoi diagram, for general
input, is (d − 1)−dimensional. We focus on 2D and 3D orthogonal polyhedra
with holes, where the resulting Voronoi diagram is equivalent to the straight
skeleton. We introduce an efficient and complete algorithm for both dimensions,
following the subdivision paradigm which is, to the best of our knowledge, the
first subdivision algorithm for this problem. We compute the exact Voronoi di-
agram (since L∞ bisectors are linear). The output data structure can also be
used for nearest-site searching.

The overall complexity is output-sensitive, which is a major advantage. Un-
der Hypothesis 1, which captures the expected geometry of the input as opposed
to worst-case behaviour, the complexity is O(n/∆) in 2D, where n the number
of sites (edges) and ∆ the separation bound (maximum edge length of cells that
guarantees termination). This bound is to be juxtaposed to the worst-case bound
of O(n log n) of previous methods. In 3D, it is O(nα2/∆2) where α bounds ver-
tex cardinality per facet (typically constant). Under a further assumption (Re-
mark 2) this bound becomes O(V/∆2) whereas existing worst-case bounds are
quasi-quadratic or cubic in V . ∆ is measured under appropriate scaling for the
bounding box to have edge length 1. Scaling does not affect arithmetic complex-
ity, but may be adapted to reduce the denominators’ size in rational calculations.
The algorithm’s relative simplicity has allowed us to develop a numerically stable
software in Julia4, a user-friendly platform for efficient numeric computation; it
consists of about 5000 lines of code and is the first open-source code in 3D.

The rest of this paper is organized as follows. The next section provides struc-
tural properties of Voronoi diagrams. In Sect. 3 we introduce our 2D algorithm:
the 2D and 3D versions share some basic ideas which are discussed in detail in

4 https://gitlab.inria.fr/ckatsama/L infinity Voronoi/
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this section. In particular, we describe a hierarchical data structure of bounding
volumes, used to accelerate the 2D algorithm for certain inputs and is necessary
for the efficiency of the 3D algorithm. Then we provide the complexity analysis
of the 2D algorithm. In Sect. 4 we extend our algorithm and analysis to 3D. In
Sect. 5 we conclude with some remarks, examples and implementation details.
Due to space limitations, omitted proofs appear in the full version of our paper5.

2 Basic definitions and properties

We introduce useful concepts in general dimension. Let P be an orthogonal
polyhedron of full dimension in d dimensions, whose boundary consists of n
simply connected (without holes) facets; these are edges or flats in 2D and 3D,
resp. Note that P includes the shape’s interior and boundary. Now S consists of
the closed facets that form the boundary of P including all facets of the interior
polyhedra. There are as many such polyhedra as the genus. Let V∞(s) denote
the Voronoi region of site s under the L∞ metric. Lem. 1 gives a property of
standard L∞ Voronoi diagram preserved by Def. 1.

(a) (b)

Fig. 2: Voronoi diagrams (in red): (a) standard, under L∞, (b) under Def. 1.

Lemma 1. Let s ∈ S. For every point p ∈ V∞(s) it holds that µ∞(p, s) =
µ∞(p, aff(s)), where aff(s) is the affine hull of s.

Proof. Assume w.l.o.g. that s ⊂ {x ∈ Rd | xk = c}, k ∈ [d] and c ∈ R. If
µ∞(p, s) 6= µ∞(p, aff(s)), then µ∞(p, s) = inf{maxi∈[d]\k{|pi− qi|} | ∀q ∈ s} and
there is q ∈ ∂s such that µ∞(p, s) = µ∞(p, q) = |pj − qj |, j ∈ [d] \ k. To see this,
suppose on the contrary that q is in the interior of s. Then, we can find q′ ∈ s
ε-close to q such that |pj− q′j | = |pj− qj |−ε⇒ µ∞(p, q′) = µ∞(p, q)−ε, for any
ε > 0. This leads to a contradiction. Therefore, there is a site s′ 6= s with q ∈ s′.
Since p ∈ V∞(s), then µ∞(p, s) < µ∞(p, s′) ≤ µ∞(p, q); contradiction.

For s ∈ S let H(s) be the closed halfspace of Rd induced by aff(s) such that
for every p ∈ s there exists a point q ∈ H(s) : q ∈ int(P) and µ∞(p, q) < ε,
∀ε > 0. We define the (unoriented) zone of s as Z(s) := {p ∈ Rd | µ∞(p, s) =

5 https://arxiv.org/abs/1905.08691
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µ∞(p, aff(s))}. The oriented zone of s is Z+(s) := H(s) ∩ Z(s) (Fig. 3). We
associate to s the distance function

Ds(·) : Rd → R : p 7→

{
µ∞(p, s), if p ∈ Z+(s),

∞, otherwise.

The minimization diagram of D = {Ds | s ∈ S} restricted to P yields a Voronoi
partitioning. The Voronoi region of s with respect to Ds(·) is

VD(s) = {p ∈ P | Ds(p) <∞ and ∀s′ ∈ S \ s Ds(p) < Ds′(p)}.

Definition 1. The Voronoi diagram of P w.r.t. D is VD(P) = P \
⋃
s∈S VD(s).

s

Fig. 3: H(s), Z(s),
Z+(s) for segment s.

This means one gets the Voronoi diagram of
Fig. 2b. Clearly P ⊂

⋃
s∈S Z+(s) (Figure 2a). Denot-

ing by X the closure of a set X, then V∞(s) ⊆ VD(s) ⊆
V∞(s) ⊆ Z+(s). The bisector of s, s′ ∈ S w.r.t. D
is bisD(s, s′) = {x ∈ Rd | Ds(x) = Ds′(x) < ∞}.
Then bisD(s, s′) ⊂ affbis(s, s′), where affbis(s, s′) de-
notes the L∞ (affine) bisector of aff(s), aff(s′). In 2D
(resp. 3D) if sites have not the same affine hull, bi-
sectors under D lie on lines (resp. planes) parallel to
one coordinate axis (resp. plane) or to the bisector of
two perpendicular coordinate axes (resp. planes). Al-
though the latter consists of two lines (resp. planes), bisD lies only on one, and
it can be uniquely determined by the orientation of the zones. Degeneracy of
full-dimensional bisectors, between sites with the same affine hull, is avoided by
infinitesimal perturbation of corresponding sites. This is equivalent to assigning
priorities to the sites; the full dimensional region of the former diagram is ‘to the
limit’ assigned to the site with the highest priority (Fig. 4b). Such a perturbation
always exists, both for 2D [12, Lem. 13] and 3D [12, Lem. 31].

(a) (b)

Fig. 4: (a) 2D Voronoi diagram for polygon with colinear edges. (b) 1D Voronoi
diagram after infinitesimal perturbation of edges, where ε→ 0+.

Set X is weakly star shaped with respect to Y ⊆ X if ∀x ∈ X, ∃y ∈ Y such
that the segment (x, y) belongs to X.
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Lemma 2. For every s ∈ S, VD(s) is weakly star shaped with respect to s.

Proof. Let p ∈ VD(s) and ρ = Ds(p) = µ∞(p, q), q ∈ s. The open ball B∞(p, ρ)
centered at p with radius ρ is empty of sites. For t ∈ (0, 1), let w = tp+ (1− t)q
on the line segment (p, q). Then, since for every i ∈ [d] it is |wi− qi| = t|pi− qi|,
it holds that w ∈ Z+(s) and Ds(w) = tρ. If w 6∈ VD(s) there is a site s′ such
that Ds′(w) < tρ. But B∞(w, tρ) ⊆ B∞(p, ρ) and s′ intersects B∞(p, ρ), leading
to a contradiction.

Therefore, since every s is simply connected, from Lem. 2 VD(s) is simply
connected and VD(s) is also simply connected. Let the degree of a Voronoi vertex
be the number of sites to which it is equidistant. If the degree is > d + 1, the
vertex is degenerate. Lem. 3 is nontrivial: in metrics like L2 degree is arbitrarily
large. For d = 2, 3 this bound is tight [12].

Lemma 3. (a) The maximum degree of a Voronoi vertex is less than or equal
to 2dd. (b) When d = 2, a Voronoi vertex cannot have degree 7.

Proof. (a) Consider the vertex placed at the origin; 2d orthants are formed
around the vertex. To obtain the maximum number of Voronoi regions in each
orthant, we count the maximum number of Voronoi edges in the interior of an
orthant that have this Voronoi vertex as endpoint; at most one such edge can
exist in each orthant. Since these Voronoi edges are equidistant to d sites, result
follows.

(b) Let v∗ = (x∗, y∗) be a Voronoi vertex of degree 7. Since 7 Voronoi edges
meet at v∗, due to symmetry, we examine the two cases of Figure 5. When the
configuration of Voronoi regions around the vertex is like in Figure 5a, then s1

is a horizontal segment and s2, s7 are vertical. Then, aff(s2), aff(s7) ⊂ {(x, y) ∈
R2 | x > x∗}. Since v∗ ∈ Z+(s2) ∩ Z+(s7) and is equidistant to both s2 and s7,
the affine hulls of s2, s7 coincide. Then, whichever is the orientation of s1, the
affine bisectors of s1, s2 and s1, s7 cannot meet like in Figure 5a. When like in
Figure 5b, since b3 is vertical, s1 is vertical. But since b1 is horizontal, s1 must
be horizontal; a contradiction.

b2

b3

b4

b5

b6

b7

b8

VD(s1)

VD(s2)VD(s3)

VD(s4)

VD(s5)

VD(s6) VD(s7)

(a)

b1

b3

b4

b5

b6

b7

b8

VD(s7)

VD(s1)

VD(s2)

VD(s3)

VD(s4)

VD(s5) VD(s6)

(b)

Fig. 5: The two cases in proof of Lemma 3.
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3 Subdivision algorithm in two dimensions

Given manifold rectilinear polygon P, i.e. every vertex being shared by exactly
two edges, the input consists of S and a box C0 bounding P. Non-manifold
vertices can be trivially converted to manifold with an infinitesimal perturbation.
Subdivision algorithms include two phases. First, recursively subdivide C0 to 4
identical cells until certain criteria are satisfied, and the diagram’s topology can
be determined in O(1) inside each cell. The diagram is reconstructed in the
second phase.

3.1 Subdivision Phase

We consider subdivision cells as closed. Given cell C, let φ(C) be the set of sites
whose closed Voronoi region intersects C: φ(C) =

{
s ∈ S | VD(s) ∩ C 6= ∅

}
. For

point p ∈ P we define its label set λ(p) = {s ∈ S | p ∈ VD(s)}. When p ∈ Pc,
where Pc is the complement of P, then λ(p) = ∅. The computation of φ(C) is
hereditary, since φ(C) ⊆ φ(C′), if C′ is the parent of C. But it is rather costly;
given φ(C′) with |φ(C′)| = κ, it takes O(κ2) to compute φ(C), since the relative
position of C to the bisector of every pair of sites in φ(C′) must be specified.
Alternatively, we denote by pC , rC the center and the L∞-radius of C and define
the active set of C as:

φ̃(C) :=
{
s ∈ S | Z+(s) ∩ C 6= ∅, and µ∞(pC , s) ≤ 2rC + δC

}
,

where δC = minsDs(pC ), if pC ∈ P, and 0 otherwise. We now explain how φ̃

approximates φ by adapting [5, Lem.2], where φ̃ appears as a soft version of φ.

Lemma 4. (a) For every cell C, φ(C) ⊆ φ̃(C). (b) For a sequence of cells (C)i
monotonically convergent to point p ∈ P, φ̃(Ci) = φ(p) for i large enough.

Proof. (a) If φ(C) = ∅, assertion follows trivially. Let s ∈ φ(C) and p ∈ C∩VD(s).
It holds that Ds(p) ≤ Ds′(p) ⇒ µ∞(p, s) ≤ µ∞(p, s′) for every s′ ∈ S. We
distinguish two cases according to the position of pC relatively to P. If pC ∈ P
and pC ∈ VD(s∗), then:

µ∞(pC , s) ≤ µ∞(pC , p) + µ∞(p, s) ≤ µ∞(pC , p) + µ∞(p, s∗) ≤
≤ 2µ∞(pC , p) + µ∞(pC , s

∗) ≤ 2rC + µ∞(pC , s
∗).

Otherwise, if pC 6∈ P, since C ∩ P 6= ∅, there is a site s′ intersecting C such
that µ∞(p, s′) ≤ rC . Therefore, µ∞(pC , s) ≤ µ∞(pC , p) + µ∞(p, s) ≤ µ∞(pC , p) +
µ∞(p, s′) ≤ 2rC .

(b) There exists i0 ∈ N such that for i ≥ i0 Ci ∩P 6= ∅. Therefore, for i� i0,
since pCi

→ p and rCi
→ 0, for every s ∈ Ci, (a) implies that s ∈ λ(p) = φ(p).

Since φ(p) ⊆ φ̃(Ci), result follows.
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One can easily verify φ̃(C) ⊆ φ̃(C′), therefore the complexity of computing

φ̃(C) is linear in the size of φ̃(C′). The algorithm proceeds as follows: For each
subdivision cell we maintain the label sets of its corner points and of its central
point, and φ̃. The subdivision of a cell stops whenever at least one of the termi-
nation criteria below holds (checked in turn). Upon subdivision, we propagate

φ̃ and the label sets of the parent cell to its children. For every child we compute
the remaining label sets and refine its active set. Let M be the maximum degree
of a Voronoi vertex (M ≤ 8).

Termination criteria: (T1) C ⊆ VD(s) for some s ∈ S; (T2) int(C) ∩ P = ∅;
(T3) |φ̃(C)| ≤ 3; (T4) |φ̃(C)| ≤M and the sites in φ̃(C) define a unique Voronoi
vertex v ∈ C.

When (T1) holds, C is contained in a Voronoi region so no part of the diagram
is in it. (T2) stops the subdivision when the open cell is completely outside the
polygon. If (T3) holds, we determine in O(1) time the diagram’s topology in
C since there are ≤ 3 Voronoi regions intersected. (T4) stops cell subdivision
if it contains a single degenerate Voronoi vertex. The process is summarized in
Alg. 1.

Algorithm 1 Subdivision2D(P)

1: root ← bounding box of P
2: Q← root
3: while Q 6= ∅ do
4: C ← pop(Q)

5: Compute φ̃(C) and the label sets of the vertices and the central point.
6: if (T1) ∨ (T2) ∨ (T3) ∨ (T4) then
7: return
8: else
9: Subdivide C into C1, C2, C3, C4

10: Q← Q ∪ {C1, C2, C3, C4}
11: end if
12: end while

Theorem 1. Algorithm 1 halts.

Proof. Consider an infinite sequence of boxes C1 ⊇ C2 ⊇ . . . such that none of
the termination criteria holds. Since (T1) and (T2) do not hold for any Ci with
i ≥ 1, the sequence converges to a point p ∈ VD(P). From Lem. 4(b), there exists

i0 ∈ N such that φ̃(Ci0) = φ(p) = λ(p). Since |λ(p)| ≤ 8, (T4) will hold.

Lemma 5. For a subdivision cell C, let v1, . . . , v4 its corner vertices. For s ∈ S,
C ⊆ VD(s) if and only if v1, . . . , v4 ∈ VD(s).
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Proof. Let v1, . . . , v4 ∈ VD(s) and p ∈ C. Then, p ∈ Z+(s), since Z+(s) is
convex in 2D and v1, . . . , v4 ∈ Z+(s). For i = 1, . . . , 4 the open ball Bi :=
B∞(vi, µ∞(vi, s)) is empty of sites. Since B∞(p, µ∞(p, aff(s))) ⊂ ∪i∈[4]Bi it holds
that µ∞(p,P) ≥ µ∞(p, aff(s)) = µ∞(p, s). On the other hand, µ∞(p,P) ≤
µ∞(p, s). So, if p 6∈ VD(s) there is a site s′ s.t. Ds′(p) = Ds(p) and p ∈ VD(P).
Therefore, since Voronoi regions are simply connected and Voronoi edges are
straight lines, p must be on the boundary of C. The two possible configurations
are shown in Fig. 6 and are contradictory; for the first, use an argument similar
to that of Lem. 3(b). For the second, notice that this cannot hold since the cell
is square. We conclude that C ⊆ VD(s). The other direction is trivial.

(a) (b)

Fig. 6: The two cases in proof of Lemma 5. Different colors correspond to different
Voronoi regions.

Hence one decides (T1) by checking the vertices’ labels. (T2) is valid for C
iff λ(pC ) = ∅ and ∀s ∈ φ̃(C), s ∩ int(C) = ∅. Fot (T4), the presence of a Voronoi
vertex in C is verified through constructor VoronoiVertexTest: given C with
|φ̃(C)| ≥ 3, the affine bisectors of sites in φ̃(C) are intersected. If the intersection

point is in C and in Z+(s) for every s ∈ φ̃(C) then it is a Voronoi vertex. We do
not need to check whether it is in P or not; since (T1) fails for C, if v 6∈ P, there
must be s intersecting C such that v 6∈ Z+(s): contradiction.

3.2 Reconstruction Phase

We take the quadtree of the subdivision phase and output a planar straight-line
graph (PSLG) G = (V,E) representing the Voronoi diagram of P. G is a (vertex)
labeled graph and its nodes are of two types: bisector nodes and Voronoi vertex
nodes. Bisector nodes span Voronoi edges and are labeled by the two sites to
which they are equidistant. Voronoi vertex nodes correspond to Voronoi vertices
and so are labeled by at least 3 sites. We visit the leaves of the quadtree and,
whenever the Voronoi diagram intersects the cell, bisector or vertex nodes are
introduced. By connecting them accordingly with straight-line edges, we obtain
the exact Voronoi diagram and not an approximation. We process leaves with
|φ̃(·)| ≥ 2 that do not satisfy (T1) nor (T2).

Cell with two active sites. When φ̃(C) = {s1, s2}, C intersects VD(s1) or
VD(s2) or both. The intersection of bisD(s1, s2) with the cell, when non empty,
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is part of the Voronoi diagram: for each p ∈ bisD(s1, s2)∩C it holds that Ds1(p) =

Ds2(p) and λ(p) ⊆ φ̃(C) = {s1, s2}. Therefore p ∈ VD(s1) ∩ VD(s2).

Remark 1. If there is no Voronoi vertex in C and p1, p2 ∈ bisD(s1, s2) ∩ C for

s1, s2 ∈ φ̃(C), then p1p2 ⊂ bisD(s1, s2).

Since bisD(s1, s2) ⊂ affbis(s1, s2) we intersect the affine bisector with the
boundary of the cell. An intersection point p ∈ bis∞(aff(s1), aff(s2)) is in bisD(s1, s2)
iff p ∈ Z+(s1) ∩ Z+(s2). If intersection points are both in Z+(s1) ∩ Z+(s2), we
introduce a bisector node in the middle of the line segment joining them, labeled
by {s1, s2}. When only one intersection point is in Z+(s1)∩Z+(s2), then s1, s2

must intersect in C. Introduce a bisector node at the intersection point labeled
by {s1, s2}.

s1

s3

s2

Fig. 7: A Voronoi ver-
tex node connected with
two bisector nodes.

Cell with 3 active sites or more. When |φ̃(C)| = 3
and the VoronoiVertexTest finds a vertex in C or
when |φ̃(C)| ≥ 4 (a vertex has already been found), we
introduce a Voronoi vertex node at the vertex, labeled
by corresponding sites. In the presence of corners of
P in C, bisector nodes are introduced and connected
to the vertex node (Fig. 7).

If no Voronoi vertex is in C, we repeat the proce-
dure described in previous paragraph for each pair of
sites. Even if a bisector node is found, it is not inserted
at the graph if it is closer to the third site.

Connecting the graph nodes. The remaining graph edges must cross two
subdivision cells. We apply “dual marching cubes” [14] to enumerate pairs of
neighboring cells in time linear in the size of the quadtree: cells are neighboring
if they share a facet. Let v1, v2 be graph nodes in neighboring cells. We connect
them iff:
− v1, v2 are bisector nodes and λ(v1) = λ(v2).
− v1 is a bisector node, v2 is a Voronoi vertex node and λ(v1) ⊂ λ(v2).
− v1, v2 are Voronoi vertex nodes, λ(v1) ∩ λ(v2) = {s, s′} and v1v2 ⊂ P.

See Fig. 8 for an example where v1, v2 are Voronoi vertex nodes with λ(v1) ∩
λ(v2) = {s, s′} and v1v2 6⊂ P.

Theorem 2 (Correctness). The output graph is isomorphic to VD(P).

Proof. We need to prove that the nodes in the graph are connected correctly.
Let neighboring cells C1, C2 and v1, v2 graph nodes in each of them respectively.
If v1, v2 are bisector nodes and λ(v1) = λ(v2), then the line segment v1v2 is
in bisD (s1, s2), for s1, s2 ∈ λ(v1), and on the Voronoi diagram (Rem. 1). If
v1 is a bisector node and v2 is a Voronoi vertex node s.t. λ(v1) ⊆ λ(v2), then
v1v2 ⊂ bis∞(s1, s2). If the segment v1v2 is not on the Voronoi diagram then, there
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Fig. 8: C1, C2 are two neighboring subdivision cells and the Voronoi vertices v1, v2

have two common sites as labels but are not connected with a Voronoi edge.

is a Voronoi vertex node different than v2 in C1 or C2; contradiction. At last, let v1

and v2 be Voronoi vertex nodes such that their labels have two sites in common,
say s, s′, and the edge v1v2 ⊂ P. Vertices v1, v2 are both on the boundary of
VD(s) ∩ VD(s′). Since v1v2 ⊂ P, if it does not coincide with the Voronoi edge
equidistant to s, s′, then both v1, v2 must also be on the boundary of a Voronoi
region other than VD(s) and VD(s′). This leads to a contradiction.

3.3 Primitives, Data-structures, Complexity

Assuming the input vertices are rational, Voronoi vertices are rational [13]. Com-
puting Voronoi vertices, and intersections between affine bisectors and cell facets
require linear operations, distance evaluations and comparisons. Therefore, they
are exact. The above operations, computing φ̃ and deciding site-cell intersection
are formulated to allow for a direct extension to 3D. In the sequel we discuss
design of predicates, computation of label sets and construction of a Bounding
Volume Hierarchy. We also provide a complexity analysis of the algorithm.

Fig. 9: Test performed
by inZone(p, s).

Membership in H(s) is trivial to decide, thus we
focus on predicates that decide membership in Z(s).
Given p ∈ R2 and s ∈ S, let praff(s)(p) the pro-
jection of p to aff(s) and Ip,s the 1d−interval on
aff(s) centered at praff(s)(p) with radius µ∞(p, aff(s)).
inZone(p, s) decides if p ∈ Z(s); this holds iff Ip,s ∩
s 6= ∅ (Fig. 9). Given C,s ∈ S, ZoneInCell(s, C) de-
cides if Z(s) ∩ C 6= ∅. For this evaluation see Lem. 6
and Fig. 10.

Lemma 6. Let s ∈ S, f1, f2 the two facets of C parallel to aff(s), ρi = µ∞(fi, aff(s))
for i = 1, 2 and p′

C
= praff(s)(pC ). Then, Z(s) ∩ C 6= ∅ iff ∃i ∈ {1, 2} s.t.

B∞(p′
C
, rC + ρi) ∩ s 6= ∅.

Proof. Z(s)∩C 6= ∅ iff Z(s)∩ fi 6= ∅ for at least one i ∈ {1, 2}: Let p ∈ Z(s)∩C
s.t. p 6∈ f1 ∪ f2 and prfi(p) be the projection of p on fi. There exists i ∈
{1, 2} s.t. µ∞(prfi(p), aff(s)) > µ∞(p, aff(s)). Then, prfi(p) ∈ Z(s). It holds that
Z(s)∩fi 6= ∅ iff B∞(p′

C
, rC +ρi)∩s 6= ∅: Let q ∈ Z(s)∩fi and q′ its projection on

aff(s). Then µ∞(q′, s) ≤ µ∞(q, aff(s)) = ρi and µ∞(p′
C
, q′) ≤ rC . We deduce that
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B∞(p′
C
, rC +ρi)∩s 6= ∅, since µ∞(p′

C
, s) ≤ µ∞(p′

C
, q′)+µ∞(q′, s) ≤ rC +ρi. For the

inverse direction, let B∞(p′
C
, rC +ρi)∩s 6= ∅ and q′ in s s.t. µ∞(p′

C
, q′) ≤ rC +ρi.

Let q be its projection on aff(fi). If q ∈ fi we are done. Otherwise, q is at L∞
distance from fi equal to µ∞(p′

C
, q′)− rC , attained at a boundary point q′′ ∈ fi.

Then, ρi ≤ µ∞(q′′, s) ≤ µ∞(q′′, q′) = max{ρi, µ∞(p′
C
, q′) − rC} = ρi. It follows

that q′′ ∈ Z(s).

ρ

(a)

ρ

(b)

Fig. 10: Illustration of test performed by ZoneInCell

To decide if s ∩ C 6= ∅ and if s ∩ int(C) 6= ∅, we use isIntersecting(s, C)
and isStrictlyIntersecting(s, C) respectively. Design is trivial. All these
predicates are computed in O(1).

Computing label sets. If p ∈ P ∩C then its closest sites are in φ̃(C). Deciding
if p ∈ P is done by LocationTest, which identifies position based on the sites
that intersect C: among these we select those with minimum L∞ distance to p
and for whom inZone(p, s) is true. If a convex (resp. concave) corner w.r.t. the
interior of P is formed by these sites then p ∈ P iff it belongs to the intersection
(resp. union) of the oriented zones. If no corner is formed or even if C is not

intersected by any site, decision is trivial. This takes O(|φ̃(C)|).

Bounding Volume Hierarchy. We decompose P into a collection of rectan-
gles such that any two of them have disjoint interior. We construct a kd-tree on
the reflex vertices of the polygon, splitting always at a vertex. An orthogonal
polygon with h holes, has r = n/2 + 2(h − 1) reflex vertices. The kd-tree sub-
divides the plane into at most r + 1 regions. Every terminal region contains a
nonempty collection of disjoint rectangles. Let t be the maximum number of such
rectangles. Using this decomposition, we construct a Bounding Volume Hierar-
chy (BVH) [1, 10]. It is a tree structure on a set of objects stored at the leaves
along with their bounding volume while internal nodes store information of their
descendants’ bounding volume. Two important properties are minimal volume
and small overlap. They are achieved by using the Axis Aligned Bounding Box
(AABB) as bounding shape and building the BVH by bottom-up traversing the
constructed kd-tree: at every leaf of the kd-tree we compute the AABB of its
rectangles (namely a terminal bounding box ) and for every internal node we
compute the AABB of its children. The bounding volumes of a node’s children
intersect only at their boundary. Space complexity is linear in tree size.
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Rectangle-Intersection queries: Given query rectangle Q the data structure
reports all rectangles in the decomposition overlapping with Q. Starting from
the root, for every internal node, we check whether Q intersects its bounding
rectangle or not. In the latter case the data structure reports no rectangles. In
the former, we check the position of Q relative to the bounding boxes of the
node’s children so as to decide for each one if it should be traversed or not.
We continue similarly: when we reach a terminal bounding box, we check the
position of Q relative to every rectangle in it. Let k be the number of terminal
bounding boxes intersected by Q. Following [1] we show:

Theorem 3. Rectangle intersection queries are answered in O(k lg r + kt).

Proof. Let Q a rectangle-intersection query and v an internal node of the BVH
tree visited during the query. We distinguish two cases; first, the subtree rooted
at v contains a terminal bounding box that intersects Q. There are O(k) such
nodes at each level. Otherwise, Q intersects with the bounding rectangle V stored
at v but does not intersect any terminal bounding box of the subtree rooted at v
. There are at least two such terminal bounding boxes, say b and b′. Since Q does
not intersect b there is a line ` passing through a facet of Q separating Q from
b. Similarly, there exists a line `′ passing through a facet of Q that separates it
from b′. W.l.o.g. there is a choice of b, b′ such that ` and `′ are distinct -if all
the terminal bounding boxes of the subtree can be separated by the same line,
then V cannot intersect Q-. If `, `′ are perpendicular, then their intersection also
intersects V . Since the bounding boxes of each level are strictly non-overlapping,
every vertex of Q intersects a constant number of them (up to 4). So, there is a
constant number of such nodes at a given level. When `, `′ are parallel and no
vertex of Q intersects V , then the terminal bounding rectangles of the subtree
can be partitioned to those separated by ` from Q and to those separated by `′

from Q. For these distinct sets of terminal bounding boxes to be formed, there
must occur a split of V by a line parallel and in between `, `′. So there is a
reflex vertex of the polygon in V ∩Q, causing this split. But V ∩Q ∩ P = ∅; a
contradiction. So there are O(k) internal nodes visited at each level of tree. The
visited leaf nodes correspond to the O(k) terminal bounding boxes that intersect
Q and since each of them encloses at most t rectangles, the additional amount
of performed operations equals O(kt). Summing over all levels of the tree yields

a total query complexity of
∑dlg re
i=0 O(k) +O(kt) = O(k lg r + kt).

Point queries: Given p ∈ R2, we report on the rectangles of the decomposition
in which p lies inside (at most 4 rectangles). When zero, the point lies outside
the polygon. Since it is a special case of a rectangle-intersection query, the query
time complexity is O(lg r + t).

Complexity. Analysis requires a bound on the height of the quadtree. The edge
length of the initial bounding box is supposed to be 1 under appropriate scaling.
Let separation bound ∆ be the maximum value s.t. for every cell of edge length
≥ ∆ at least one termination criterion holds. Then, the maximum tree height is
L = O(lg(1/∆)). Let β be the minimum distance of two Voronoi vertices, and γ
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the relative thickness of Pc, i.e. the minimum diameter of a maximally inscribed
L∞-ball in Pc, where Pc is the complement of P.

Lemma 7. Separation bound ∆ is Ω(min{γ, β}), where the asymptotic notation
is used to hide some constants.

Proof. The algorithm mainly subdivides cells that intersect VD(P), since a
cell inside a Voronoi region or outside P is not subdivided (Termination cri-
teria (T1), (T2)). Most subdivisions occur as long as non neighboring Voronoi

regions are “too close”. Consider C centered at pC ∈ VD(s) and s′ ∈ φ̃(C) \
φ(C), with VD(s), VD(s′) non neighboring. For rC <

µ∞(pC ,s
′)−µ∞(pC ,s)

2 site s′

is not in φ̃(C). It holds that µ∞(pC , s
′) − µ∞(pC , s) ≥ ζ(s, s′), where ζ(s, s′) =

min{µ∞(p, q) | p ∈ VD(s), q ∈ VD(s′)}, i.e. the minimum distance of the closure
of the two Voronoi regions. When VD(s), VD(s′) are connected with a Voronoi
edge, ζ(s, s′) = Ω(β). When a minimum cell size of Ω(β) is not sufficient for s′

to not belong in φ̃(C), then there is a hole between VD(s), VD(s′) and ∆ is Ω(γ)
in this case.

This lower bound is tight: in Fig. 11a for ∆ = 0.8125β, and in Fig. 11b for
∆ = γ. Next we target a realistic complexity analysis rather than worst-case.
For this, assume the site distribution in C0 is “sufficiently uniform”. Formally:

Uniform Distribution Hypothesis (UDH). For L∞ balls A1 ⊆ A0 ⊂ C0,
let N0 (resp. N1) be the number of sites intersecting A0 (resp. A1). We suppose
N1/N0 = O(vol(A1)/vol(A0)), where vol(·) denotes the volume of a set in Rd,
d being the dimension of C0.

Theorem 4. Under UDH the algorithm complexity is O(n/∆), where n is the
total number of boundary edges (including any holes).

Proof. At each node, refinement and checking the termination criteria run in
time linear in the size of its parent’s active set. At the root |φ̃(C0)| = n. The
cardinality of active sets decreases as we move to the lower levels of the quadtree:
Let A(p, d,R) = {q ∈ R2 | d ≤ µ∞(p, q) ≤ 2R + d}. For cell C and s ∈ φ̃(C),
s ∩ A(pC , δC , rC ) 6= ∅. Let E = vol(A(pC , δC , rC )). For C1 a child of C and s1 ∈
φ̃(C1), s1 ∩ A(pC1

, δC1
, rC1

) 6= ∅. Since B∞(pC , δC ) is empty of sites and may
intersect with A(pC1

, δC1
, rC1

), we let E1 = vol(A(pC1
, δC1

, rC1
)\(A(pC1

, δC1
, rC1

)∩
B∞(pC , δC ))). We prove that in any combination of δC , δC1

, rC it is E1 ≤ E/2.

Under Hypothesis 1, a cell at tree level i has |φ̃(Ci)| = O(n/2i). Computation
per tree level, is linear in sum of active sets’ cardinality, therefore summing over
all levels of the tree, we conclude.

Queries in the BVH can be used to compute label sets and the active set of
a cell. Assume the number of segments touching a rectangle’s boundary is O(1),
which is the typical case. Then, we prove the following.

Lemma 8. We denote by C′ the parent of C in the subdivision. Using BVH
accelerates the refinement of C if |φ̃(C′)|/|φ̃(C)| = Ω(lg n+ t).
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(a) Input consists of 28 sites and 164
cells are generated. Total time is 12.0
ms. Minimum cell size is 0.8125 · β.

(b) Input consists of 12 sites and 64
cells are generated. Total time is 5.6
ms. Minimum cell size is γ.

Fig. 11: The 1-skeleton of the Voronoi diagram is shown in blue.

Proof. A label set λ(p) is determined by performing a point and a rectagle-
intersection query; once the point is detected to lie inside a rectangle R0 of a
leaf T0 we find an initial estimation d0 of µ∞(p,P). Since the closest site to p
may be on another leaf, we do a rectangle-intersection query centered at p with
radius d0. The closest site(s) to p are in the intersected leaves. Thus, finding λ(p)
takes O(k(p, d0) lg r+k(p, d0)t) (Thm. 3), where k(p, d0) = O(1) is the number of

BVH leaves intersected by B∞(p, d0). Computing the sites in φ̃(C) is accelerated
if combined with a rectangle intersection query to find segments at L∞-distance
≤ 2rC + δC from pC . Let kC be the maximum number of BVH leaves intersected
by this rectangle-intersection query. We obtain a total refinement time for the
cell equal to O(kC lg r + kC t). Since kC = O(|φ̃(C)|) and r = O(n) the lemma
follows.

4 Subdivision algorithm in three dimensions

Let P be a manifold orthogonal polyhedron: every edge of P is shared by exactly
two and every vertex by exactly 3 facets. For non-manifold input we first employ
trihedralization of vertices, discussed in [12, 4]. Input consists of S and bounding
box C0 of P. An octree is used to represent the subdivision.

The main difference with the 2D case is that Voronoi sites can be noncon-
vex. As a consequence, for site s, Z+(s) is not necessarily convex and therefore
the distance function Ds(·) cannot be computed in O(1): it is not trivial to
check membership in Z+(s). It is direct to extend the 2D algorithm in three
dimensions. However, we examine efficiency issues.

For an efficient computation of the basic predicates (of Sect. 3.3), we prepro-
cess every facet of the polyhedron and decompose it to a collection of rectangles.
Then a BVH on the rectangles is constructed. The basic operation of all these
predicates in 2D is an overlap test between an interval and a segment in 1D. In
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3D, the analog is an overlap test between a 2D rectangle and a site (rectilinear
polygon). Once the BVH is constructed for each facet, the rectangle-intersection
query takes time logarithmic in the number of facet vertices (Thm 3).

Subdivision. The active set φ̃, φ and the label set of a point are defined as in
to 2D. Most importantly, Lem. 4 is valid in 3D as well. The algorithm proceeds
as follows: We recursively subdivide C0 into 8 identical cells. The subdivision of
a cell stops whenever at least one of the termination criteria below holds. For
each cell of the subdivision we maintain the label set of its central point and φ̃.
Upon subdivision, we propagate φ̃ from a parent cell to its children for further
refinement. We denote by M the maximum degree of a Voronoi vertex (M ≤ 24).

3D Termination criteria: (T1’) int(C) ∩ P = ∅, (T2’) |φ̃(C)| ≤ 4, (T3’)

|φ̃(C)| ≤M and the sites in φ̃(C) define a unique Voronoi vertex v ∈ C.
Subdivision is summarized in Alg. 2. (T1’) is valid for C iff λ(pC ) = ∅ and

∀s ∈ φ̃(C) it holds that s∩ int(C) = ∅. Detecting a Voronoi vertex in C proceeds
like in 2D. A Voronoi vertex is equidistant to at least 4 sites and there is a site
parallel to each coordinate hyperplane among them.

(T1) used in 2D is omitted, for it is not efficiently decided: labels of the
cell vertices cannot guarantee that C ⊆ VD(s). However, as the following lemma
indicates, termination of the subdivision is not affected.

Lemma 9. Let C ⊆ VD(s). There exists r∗ > 0 s.t. if rC < r∗ it holds that

φ̃(C) = {s}.

Proof. Let s′ ∈ S \ s. We will prove that if Z+(s′) ∩ C 6= ∅, it holds that
δC < µ∞(pC , s

′). Therefore there is r(s′) > 0 such that 2r(s′) + δC < µ∞(pC , s
′).

Let r∗ be the minimum of these radii for every site different than s. When
rC < r∗, it holds that φ̃(C) = {s}.

Suppose that δC = µ∞(pC , s
′) = µ∞(pC , q) for q ∈ s′. Then q ∈ aff(s) and

s′ cannot be a subset of aff(s). So, s′ is adjacent to s. If Z+(s′) ∩ C = ∅ then

s′ 6∈ φ̃(C). If Z+(s′)∩C 6= ∅, since for adjacent sites it holds that Z+(s)∩Z+(s′) =
bisD(s, s′), bisector intersects C which is a contradiction. Thus, there is no site
s′ with Z+(s′) ∩ C 6= ∅ and µ∞(pC , s

′) = δC .

Theorem 5. Algorithm 2 halts.

Reconstruction. We construct a graph G = (V,E), representing the 1-skeleton
of the Voronoi diagram. The nodes of G are of two types, skeleton nodes and
Voronoi vertex nodes, and are labeled by their closest sites. Skeleton nodes span
Voronoi edges and are labeled by 3 or 4 sites. We visit the leaves of the octree
and process cells with |φ̃(C)| ≥ 3 and that do not satisfy (T1’). We introduce
the nodes to the graph as in 2D. Graph edges are added between corners and
Voronoi vertex nodes inside a cell. We run dual marching cubes (linear in the
octree size) and connect graph nodes v1, v2 located in neighboring cells, iff:
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Algorithm 2 Subdivision3D(P)

1: root ← bounding box of P
2: Q← root
3: while Q 6= ∅ do
4: C ← pop(Q)

5: Compute the label set of central point and φ̃(C).
6: if (T1’) ∨ (T2’) ∨ (T3’) then
7: return
8: else
9: Subdivide C into C1, . . . , C8

10: Q← Q ∪ {C1, . . . , C8}
11: end if
12: end while

− v1, v2 are skeleton nodes and λ(v1) = λ(v2), or
− v1 is a skeleton node, v2 is a Voronoi vertex node and λ(v1) ⊂ λ(v2), or
− v1, v2 are Voronoi vertex nodes, λ(v1) ∩ λ(v2) = {s, s′, s′′} and v1v2 ⊂ P.

Theorem 6 (Correctness). The output graph is isomorphic to the 1-skeleton
of the Voronoi diagram.

Primitives. Deciding membership in H(·) is trivial. The predicates of Sect. 3.3
extend to 3D and the runtime of each is that of a rectangle-intersection query on
the BVH constructed for the corresponding site at preprocessing: Let praff(s)(p)
be the projection of p to aff(s) and Bp,s the 2d−box on aff(s) centered at
praff(s)(p) with radius µ∞(p, aff(s)). Then, p ∈ Z(s) iff Bp,s ∩ s 6= ∅. A query
with Bp,s is done by inZone(p, s). For ZoneInCell(p, C) we do a query with

B∞(p′
C
, rC + ρi) where p′

C
= praff(s)(pC ), ρi = µ∞(fi, aff(s)) and f1, f2 the two

facets of C parallel to aff(s). Queries with B∞(p′
C
, rC ) are also performed by

isIntersecting(s, C) and isStrictlyIntersecting(s, C). When comput-
ing label sets, LocationTest is slightly modified, since the corners used to iden-
tify the position of a point can also be formed by 3 sites.

Complexity. Under appropriate scaling so that the edge length of C0 be 1, if ∆ is
the separation bound, then the maximum height of the octree is L = O(lg(1/∆)).
The algorithm mainly subdivides cells intersecting P, unlike the 2D algorithm
that mainly subdivides cells intersecting VD(P), because a criterion like (T1) is
missing. This absence does not affect tree height, since by Lem. 9 the minimum
cell size is same as when we separate sites whose regions are non-neighboring
(handled by Lem. 7). If β is the minimum distance of two Voronoi vertices and γ
the relative thickness of Pc, taking ∆ = Ω(min{β, γ}) suffices, as in 2D (Lem. 7).

Theorem 7. Under UDH and if n is the number of polyhedral facets, α the
maximum number of vertices per facet and tα the maximum number of rectangles
in a BVH leaf, the algorithm’s complexity is O(nα(lgα+ tα)/∆2).
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Fig. 12: The 1-skeleton of the Voronoi diagram is shown in blue. Input consists
of 12 sites and 386 cells are generated (not shown). Total time is 94.8 ms.

Proof. We sum active sets’ cardinalities of octree nodes, since refining a cell
requires a number of rectangle-intersection queries linear in the size of its parent’s
active set. Let C and its child C1. Any s ∈ φ̃(C) satisfies δC ≤ µ∞(pC , s) ≤ 2rC +δC .
We denote by E the volume of the annulus {q ∈ R2 | δC ≤ µ∞(pC , q) ≤ 2rC +δC}
and by E1 the volume of the respective annulus for C1, minus the volume of
the annulus’ intersection with B∞(pC , δC ). It is easy to show E1 ≤ E/2. Under
Hypothesis 1, we sum all levels and bound by O(4Ln) the number of rectangle-
intesection queries. Using Thm. 3, the theorem follows.

Remark 2. tα = O(α) so the bound of Thm. 7 is O(nα2/∆2). Let V be the
number of input vertices. It is expected that nα = O(V ); also α is usually
constant. In this case, the complexity simplifies to O(V/∆2).

5 Implementation and concluding remarks

Our algorithms were implemented in Julia and use the algebraic geometric mod-
eler Axl for visualization. They are available in https://gitlab.inria.fr/ckatsama/L -
infinity Voronoi. Some examples with runtimes are given in Fig. 11 and 12. All
experiments were run on a 64-bit machine with an Intel(R) Core(TM) i7-8550U
CPU @1.80GHz and 8.00 GB of RAM.

Our complexity bounds rely on a hypothesis of ”sufficiently uniform” input.
Even though Uniform Distribution Hypothesis might seem a strong assumption,
note that our analysis does not encounter the width of the subdivision tree
and considers it as a complete tree. We anticipate that in instances where our
hypothesis does not hold, the non-uniform” distribution of sites is captured by
sudden increases or decreases in the width of the tree passing from a higher level
to a lower one. We expect that there is a trade-off between the number of cells at
level i of the subdivision tree variating from 4i and the cardinality of the active
set of a cell being independent of the current level, so that the total complexity
remains linear in the number of sites (facets). We plan to extend our research
towards proving non trivial complexity bounds that exploit to the maximum
degree the adaptivity of subdivision algorithms and do not rely on assumptions.
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