
HAL Id: hal-02403616
https://hal.archives-ouvertes.fr/hal-02403616

Submitted on 10 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SPONGE: Software-Defined Traffic Engineering to
Absorb Influx of Network Traffic

Benoît Henry, Shihabur Chowdhury, Abdelkader Lahmadi, Romain Azaïs,
Jérôme François, Raouf Boutaba

To cite this version:
Benoît Henry, Shihabur Chowdhury, Abdelkader Lahmadi, Romain Azaïs, Jérôme François, et al..
SPONGE: Software-Defined Traffic Engineering to Absorb Influx of Network Traffic. LCN 2019 -
44th IEEE Conference on Local Computer Networks, Oct 2019, Osnabrück, Germany. �hal-02403616�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/275926979?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-02403616
https://hal.archives-ouvertes.fr


SPONGE: Software-Defined Traffic Engineering to
Absorb Influx of Network Traffic

Benoit Henry∗, Shihabur Rahman Chowdhury†, Abdelkader Lahmadi‡, Romain Azais§,
Jérôme François§, and Raouf Boutaba†

∗IMT Lille Douai benoit.henry@imt-lille-douai.fr
† University of Waterloo, Canada {sr2chowdhury|rboutaba}@uwaterloo.ca

‡ University of Lorraine, France abdelkader.lahmadi@loria.fr
§INRIA - Nancy Grand Est, France {jerome.francois|romain.azais}@inria.fr

Abstract—Existing shortest path-based routing in wide area
networks or equal cost multi-path routing in data center networks
do not consider the load on the links while taking routing deci-
sions. As a consequence, an influx of network traffic stemming
from events such as distributed link flooding attacks and data
shuffle during large scale analytics can congest network links
despite the network having sufficient capacity on alternate paths
to absorb the traffic. This can have several negative consequences,
service unavailability, delayed flow completion, packet losses,
among others. In this regard, we propose SPONGE, a traffic
engineering mechanism for handling sudden influx of network
traffic. SPONGE models the network as a stochastic process,
takes the switch queue occupancy and traffic rate as inputs, and
leverages the multiple available paths in the network to route
traffic in a way that minimizes the overall packet loss in the
network. We demonstrate the practicality of SPONGE through
an OpenFlow based implementation, where we periodically and
pro-actively re-route network traffic to the routes computed by
SPONGE. Mininet emulations using real network topologies show
that SPONGE is capable of reducing packet drops by 20% on
average even when the network is highly loaded because of an
ongoing link flooding attack.

I. INTRODUCTION

Traffic engineering is the process of assigning network
flows to network paths while optimizing objectives such as
minimizing the maximum link utilization and minimizing flow
completion times [1]. It is essential for network operations
in order to handle the dynamic nature of network traffic.
Particularly, traffic engineering solutions should be capable
of handling sudden influx of network traffic triggered by
events such as a distributed link flooding attack, initiation
of data shuffle phase for large-scale analytics, inter/intra-
data center virtual machine migration or database replication,
etc.. Contemporary traffic engineering solutions in wide-area
networks (WANs) such as MPLS-TE or in data center (DC)
networks such as Equal Cost Multipath do not consider the
dynamically changing load on network links while assigning
flows to the paths. Therefore, an influx of network traffic can
congest links despite sufficient capacity to absorb the influx
being present in the network.

Traffic engineering solutions focused on mitigating conges-
tion has been extensively studied in the research literature.
The general theme of different proposals in this area is to
exploit the excess capacity present on alternate paths between

endpoints to absorb any influx of network traffic instead of
solely relying on shortest path based forwarding. However,
most of the traffic engineering proposals are either tailored
to work best for a particular network topology (e.g., tree-like
DC networks [2] or WANs [3]), or focuses on a particular
event that causes influx in network traffic (e.g., link flooding
attacks [4], traffic bursts in DCs [5], link failures [6], etc.).

However, there is a lack of a general traffic engineering
mechanism that is agnostic to the network topology, the traffic
patterns and the objective function and that is not tailored to
handle traffic influx caused by specific events. In this regard,
we propose SPONGE, a traffic engineering mechanism for
handling sudden influx of network traffic that can work with
any network topology, does not assume any specific pattern in
the traffic matrix, and supports pluggable objective functions.
SPONGE is a general traffic engineering approach that models
the network as a stochastic process of packet arrivals and
departures on switch queues and can support multiple objective
functions such as minimizing the number of dropped packets
and minimizing the queue occupancy across the network.
We also demonstrate the practicality of SPONGE through an
OpenFlow based implementation, where we periodically and
pro-actively re-route network traffic to the routes computed by
SPONGE. Mininet emulations using real network topologies
show that SPONGE is capable of reducing packet drops by
20% on average even when the network is highly loaded
because of an ongoing link flooding attack.

The rest of this paper is organized as follows. We review
the literature on traffic engineering for mitigating network con-
gestion and contrast them with SPONGE in Section II. Then
we present a stochastic model to capture network dynamics
in Sections III followed by the proposed control algorithm for
computing optimal forwarding rules in Section IV. Section
V-A highlights numerical results using Matlab simulations
and Section V-B presents our experiments using Mininet to
evaluate SPONGE for WAN and DC use-cases. Section VI
concludes this paper with some future research directions.

II. RELATED WORKS

There is a large body of research literature on traffic
engineering mechanisms to mitigate congestion events. They
could be grouped into two major categories with respect to the



underlying network topologies and into to other two categories
with respect to their goals according to the type of the conges-
tion events to mitigate. A first category of traffic engineering
techniques are proposed for wide-area networks including the
tunning of the weights of routing protocols such as OSPF
where traffic flows are routed along shortest paths [7], equal-
cost multi-path routing (ECMP) are proposed where each
switch randomly routes the flows across the available equal-
cost paths. The second category is proposed for DC networks
including approaches based on also ECMP and spanning trees
where all the traffic traverses a single or multiple trees [8],
which avoids loops but still leaves many links unused. In
[2], the authors proposed the system Hedera for dynamically
scheduling flows in multi-stage switch topologies used in
data centers. Hedera collects information and computes non-
conflicting paths by resolving to multi-commodity flow prob-
lem with heuristics. For both of these categories, OpenFlow
capabilities offered by SDN controllers have been leveraged to
schedule traffic and select forwarding paths using optimization
and prediction algorithms of traffic matrices. In the data center
network, Benson et al [5] proposed MicroTE that configures
routes dynamically by aggregating monitoring traffic demands
in a fine-grained way and using short term predictability to
perform multipath routing. For wide-area networks, the most
prominent approaches in production settings are Google’s B4
[3] and Microsoft’s SWAN [9] that rely on centralized SDN
controllers by splitting application flows across multiple paths,
where B4 was able to obtain 20% increase in throughput
compared to shortest path forwarding. More recently, segment
routing based approaches in SDN-based WANs have been
proposed [10] for traffic engineering by using shortest paths
and few middlepoint nodes to load balance traffic among
their paths. Regarding the type of events, a first category
of techniques are used to handle classical congestion events
including sudden traffic and link failures. In this category,
we found the same techniques that have been detailed above
and applied either for wide area networks or data centers
including B4 and SWAN and also the work of Suchara et al
[6] where traffic engineering and failure recovery are handled
jointly. In [11], the authors proposed the Kulfi toolkit for the
comparison between existing algorithms of traffic engineering
and in particular those using semi-oblivious routing which
combines a static set of paths while dynamically adjusting
the distribution of flow over those paths. In their study, they
evaluated the capabilities of these algorithm to handle link
failures.

More recently, a second category of techniques has emerged
to handle link flooding attacks (LFA). D. Gkounis et al.
proposed an SDN-based traffic engineering scheme to expose
attackers in Crossfire-like attacks [12]. The proposed scheme
constantly reroutes traffic during attacks while tracking hosts
participating in link floods. The hosts that consistently partici-
pate in attacks are considered as attackers. In [13], C. Liaskos
et al. further investigated this idea with a relational algebra
model of the detection process. The approach, however, may
involve long delays before the full mitigation of the attack as

traffic is rerouted several times to identify each new group of
attacking bots. With CoDef [14], S. B. Lee et al. proposed a
defense system to reroute and rate-limit the attack flows before
they reach the targeted link. CoDef leverages a collaboration
mechanism between Autonomous Systems (ASes) and there-
fore, requires a widespread deployment to be effective. FLoc
[15] and PSP [16] are two bandwidth allocation mechanisms
introduced to alleviate the effect of link flooding attacks.
Whereas FLoc requires router support and provides fair allo-
cation for flows within an AS, PSP leverages current Internet
routers and only provides bandwidth isolation between ASes.
Besides FLoc, several active queue management schemes [17],
[18] have been proposed specifically to alleviate the effects of
flooding attacks. By nature, these solutions require support
in Internet routers. In [4], D. Gkounis et al. studied the role
of traffic engineering (TE) algorithms in the mitigation of
Crossfire-like attacks and found that both existing and new
kind of TE algorithms can expose the attackers, although the
latest TE algorithms are faster.

SPONGE shares with other traffic engineering approaches
the goal of mitigating congestion situations including link
saturation, link flooding attacks and traffic bursts. Like B4
[3] and SWAN [9] for wide-area networks and MicroTE [5]
for DCs, it relies on a logically centralized SDN controller for
re-routing traffic at each switch according to a computed set
of paths. However, SPONGE is not optimized for a specific
network topology and derives optimized routes for mitigating
a congestion events from only ingress-egress traffic matrix of
the network, i.e. regardless of the cause of the congestion. For
example, knowing the attacker in case of the link flooding
attack is not a prerequisite.

III. STOCHASTIC NETWORK MODEL

A. Notations

1) Network State: We model the network as a graph G =
(V,E), where V and E are the set of network nodes and
edges, respectively. The network state, at time t is represented
as a system of queues (one per network node): Xt = (Xi

t)i∈V .
For any i ∈ V , Xi

t is a vector containing the final destinations
of the packets waiting at node i at time t. Therefore, Xi

t(1),
the first coordinate of the vector Xi

t , is the destination of the
next packet to be forwarded by node i. Xi

t is a random vector
with a random length, i.e., a stochastic process with values in:
S :=

⋃
n≥0 V

n. In the remainder of this paper, |Xi
t | denotes

the length of the random vector Xi
t , i.e., |Xi

t | = N ⇔ Xi
t ∈

V N , where N is the number of packets in a node’s queue. We
assume that all network nodes i ∈ V can hold a maximum of
ci number of packets in its queue, i.e., |Xi| ≤ ci.

2) Network Dynamics: The dynamics of the network, i.e.,
packet arrivals and departures at network nodes, is represented
as local variations δXi

t of the queues Xi
t , which describes the

inputs and outputs of node i at time t. More precisely, the
occupancy changes of the queue Xi

t can be decomposed into
two parts as follows:

δXi
t :=

(
δ+Xi

t , δ
−Xi

t

)
.



The positive local variation, δ+Xi
t , represents the inputs at

node i at time t, while the negative local variation, δ−Xi
t ,

corresponds to the packets forwarded by node i at time t. If
a node i is neither receiving nor forwarding packets at time t,
the local variations are equal to ∅. More formally:

δ−Xi
t =

{
∅ if i does not emit any packet at time t
k if i forwards a packet at time t to dest. k

δ+Xi
t =


∅ if i did not receive any packet

at time t
v ∈

⋃
n≥1 V

n if i received packets at time t
with destinations v = (v1, v2 . . . )

To describe the dynamics of the model, we introduce the
following two operators on S. First, we define the addition
operator ⊕. Let v = (v1, . . . , vn1

) and w = (w1, . . . , wn2
) be

two elements of S. Then, the operator ⊕ is defined as follows:
v ⊕ w = (v1, . . . , vn1

, w1, . . . , wn2
) .

Note that ⊕ is a non-commutative, i.e., v ⊕ w 6= w ⊕ v.
Second, the truncation operator, τ , is defined for any positive
integer j and v = (v1, . . . , vn) ∈ S as follows:

τjv = (v1, . . . , vn−j) and τ jv = (vi+1, . . . , vn)
We follow the convention that if j ≥ n then τjv = τ jv = ∅.
Note that we have the following important relationship be-
tween ⊕ and τ when i < |v|:

τ i(v ⊕ w) = (τ iv)⊕ w, and
τi(w ⊕ v) = w ⊕ (τiv),

Given the initial state of a node i, Xi
0 and δXi

s for all s < t,
we can compute the network state at time t as follows:
Xi
t = τk

(
Xi

0 ⊕s≤t δ+Xi
s

)
, where k = |{s ≤ t | δ−Xi

t 6= ∅}|
(1)

(1) computes the state of node i by successively applying the
addition operator ⊕ (i.e., adding packets to the queue), and the
truncation operator τ (i.e., removing packets from the queue
for forwarding). Note that the above definition is valid only if
the number of packets passing through the network nodes up
to time t is finite, which is the case in real networks.

3) External Inputs to the Network: For each node i ∈ V ,
the external inputs are described by a sequence of random
variables (Iik,Dik)k≥0, where Iik is the arrival time of the kth
packet at node i and Di

k is the destination of that packet. This
allows us to define the input function of node i as follows:

Iit =

{
Dik, if ∃k, t = Iik,
∅, else.

This function takes the destination of the received packet
as value when node i receives a packet, ∅ otherwise. This
implicitly assumes that a node cannot receive more than one
packet from outside of the network at a given time.

4) Processing Time: For each node i ∈ V , time required
to process packets in its queue is represented by a the vector
(T ik,v)k≥1,v∈V , where T ik,v corresponds to the time spent by
node i to process and transmit its kth packet to the next hop v.
For each next hop v, the processing time includes the latency
incurred on the network link between i and v.

5) Routing Table: We model the routing table of a node
i ∈ V as a function R : V 2 → V such that, for any pair of
nodes (i, j) ∈ V 2, R(i, j) gives the next hop on the chosen

route from i to j. Such function should be compatible with
the network topology, i.e., for any i, j ∈ V , (i, R(i, j)) ∈ E.
The set of routing functions over all nodes is denoted by R.

B. Stochastic model of Network Dynamics

We represent the dynamics of network nodes using what a
node receives as input and the node’s positive and negative
local variations introduced in Section III-A2. We will derive
these variations from the model inputs, i.e., packets entering in
the network (Section III-A3) and the time required to process
them (Section III-A4). We first focus on the positive variation
δ+Xi

t and the inputs of node i. At a given time t, node i has
two sources of inputs. The first is from outside of the network,
i.e., new packet arrivals, modeled by the function Iit . Second,
in-transit packets forwarded by i’s neighbors to i. The packets
sent by node j to node i at time t are given by:

δ−t X
j
t 1{Rt(j,δ−t X

j
t )=i, δ

−
t X

j
t 6=i}

Here, δ−t X
j
t is the destination of the packets.

1{Rt(j,δ−t X
j
t )=i, δ

−
t X

j
t 6=i}

is an indicator function involving
two conditions: (i) Rt(j, δ−t X

j
t ) = i, requires that node i be

the next node on the path of the packet to its destination;
and (ii) δ−t X

j
t 6= i, requires i not to be the destination of the

packet. Otherwise, the packet is not forwarded and does not
appear in the transmission queue.

Now we can fully describe the evaluation of δ+Xi
t in terms

of the negative variations of the other nodes as follows:
δ+t X

i
t = τ|vit|−(|Xit |−ci)(v

i
t),where

vit := Iit ⊕
(⊕

j∈V, j 6=i δ
−
t X

j
t 1{Rt(j,δ−t X

j
t )=i, δ

−
t X

j
t 6=i}

)
vit represents new packets arriving at node i consisting of both
new external inputs and in-transit packets forwarded by i’s
neighbors. The operator τ|vit|−(|Xit |−ci) ensures that a node i
does not exceed its queue capacity. For instance, if at time t,
|Xi

t | = ci, then τ|vit|−(|Xit |−ci) = τ|vit|, Hence, all the packets
received at this time beyond i’s queue capacity are dropped.

Finally, we need to describe the dynamics of δ−t X
i
t . To do

so, we need to know when node i started processing its last
packet. We denote by Lit this time and by N i

t the number of
packets forwarded by node i at time t. Then, we can obtain:

δ−t X
i
t− = Xi

t(1)1t=Lit+T iNit ,Xit(1)

C. Model instanciations

The stochastic model capturing network dynamics presented
in Section III-B is generic in terms of inputs and processing
times, i.e., the model does not assume any specific distribution
of packet inter-arrival and processing time. In the following,
we provide several example instantiations of this model to be
used later for validation.
• Poissonian inputs: Poisson arrival of input packets at the

edge nodes.
• Discrete time model: ∀(i, v) ∈ V 2 and k ∈ N, T ik,v = 1.
• General deterministic model: ∀(i, v) ∈ V 2 and k ∈ N,
T ik,v = bi,v ∈ R+.

• Poissonian model: ∀i ∈ V , (T ik,v)k≥1,v∈V is an i.i.d.
(independent and identically distributed) sequence of ex-
ponential random variables.



• Noisy random model: ∀i ∈ V , T ik,v = (bi+ε
i
k,v), where

(εik,v)k≥1,v∈V is an i.i.d sequence of Gaussian random
variables with a null mean and variance σi.

IV. CONTROL AND ROUTING OPTIMIZATION

Given a stochastic model of network dynamics, our next step
is to mathematically solve the problem of dynamic network
reconfiguration in a way to uniformly distribute the traffic
across all network nodes. Mathematically formulating this
problem requires the network-wide routing table R to be time-
dependent. Hence, from this point, we assume that R is a
function from R+ with value Rt in R. This means that at each
time instance t, network dynamics is guided by the routing
table Rt.

A. Optimal states of the network

In order to decide on an optimal routing table (Rt, t ∈
[0, T ]) for a time window T (possibly infinite), we first need
to define the optimality criteria. To do so, we first devise a
way to quantify how “healthy” the network is, i.e., the quality
of a network state. Inspired by statistical mechanics, we use
a potential function H, called the Hamiltonian of the system,
to describe the quality of a network state. A network state is
an element of S |V | (corresponding to the state space of our
system (Xt, t ∈ R+)) describing the state of each of the
queues in the network. There can be a different choices of the
Hamiltonian, each resulting in a different network behavior.
Therefore, given an objective such as uniformly distributing
traffic across all network nodes, it is important to chose a
proper Hamiltonian that will result in such desired behavior.

For instance, a possible choice for the Hamiltonian, called
direct routing potential is defined as follows:

H(Xt) =
∑
i∈V

|Xit |∑
k=1

d
(
i,Xi

t(j)
)

Here, d is the hop count between nodes in G, and Xi
t(j) stands

for the jth coordinate of the vector Xi
t . The direct routing

potential sums the cumulative distances of the packets from
their destinations. According to this Hamiltonian, the closer
packets are to their destinations, the healthier the network is.

Another possible choice is the low load potential defined as
follows:

H(Xt) = |V | exp

(
−
∑
i∈V

(|Xi
t | − ci)2

)
,

With the low load potential, healthy states are those where
the queues are far from reaching their capacities. However,
in order for a potential function to ensure delivery of packets
to their destinations, the function needs to take the distances
of the packets from their destinations into account. Since the
low load potential does not take this into account, packets
traversing a network under the low load potential may not
reach their destination. Therefore, the low load potential
function alone is unsuitable for our purpose. Our intention
is to bring the network to a “low energy state”, which ensures

successful delivery of packets as well as reduces load on the
queues across the nodes. In this regard, we propose to combine
the two aforementioned potential functions as follows:

H(Xt) = α
∑
i∈V

|Xit |∑
k=1

d
(
i,Xi

t(j)
)

+ (1− α)|V | exp

(
−
∑
i∈V

(|Xi
t | − ci)2

)
(2)

This potential function combines direct routing and low load
potentials to lead packets to their destination and to mitigate
the load on queues, respectively. The weight α ∈ [0, 1]
balances the strategy between direct and low load routing.

B. Control problem

Suppose one is given a potential function which suits her
purpose (in our case: load mitigation) and is given the dynamic
routing table t→ Rt. The running cost of the strategy at time
horizon T is given by

J(R) =

∫ T

0

H(Xs) ds.

The dependence on R is implicit since it appears only in the
dynamics of the queuing system. Solving the optimal control
problem is finding a dynamic routing table R that minimizes
the running cost J , at least on average. To be consistent, one
also wants the optimal routing table Rt, at a given time t, to be
computed from the previous states of the network (Xs, s ≤ t).
Mathematically, this means the process t 7→ Rt is adapted with
respect to the natural filtration (Ft, t ∈ R+) associated to the
process (Xt, s ∈ R+). The optimal cost function is given by

u(T ) = inf
Rt∈Ft

E

[∫ T

0

H(Xs) ds

]
. (3)

In the following, we will devise a numerical method for
computing such an optimal control through model simulation.

C. Optimization method

For practical considerations, we assume the routing tables to
be piecewise linear over time, i.e., the routing table does not
change within a time step δt. This is a reasonable assump-
tion since in practice traffic engineering is either performed
periodically or is triggered by network events, and the routing
table remains constant in between. In the sequel, we propose
an algorithm to find a dynamic routing table that is constant
in the time interval [jδt, (j + 1)δt) for all positive integer j.
We employ a simulated-annealing like algorithm to compute
routing tables that are locally optimal in time.

Simulated annealing [19] is a meta-heuristic algorithm for
finding locally optimal solutions from a large search space of
combinatorial optimization problems. To leverage this tech-
nique, we use the Gibbs measure [20], which quantifies how
healthy a network state is. The Gibbs measure associated to
the potential function H is a measure on SN that assigns a
weight Gβ(x) to each state x ∈ SN such that

Gβ(x) =
1

Z(β)
exp (−βH(x))



Here, Z(β) is a re-normalizing constant defined in a way
such that Gβ becomes a probability measure on SN . By
construction, Gibbs measure gives an important weight to low
energy states, i.e., the healthy network states in our context. A
particularly important feature is that Gβ converges weakly, as
β goes to 0, to a linear combination of Dirac masses localized
in the optimal states of the network.

To sample according to the distribution Gβ , we use
the Metropolis-Hasting (MH) algorithm [21], a Monte-Carlo
Markov chains technique. To this end, a usual choice for the
transition function P of the Markov chain is:

P (x, y) = min

{
1,

Gβ(x)π(y, x)

Gβ(y)π(x, y)

}
Here, π is the proposal kernel. As a consequence, in the
context of finite state space, the condition π(x, y) > 0, for all
states x, y, is sufficient to ensure the ergodicity of the Markov
chain and the convergence of the algorithm to a sample of law
Gβ . The idea of simulated annealing is to combine the weak
convergence of Gβ with iterations of MH algorithm in order
to sample, for low temperatures and many iterations of MH,
states x that are close to optimality.

However, in our context, optimal states and optimal routing
table do not live in the same space. Consequently, we choose
π as a proposal kernel of the space of routing tables R. The
new state of the system is then given by the dynamical system
described in Section III-B. This idea leads to Algorithm 1 for
finding the optimal routing table in times [jδt, (j + 1)δt) for
all j.

Data: Initial time t, time step δt, current state Xt and initial
routing table R.

Result: Optimal routing table R to apply in the network for
times [t, t+ δt].

for j from 1 to N do
β = c

log(j+1)
;

R̃ distributed according to π(R, ·);
simulate X̃t+δt starting from Xt with routing table R̃;

α = min
{
π(R̃,R)EGβ(X̃t+δt)
EGβ(Xt+δt)π(R,R̃)

, 1
}

;
if α < U then

replace R by R̃;
replace Xt+δt by X̃t+δt ;

end
end

Algorithm 1: Simulated annealing for routing optimiza-
tion

V. EVALUATION

We evaluate SPONGE through model simulation in Matlab
(Section V-A) and network emulation using Mininet [22]
(Section V-B). Our evaluation is focused on showing the
impact of model parameters as well as SPONGE’s practical
capability to absorb traffic influx in the network.

A. Results from Model Simulation

In this section, we present results from Matlab simulation
of the model described in Section III-B. Our simulation is

(a) Abilene

(b) BellCanada

Fig. 1. Topologies deployed on Mininet
intended to demonstrate that instantiation of the general model
from Section III-B with specific distributions of input arrivals
and processing times work on realistic network topologies. In
our model instantiations, we assume the sequence (Iik,Dik)k≥1
to be i.i.d. or Markovian, and the sequence (T ik,v)k≥1,v∈V to
be i.i.d. Random packet arrivals and random packet lengths are
common assumptions in network queuing theory and largely
adopted in the literature. Specifically, we use the Poissonian
inputs model instantiation as described in Section III-C to
compute local optimal routing table for mitigating a link
flooding attack. For the processing times, we consider two
models for our Matlab simulation: one with deterministic
processing times and one with random processing times.

We use the Bell Canada network topology (Figure 1(b))
from the Internet zoo topology project [23] for this simulation
study. This topology is rather convenient for our simulations
since it has a high path diversity. In order to mitigate heavy
traffic in the simulated network, our optimization uses the
potential from (2). Our main goal is to observe the effect
of parameter α on the successful delivery rate of packets
(hereafter referred as arrival fraction). To understand the effect
of re-routing on the mean packet delivery time (i.e., the time
it takes for a packet to reach its destination after being sent
from the source), the inputs are stopped at a fixed time but
the network simulation continues until all packets have been
absorbed or dropped. We particularly look at two metrics:

• arrival fraction: the ratio between the total number of
inputs and the number of packets actually arrived at their
destinations;



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Weight parameter ,

35

40

45

50

55

60

65

70

A
rr

iv
al

 r
at

e

Fig. 2. Effect of parameter α on the arrival rate of packets (discrete model)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Weight parameter ,

0

0.5

1

1.5

2

2.5

3

3.5

G
lo

ba
l t

im
e 

of
 tr

ea
tm

en
t

#10 5

Fig. 3. Effect of parameter α on absorption time (discrete model)
• absorption time: the time needed for the network to

absorb the whole traffic.

The first model we simulate is a discrete model where the
processing times are constant and the inputs follow Poisson
point processes. The destinations of the inputs are chosen
uniformly at random in the network. Figure 2 shows the arrival
fraction for different values of α in equation (2). We observe
a 25% gain in arrival fraction for α ' 0.13 compared to the
direct routing strategy (α = 1). Note that the arrival fraction
is low for the purely low load strategy (i.e., α = 0) because
the packets have no incentive to reach their destinations.

Another important aspect, the global absorption time of
the network (i.e., the time needed for all the packets to be
absorbed), is shown in Figure 3. Figure 3 shows that absorption
time increases exponentially as α goes towards zero. This
is intuitive since the low load strategy is not meant to lead
packets to their destinations. Rather, this strategy tries to avoid
high load at the nodes. As a consequence, the only way to
absorb a packet is to reach randomly its destination or to drop
the packet. The latter is expected to be rare since this strategy
avoids high load at the nodes. From a practical standpoint, the
unit of time on the Y-axis of this figure has to be considered the
same as the unit used for the processing times. For instance,
if the processing times are random variables with values in
milliseconds, so is the unit of time in this figure.

The second model considered in our simulation is a Poisson
processing time model. The difference with the first model is
that the processing times of the packets are random instead of
constant. As shown in Figures 4 and 5, we first note the lack
of regularity in the plot for the random model, because the
optimization is made on the expectation. Although the plot of
Figure 5 is less regular, one can see that we obtain substantial
gain in the arrival fraction using our method. Furthermore, in

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Weight parameter ,

70

75

80

85

90

95

A
rr

iv
al

 R
at

e

Fig. 4. Effect of parameter α on the arrival rate of packets (random model)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Weight parameter ,

40

50

60

70

80

90

100

110

120

130

G
lo

ba
l t

im
e 

of
 tr

ea
tm

en
t

Fig. 5. Effect of parameter α on absorption time (random model)
practical situations the uncertainty in processing and transfer
times in the network is often expected to have low variances.

There are two main consequences to using a Poisson
processing time model. First, the numerical evaluation of the
following equation in Algorithm 1 needs several simulations of
the network to obtain an accurate numerical estimation through
Monte Carlo methods.

E
[
Gβ(X̃t+δt)

]
(4)

This increases the computational cost of the method notably
because of the large variance of the exponential distribution.
This implies that a high number of trials is needed to obtain
an accurate estimation. This was also true in the first model
because of the randomness of the inputs but without negative
consequences on the quality of the solution to the optimization
problem. In order to keep the computational cost reasonable,
one should either reduce the number of iterations of Algorithm
1 or the quality of the estimation of (4). The second conse-
quence is that the obtained solution becomes very sensitive to
deviation of a network’s behavior from the mean behavior.

B. Experimental evaluation

We implement SPONGE as a traffic engineering appli-
cation using Floodlight OpenFlow controller’s REST API
(http://www.projectfloodlight.org/floodlight/). The control ap-
plication periodically and pro-actively pushes routes into the
OpenFlow network to minimize packet drops. We demonstrate
the effectiveness of these computed routes by evaluating
SPONGE for the following use-cases: (i) to mitigate dis-
tributed link flooding attack similar to a Crossfire attack [24] in
a WAN, and (ii) to handle in-cast congestion often caused by
aggregate traffic patterns observed in data center networks. As
a baseline, we use the default forwarding module of Floodlight
controller. We emulate WAN and DC network topologies using



Mininet [22] and generate traffic using D-ITG tool [25]. We
use packet loss between a pair of communicating hosts as the
metric to evaluate the quality of routes produced by SPONGE.

1) Experimental setup:
a) Network Topology: We use Abilene (11 nodes) and

BellCanada (48 nodes) network topologies from the Internet
Topology Zoo [23]. We use the latency values from the
topology and set the link bandwidths to 10Mbps. We deployed
two legitimate clients and two legitimate servers, three decoy
hosts and 10 bot hosts in both of these networks. This setting
is similar to the one described for a Crossfire link flooding
attack [24]. In a Crossfire attack, a collection of bots send
traffic to a selected set of decoy servers at moderate rates.
However, collectively they saturate certain links in the network
and increase the drop rate for legitimate traffic. The resulting
networks after deploying the hosts are shown in Fig. 1(a)
and Fig. 1(b). The blue, red, gray, and green nodes represent
the switches, the bots, the decoy servers, and the legitimate
clients and servers, respectively. The decoy servers are placed
close to the legitimate server nodes to increase the chances
of congesting links on the paths leading to the servers. The
bot nodes are placed randomly across the network. Their goal
is to saturate the links connecting the legitimate clients and
servers (cl0, cl1, srv0, and srv1).

For the data center network topology we generate a leaf-
spine network with 4 spine switches and 8 leaf switches.
We set the capacity of the links connecting leaf and spine
switches to 40Mbps. Each spine switch has 4 hosts attached
to it, each with a 40Mbps link. The leaf-spine network is not
oversubscribed to ensure that the network is not a bottleneck.

b) Traffic Matrix: The bots and decoy servers act as
senders and receivers, respectively. We emulate Crossfire at-
tack [24], a distributed link flooding attack, by exchanging
UDP traffic (512 byte sized packets at 600 packets/sec rate)
between the bots and the decoy servers according to the traffic
matrix in Table I. For this use-case, we experiment with
different combinations of experiment duration, attack duration,
and rerouting interval summarized in Table I. Note that we use
only one configuration for Abilene topology, to experiment
with multiple values of α in (2) while keeping the attack and
experiment duration fixed.

For the data center use case, the hosts exchange UDP
packets according to the traffic matrix presented in Table II.
Note that, this traffic matrix presents an aggregation traffic
pattern [2], where all the traffic is destined to hosts in one
rack, i.e., connected to one leaf switch. We set the packet size
to 200 bytes (average packet size reported in a recent data
center network measurement study [26]) and set the packet
rate to 10000 packets/second. We set α to 0.5, change the
routes every 1s, and let the experiment run for 20s.

2) Results:
a) Mitigation of Link Flooding Attack: Table III com-

pares SPONGE against the baseline in terms of average packet
drop over all host pairs for the configurations in Table I. For all
configurations, SPONGE is able to reduce the average packet
drop rate. This reduction ranges between 30 65% compared to

TABLE I
TRAFFIC MATRIX FOR LINK

FLOODING MITIGATION USE-CASE

Sender Receiver
Bot 0 Decoy 1
Bot 1 Decoy 0
Bot 7 Decoy 0
Bot 9 Decoy 2
Bot 5 Decoy 2
Bot 3 Decoy 1
Bot 2 Decoy 2
Bot 8 Decoy 2
Bot 6 Decoy 1
Bot 4 Decoy 1
Cl0 Srv 0
Cl1 Srv 1

TABLE II
TRAFFIC MATRIX FOR DATA

CENTER USE-CASE

Sender Receiver
h0 h12
h2 h12

h10 h13
h8 h13

h16 h14
h18 h14
h20 h15
h22 h15

TABLE III
AVERAGE PACKETS DROP (%)

Scenario Packet drop (%)
Baseline SPONGE

AB-1 31.10 16.24
BE-1 24.90 15.40
BE-2 24.90 17.53
BE-3 44.37 15.17
DC 55.21 33.34

TABLE IV
IMPACT OF α

α Avg. Delay (s)
0.1 0.85
0.5 0.70
0.9 0.72

Fig. 6. Packet drops (AB-1 Scenario)

the baseline approach. This demonstrates SPONGEs capability
to absorb the influx of traffic during link flooding attacks.

We take a closer look at the packet drop percentage between
pairs of communicating hosts under different configurations
by plotting the loss rate of individual communication pairs
in Fig. V-B2a and Fig. 7. We have designed SPONGE to
be agnostic of underlying traffic pattern, therefore, SPONGE
cannot differentiate between legitimate and attack traffic. As
a result, we can see that SPONGE reduces the overall packet
drop by sometimes negatively impacting the legitimate traffic.
However, at this expense, SPONGE reduces the overall packet
drop across all host pairs by up to 65%.

Finally, we present the impact of α on the computed routes
for Abilene topology in Table V. From the simulation results
in Section V-A, it is expected that a lower value of α will
result in longer paths, which will be reflected in the delay.
Our emulation results also support this finding.

b) Data center use-case: For the data center use-case, the
aggregation traffic pattern, when forwarded with Floodlights
default forwarding mechanism, resulted in 55.21% average
packet drop over all host pairs. With SPONGE, this drop rate
reduced to 33.34%, which is 39.6% improvement over the



(a) BE-1 (b) BE-2 (c) BE-3

Fig. 7. Packets drop for host pairs in scenario BE-2.

Fig. 8. Packets drop between host pairs in data center
baseline approach. Per host pair packet drop is presented in
Fig. 8. SPONGE reduced the packet drop rate in all cases
by exploiting the multiple paths available in the leaf-spine
network. However, due to using a limited number of iterations
in the Simulated Annealing algorithm, SPONGE did not fully
exploit the many alternate paths available in the leaf spine
topology, therefore, still causing packet drops.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented SPONGE, a traffic engineering
mechanism that captures the dynamic behavior of a network
through a novel stochastic model and optimizes the routing
policy based on the proposed model. SPONGE is topology
and traffic agnostic, i.e., does not assume any specific topology
or pattern in network traffic matrix. Matlab simulations of
SPONGE show promising results in terms of being able to
absorb influx of network traffic caused by events such as a
DDoS attacks. We also evaluate the effectiveness of SPONGE
using an OpenFlow based implementation. Our experimental
results on Mininet covering two use-cases from wide-area and
data center networks demonstrate that SPONGE is capable
of reducing packet drops by more than 20% when there
is an influx of network traffic. However, the current design
of SPONGE does not distinguish between different classes
of traffic, therefore, can penalize a legitimate traffic over a
malicious one. Consideration for differential traffic classes is
left as a future extension. The possibility of applying machine
learning to automatically identify traffic as legitimate or ma-
licious and treat them accordingly is also another interesting
future research direction.‘

REFERENCES

[1] R. P. Roess, E. S. Prassas, and W. R. McShane, Traffic engineering.
Pearson/Prentice Hall, 2004.

[2] M. Al-Fares et al., “Hedera: Dynamic flow scheduling for data center
networks,” in Proc. of USENIX NSDI, 2010, pp. 19–19.

[3] S. Jain et al., “B4: Experience with a globally-deployed software defined
WAN,” in Proc. of ACM SIGCOMM, 2013, pp. 3–14.

[4] D. Gkounis and ohers, “On the interplay of link-flooding attacks and
traffic engineering,” SIGCOMM Comput. Commun. Rev., vol. 46, no. 2,
pp. 5–11, May 2016.

[5] T. Benson et al., “Microte: Fine grained traffic engineering for data
centers,” in Proc. of ACM CoNeXT, 2011, pp. 8:1–8:12.

[6] M. Suchara et al., “Network architecture for joint failure recovery and
traffic engineering,” in Proc. of ACM SIGMETRICS, 2011, pp. 97–108.

[7] B. Fortz and M. Thorup, “Internet traffic engineering by optimizing ospf
weights,” in Proc. of IEEE INFOCOM, 2000, pp. 519–528 vol.2.

[8] H. T. Viet et al., “Traffic engineering for multiple spanning tree protocol
in large data centers,” in Proc. of ITC, 2011, pp. 23–30.

[9] C.-Y. Hong et al., “Achieving high utilization with software-driven wan,”
in Proc. of ACM SIGCOMM, 2013, pp. 15–26.

[10] G. Trimponias et al., “On traffic engineering with segment routing in
SDN based wans,” CoRR, vol. abs/1703.05907, 2017.

[11] P. Kumar et al., “Kulfi: Robust traffic engineering using semi-oblivious
routing,” CoRR, vol. abs/1603.01203, 2016.

[12] D. Gkounis, V. Kotronis, and X. A. Dimitropoulos, “Towards defeating
the Crossfire attack using SDN,” CoRR, vol. abs/1412.2013, 2014.

[13] C. Liaskos, V. Kotronis, and X. Dimitropoulos, “A novel framework for
modeling and mitigating distributed link flooding attacks,” in Proc. of
IEEE ICC, 2016, pp. 1–9.

[14] S. B. Lee, M. S. Kang, and V. D. Gligor, “Codef: Collaborative defense
against large-scale link-flooding attacks,” in Proc. of ACM CoNeXT,
2013, pp. 417–428.

[15] S. B. Lee and V. D. Gligor, “FLoc: Dependable link access for legitimate
traffic in flooding attacks,” in Proc. of IEEE ICDCS, 2010, pp. 327–338.

[16] J. C.-Y. Chou et al., “Proactive surge protection: A defense mechanism
for bandwidth-based attacks,” IEEE/ACM Trans. Netw., vol. 17, no. 6,
pp. 1711–1723, Dec. 2009.

[17] H. Bedi, S. Roy, and S. Shiva, “Mitigating congestion-based denial
of service attacks with active queue management,” in Proc. of IEEE
GLOBECOM, 2013, pp. 1440–1445.

[18] C. Zhang et al., “Flow level detection and filtering of low-rate DDoS,”
Comput. Netw., vol. 56, no. 15, pp. 3417–3431, Oct. 2012.

[19] A. Das and B. Chakrabarti, Quantum annealing and related optimization
methods. Springer Science & Business Media, 2005, vol. 679.

[20] H.-O. Georgii, Gibbs measures and phase transitions, 2nd ed., ser. De
Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin,
2011, vol. 9.

[21] C. P. Robert and G. Casella, Monte Carlo statistical methods, 2nd ed.,
ser. Springer Texts in Statistics. Springer-Verlag, New York, 2004.

[22] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid
prototyping for software-defined networks,” in Proc. of ACM HotNets,
2010, pp. 19:1–19:6.

[23] S. Knight, H. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The Internet topology zoo,” Selected Areas in Communications, IEEE
Journal on, vol. 29, no. 9, pp. 1765 –1775, october 2011.

[24] M. S. Kang, S. B. Lee, and V. D. Gligor, “The Crossfire attack,” in Proc.
of IEEE S&P, 2013, pp. 127–141.

[25] A. Botta, A. Dainotti, and A. Pescapè, “A tool for the generation
of realistic network workload for emerging networking scenarios,”
Computer Networks, vol. 56, no. 15, pp. 3531–3547, 2012.

[26] A. Roy et al., “Inside the social network’s (datacenter) network,” in
Computer Comm. Review, vol. 45, no. 4, 2015, pp. 123–137.


