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Abstract. Incremental computation requires propagating changes and
reusing intermediate results of base computations. Derivatives, as pro-
duced by static differentiation [7], propagate changes but do not reuse
intermediate results, leading to wasteful recomputation. As a solution,
we introduce conversion to Cache-Transfer-Style, an additional program
transformations producing purely incremental functional programs that
create and maintain nested tuples of intermediate results. To prove CTS
conversion correct, we extend the correctness proof of static differentia-
tion from STLC to untyped λ-calculus via step-indexed logical relations,
and prove sound the additional transformation via simulation theorems.
To show ILC-based languages can improve performance relative to from-
scratch recomputation, and that CTS conversion can extend its applica-
bility, we perform an initial performance case study. We provide deriva-
tives of primitives for operations on collections and incrementalize se-
lected example programs using those primitives, confirming expected
asymptotic speedups.

1 Introduction

After computing a base output from some base input, we often need to pro-
duce updated outputs corresponding to updated inputs. Instead of rerunning
the same base program on the updated input, incremental computation trans-
forms the input change to an output change, potentially reducing asymptotic
time complexity and significantly improving efficiency, especially for computa-
tions running on large data sets.

Incremental λ-Calculus (ILC) is a recently introduced framework [7] for
higher-order incremental computation. ILC represents changes from a base value v1
to an updated value v2 as a first-class change value dv . Since functions are first-
class values, change values include function changes.

ILC also statically transforms base programs to incremental programs or
derivatives, that are functions mapping input changes to output changes. Incre-
mental language designers can then provide their language with (higher-order)
primitives (with their derivatives) that efficiently encapsulate incrementalizable
computation skeletons (such as tree-shaped folds), and ILC will incrementalize
higher-order programs written in terms of these primitives.
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Alas, ILC only incrementalizes efficiently self-maintainable computations [7,
Sec. 4.3], that is, computations whose output changes can be computed us-
ing only input changes, but not the inputs themselves [11]. Few computations
are self-maintainable: for instance, mapping self-maintainable functions on a se-
quence is self-maintainable, but dividing numbers is not! Cai et al. [7] already
hint at this problem; we elaborate on it in Section 2.1. In this paper, we ex-
tend ILC to non-self-maintainable computations. To this end, we must enable
derivatives to reuse intermediate results created by the base computation.

Many incrementalization approaches rely on some forms of dynamic memo-
ization to remember intermediate results: they typically use hashtables to mem-
oize function results, or dynamic dependence graphs [1] to remember the com-
putation trace. However, looking up intermediate results in such dynamic data
structure has a cost in time, and typical general-purpose optimizers cannot pre-
dict results from memoization lookups. Besides, reasoning on dynamic depen-
dence graphs and computation traces is often complex. Instead, ILC aims to
produce purely functional programs that are suitable for further optimizations
and equational reasoning.

To that end, we eschew standard dynamic memoization in favor of static
memoization: we transform programs to cache-transfer style (CTS), following
ideas from Liu and Teitelbaum [20]. CTS functions output caches of intermediate
results along with their primary results. Caches are just nested tuples whose
structure is derived from code, and accessing them does not involve looking up
keys depending on inputs. On the contrary, intermediate results can be fetched
from these tuples using statically known locations. We also extend differentiation
to produce CTS derivatives, which can extract from caches any intermediate
results they need and which are responsible for updating the caches for the
next computation step. This approach was inspired and pioneered by Liu and
Teitelbaum [20] for untyped first-order functional languages; we integrate it with
ILC and extend it to higher-order languages.

The correctness proof of static differentiation in CTS is quite challenging.
First, it requires to show a forward simulation relation between two triples of
reduction traces (the first triple being made of the source base evaluation, the
source updated evaluation and the source derivative evaluation; the second triple
being made of the corresponding CTS-translated evaluations). Dealing with six
distinct evaluation environments at the same time was error prone on paper and
for this reason, we conducted the proof using Coq [26]. Second, the simulation
relation must not only track values but also caches, which are only partially
updated while in the middle of the evaluation of derivatives. Finally, we study the
translation for an untyped λ-calculus, while previous ILC correctness proofs were
restricted to simply-typed λ-calculus. Hence, we define which changes are valid
via a logical relation and show its fundamental property. Being in an untyped
setting, our logical relations are step-indexed, not indexed by types. We study
an untyped language with the intention to make it applicable to the erasure of
typed languages. Formalizing a type-preserving translation is left for future work
because giving a type to CTS programs is challenging, as we shall explain.
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In addition to the correctness proof, we present preliminary experimental
results from three case studies. We obtain efficient incremental programs even
on non self-maintainable functions.

Our contributions are presented as follows. First, we summarize ILC and il-
lustrate the need to extend it to remember intermediate results via CTS (Sec. 2).
Second, in our mechanized formalization (Sec. 3), we give a novel proof of correct-
ness for ILC differentiation for untyped λ-calculus, based on step-indexed logical
relations (Sec. 3.4). Third, building on top of ILC differentiation, we show how to
transform untyped higher-order programs to CTS (Sec. 3.5) and we show that
CTS functions and derivatives simulate correctly their non-CTS counterparts
(Sec. 3.7). Finally, in our case studies (Sec. 4), we compare the performance
of the generated code to the base programs. Sec. 4.4 discusses limitations and
future work. Sec. 5 discusses related work and Sec. 6 concludes.

2 ILC and CTS Primer

In this section we exemplify ILC by applying it on an average function, show
why the resulting incremental program is asymptotically inefficient, and use
CTS conversion and differentiation to incrementalize our example efficiently and
speed it up asymptotically (as confirmed by benchmarks in Sec. 4.1). Further
examples in Sec. 4 apply CTS to higher-order programs and suggest that CTS
enables incrementalizing efficiently some core database primitives such as joins.

2.1 Incrementalizing average via ILC

Our example computes the average of a bag of numbers. After computing the base
output y1 of the average function on the base input bag xs1, we want to update
the output in response to a stream of updates to the input bag. For simplicity,
we assume we have two updated inputs xs2 and xs3 and want to compute two
updated outputs y2 and y3, so the overall program can be described in Haskell
as:

average :: Bag Z→ Z
average xs = let s = sum xs;n = length xs; r = div s n in r

average3 = let y1 = average xs1; y2 = average xs2; y3 = average xs3 in (y1, y2, y3)

Throughout the paper, we contrast base vs updated inputs and outputs. We also
have base and updated values, computations, inputs, outputs, and so on.

We want to compute the updated outputs y2 and y3 in average3 faster using
ILC. For that, we assume that we receive not only updated inputs xs2 and xs3
but also input change dxs1 from xs1 to xs2 and input change dxs2 from xs2 to
xs3. An input change dx from x1 to x2 describes the changes from base input
x1 to updated input x2, so that x2 can be computed via the update operator ⊕
as x1 ⊕ dx .

We use ILC to automatically transform average to its derivative daverage ::
Bag Z→ ∆(Bag Z)→ ∆Z. A derivative is guaranteed to map input changes to
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output changes. In this example, this means that dy1 = daverage xs1 dxs1 is a
change from base output y1 = average xs1 to updated output y2 = average xs2,
hence y2 = y1 ⊕ dy1.

Thanks to daverage’s correctness, we can avoid expensive calls to average
on updated inputs, and use daverage instead. This lets us rewrite average3 to
incrementalAverage3:

incrementalAverage3 :: (Z,Z,Z)
incrementalAverage3 =

let y1 = average xs1; dy1 = daverage xs1 dxs1
y2 = y1 ⊕ dy1; dy2 = daverage xs2 dxs2
y3 = y2 ⊕ dy2

in (y1, y2, y3)

As shown in previous work [10], the derivative df of a function f is the nil
change of f since (f ⊕ df) (a⊕ da) = f a⊕ df a da = f (a⊕ da)

2.2 Self-maintainability and efficiency of derivatives

Alas, derivatives are efficient only if they are self-maintainable, and daverage is
not! So, incrementalAverage3 is no faster than average3. Let us inspect the code
generated by differentiating average.

daverage :: Bag Z→ ∆(Bag Z)→ ∆Z
daverage xs dxs = let s = sum xs; ds = dsum xs dxs;

n = length xs; dn = dlength xs dxs;
r = div s n; dr = ddiv s ds n dn

in dr

Since average combines sum, length, and div , its derivative daverage combines
those functions and their derivatives accordingly. It recomputes s, n and r just
like average, but r is not used anywhere so its recomputation could be avoided.
On the other hand, expensive intermediate results s and n are passed to ddiv . If
ddiv does not actually use its inputs s and n, then their computation could be
avoided too. Cai et al. [7] call a derivative self-maintainable if it does not inspect
its base inputs, but only its change inputs. Derivatives produced by ILC are only
efficient if they do not compute inputs of self-maintainable derivatives. Cai et al.
[7] leave efficient support for non-self-maintainable derivatives for future work.
But ddiv is not self-maintainable! Consider its implementation:

ddiv :: Z→ ∆Z→ Z→ ∆Z→ ∆Z
ddiv a da b db = div (a ⊕ da) (b ⊕ db)− div a b

Function ddiv computes the difference between the updated and the original
result. It uses its base inputs a and b, hence is not self-maintainable, and a
derivative calling it, such as daverage, will not be efficient.

But not all is lost: executing daverage xs dxs will compute exactly the same s
and n as executing average xs, so to avoid recomputation we must simply save
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and reuse them. Hence, we CTS-convert each function f to a CTS function fC
and a CTS derivative dfC : CTS function fC produces, together with its final
result, a cache containing intermediate results, that the caller must pass to CTS
derivative dfC .

CTS-converting our example produces the following code, which requires no
wasteful recomputation.

type AverageC = (Z,SumC ,Z,LengthC ,Z,DivC )

averageC :: Bag Z→ (Z,AverageC )
averageC xs =

let (s, cs1) = sumC xs; (n, cn1) = lengthC xs; (r , cr1) = divC s n
in (r , (s, cs1,n, cn1, r , cr1))

daverageC :: Bag Z→ ∆(Bag Z)→ AverageC → (∆Z,AverageC )
daverageC xs dxs (s, cs1,n, cn1, r , cr1) =

let (ds, cs2) = dsumC xs dxs cs1
(dn, cn2) = dlengthC xs dxs cn1

(dr , cr2) = ddivC s ds n dn cr1
in (dr , ((s ⊕ ds), cs2, (n ⊕ dn), cn2, (r ⊕ dr), cr2))

For each function f , we introduce a type FC for its cache, such that a CTS
function fC has type A → (B ,FC ) and CTS derivative dfC has type A →
∆A→ FC → (∆B ,FC ). Crucially, CTS derivatives like daverageC must return
an updated cache to ensure correct incrementalization, so that application of
further changes works correctly. In general, if (y1, c1) = fC x1 and (dy , c2) =
dfC x1 dx c1, then (y1 ⊕ dy , c2) must equal the result of the base function fC
applied to the updated input x1 ⊕ dx , that is (y1 ⊕ dy , c2) = fC (x1 ⊕ dx ).

For CTS-converted functions, the cache type FC is a tuple of intermediate re-
sults and caches of subcalls. For primitive functions like div , the cache type DivC
could contain information needed for efficient computation of output changes.
In the case of div , no additional information is needed. The definition of divC
uses div and produces an empty cache, and the definition of ddivC follows the
earlier definition for ddiv , except that we now pass along an empty cache.

data DivC = DivC

divC :: Z→ Z→ (Z,DivC )
divC a b = (div a b,DivC )

ddivC :: Z→ ∆Z→ Z→ ∆Z→ DivC → (∆Z,DivC )
ddivC a da b db DivC = (div (a ⊕ da) (b ⊕ db)− div a b,DivC )

Finally, we can rewrite average3 to incrementally compute y2 and y3:

ctsIncrementalAverage3 :: (Z,Z,Z)
ctsIncrementalAverage3 =

let (y1, c1) = averageC xs1; (dy1, c2) = daverageC xs1 dxs1 c1
y2 = y1 ⊕ dy1; (dy2, c3) = daverageC xs2 dxs2 c2
y3 = y2 ⊕ dy2

in (y1, y2, y3)
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Since functions of the same type translate to functions of different types,
the translation does not preserve well-typedness in a higher-order language in
general, but it works well in our case studies (Sec. 4); Sec. 4.1 shows how to map
such functions.

3 Formalization

Terms
at ::= let ap = at in at Let
| aT Tuple
| f x Application

Nested tuples
aT ::= x Variable
| x ⊕ dx Update
| (aT ) Tuple

Patterns
ap ::= x Variable
| (ap) Tuple

Closed values
av ::= aE [λap. at] Closure
| (av) Tuple
| ` Literal
| p Primitive
| 0p Nil change for primitive
| !av Replacement change

Value environments
aE ::= • Empty

| aE ; x = av Value binding
j, k, n ∈ N Step indexes

Fig. 1: Our language λL of lambda-lifted programs. Tuples can be nullary.

We now formalize CTS-differentiation for an untyped Turing-complete λ-
calculus, and formally prove it sound with respect to differentiation. We also give
a novel proof of correctness for differentiation itself, since we cannot simply adapt
Cai et al. [7]’s proof to the new syntax: Our language is untyped and Turing-
complete, while Cai et al. [7]’s proof assumed a strongly normalizing simply-
typed λ-calculus and relied on its naive set-theoretic denotational semantics.
Our entire formalization is mechanized using Coq [26]. For reasons of space,
some details are deferred to the appendix.

Transformations We introduce and prove sound three term transformations,
namely differentiation, CTS translation and CTS differentiation, that take a
function to its corresponding (non-CTS) derivative, CTS function and CTS
derivative. Each CTS function produces a base output and a cache from a base
input, while each CTS derivative produces an output change and an updated
cache from an input, an input change and a base cache.

Proof technique To show soundness, we prove that CTS functions and derivatives
simulate respectively non-CTS functions and derivatives. In turn, we formalize
(non-CTS) differentiation as well, and we prove differentiation sound with re-
spect to non-incremental evaluation. Overall, this shows that CTS functions and
derivatives are sound relatively to non-incremental evaluation. Our presentation
proceeds in the converse order: first, we present differentiation, formulated as a
variant of Cai et al. [7]’s definition; then, we study CTS differentiation.
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By using logical relations, we simplify significantly the setup of Cai et al. [7].
To handle an untyped language, we employ step-indexed logical relations. Be-
sides, we conduct our development with big-step operational semantics because
that choice simplifies the correctness proof for CTS conversion.

Structure of the formalization Sec. 3.1 introduces the syntax of the language
λL we consider in this development, and introduces its four sublanguages λAL,
λIAL, λCAL and λICAL. Sec. 3.2 presents the syntax and the semantics of λAL,
the source language for our transformations. Sec. 3.3 defines differentiation and
its target language λIAL, and Sec. 3.4 proves differentiation correct. Sec. 3.5
defines CTS conversion, comprising CTS translation and CTS differentiation,
and their target languages λCAL and λICAL. Sec. 3.6 presents the semantics of
λCAL. Finally, Sec. 3.7 proves CTS conversion correct.

Notations We writeX for a sequence ofX of some unspecified lengthX1, . . . , Xm.

3.1 Syntax for λL

A superlanguage To simplify our transformations, we require input programs to
have been lambda-lifted [15] and converted to A’-normal form (A’NF). Lambda-
lifted programs are convenient because they allow us to avoid a specific treatment
for free variables in transformations. A’NF is a minor variant of ANF [24], where
every result is bound to a variable before use; unlike ANF, we also bind the result
of the tail call. Thus, every result can thus be stored in a cache by CTS conversion
and reused later (as described in Sec. 2). This requirement is not onerous: A’NF
is a minimal variant of ANF, and lambda-lifting and ANF conversion are routine
in compilers for functional languages. Most examples we show are in this form.

In contrast, our transformation’s outputs are lambda-lifted but not in A’NF.
For instance, we restrict base functions to take exactly one argument—a base
input. As shown in Sec. 2.1, CTS functions take instead two arguments — a base
input and a cache — and CTS derivatives take three arguments — an input, an
input change, and a cache. We could normalize transformation outputs to inhabit
the source language and follow the same invariants, but this would complicate
our proofs for little benefit. Hence, we do not prescribe transformation outputs
to satisfy the same invariants, and we rather describe transformation outputs
through separate grammars.

As a result of this design choice, we consider languages for base programs,
derivatives, CTS programs and CTS derivatives. In our Coq mechanization, we
formalize those as four separate languages, saving us many proof steps to check
the validity of required structural invariants. For simplicity, in the paper we
define a single language called λL (for λ-Lifted). This language satisfies invariants
common to all these languages (including some of the A’NF invariants). Then, we
define λL sublanguages. We do not formalize the semantics of λL itself, preferring
to describe it informally; we only formalize the semantics of its sublanguages.



8

Syntax for terms The λL language is a relatively conventional lambda-lifted λ-
calculus with a limited form of pattern matching on tuples. The syntax for terms
and values is presented in Fig. 1. We separate terms and values in two distinct
syntactic classes because we use big-step operational semantics. Our let-bindings
are non-recursive as usual, and support shadowing. Terms cannot contain λ-
expressions directly, but only refer to closures through the environment, and
similarly for literals and primitives; we elaborate on this in Sec. 3.2. We do
not introduce case expressions, but only bindings that destructure tuples, both
in let-bindings and λ-expressions of closures. Our semantics does not assign
meaning to match failures, but pattern-matchings are only used in generated
programs and our correctness proofs ensure that the matches always succeed.
We allow tuples to contain terms of form x ⊕ dx , which update base values x
with changes in dx , because A’NF-converting these updates is not necessary to
the transformations. We often inspect the result of a function call “f x ”, which
is not a valid term in our syntax. Hence, we write “@(f , x )” as a syntactic sugar
for “let y = f x in y” with y chosen fresh.

Syntax for closed values A closed value is either a closure, a tuple of values,
a literal, a primitive, a nil change for a primitive or a replacement change. A
closure is a pair of an evaluation environment E and a λ-abstraction closed
with respect to E. The set of available literals ` is left abstract. It may contain
usual first-order literals like integers. We also leave abstract the primitives p like
if-then-else or projections of tuple components. Each primitive p comes with
a nil change, which is its derivative as explained in Sec. 2. A change value can
also represent a replacement by some closed value av. Replacement changes are
not produced by static differentiation but are useful for clients of derivatives: we
include them in the formalization to make sure that they are not incompatible
with our system. As usual, environments E map variables to closed values.

Sublanguages of λL The source language for all our transformations is a sublan-
guage of λL named λAL, where A stands for A’NF. To each transformation we
associate a target language, which matches the transformation image. The target
language for CTS conversion is named λCAL, where “C” stands for CTS. The tar-
get languages of differentiation and CTS differentiation are called, respectively,
λIAL and λICAL, where the “I” stands for incremental.

3.2 The source language λAL

We show the syntax of λAL in Fig. 2. As said above, λAL is a sublanguage
of λL denoting lambda-lifted base terms in A’NF. With no loss of generality,
we assume that all bound variables in λAL programs and closures are distinct.
The step-indexed big-step semantics (Fig. 3) for base terms is defined by the
judgment written E ` t ⇓n v (where n can be omitted) and pronounced “Under
environment E, base term t evaluates to closed value v in n steps.” Intuitively, our
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Term differentiation dt = Dι(t)

Dι(x ) = dx
Dι(let y = f x in t) =

let y = f x , dy = df x dx inDι(t)
Dι(let y = (x ) in t) =

let y = (x ), dy = (dx ) inDι(t)

Value differentiation dv = Dι(v)

Dι((v)) = (Dι(v))
Dι(Ef [λx . t]) = Dι(Ef )[λx dx .Dι(t)]

Dι(`) = nil `
Dι(p) = 0p

Environment differentiation dE = Dι(E)

Dι(•) = •
Dι(E; x = v) = Dι(E); x = v ; dx = Dι(v)

Base/updated environment E = bdEci
b•ci = • i = 1, 2

bdE ; x = v ; dx = dvci = bdEc1; x = v ′ v ′ = v if i = 1 or v ′ = v ⊕ dv if i = 2

λIAL change terms
dt ::= dx
| let y = f x , dy = df x dx in dt

| let y = (x ), dy = (dx ) in dt

λIAL change values
dv ::= (dv) | dE [λx dx . dt ] | d` | 0p | !v
λIAL change environments
dE ::= • | dE ; x = v ; dx = dv

λAL base terms
t ::= x | let y = f x in t | let y = (x ) in t

λAL closed values
v ::= (v) | E[λx . t] | ` | p

λAL value environments
E ::= • | E; x = v

Fig. 2: Static differentiation Dι(–); syntax of its target language λIAL, tailored
to the output of differentiation; syntax of its source language λAL. We assume
that in λIAL the same let binds both y and dy and that α-renaming preserves
this invariant. We also define the base environment bdEc1 and the updated en-
vironment bdEc2 of a change environment dE .

step-indexes count the number of “nodes” of a big-step derivation.4 As they are
relatively standard, we defer the explanations of these rules to the appendix B.

Expressiveness A closure in the base environment can be used to represent a
top-level definition. Since environment entries can point to primitives, we need
no syntax to directly represent calls of primitives in the syntax of base terms.
To encode in our syntax a program with top-level definitions and a term to be
evaluated representing the entry point, one can produce a term t representing the
entry point together with an environment E containing as values any top-level
definitions, primitives and literals used in the program. Semi-formally, given an
environment E0 mentioning needed primitives and literals, and a list of top-level
function definitions D = f = λx . t defined in terms of E0, we can produce a base
environment E = L(D), with L defined by:

L(•) = E0 and L(D, f = λx . t) = E, f = E[λx . t] where L(D) = E

4 Instead, Ahmed [4] and Acar et al. [3] count the number of steps that small-step
evaluation would take, but our choice simplifies some proof steps and makes a minor
difference in others.
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[SVar]

E ` x ⇓1 E(x )

[STuple]
E; y = (E(x )) ` t ⇓n v

E ` let y = (x ) in t ⇓n+1 v

[SPrimitiveCall]
E(f ) = p

E; y = δp(E(x )) ` t ⇓n v

E ` let y = f x in t ⇓n+1 v

[SClosureCall]
E(f ) = Ef [λx . tf ] Ef ; x = E(x ) ` tf ⇓m vy E; y = vy ` t ⇓n v

E ` let y = f x in t ⇓m+n+1 v

Fig. 3: Step-indexed big-step semantics for base terms of source language λAL.

Correspondingly, we extend all our term transformations to values and environ-
ments to transform such encoded top-level definitions.

Our mechanization can encode n-ary functions “λ(x1, x2, . . . , xn). t” through
unary functions that accept tuples; we encode partial application using a curry
primitive such that, essentially, curry f x y = f (x, y); suspended partial appli-
cations are represented as closures. This encoding does not support currying
efficiently, we further discuss this limitation in Sec. 4.4.

Control operators, like recursion combinators or branching, can be introduced
as primitive operations as well. If the branching condition changes, expressing the
output change in general requires replacement changes. Similarly to branching
we can add tagged unions.

To check the assertions of the last two paragraphs, the Coq development
contains the definition of a curry primitive as well as a primitive for a fixpoint
combinator, allowing general recursion and recursive data structures as well.

3.3 Static differentiation from λAL to λIAL

Previous work [7] defines static differentiation for simply-typed λ-calculus terms.
Fig. 2 transposes differentiation as a transformation from λAL to λIAL and
defines λIAL’s syntax.

Differentiating a base term t produces a change term Dι(t), its derivative.
Differentiating final result variable x produces its change variable dx . Differen-
tiation copies each binding of an intermediate result y to the output and adds a
new binding for its change dy . If y is bound to tuple (x ), then dy will be bound
to the change tuple (dx ). If y is bound to function application “f x ”, then dy will
be bound to the application of function change df to input x and its change dx .
We explain differentiation of environments Dι(E) later in this section.

Evaluating Dι(t) recomputes all intermediate results computed by t. This
recomputation will be avoided through cache-transfer style in Sec. 3.5. A com-
parison with the original static differentiation [7] can be found in Appendix A.

Semantics for λIAL We move on to define how λIAL change terms evaluate
to change values. We start by defining necessary definitions and operations on
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[SDVar]

dE ` dx ⇓1 dE(dx )

[SDTuple]
dE(x , dx ) = vx , dvx

dE ; y = (vx ); dy = (dvx ) ` dt ⇓n dv

dE ` let y = (x ), dy = (dx ) in dt ⇓n+1 dv

[SDReplaceCall]
bdEc1 ` @(f , x ) ⇓m vy bdEc2 ` @(f , x ) ⇓n vy

′

dE(df ) = !vf dE ; y = vy ; dy = !vy
′ ` dt ⇓p dv

dE ` let y = f x , dy = df x dx in dt ⇓m+n+p+1 dv

[SDPrimitiveNil]
dE(f , df ) = p, 0p dE(x , dx ) = vx , dvx

dE ; y = δp(vx ); dy = ∆p(vx , dvx ) ` dt ⇓n dv

dE ` let y = f x , dy = df x dx in dt ⇓n+1 dv

[SDClosureChange]
dE(f , df ) = Ef [λx . tf ], dE f [λx dx . dt f ]

dE(x , dx ) = vx , dvx Ef ; x = vx ` tf ⇓m vy
dE f ; x = vx ; dx = dvx ` dt f ⇓n dvy dE ; y = vy ; dy = dvy ` dt ⇓p dv

dE ` let y = f x , dy = df x dx in dt ⇓m+n+p+1 dv

Fig. 4: Step-indexed big-step semantics for the change terms of λIAL.

changes, such as define change values dv , change environments dE , and the
update operator ⊕.

Closed change values dv are particular λL values av. They are either a closure
change, a tuple change, a literal change, a replacement change or a primitive nil
change. A closure change is a closure containing a change environment dE and
a λ-abstraction expecting a value and a change value as arguments to evaluate a
change term into an output change value. An evaluation environment dE follows
the same structure as let-bindings of change terms: it binds variables to closed
values and each variable x is immediately followed by a binding for its associated
change variable dx . As with let-bindings of change terms, α-renamings in an
environment dE must rename dx into dy if x is renamed into y . We define the
update operator ⊕ to update a value with a change. This operator is a partial
function written “v ⊕ dv ”, defined as follows:

v1 ⊕ !v2 = v2
` ⊕ d` = δ⊕(`, d`)

E[λx . t] ⊕ dE [λx dx . dt ] = (E ⊕ dE )[λx . t]
(v1, . . . , vn) ⊕ (dv1, . . . , dvn) = (v1 ⊕ dv1, . . . , vn ⊕ dvn)

p ⊕ 0p = p

where (E; x = v)⊕ (dE ; x = v ; dx = dv) = ((E ⊕ dE ); x = (v ⊕ dv)).
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Replacement changes can be used to update all values (literals, tuples, prim-
itives and closures), while tuple changes can only update tuples, literal changes
can only update literals, primitive nil can only update primitives and closure
changes can only update closures. A replacement change overrides the current
value v with a new one v ′. On literals, ⊕ is defined via some interpretation
function δ⊕, which takes a literal and a literal change to produce an updated
literal. Change update for a closure ignores dt instead of computing something
like dE[t ⊕ dt ]. This may seem surprising, but we only need ⊕ to behave well
for valid changes (as shown by Theorem 3.1): for valid closure changes, dt must
behave anyway similarly to Dι(t), which Cai et al. [7] show to be a nil change.
Hence, t⊕Dι(t) and t⊕ dt both behave like t, so ⊕ can ignore dt and only con-
sider environment updates. This definition also avoids having to modify terms at
runtime, which would be difficult to implement safely. We could also implement
f ⊕ df as a function that invokes both f and df on its argument, as done by Cai
et al. [7], but we believe that would be less efficient when ⊕ is used at runtime.
As we discuss in Sec. 3.4, we restrict validity to avoid this runtime overhead.

Having given these definitions, we show in Fig. 4 a step-indexed big-step se-
mantics for change terms, defined through judgment dE ` dt ⇓n dv (where n
can be omitted). This judgment is pronounced “Under the environment dE , the
change term dt evaluates into the closed change value dv in n steps.” Rules
[SDVar] and [SDTuple] are unsurprising. To evaluate function calls in let-
bindings “let y = f x , dy = df x dx in dt” we have three rules, depending on
the shape of dE (df ). These rules all recompute the value vy of y in the original
environment, but compute differently the change dy to y . If dE (df ) replaces the
value of f , [SDReplaceCall] recomputes v ′y = f x from scratch in the new en-
vironment, and bind dy to !v ′y when evaluating the let body. If dE (df ) is the nil
change for primitive p, [SDPrimitiveNil] computes dy by running p’s derivative
through function ∆p(–). If dE (df ) is a closure change, [SDClosureChange] in-
vokes it normally to compute its change dvy . As we show, if the closure change
is valid, its body behaves like f ’s derivative, hence incrementalizes f correctly.

Closure changes with non-nil environment changes represent partial applica-
tion of derivatives to non-nil changes; for instance, if f takes a pair and dx is a
non-nil change, 0curry f df x dx constructs a closure change containing dx , using
the derivative of curry mentioned in Sec. 3.2. In general, such closure changes
do not arise from the rules we show, only from derivatives of primitives.

3.4 A new soundness proof for static differentiation

In this section, we show that static differentiation is sound (Theorem 3.3) and
that Eq. (1) holds:

f a2 = f a1 ⊕Dι(f) a1 da (1)

whenever da is a valid change from a1 to a2 (as defined later). One might want to
prove this equation assuming only that a1⊕ da = a2, but this is false in general.
A direct proof by induction on terms fails in the case for application (ultimately
because f1⊕df = f2 and a1⊕da = a2 do not imply that f1 a1⊕df a1 da = f2 a2).
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• d` Bn ` ↪→ δ⊕(`, d`) • !v2 Bn v1 ↪→ v2 • 0p Bn p ↪→ p

• (dv1, . . . , dvm) Bn (v1, . . . , vm) ↪→ (v ′1, . . . , v
′
m)

if and only if (v1, . . . , vm)⊕ (dv1, . . . , dvm) = (v ′1, . . . , v
′
m)

and ∀k < n, ∀i ∈ [1 . . .m], dv i Bk vi ↪→ v ′i

• dE [λx dx . dt ] Bn E1[λx . t] ↪→ E2[λx . t]
if and only if E2 = E1 ⊕ dE and
∀k < n, v1, dv , v2,
if dv Bk v1 ↪→ v2 then (dE ; x = v1; dx = dv ` dt) Ik (E1; x = v1 ` t) ↪→ (E2; x = v2 ` t)

• (dE ` dt) In (E1 ` t1) ↪→ (E2 ` t2)
if and only if ∀k < n, v1, v2,
E1 ` t1 ⇓k v1 and E2 ` t2 ⇓ v2implies that ∃dv , dE ` dt ⇓ dv ∧ dv Bn−k v1 ↪→ v2

Fig. 5: Step-indexed validity, through judgments for values and for terms.

As usual, this can be fixed by introducing a logical relation. We call ours validity :
a function change is valid if it turns valid input changes into valid output changes.

Static differentiation is only sound on input changes that are valid. Cai et al.
[7] show this for a strongly normalizing simply-typed λ-calculus using denota-
tional semantics. Using an operational semantics, we generalize this result to
an untyped and Turing-complete language, so we must turn to a step-indexed
logical relation [4, 3].

Alert readers might wonder why we use a big-step semantics for a Turing-
complete language. We indeed focus on incrementalizing computations that ter-
minate on both old and new inputs. Our choice follows Acar et al. [3] (compared
with in Sec. 5).

Validity as a step-indexed logical relation We say that “dv is a valid change from
v1 to v2, up to k steps” and write

dv Bk v1 ↪→ v2

to mean that dv is a change from v1 to v2 and that dv is a valid description of
the differences between v1 and v2, with validity tested with up to k steps. This
relation approximates validity; if a change dv is valid at all approximations, it
is simply valid (between v1 and v2); we write then dv B v1 ↪→ v2 (omitting the
step-index k) to mean that validity holds at all step-indexes. We similarly omit
step-indexes k from other step-indexed relations when they hold for all k.

To justify this intuition of validity, we show that a valid change from v1
to v2 goes indeed from v1 to v2 (Theorem 3.1), and that if a change is valid up
to k steps, it is also valid up to fewer steps (Lemma 3.2).

Theorem 3.1 (⊕ agrees with validity).
If dv Bk v1 ↪→ v2 holds for all k > 0, then v1 ⊕ dv = v2.

Lemma 3.2 (Downward-closure).
If N ≥ n, then dv BN v1 ↪→ v2 implies dv Bn v1 ↪→ v2.
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Crucially, Theorem 3.1 enables (a) computing v2 from a valid change and its
source, and (b) showing Eq. (1) through validity. As discussed, ⊕ ignores changes
to closure bodies to be faster, which is only sound if those changes are nil; to
ensure Theorem 3.1 still holds, validity on closure changes must be adapted
accordingly and forbid non-nil changes to closure bodies. This choice, while un-
usual, does not affect our results: if input changes do not modify closure bodies,
intermediate changes will not modify closure bodies either. Logical relation ex-
perts might regard this as a domain-specific invariant we add to our relation.
Alternatives are discussed by Giarrusso [10, App. C].

As usual with step-indexing, validity is defined by well-founded induction
over naturals ordered by <; to show well-foundedness we observe that evaluation
always takes at least one step.

Validity for values, terms and environments is formally defined by cases in
Fig. 5. First, a literal change d` is a valid change from ` to ` ⊕ d` = δ⊕(`, d`).
Since the function δ⊕ is partial, the relation only holds for the literal changes d`
which are valid changes for `. Second, a replacement change !v2 is always a valid
change from any value v1 to v2. Third, a primitive nil change is a valid change
between any primitive and itself. Fourth, a tuple change is valid up to step n,
if each of its components is valid up to any step strictly less than n. Fifth, we
define validity for closure changes. Roughly speaking, this statement means that
a closure change is valid if (i) its environment change dE is valid for the original
closure environment E1 and for the new closure environment E2; and (ii) when
applied to related values, the closure bodies t are related by dt , as defined by the
auxiliary judgment (dE ` dt) In (E1 ` t1) ↪→ (E2 ` t2) for validity between
terms under related environments (defined in C). As usual with step-indexed
logical relations, in the definition for this judgment about terms, the number k
of steps required to evaluate the term t1 is subtracted from the number of steps n
that can be used to relate the outcomes of the term evaluations.

Soundness of differentiation We can state a soundness theorem for differentiation
without mentioning step-indexes; thanks to this theorem, we can compute the
updated result v2 not by rerunning a computation, but by updating the base
result v1 with the result change dv that we compute through a derivative on the
input change. A corollary shows Eq. (1).

Theorem 3.3 (Soundness of differentiation in λAL). If dE is a valid change
environment from base environment E1 to updated environment E2, that is
dE B E1 ↪→ E2, and if t converges both in the base and updated environment,
that is E1 ` t ⇓ v1 and E2 ` t ⇓ v2, then Dι(t) evaluates under the change
environment dE to a valid change dv between base result v1 and updated result
v2, that is dE ` Dι(t) ⇓ dv , dv B v1 ↪→ v2 and v1 ⊕ dv = v2.

We must first show that derivatives map input changes valid up to k steps
to output changes valid up to k steps, that is, the fundamental property of our
step-indexed logical relation:

Lemma 3.4 (Fundamental Property).
For each n, if dE Bn E1 ↪→ E2 then (dE ` Dι(t)) In (E1 ` t) ↪→ (E2 ` t).
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Translation of terms M = Tt(t′)

Tt(let y = f x in t′) = let y , cyfx = f x in Tt(t′)
Tt(let y = (x ) in t′) = let y = (x ) in Tt(t′)

Tt(x ) = (x , C(t))

Cache of a term C = C(t)

C(let y = f x in t) = ((C(t), y), cyfx )
C(let y = (x ) in t) = (C(t), y)

C(x) = ()

Translation of values V = T (v)

T ((v)) = (T (v))
T (E[λx . t]) = T (E)[λx . Tt(t)]

T (`) = `
T (p) = p

Base terms
M ::= let y , cyfx = f x inM

| let y = (x ) inM
| (x , C)

Cache terms/patterns
C ::= (C, cyfx ) | (C, x ) | ()
Closed values
V ::= (V ) | F [λx .M ] | ` | p
Cache values
Vc ::= () | (Vc, Vc) | (Vc, V )

Evaluation environments
F ::= • | F ;Dv

Base environment entries
Dv ::= x = V | cyfx = Vc

Fig. 6: Cache-Transfer Style translation and syntax of its target language λCAL.

3.5 CTS conversion

Fig. 6 and 7 define both the syntax of λCAL and λICAL and CTS conversion.
The latter comprises CTS differentiation D(–), from λAL to λICAL, and CTS
translation T (–), from λAL to λCAL.

Syntax definitions for the target languages λCAL and λICAL Terms of λCAL
follow again λ-lifted A’NF, like λAL, except that a let-binding for a function
application “f x ” now binds an extra cache identifier cyfx besides output y . Cache
identifiers have non-standard syntax: it can be seen as a triple that refers to
the value identifiers f , x and y . Hence, an α-renaming of one of these three
identifiers must refresh the cache identifier accordingly. Result terms explicitly
return cache C through syntax (x , C). Caches are encoded through nested tuples,
but they are in fact a tree-like data structure that is isomorphic to an execution
trace. This trace contains both immediate values and the execution traces of
nested function calls.

The syntax for λICAL matches the image of the CTS derivative and witnesses
the CTS discipline followed by the derivatives: to determine dy , the derivative
of f evaluated at point x with change dx expects the cache produced by evaluat-
ing y in the base term. The derivative returns the updated cache which contains
the intermediate results that would be gathered by the evaluation of f (x ⊕ dx ).
The result term of every change term returns the computed change and a cache
update dC , where each value identifier x of the input cache is updated with its
corresponding change dx .
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Differentiation of terms dM = Dt(t′)

Dt(let y = f x in t′) = let dy , cyfx = df x dx cyfx in

Dt(t′)
Dt(let y = (x ) in t′) = let dy = (dx ) inDt(M ′)

Dt(x ) = (dx ,U (t))

Cache update of a term dC = U (t)

U (let y = f x in t) = ((U (t), y ⊕ dy), cyfx )

U (let y = (x ) in t) = (U (t), y ⊕ dy)
U (x) = ()

Differentiation of change values dV = T (dv)

T ((dv)) = (T (dv))
T (dE [λx dx .Dι(t)]) = T (dE)[λx dx (C(t)).Dt(t)]

T (!v) = !T (v)
T (d`) = d`
T (0p) = 0p

Change terms
dM ::= let dy , cyfx = df x dx cyfx in dM

| let dy = (dx ) in dM
| (dx , dC )

Cache updates
dC ::= (dC , cyfx ) | (dC , x ⊕ dx ) | ()
Change values
dV ::= (dV ) | dF [λx dx C. dM ] | d` | 0p | !V
Change environments
dF ::= • | dF ; dDv

Change environment entries
dDv ::= Dv | dx = dV

Fig. 7: CTS differentiation and syntax of its target language λICAL. Beware
T (dE [λx dx .Dι(t)]) applies a left-inverse of Dι(t) during pattern matching.

CTS conversion and differentiation These translations use two auxiliary func-
tions: C(t) which computes the cache term of a λAL term t, and U (t), which
computes the cache update of t’s derivative.

CTS translation on terms, Tt(t′), accepts as inputs a global term t and a
subterm t′ of t. In tail position (t′ = x ), the translation generates code to return
both the result x and the cache C(t) of the global term t. When the transfor-
mation visits let-bindings, it outputs extra bindings for caches cyfx on function
calls and visits the let-body.

Similarly to Tt(t′), CTS derivation Dt(t′) accepts a global term t and a
subterm t′ of t. In tail position, the translation returns both the result change dx
and the cache update U (t). On let-bindings, it does not output bindings for y
but for dy , it outputs extra bindings for cyfx as in the previous case and visits
the let-body.

To handle function definitions, we transform the base environment E through
T (E) and T (Dι(E)) (translations of environments are done pointwise, see D).
Since Dι(E) includes E, we describe T (Dι(E)) to also cover T (E). Overall,
T (Dι(E)) CTS-converts each source closure f = E[λx . t] to a CTS-translated
function, with body Tt(t), and to the CTS derivative df of f . This CTS derivative
pattern matches on its input cache using cache pattern C(t). That way, we make
sure that the shape of the cache expected by df is consistent with the shape of
the cache produced by f . The body of derivative df is computed by CTS-deriving
f ’s body via Dt(t).
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3.6 Semantics of λCAL and λICAL

An evaluation environment F of λCAL contains both values and cache values.
Values V resemble λAL values v , cache values Vc match cache terms C and
change values dV match λIAL change values dv . Evaluation environments dF
for change terms must also bind change values, so functions in change closures
take not just a base input x and an input change dx , like in λIAL, but also
an input cache C. By abuse of notation, we reuse the same syntax C to both
deconstruct and construct caches.

Base terms of the language are evaluated using a conventional big-step seman-
tics, consisting of two judgments. Judgment “F ` M ⇓ (V, Vc)” is read “Under
evaluation environment F , base termM evaluates to value V and cache Vc”. The
semantics follows the one of λAL; since terms include extra code to produce and
carry caches along the computation, the semantics evaluates that code as well.
For space reasons, we defer semantic rules to the appendix. Auxiliary judgment
“F ` C ⇓ Vc” evaluates cache terms into cache values: It traverses a cache term
and looks up the environment for the values to be cached.

Change terms of λICAL are also evaluated using a big-step semantics, which
resembles the semantics of λIAL and λCAL. Unlike those semantics, evaluat-
ing cache updates (dC , x ⊕ dx ) is evaluated using the ⊕ operator (overloaded
on λCAL values and λICAL changes). By lack of space, its rules are deferred
to Appendix E. This semantics relies on three judgments. Judgment “dF `
dM ⇓ (dV , Vc)” is read “Under evaluation environment F , change term dM
evaluates to change value dV and updated cache Vc”. The first auxiliary judg-
ment “dF ` dC ⇓ Vc” defines evaluation of cache update terms. The final auxil-
iary judgment “Vc ∼ C → dF ” describes a limited form of pattern matching used
by CTS derivatives: namely, how a cache pattern C matches a cache value Vc to
produce a change environment dF .

3.7 Soundness of CTS conversion

The proof is based on a simulation in lock-step, but two subtle points emerge.
First, we must relate λAL environments that do not contain caches, with λCAL
environments that do. Second, while evaluating CTS derivatives, the evalua-
tion environment mixes caches from the base computation and updated caches
computed by the derivatives.

Theorem 3.7 follows because differentiation is sound (Theorem 3.3) and eval-
uation commutes with CTS conversion; this last point requires two lemmas.
First, CTS translation of base terms commutes with our semantics:

Lemma 3.5 (Commutation for base evaluations).
For all E, t and v , if E ` t ⇓ v , there exists Vc, T (E) ` Tt(t) ⇓ (T (v), Vc).

Second, we need a corresponding lemma for CTS translation of differentiation
results: intuitively, evaluating a derivative and CTS translating the resulting
change value must give the same result as evaluating the CTS derivative. But
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to formalize this, we must specify which environments are used for evaluation,
and this requires two technicalities.

Assume derivative Dι(t) evaluates correctly in some environment dE . Evalu-
ating CTS derivative Dt(t) requires cache values from the base computation, but
they are not in T (dE )! Therefore, we must introduce a judgment to complete a
CTS-translated environment with the appropriate caches (see Appendix F).

Next, consider evaluating a change term of the form dM = C[dM ′], where C
is a standard single-hole change-term context—that is, for λICAL, a sequence
of let-bindings. When evaluating dM , we eventually evaluate dM ′ in a change
environment dF updated by C: the change environment dF contains both the
updated caches coming from the evaluation of C and the caches coming from
the base computation (which will be updated by the evaluation of dM ). Again,
a new judgment, given in Appendix F, is required to model this process.

With these two judgments, the second key Lemma stating the commuta-
tion between evaluation of derivatives and evaluation of CTS derivatives can
be stated. We give here an informal version of this Lemma, the actual formal
version can be found in Appendix F.

Lemma 3.6 (Commutation for derivatives evaluation).
If the evaluation of Dι(t) leads to an environment dE 0 when it reaches the

differentiated context Dι(C) where t = C[t′], and if the CTS conversion of t
under this environment completed with base (resp. changed) caches evaluates
into a base value T (v) (resp. a changed value T (v ′)) and a base cache value
Vc (resp. an updated cache value V ′c ), then under an environment containing
the caches already updated by the evaluation of Dι(C) and the base caches to be
updated, the CTS derivative of t′ evaluates to T (dv) such that v ⊕ dv = v ′ and
to the updated cache V ′c .

Finally, we can state soundness of CTS differentiation. This theorem says
that CTS derivatives not only produce valid changes for incrementalization but
that they also correctly consume and update caches.

Theorem 3.7 (Soundness of CTS differentiation).
If the following hypotheses hold:

1. dE B E ↪→ E′

2. E ` t ⇓ v
3. E′ ` t ⇓ v ′

then there exists dv , Vc, V ′c and F0 such that:

1. T (E) ` T (t) ⇓ (T (v), Vc)
2. T (E′) ` T (t) ⇓ (T (v ′), V ′c )
3. C(t) ∼ Vc → F0

4. T (dE );F0 ` Dt(t) ⇓ (T (dv), V ′c )
5. v ⊕ dv = v ′
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4 Incrementalization case studies

In this section, we investigate two questions: whether our transformations can
target a typed language like Haskell and whether automatically transformed
programs can perform well. We implement by hand primitives on sequences,
bags and maps in Haskell. The input terms in all case studies are written in a
deep embedding of λAL into Haskell. The transformations generate Haskell code
that uses our primitives and their derivatives.

We run the transformations on three case studies: a computation of the av-
erage value of a bag of integers, a nested loop over two sequences and a more
involved example inspired by Koch et al. [17]’s work on incrementalizing database
queries. For each case study, we make sure that results are consistent between
from scratch recomputation and incremental evaluation; we measure the execu-
tion time for from scratch recomputation and incremental computation as well as
the space consumption of caches. We obtain efficient incremental programs, that
is ones for which incremental computation is faster than from scratch recom-
putation. The measurements indicate that we do get the expected asymptotic
improvement in time of incremental computation over from scratch recomputa-
tion by a linear factor while the caches grows in a similar linear factor.

Our benchmarks were compiled by GHC 8.2.2 and run on a 2.20GHz hexa
core Intel(R) Xeon(R) CPU E5-2420 v2 with 32GB of RAM running Ubuntu
14.04. We use the criterion [21] benchmarking library.

4.1 Averaging bags of integers

Sec. 2.1 motivates our transformation with a running example of computing the
average over a bag of integers. We represent bags as maps from elements to
(possibly negative) multiplicities. Earlier work [7, 17] represents bag changes as
bags of removed and added elements. We use a different representation of bag
changes that takes advantage of the changes to elements and provide primitives
on bags and their derivatives. The CTS variant of map, that we call mapC , takes
a function fC in CTS and a bag as and produces a bag and a cache. The cache
stores for each invocation of fC , and therefore for each distinct element in as,
the result of fC of type b and the cache of type c.

Inspired by Rossberg et al. [23], all higher-order functions (and typically,
also their caches) are parametric over cache types of their function arguments.
Here, functions mapC and dmapC and cache type MapC are parametric over
the cache type c of fC and dfC .

map :: (a → b)→ Bag a → Bag b

data MapC a b c = MapC (Map a (b, c))
mapC :: (a → (b, c))→ Bag a → (Bag b,MapC a b c)
dmapC :: (a → (b, c))→ (a → ∆a → c → (∆b, c))→ Bag a → ∆(Bag a)→

MapC a b c → (∆(Bag b),MapC a b c)

We wrote the length and sum functions used in our benchmarks in terms of
primitives map and foldGroup and had their CTS function and CTS derivative
generated automatically.
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Fig. 8: Benchmark results for average and totalPrice

We evaluate whether we can produce an updated result with daverageC
shown in Sec. 2.1 faster than by from scratch recomputation with average. We
expect the speedup of daverageC to depend on the size of the input bag n. We
fix an input bag of size n as the bag containing the numbers from 1 to n. We
define a change that inserts the integer 1 into the bag. To measure execution
time of from scratch recomputation, we apply average to the input bag updated
with the change. To measure execution time of the CTS function averageC , we
apply averageC to the input bag updated with the change. To measure execution
time of the CTS derivative daverageC , we apply daverageC to the input bag,
the change and the cache produced by averageC when applied to the input bag.
In all three cases we ensure that all results and caches are fully forced so as to
not hide any computational cost behind laziness.

The plot in Fig. 8a shows execution time versus the size n of the base input.
To produce the base result and cache, the CTS transformed function averageC
takes longer than the original average function takes to produce just the result.
Producing the updated result incrementally is slower than from scratch recom-
putation for small input sizes, but because of the difference in time complexity
becomes faster as the input size grows. The size of the cache grows linearly with
the size of the input, which is not optimal for this example. We leave optimizing
the space usage of examples like this to future work.

4.2 Nested loops over two sequences

Next, we consider CTS differentiation on a higher-order example. To incremen-
talize this example efficiently, we have to enable detecting nil function changes
at runtime by representing function changes as closures that can be inspected
by incremental programs. Our example here is the Cartesian product of two
sequences computed in terms of functions map and concat .

cartesianProduct :: Sequence a → Sequence b → Sequence (a, b)
cartesianProduct xs ys = concatMap (λx → map (λy → (x , y)) ys) xs

concatMap :: (a → Sequence b)→ Sequence a → Sequence b
concatMap f xs = concat (map f xs)
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We implemented incremental sequences and related primitives following Firsov
and Jeltsch [9]: our change operations and first-order operations (such as concat)
reuse their implementation. On the other hand, we must extend higher-order
operations such as map to handle non-nil function changes and caching. A cor-
rect and efficient CTS derivative dmapC has to work differently depending on
whether the given function change is nil or not: For a non-nil function change it
has to go over the input sequence; for a nil function change it has to avoid that.

Cai et al. [7] use static analysis to conservatively approximate nil function
changes as changes to terms that are closed in the original program. But in this
example the function argument (λy → (x , y)) to map in cartesianProduct is not
a closed term. It is, however, crucial for the asymptotic improvement that we
avoid looping over the inner sequence when the change to the free variable x in
the change environment is 0x .

To enable runtime nil change detection, we apply closure conversion to the
original program and explicitly construct closures and changes to closures. While
the only valid change for closed functions is their nil change, for closures we can
have non-nil function changes. A function change df , represented as a closure
change, is nil exactly when all changes it closes over are nil.

We represent closed functions and closures as variants of the same type. Cor-
respondingly we represent changes to a closed function and changes to a closure
as variants of the same type of function changes. We inspect this representation
at runtime to find out if a function change is a nil change.

data Fun a b c where
Closed :: (a → (b, c))→ Fun a b c
Closure :: (e → a → (b, c))→ e → Fun a b c

data ∆(Fun a b c) where
DClosed :: (a → ∆a → c → (∆b, c))→ ∆(Fun a b c)
DClosure :: (e → ∆e → a → ∆a → c → (∆b, c))→ e → ∆e → ∆(Fun a b c)

We use the same benchmark setup as in the benchmark for the average com-
putation on bags. The input of size n is a pair of sequences (xs, ys). Each sequence
initially contains the integers from 1 to n. Updating the result in reaction to a
change dxs to the outer sequence xs takes less time than updating the result in
reaction to a change dys to the inner sequence ys. While a change to the outer
sequence xs results in an easily located change in the output sequence, a change
for the inner sequence ys results in a change that needs a lot more calculation
to find the elements it affects. We benchmark changes to the outer sequence xs
and the inner sequence ys separately where the change to one sequence is the
insertion of a single integer 1 at position 1 and the change for the other one is
the nil change.

Fig. 9 shows execution time versus input size. In this example again preparing
the cache takes longer than from scratch recomputation alone. The speedup of
incremental computation over from scratch recomputation increases with the
size of the base input sequences because of the difference in time complexity.
Eventually we do get speedups for both kinds of changes (to the inner and to
the outer sequence), but for changes to the outer sequence we get a speedup
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Fig. 9: Benchmark results for cartesianProduct

earlier, at a smaller input size. The size of the cache grows super linearly in this
example.

4.3 Indexed joins of two bags

Our goal is to show that we can compose primitive functions into larger and
more complex programs and apply CTS differentiation to get a fast incremental
program. We use an example inspired from the DBToaster literature [17]. In this
example we have a bag of orders and a bag of line items. An order is a pair of an
order key and an exchange rate. A line item is a pair of an order key and a price.
We build an index mapping each order key to the sum of all exchange rates of
the orders with this key and an index from order key to the sum of the prices
of all line items with this key. We then merge the two maps by key, multiplying
corresponding sums of exchange rates and sums of prices. We compute the total
price of the orders and line items as the sum of those products.

type Order = (Z,Z)
type LineItem = (Z,Z)
totalPrice :: Bag Order → Bag LineItem → Z
totalPrice orders lineItems = let

orderIndex = groupBy fst orders
orderSumIndex = Map.map (Bag .foldMapGroup snd) orderIndex
lineItemIndex = groupBy fst lineItems
lineItemSumIndex = Map.map (Bag .foldMapGroup snd) lineItemIndex
merged = Map.merge orderSumIndex lineItemSumIndex
total = Map.foldMapGroup multiply merged
in total

groupBy :: (a → k)→ Bag a → Map k (Bag a)
groupBy keyOf bag =

Bag .foldMapGroup (λa → Map.singleton (keyOf a) (Bag .singleton a)) bag
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Unlike DBToaster, we assume our program is already transformed to explicitly
use indexes, as above. Because our indexes are maps, we implemented a change
structure, CTS primitives and their CTS derivatives for maps.

To build the indexes, we use a groupBy function built from primitive functions
foldMapGroup on bags and singleton for bags and maps respectively. The CTS
function groupByC and the CTS derivative dgroupByC are automatically gener-
ated. While computing the indexes with groupBy is self-maintainable, merging
them is not. We need to cache and incrementally update the intermediately
created indexes to avoid recomputing them.

We evaluate the performance in the same way we did in the other case studies.
The input of size n is a pair of bags where both contain the pairs (i , i) for i
between 1 and n. The change is an insertion of the order (1, 1) into the orders
bag. For sufficiently large inputs, our CTS derivative of the original program
produces updated results much faster than from scratch recomputation, again
because of a difference in time complexity as indicated by Fig. 8b. The size
of the cache grows linearly with the size of the input in this example. This is
unavoidable, because we need to keep the indexes.

4.4 Limitations and future work

Typing of CTS programs Functions of the same type f1, f2 :: A → B can be
transformed to CTS functions f1 :: A→ (B ,C1), f2 :: A→ (B ,C2) with different
cache types C1,C2, since cache types depend on the implementation. This het-
erogeneous typing of translated functions poses difficult typing issues, e.g. what
is the translated type of a list (A → B)? We cannot hide cache types behind
existential quantifiers because they would be too abstract for derivatives, which
only work on very specific cache types. We can fix this problem with some run-
time overhead by using a single type Cache, defined as a tagged union of all
cache types or, maybe with more sophisticated type systems — like first-class
translucent sums, open existentials or Typed Adapton’s refinement types [12] —
that could be able to correctly track down cache types properly.

In any case, we believe that these machineries would add a lot of complexity
without helping much with the proof of correctness. Indeed, the simulation rela-
tion is more handy here because it maintains a global invariant about the whole
evaluations (typically the consistency of cache types between base computations
and derivatives), not many local invariants about values as types would.

One might wonder why caches could not be totally hidden from the pro-
grammer by embedding them in the derivatives themselves; or in other words,
why we did not simply translate functions of type A → B into functions of
type A → B × (∆A → ∆B). We tried this as well; but unlike automatic dif-
ferentiation, we must remember and update caches according to input changes
(especially when receiving a sequence of such changes as in Sec. 2.1). Returning
the updated cache to the caller works; we tried closing over the caches in the
derivative, but this ultimately fails (because we could receive function changes
to the original function, but those would need access to such caches).
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Comprehensive performance evaluation This paper focuses on theory and we
leave benchmarking in comparison to other implementations of incremental com-
putation to future work. The examples in our case study were rather simple (ex-
cept perhaps for the indexed join). Nevertheless, the results were encouraging
and we expect them to carry over to more complex examples, but not to all
programs. A comparison to other work would also include a comparison of space
usage for auxiliary data structure, in our case the caches.

Cache pruning via absence analysis To reduce memory usage and runtime over-
head, it should be possible to automatically remove from transformed programs
any caches or cache fragments that are not used (directly or indirectly) to com-
pute outputs. Liu [19] performs this transformation on CTS programs by using
absence analysis, which was later extended to higher-order languages by Sergey
et al. [25]. In lazy languages, absence analysis removes thunks that are not needed
to compute the output. We conjecture that the analysis could remove unused
caches or inputs, if it is extended to not treat caches as part of the output.

Unary vs n-ary abstraction We only show our transformation correct for unary
functions and tuples. But many languages provide efficient support for apply-
ing curried functions such as div :: Z → Z → Z. Naively transforming such
a curried function to CTS would produce a function divC of type Z → (Z →
(Z,DivC 2)),DivC 1) with DivC 1 = (), which adds excessive overhead. In Sec. 2
and our evaluation we use curried functions and never need to use this naive
encoding, but only because we always invoke functions of known arity.

5 Related work

Cache-transfer-style Liu [19]’s work has been the fundamental inspiration to this
work, but her approach has no correctness proof and is restricted to a first-order
untyped language. Moreover, while the idea of cache-transfer-style is similar,
it’s unclear if her approach to incrementalization would extend to higher-order
programs. Firsov and Jeltsch [9] also approach incrementalization by code trans-
formation, but their approach does not deal with changes to functions. Instead of
transforming functions written in terms of primitives, they provide combinators
to write CTS functions and derivatives together. On the other hand, they extend
their approach to support mutable caches, while restricting to immutable ones
as we do might lead to a logarithmic slowdown.

Finite differencing Incremental computation on collections or databases by fi-
nite differencing has a long tradition [22, 6]. The most recent and impressive line
of work is the one on DBToaster [16, 17], which is a highly efficient approach to
incrementalize queries over bags by combining iterated finite differencing with
other program transformations. They show asymptotic speedups both in theory
and through experimental evaluations. Changes are only allowed for datatypes
that form groups (such as bags or certain maps), but not for instance for lists or
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sets. Similar ideas were recently extended to higher-order and nested computa-
tion [18], though only for datatypes that can be turned into groups. Koch et al.
[18] emphasize that iterated differentiation is necessary to obtain efficient deriva-
tives; however, ANF conversion and remembering intermediate results appear to
address the same problem, similarly to the field of automatic differentiation [27].

Logical relations To study correctness of incremental programs we use a logical
relation among base values v1, updated values v2 and changes dv . To define a
logical relation for an untyped λ-calculus we use a step-indexed logical relation,
following Appel and McAllester [5], Ahmed [4]; in particular, our definitions are
closest to the ones by Acar et al. [3], who also work with an untyped language,
big-step semantics and (a different form of) incremental computation. However,
they do not consider first-class changes. Technically, we use environments rather
than substitution, and index our big-step semantics differently.

Dynamic incrementalization The approaches to incremental computation with
the widest applicability are in the family of self-adjusting computation [1, 2], in-
cluding its descendant Adapton [14]. These approaches incrementalize programs
by combining memoization and change propagation: after creating a trace of
base computations, updated inputs are compared with old ones in O(1) to find
corresponding outputs, which are updated to account for input modifications.
Compared to self-adjusting computation, Adapton only updates results that are
demanded. As usual, incrementalization is not efficient on arbitrary programs,
but only on programs designed so that input changes produce small changes to
the computation trace; refinement type systems have been designed to assist in
this task [8, 12]. To identify matching inputs, Nominal Adapton [13] replaces in-
put comparisons by pointer equality with first-class labels, enabling more reuse.

6 Conclusion

We have presented a program transformation which turns a functional program
into its derivative and efficiently shares redundant computations between them
thanks to a statically computed cache. This work has been mechanized using
Coq and the corresponding proof is available online, together with the case study
material.5

Although our first practical case studies show promising results, this paper
focused on putting CTS differentiation on solid theoretical ground. For the mo-
ment, we only have scratched the surface of the incrementalization opportunities
opened by CTS primitives and their CTS derivatives: in our opinion, exploring
the design space for cache data structures will lead to interesting new results in
purely functional incremental programming.
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A Comparison with original static differentiation

Cai et al. [7]’s static differentiation for λ-terms [7] is defined instead as follows:

Derive(x ) = dx
Derive(t u) = (Derive(t))u (Derive(u))

Derive(λx . t) = λx dx .Derive(t)

Even though the first two cases of Cai et al. [7]’s differentiation map into
the two cases of our differentiation variant, one may ask where the third case
is realized now. Actually, this third case occurs while we transform the base
environment E. Indeed, we will assume that the closures of the environment of
the source program have been adjoined a nil change or derivative, as defined
by Dι(E). Change value Dι(v) represents a nil change for v ; if v is a closure,
its nil change is also its derivative [7]. Computing Dι(v) requires a meta-level
function nil which computes a nil change for every literal `. The existence of
such a function is generally assumed in previous work [7] as it is always valid to
use the change !`. Yet, since this triggers recomputation, it can be more efficient
to pick nil changes appropriate to the domain and to the definition of ⊕.

B Description of the semantic rules for λAL

Rule [SVar] looks variable x up in environment E. Other rules evaluate let-
binding “let y = . . . in t” in environment E: Each rule computes y ’s new value
vy (taking m steps) and evaluates in n steps the body t to a value v , using
environment E extended by binding y to vy . The overall let-binding evaluates
to v in m + n + 1 steps. But different rules compute the value of y differently.
[STuple] looks each variable in x up in E to evaluate tuple (x ) (in m = 0 steps).
[SPrimitiveCall] evaluates function calls where variable f is bound in E to
a primitive p, evaluated as specified by a function δp(–) from closed values
to closed values. To evaluate such a primitive call, this rule applies δp(–) to x ’s
value (inm = 0 steps). [SClosureCall] evaluates function calls where variable f
is bound in E to closure Ef [λx . tf ]: this rule evaluates the closure body tf in
m steps, using the closure environment Ef extended with the value of x in E.

C Validity relation over environments

• Bk • ↪→ •
dE Bk E1 ↪→ E2 dv Bk v1 ↪→ v2

dE ; x = v1; dx = dv Bk E1; x = v1 ↪→ E2; x = v2
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D CTS translation of environments

Translation of value environments F = T (E)

T (•) = •
T (E; x = v) = T (E); x = T (v)

Differentiation of change environments dF = T (dE )

T (•) = •
T (dE ; x = v , dx = dv) = T (dE ); x = T (v), dx = T (dv)

E Target language semantics

Evaluation of base terms F `M ⇓ (V, Vc)

[TResult]
F (x ) = V F ` C ⇓ Vc

F ` (x , C) ⇓ (V, Vc)

[TTuple]
F ; y = F (x ) `M ⇓ (V, Vc)

F ` let y = (x ) inM ⇓ (V, Vc)

[TClosureCall]
F (f ) = F ′[λx ′.M ′]

F ′; x ′ = F (x ) `M ′ ⇓ (V ′, V ′c )
F ; y = V ′; cyfx = V ′c `M ⇓ (V, Vc)

F ` let y , cyfx = f x inM ⇓ (V, Vc)

[TPrimitiveCall]
F (f ) = p δp(F (x )) = (V ′, V ′c ) F ; y = V ′; cyfx = V ′c `M ⇓ v

F ` let y , cyfx = f x inM ⇓ (V, Vc)

Evaluation of caches F ` C ⇓ Vc

[TEmptyCache]

F ` () ⇓ ()

[TCacheVar]
F (x ) = V F ` C ⇓ Vc
F ` (C, x ) ⇓ (Vc, V )

[TCacheSubCache]
F (cyfx ) = V ′c F ` C ⇓ Vc
F ` (C, cyfx ) ⇓ (Vc, V

′
c )

Fig. 10: Target language λCAL (semantics of base terms and caches).

Fig. 10 and 11 have been omitted from the paper: they contains the opera-
tional semantics for λCAL and λICAL.

The rules for the evaluation of λCAL change terms are similar to the eval-
uation rules of λAL change terms except that (i) caches are carried along the
computation and updated at return sites; (ii) there is no recomputation of base
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Evaluation of change terms dF ` dM ⇓ (dV , Vc)

[TDResult]
dF (dx ) = dV dF ` dC ⇓ Vc

dF ` (dx , dC ) ⇓ (dV , Vc)

[TDTuple]
dF ; dy = dF (dx ) ` dM ⇓ (dV , Vc)

dF ` let dy = (dx ) in dM ⇓ (dV , Vc)

[TDReplaceCall]
dF (df ) = !Vf

bdFc2 ` @(f , x ) ⇓ (V ′, V ′c )
dF ; dy = !V ′; cyfx = V ′c ` dM ⇓ (dV , Vc)

dF ` let dy , cyfx = df dx cyfx in dM ⇓ (dV , Vc)

[TDPrimitiveNil]
dF (f , df ) = p, 0p

dF (x , dx ) = Vx , dV x dE ; dy , cyfx = ∆p(Vx , dV x , dF (cyfx )) ` dM ⇓ (dV , Vc)

dF ` let dy , cyfx = df x dx cyfx in dM ⇓ (dV , Vc)

[TDClosureChange]
dF (df ) = dF f [λx dx C. dM f ]

dF (cyfx ) ∼ C → dF ′ dF f ; x = dF (x ); dx = dF (dx ); dF ′ ` dM f ⇓ (dV y , V
′
c )

dF ; dy = dV y , c
y
fx = V ′c ` dM ⇓ (dV , Vc)

dF ` let dy , cyfx = df x dx cyfx in dM ⇓ (dV , Vc)

Binding of caches Vc ∼ C → dF

[TMatchEmptyCache]

() ∼ ()→ ()

[TMatchCachedValue]
Vc ∼ C → dF

(Vc, V ) ∼ (C, x )→ dF ; (x = V )

[TMatchSubCache]
Vc ∼ C → dF

(Vc, V
′
c ) ∼ (C, cyfx )→ dF ; (cyfx = V ′c )

Fig. 11: Target language λICAL (semantics of change terms and cache updates).
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values since they are now extracted from the caches. Rule [TDResult] returns
the final change value of a computation as well as a updated cache resulting
from the evaluation of the cache update term dC . Rule [TDTuple] resembles
its counterpart in the source language, but the tuple for y is not built as it
has already been pushed in the environment by the cache. As for λAL, there
are three rules to deal with let-bindings depending on the shape of the change
bound to df in the environment:

– If df is bound to a replacement, the rule [TDReplaceCall] applies. In that
case, we reevaluate the function call in the updated environment bdFc2 (de-
fined similarly as in the source language). This evaluation leads to a new
value V ′ which replaces the original one as well as an updated cache for cyfx .

– If df is bound to a nil change and f is bound to primitive p, the rule [TD-
PrimitiveNil] applies. The derivative of p is invoked with the value of x , its
change value and the cache of the original call to p. The semantics of p’s
derivative is given by builtin function ∆p(–), as in the source language.

– If df is bound to a closure change and f is bound to a closure, the rule [TD-
ClosureChange] applies. The body of the closure change is evaluated under
the closure change environment extended with the value of the formal argu-
ment x , its change dx and with the environment resulting from the binding
of the original cache value to the variables occuring in the cache C. This eval-
uation leads to a change and an updated cache bound in the environment
to continue with the evaluation of the rest of the term.

F Soundness proof of CTS conversion

This section gives complementary technical details about the homonymous sec-
tion of the paper.

The proof requires a judgment to relate source change environments with
CTS change environments that appear during the evaluation of λCAL change
terms under context. Assuming that dF ′ is a change environment with no cache,
this judgment is written dF ` dF 0 ↑ C →k dF k and is read “Under the change
environment dF , the change environment with no cache dF is completed into the
change environment dF k with the caches produced by C in the base computation
if k = 1 or in the updated computation if k = 2”.

The rules for this judgment are given in Fig. 12. [CompleteNil] is a straight-
forward base case. [CompleteTuple] does not introduce any cache since only
function calls do produce caches. [CompleteWithBaseCall] (resp. [Complete-
WithUpdatedCall]) computes a cache Vc by evaluating @(f , x ) under the base
(resp. updated) environment bdFc1 (resp. bdFc2). In [CompleteWithUpdated-
Call], one might wonder why the recursive call which evaluates the remaining
context C is not performed under an environment where y = V ′. Actually, this is
consistent with the fact that in the CTS derivatives base values are only updated
at the end of the computation when the updated cache is returned. This is nec-
essary since derivatives calls in C still need values from the base computation,
not the ones from the updated computation.
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[CompleteNil]

dF ` • ↑ []→k •

[CompleteTuple]
dF ; y = (V ); dy = (dV ) ` dF 0 ↑ C→k dFk

dF ` dF 0; y = (V ); dy = (dV ) ↑ let y = (x ) inC→k dFk; y = (V ); dy = (dV )

[CompleteWithBaseCall]
bdFc1 ` @(f , x ) ⇓ (V, Vc) dF ; y = V ; dy = dV ; cyfx = Vc ` dF 0 ↑ C→1 dF 1

dF ` dF 0; y = V ; dy = dV ↑ let y = f x inC→1 dF 1; y = V ; dy = dV ; cyfx = Vc

[CompleteWithUpdatedCall]
bdFc2 ` @(f , x ) ⇓ (V ′, Vc)

V ⊕ dV = V ′ dF ; y = V ; dy = dV ; cyfx = Vc ` dF 0 ↑ C→2 dF 2

dF ` dF 0; y = V ; dy = dV ↑ let y = f x inC→2 dF 2; y = V ; dy = dV ; cyfx = Vc

Fig. 12: Completion of a change environment with the caches produced under a
context.

Thanks to this judgment, we can state the following key technical lemma
whose proof represents a large part of our Coq formalization.

Lemma F.1 (Evaluation of derivatives commutes with evaluation of
CTS derivatives).

Let t = C[t′] be a term and dE be a change environment.
If the following hypotheses hold:

1. dE ` Dι(t) ⇓ dv
2. dE ` Dι(C) ⇓ dE 0

3. bT (dE )c1 ` T (dE 0) ↑ C→1 dF 1

4. bT (dE )c2 ` T (dE 0) ↑ C→2 dF 2

5. bT (dE )c1; dF 1 ` Tt(t′) ⇓ (T (v), Vc)
6. bT (dE )c2; dF 2 ` Tt(t′) ⇓ (T (v ′), V ′c )
7. C(t′) ∼ V ↑|C|c → F0

Then the following conclusion holds:

T (dE );F0; dF 2 ` Dt(t′) ⇓ (T (dv), V ′c )

Let us explain this statement in detail. The hypothesis (1) simply states
the existence of a converging computation for the standard derivative of t. The
hypothesis (2) makes explicit the change environment dE 0 under which t′ is
evaluated by using an evaluation judgment for the derivative of C.6 The hypoth-
esis (3) (resp. (4)) completes the CTS version of dE 0 with the caches of the
6 The definition of this judgment (resp. the differentiation of term contexts) is omitted,
but it mimicks the evaluation of terms (resp. the differentiation of terms).
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base (resp. updated) computations. The hypothesis (5) (resp. (6)) evaluates t′
under the base (resp. updated) change environment equipped with caches to get
the cached values for the whole base (resp. updated) computation. Finally, the
hypothesis (7) extracts from Vc only the base cached values that are needed to
evaluate Dt(t′): the operation V ↑|C|c removes the |C| first elements from the cache
Vc. Indeed, these cached values have already been updated by the evaluation of
C and they are present in dF 2. The conclusion of this lemma states that T (dE )
(the CTS version of dE ), extended with the F0, the not-yet-updated cache values
from the base computation, and with the updated change environment dF 2, is
a sound environment to evaluate the CTS derivative to the CTS version of dv
and to the updated cache V ′c .

G Space usage measurements



34

0 20 40 60 80 100
0

5,000

10,000

15,000

20,000

input size

ca
ch

e
si

ze
in

by
te

s

average

(a) Benchmark results for space usage of |average|.
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(b) Benchmark results for space usage of |totalPrice|.
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(c) Benchmark results for space usage of |cartesianProduct|.

Fig. 13: Benchmark results for space usage.
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