
HAL Id: hal-02400414
https://hal.inria.fr/hal-02400414

Preprint submitted on 9 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improved Low-qubit Hidden Shift Algorithms
Xavier Bonnetain

To cite this version:

Xavier Bonnetain. Improved Low-qubit Hidden Shift Algorithms. 2019. �hal-02400414�

https://hal.inria.fr/hal-02400414
https://hal.archives-ouvertes.fr

ar
X

iv
:1

90
1.

11
42

8v
1

 [
qu

an
t-

ph
]

 3
1

Ja
n

20
19

Improved Low-qubit Hidden Shift Algorithms

Xavier Bonnetain

1 Sorbonne Université, Collège Doctoral, F-75005 Paris, France
2 Inria, France

Abstract. Hidden shift problems are relevant to assess the quantum
security of various cryptographic constructs. Multiple quantum subex-
ponential time algorithms have been proposed. In this paper, we pro-
pose some improvements on a polynomial quantum memory algorithm
proposed by Childs, Jao and Soukharev in 2010. We use subset-sum
algorithms to significantly reduce its complexity. We also propose new
tradeoffs between quantum queries, classical time and classical memory
to solve this problem.

1 Introduction

The hidden shift problem can be stated as follows:
Let f , g be two injective functions, G a group. Given the promise that there

exists s ∈ G such that, for all x, f(x) = g(xs), retrieve s.
This is a generalization of the the hidden subgroup problem, which corre-

sponds to the case f = g, and is efficiently solved by Shor’s algorithm [16] in the
abelian case.

As the hidden subgroup problem, the hidden shift problem is of interest for
cryptography. Notably, the security of multiple symmetric primitives [1,4] and
the security of some post-quantum isogeny-based asymmetric schemes [6,7,9,10]
depends on its hardness.

It is also interesting for quantum computing, as solving this problem requires
exponential classical time, but depending on the group structure, can be solved
quantumly in either polynomial, sub-exponential or exponential time.

The first subexponential quantum algorithm for the hidden shift problem
has been proposed by Kuperberg in [12], where he proposed multiple algorithms
in 2O(

√
n) quantum time, memory and query. A polynomial quantum memory

variant has been proposed by Regev in [14], with a time cost in 2O(
√

n log
2
(n)).

This latter algorithm has been generalized and more precisely studied by Childs,

Jao and Soukharev in [7], where they prove a time cost in 2(
√
2+o(1))

√
n log

2
(n)

for all abelian groups. In 2013, Kuperberg proposed a generalisation of his first

algorithm and Regev’s variant [13] with a heuristic cost estimate of Õ
(
2
√
2n
)
.

Asymptotic cost estimates provide little information on the concrete cost
of the algorithm. Concrete cost estimates for groups of order a power of two
for Kuperberg’s original algorithm have been done in [4], obtaining a cost of

http://arxiv.org/abs/1901.11428v1

around 21.8
√
n for the cyclic case. The used algorithm has later been generalised

to arbitrary cyclic groups in [5], for a cost of around 12× 21.8
√
n.

In this paper, we will focus on the quantum algorithm of Childs, Jao and
Soukharev [7] and show how it can be improved.

1.1 Notations

We note

Ln(α, c) = 2((c+o(1))nα log
2
(n)1−α).

We will focus here on the cyclic group Z/(NZ), and denote n = log2(N).
However, the algorithms can also be applied to arbitrary abelian groups, using
the same approach as in [7]. We denote Ln(1/2, c) as L(c). We note · the inner
product of vectors.

We denote χ(x) = exp (2iπx) in the qubit phases.

1.2 Results

In this paper, we improve the quantum hidden shift algorithm of [7]. We use
subset-sum algorithms to lower the exponent of the complexity, and propose
different tradeoffs between quantum and classical cost. In particular, with c
the exponent to solve a subset-sum instance, we solve the hidden shift problem
in L(

√
c) classical time and quantum queries, and if we want a quadratic gap

between the classical time cost and the quantum query cost, we can solve it in
L(

√
c/3) quantum queries and L(2

√
c/3) classical time.

The results are summarized in Table 1. The quantum time is roughly the
number of quantum queries, as the only non-trivial quantum operation is the
oracle evaluation.

Quantum query Classical time Classical memory Subset-sum Source

L
(
1/

√
2
)

L
(√

2
)

Õ(1) exhaustive search [7]

L (1) L (1) Õ(1) exhaustive search Section 4.2

L
(
1/

√
3
)

L
(
2/

√
3
)

Õ(1) exhaustive search Section 4.3

L(0.539) L(0.539) L(0.539) [2] Section 4.2

L(0.312) L(0.623) L(0.312) [2] Section 4.3

L(0.849) L(0.849) Õ(1) [2], poly.memory Section 4.2

L(0.490) L(0.980) Õ(1) [2], poly.memory Section 4.3

O(n2) Õ
(
20.291n

)
Õ
(
20.291n

)
[2] Section 4.4

Table 1: Hidden shift algorithm cost

2

2 Hidden Shift Algorithms

Hidden shift algorithms are in two steps: the first one uses the oracles to produce
some random qubits with a specific structure (the elements), which are then
refined by some combination routines until we manage to extract the value of
the hidden shift.

2.1 Element Generation

Given a quantum oracle access to f and g, one can compute

∑

x

|0〉 |x〉 |f(x)〉 + |1〉 |x〉 |g(x)〉 .

After a measurement of the last register, one obtains

|0〉 |x0〉+ |1〉 |x0 + s〉

for a given unknown x0. Now, one can apply a Quantum Fourier Transform on
the second register, to obtain

∑

ℓ

|0〉χ
(
x0ℓ

N

)
|ℓ〉+ |1〉χ

(
(x0 + s)ℓ

N

)
|ℓ〉 .

Finally, one can perform a measurement on the second register, and obtain ℓ
and

|ψℓ〉 = |0〉+ χ

(
sℓ

N

)
|1〉 .

2.2 Interesting Elements

If one manages to obtain |ψ1〉 , . . . , |ψ2j 〉 , |ψ2n〉, then s can be retrieved with a
Quantum Fourier Transform, as

n⊗

j=0

|ψ2j 〉 =
2n∑

ℓ=0

χ

(
sℓ

N

)
|ℓ〉 .

Hence, applying an inverse Quantum Fourier Transform allows to retrieve s.
It is to be noted that, for groups of odd order, we only need to be able to

construct |ψ1〉: the value 2j can be obtained by multiplying all the labels by 2−j

and constructing 1 from the new labels.
The situation is slightly easier if N = 2n. In that case, |ψ2n−1〉 = |0〉 +

(−1)s |1〉 directly gives s mod 2. Likewise, as noted in [4], both |ψ2n−2〉 and
|ψ3×2n−2〉 allows to obtain the second bit of s if s mod 2 is known, and so on,
knowing the lower bits of s allows to extract the next bit from

∣∣ψ(2α+1)2j
〉
.

3

2.3 Combination routines

We will use the combination routines of [7] to obtain the labels we are looking
for, that is, either |ψ1〉 or |ψ2n−1〉.

The idea is to take a certain amount of elements (k), and use them to produce
one better element. Recall that the elements are of the form |0〉+exp

(
2iπ sℓi

N

)
|1〉.

If we tensor them, we obtain

⊗

i

|ψℓi〉 =
∑

j∈{0,1}k

χ

(
j · (ℓ1, . . . , ℓk)

N

)
|j〉 .

Now, the objective of the combination routine is to perform a partial mea-
surement on |j〉, in order to ensure that the remaining j have an interesting
phase difference. After that, we only need to know the corresponding j, project
the state on a pair, and relabel the two values of the pair to 0 and 1 in order to
obtain a better element.

Algorithm 1 computes the function |j〉 |0〉 7→ |j〉 |j · (ℓ1, . . . , ℓk) mod 2r〉 and
measures the second register. By definition, the remaining j have a phase iden-
tical modulo 2r. Hence, the output label will be a multiple of 2r. This approach
can be iterated, in order to obtain multiples of increasingly big powers of 2, and
allows to reach |ψ2n−1〉.

Another approach to reach a specific element is to compute |⌊j · (ℓ1, . . . , ℓk)/M⌋〉.
This will produce elements with a close phase (their difference will be smaller
than M). As before, this approach can be iterated to obtain smaller and smaller
labels, until we reach |ψ1〉. This is done in Algorithm 2.

Algorithm 1 Combination routine, for powers of 2

Input: (|ψℓ1〉 , . . . , |ψℓk 〉) : ∀i, 2a|ℓi, r
Output: |ψℓ′〉, 2r+a|ℓ′

1: Tensor
⊗

i |ψℓi〉 =
∑

j∈{0,1}k χ
(

j·(ℓ1,...,ℓk)
N

)
|j〉

2: Add an ancilla register, apply |x〉 |0〉 7→ |x〉 |x · (ℓ1, . . . , ℓk) mod 2r〉
3: Measure the ancilla register, leaving with

V and
∑

j·(ℓ1,...,ℓk) mod 2r=V

χ

(
j · (ℓ1, . . . , ℓk)

N

)
|j〉

4: Compute the corresponding j
5: Pair them, project to a pair (j1, j2).

The register is now χ
(

j1·(ℓ1,...,ℓk)
N

)
|j1〉+ χ

(
j2·(ℓ1,...,ℓk)

N

)
|j2〉

6: Map |j1〉 to |0〉, |j2〉 to |1〉
7: Return |0〉 + χ

(
(j2−j1)·(ℓ1,...,ℓk)

N

)
|1〉

Both algorithms are used in [7], the former to tackle cyclic groups of order a
power of 2, the latter for cyclic groups of odd order.

4

Algorithm 2 Combination routine, for smaller labels

Input: (|ψℓ1〉 , . . . , |ψℓk 〉), (ℓ1, . . . , ℓk) ∈ [0;B)k, r
Output: |ψℓ′〉, ℓ′ <

∑
j ℓj/2

r

1: Tensor
⊗

i |ψℓi〉 =
∑

j∈{0,1}k χ
(

j·(ℓ1,...,ℓk)
N

)
|j〉

2: Add an ancilla register, apply |x〉 |0〉 7→ |x〉
∣∣⌊x · (ℓ1, . . . , ℓk)2r−1/B⌋

〉

3: Measure the ancilla register, leaving with

V and
∑

⌊j·(ℓ1,...,ℓk)2
r−1/B⌋=V

χ

(
j · (ℓ1, . . . , ℓk)

N

)
|j〉

4: Compute the corresponding j
5: Pair them, project to a pair (j1, j2).

The register is now χ
(

j1·(ℓ1,...,ℓk)
N

)
|j1〉+ χ

(
j2·(ℓ1,...,ℓk)

N

)
|j2〉

6: Map |j1〉 to |0〉, |j2〉 to |1〉
7: Return |0〉 + χ

(
(j2−j1)·(ℓ1,...,ℓk)

N

)
|1〉

Algorithm 3 Projection routine

Input:
∑

x∈J φ(x) |x〉, (j1, j2) ⊂ J .
Output: φ(j1) |j1〉+ φ(j2) |j2〉 or

∑
x∈J\{j1,j2}

φ(x) |x〉
1: Add an ancilla qubit:

∑
x∈J φ(x) |x〉 |0〉

2: Apply the operator |x〉 |0〉 7→ |x〉 |x = j1 ∨ x = j2〉
3: Measure the ancilla qubit

Algorithm 3 projects on 〈|j1〉 , |j2〉〉 with probability 2/|J |, and otherwise
projects to the supplementary vector space.

Finding pairs Finding the pairs for Algorithm 1 (Step 4) consists in finding
the solutions of the equation x · (ℓ1, . . . , ℓk) mod 2r = V . This is addressed by
brute-force in [7], for a cost of 2k. For the complexity analysis, we consider that

this step costs Õ(2ck), the brute-force case being the case c = 1. This brute-force
approach can also be applied to Step 4 of Algorithm 2.

Complexity Algorithm 1 succeeds if, at step 5, we manage to project on a pair
(j1, j2). Indeed, as they are both preimages of V , we have

ℓ′ = (j2 − j1) · (ℓ1, . . . , ℓk) = 0 mod 2m.

In order to achieve this, we must:

1. Have at least two distinct solutions of the equation,
2. Manage to find the solutions,
3. Successfully project onto a pair.

The first point requires us to have r < k. In [14], k = r + 4 is used, while [7]
uses k = r + 1. In both cases, we have a fixed probability to have at least 2

5

solutions: there are 2r images, hence at most 2r subsets have a sum for which
there is a unique preimage, hence we have at least 2 solutions at least half the
time. The third point is a problem when the number of solutions is odd: in that
case, we may fail to project on a pair. As we have balanced superpositions, the
probability of obtaining a singleton is half the probability of obtaining a pair.
Hence, we fail to project with probability at most 1/3.

The case of Algorithm 2 is very similar. In [7], the authors chose r = k −
log(k). As the output labels depend on the sum of the inputs, they can be
larger, and the output space is of size k2r. Hence, in [7], a value of r = k −
log(k) is chosen, to guarantee a constant success probability. Moreover, a step
of rejection sampling (still with constant probability) is added, to guarantee a
uniform sampling in the smaller interval.

To summarize, the two routines take k elements, and produce with constant
probability p one refined element which is r ≃ k bits better, at a cost of Õ(2ck),
with c the exponent of finding the solutions in the combination routines.

2.4 CJS algorithm [7]

If we want each routine in the pipeline to be the same, we will have m routines,
and we need mr ≃ n in order to succeed. The total cost is then of (k/p)m

queries, km qubits (excluding the quantum oracle overhead), a classical time in

Õ(
∑

i<m(k/p)i2k) = Õ((k/p)m2k) and a polynomial classical memory. If k =

α
√
n log2(n), the query cost is in L(1/(2α), and the time cost is in L(1/(2α)+α.

The classical cost is minimized for α = 1/
√
2, which implies k =

√
n log2(n)/(2),

which leads to a quantum query cost in L(1/
√
2) and a classical time cost in

L(
√
2).

Remark 1. The quantum query exponent of [7, Theorem 5.2] is not tight.

3 Subset-sum algorithms

It turns out that solving x · (ℓ1, . . . , ℓk) mod 2r = V with x ∈ {0, 1}k for ran-
dom instances can be done more efficiently than brute-force. Indeed, as we have
a small number of solutions, it corresponds to a random instance of a subset-
sum problem with a density close to 1, for which multiple algorithms have been
proposed [15,2,11]. All these algorithms (classical and quantum) have an ex-

ponential complexity, in Õ(2cn), for a given constant c < 1. As we consider a
polynomial-quantum memory algorithm, we will focus on the classical subset-
sum algorithms.

These algorithms rely on list-merging techniques: the complete solution is
contructed from lists of candidate partials solutions.

A simple example is the Schroppel-Shamir algorithm [15]. The space of
possible solutions of

∑n
i=1 εixi = V is split into 4 parts S1, S2, S3, S4, with

S1 =
∑

i≤n/4 εixi, and so on.

6

The lists contains the possible partial sum on a fourth of the variables. The
intermediate lists S12 and S34 contains the partial sums on the first and second
half of the variables.

Without any other technique, the splitting would not gain anything, as the
two intermediate lists would be of size 2n/2. The Schroeppel-Shamir algorithm
gains by guessing S12 mod 2n/4. With that guess, the list is expected to be of
size 2n/4. Conversely, S12 mod 2n/4 imposes the value V − S12 mod 2n/4 for
S34. Hence all the lists are expected to be of size Õ(2n/4). The solution will only
be found for the correct guess of the intermediate value, requiring 2n/4 guesses
overall, for a total cost of Õ(2n/2) time, but only Õ(2n/4) memory.

Finally, the merging in itself is the efficient generation of the intermediate
lists (and of the complete solution) from the previous lists. As we want to produce
a list of values with a constrained sum, we can sort the first list, and then check
for each element of the second list if there is an element leading to a correct sum
in the first list. The cost of the merging is the cost of sorting the input list and
constructing the output list, here Õ(2n/4).

The algorithm from [2] uses similar techniques, but with a different splitting.
Instead of considering a subset of the variables, they considered a partial sum
with a smaller number of terms in it. They also allowed the exponent of the
subset sum in the intermediate step to lie in {−1, 0, 1}. With this approach, the
merging has also to check for the consistency of the solutions, as the variables
may overlap.

By splitting the sum in 8 and carefully choosing the size of the intermedi-
ate constraint and the ratio of -1, the authors of [2] obtained a complexity in

Õ(20.291n) in classical time and memory.

S1 S2 S3 S4

S12 S34

S

Fig. 1: Schroeppel-Shamir merging

7

It is also possible to devise polynomial-memory algorithms for this problem.
The method in [2] consists in merging only two lists, using a memoryless collision-

finding algorithm, with a cost in Õ(20.72n).

In our case, we have some instances with more than one solution. As the
expected number of solutions is fixed, this does not change the asymptotic cost
for constructing all the solutions.

Finally, finding the pairs for Algorithm 2 consists in finding the solutions of
the slightly different equation ⌊x · (ℓ1, . . . , ℓk)/2r⌋ = V . This equation is slightly
different, but the exact same techniques can be applied, as the merging can also
check for values lying in an interval. Hence, the cost is similar for both.

For the polynomial variant, we do not have an equality to check between the
two lists. This can be solved by truncating the first r+1 bits of the partial sum.
In that case, two partial sums that lead to the correct interval have more than
50% chance to have the same truncated value. In the case that we missed, we
only need to redo this by adding 2r to the partial sum before truncating. We will
also have a fixed proportion of false positives that we need to discard. Overall,
this does not change the complexity cost of Õ(2cn).

4 Improved hidden-shift algorithms

4.1 Improving the CJS algorithm

Instead of using brute-force to compute the output qubit value of each routine,
we can use a subset-sum algorithm, which costs Õ(2cn). The only difference is
that the classical part cost less. With k = α

√
n log2(n), we still have a quantum

query cost in L(1/(2α)), but the classical time cost becomes L(1/(2α) + cα)
and the optimal parameter becomes k =

√
n log2(n)/(2c), leading to a quantum

query complexity in L(
√
c/2) and a classical time complexity in L(

√
2c).

The classical time exponent of this hybrid algorithm is double the quantum
query cost.

4.2 Minimizing the classical time

The classical cost of the previous approach is almost all in the first routine of the
pipeline: the second routine is called k/p time less, the third (k/p)2 time less, and
so on. We can change the size of each routine and increase k to have each routine
to cost overall roughly the same. The cost of a routine is in 2ck, hence k can
increase by log2(n)/(2c) for each routine. The optimal point is for k increasing
from 0 to

√
n log2(n)/c, by steps of log2(n)/(2c). With these parameters, the

routine i uses ki = i log2(n)/(2c). We need to have
∑

i<m ki ≃ n, which implies

m ≃ 2
√
cn/ log2(n). Hence, the cost of each routine will be in 2ckm+o(km). As

km ≃
√
n log2(n)/c, we obtain a quantum time cost in L(

√
c). The first routine

does nothing, hence its cost is the number of queries, which is also in L(
√
c).

8

4.3 Enforcing a quadratic gap

Section 4.1 had an algorithm with ki = β
√
n log2(n), Section 4.2 used ki =

iα
√
n log2(n). We can generalize this and consider It turns out the two pre-

vious approaches can be generalized, and we can consider routine input sizes
of the form ki = (iα + β)

√
n log2(n), and for example ensure a quadratic gap

between the number of queries and the classical time. If we want to have each
m routine to cost the same, we still need α = log2(n)/(2c). This implies m ≃
2c

(
−β +

√
β2 + 1

c

)√
n/ log2(n), hence km ≃

√
β2 + 1

c

√
n log2(n). The log of

number of queries is in c(km − k1) = cαm = c
(
−β +

√
β2 + 1

c

)√
n log2(n), as

all the steps cost the same. Enforcing a quadratic gap between the two means

that
√
β2 + 1

c = 2β, hence β = 1/
√
3c. With these values, the quantum query

cost is in L
(√

c
3

)
, and the classical time cost is in L

(
2
√

c
3

)
.

As it is similar to the classical/quantum gap of Grover’s algorithm, this
approach can be interesting for cases where the targeted hardness is defined
with respect to some exhaustive search, as for example in the security levels 1,
3 and 5 of the NIST call for post-quantum primitives.

4.4 Minimizing the number of queries

The simplest way to minimize to number of queries is to have only one routine,
and directly use Algorithm 1 or Algorithm 2 to solve the whole problem: in that
case, the number of queries is in O(n) to obtain one target element, hence overall

the quantum query cost is in O(n2). The classical cost is in Õ(2cn). Interestingly,
this beats the asymptotic cost of the best known classical algorithm if c < 1/2.

4.5 Algorithms complexity

From Section 3, we can take c = 0.291 for a memory-heavy algorithm, or c = 0.72
for a polynomial-memory algorithm. This leads to the exponents of Table 1.

If we only consider quantum algorithms (or that classical and quantum time
and memory are equivalent), then we have sightly different complexities. Cur-
rently, an algorithm with the exponent c = 0.241 has been proposed in [3], and
one with exponent c = 0.226 in [11]. The costs are summarized in Table 2. It is to
be noted that the non-polynomial quantum memory hidden shift algorithms we
obtain perform asymptotically worse than the algorithms from [4,12,13], which
use a different combination routine.

Using Grover’s algorithm for a small number of queries produces an algo-
rithm with the same cost as the exhaustive search, with a small number of
queries. Overall, this is slightly worse than the approach of [8], which performs
an exhaustive search, but achieves a linear number of queries.

9

Quantum query Quantum time Quantum memory Subset-sum Source

L(0.5) L(1) O(n) Grover Section 4.1

L(1/
√
2) L(1/

√
2) O(n) Grover Section 4.2

O(n2) 20.5n O(n) Grover Section 4.4

L(0.283) L(0.567) L(0.283) [3] Section 4.3

L(0.491) L(0.491) L(0.491) [3] Section 4.2

O(n2) Õ
(
20.241n

)
Õ
(
20.241n

)
[3] Section 4.4

L(0.274) L(0.549) L(0.274) [11] Section 4.1

L(0.475) L(0.475) L(0.475) [11] Section 4.2

O(n2) Õ
(
20.226n

)
Õ
(
20.226n

)
[11] Section 4.4

Table 2: Purely quantum algorithm costs

5 Conclusion

In this paper, we showed how to use subset-sum algorithms to reduce signif-
icantly the cost of a quantum hidden shift algorithm, and proposed different
quantum/classical cost tradeoffs, allowing to divide the exponent by roughly
2.6 compared to [7], and even by 4.5 for the quantum query cost if we allow a
quadratic gap between the classical time cost and the quantum query cost.

Improving the complexity. In order to obtain more efficient algorithms, one
might study what happens if the combined elements can be chosen from a larger
pool, as done in the quantum-memory heavy algorithms of [12]. This may allow
to reduce the time cost at the expense of the quantum memory, while still offering
a tradeoff between classical time and quantum query. Another approach would
be to apply similar techniques to the algorithm of [13], if applicable.

References

1. Alagic, G., Russell, A.: Quantum-Secure Symmetric-Key Cryptography Based on
Hidden Shifts. In: Coron, J.S., Nielsen, J.B. (eds.) EUROCRYPT (3). LNCS, vol.
10212, pp. 65–93 (2017)

2. Becker, A., Coron, J., Joux, A.: Improved generic algorithms for hard knapsacks.
In: Paterson, K.G. (ed.) Advances in Cryptology - EUROCRYPT 2011 - 30th An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings. Lecture Notes in Com-
puter Science, vol. 6632, pp. 364–385. Springer (2011)

3. Bernstein, D.J., Jeffery, S., Lange, T., Meurer, A.: Quantum algorithms for the
subset-sum problem. In: Gaborit, P. (ed.) Post-Quantum Cryptography - 5th Inter-
national Workshop, PQCrypto 2013, Limoges, France, June 4-7, 2013. Proceedings.
Lecture Notes in Computer Science, vol. 7932, pp. 16–33. Springer (2013)

10

4. Bonnetain, X., Naya-Plasencia, M.: Hidden shift quantum cryptanalysis and im-
plications. In: Peyrin, T., Galbraith, S.D. (eds.) Advances in Cryptology - ASI-
ACRYPT 2018 - 24th International Conference on the Theory and Application
of Cryptology and Information Security, Brisbane, QLD, Australia, December 2-
6, 2018, Proceedings, Part I. Lecture Notes in Computer Science, vol. 11272, pp.
560–592. Springer (2018)

5. Bonnetain, X., Schrottenloher, A.: Quantum security analysis of CSIDH and ordi-
nary isogeny-based schemes. IACR Cryptology ePrint Archive 2018, 537 (2018)

6. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: Csidh: An effi-
cient post-quantum commutative group action. Cryptology ePrint Archive, Report
2018/383 (2018), https://eprint.iacr.org/2018/383

7. Childs, A.M., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quan-
tum subexponential time. J. Mathematical Cryptology 8(1), 1–29 (2014)

8. Ettinger, M., Høyer, P.: On Quantum Algorithms for Noncommutative Hidden
Subgroups. In: STACS 99, 16th Annual Symposium on Theoretical Aspects of
Computer Science, Trier, Germany, March 4-6, 1999, Proceedings. LNCS, vol. 1563,
pp. 478–487. Springer (1999)

9. Feo, L.D., Galbraith, S.D.: Seasign: Compact isogeny signatures from class group
actions. IACR Cryptology ePrint Archive 2018, 824 (2018)

10. Feo, L.D., Kieffer, J., Smith, B.: Towards practical key exchange from ordinary
isogeny graphs. In: Peyrin, T., Galbraith, S.D. (eds.) Advances in Cryptology -
ASIACRYPT 2018 - 24th International Conference on the Theory and Application
of Cryptology and Information Security, Brisbane, QLD, Australia, December 2-6,
2018, Proceedings, Part III. Lecture Notes in Computer Science, vol. 11274, pp.
365–394. Springer (2018)

11. Helm, A., May, A.: Subset sum quantumly in 1.17n. In: Jeffery, S. (ed.) 13th
Conference on the Theory of Quantum Computation, Communication and Cryp-
tography, TQC 2018, July 16-18, 2018, Sydney, Australia. LIPIcs, vol. 111, pp.
5:1–5:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018)

12. Kuperberg, G.: A Subexponential-Time Quantum Algorithm for the Dihedral Hid-
den Subgroup Problem. SIAM J. Comput. 35(1), 170–188 (2005)

13. Kuperberg, G.: Another Subexponential-time Quantum Algorithm for the Dihedral
Hidden Subgroup Problem. In: Severini, S., Brandão, F.G.S.L. (eds.) 8th Confer-
ence on the Theory of Quantum Computation, Communication and Cryptography,
TQC 2013, May 21-23, 2013, Guelph, Canada. LIPIcs, vol. 22, pp. 20–34. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2013)

14. Regev, O.: A Subexponential Time Algorithm for the Dihedral Hidden Subgroup
Problem with Polynomial Space. CoRR (2004)

15. Schroeppel, R., Shamir, A.: A t=o(2n/2), s=o(2n/4) algorithm for certain np-
complete problems. SIAM J. Comput. 10(3), 456–464 (1981)

16. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

11

https://eprint.iacr.org/2018/383

	Improved Low-qubit Hidden Shift Algorithms

