
HAL Id: hal-02376147
https://hal.inria.fr/hal-02376147v2

Submitted on 12 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Symbolic Bisimulation for Open and Parameterized
Systems - Extended version

Zechen Hou, Eric Madelaine, Jing Liu, Yuxin Deng

To cite this version:
Zechen Hou, Eric Madelaine, Jing Liu, Yuxin Deng. Symbolic Bisimulation for Open and Param-
eterized Systems - Extended version. [Research Report] RR-9304, Inria & Université Cote d’Azur,
CNRS, I3S, Sophia Antipolis, France; East China Normal University (Shanghai). 2019, pp.47. �hal-
02376147v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/275924568?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-02376147v2
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
93

04
--

FR
+E

N
G

RESEARCH
REPORT
N° 9304
November 2019

Project-Team Kairos

Symbolic Bisimulation
for Open and
Parameterized Systems -
Extended version
Zechen HOU , Eric MADELAINE , Jing LIU , Yuxin DENG

RESEARCH CENTRE
SOPHIA ANTIPOLIS – MÉDITERRANÉE

2004 route des Lucioles - BP 93
06902 Sophia Antipolis Cedex

Symbolic Bisimulation for Open and
Parameterized Systems - Extended version

Zechen HOU ∗, Eric MADELAINE † ‡, Jing LIU ∗, Yuxin
DENG ∗

Project-Team Kairos

Research Report n° 9304 — November 2019 — 49 pages

Abstract: Open Automata (OA) are symbolic and parameterized models for open concurrent
systems. Here open means partially specified systems, that can be instantiated or assembled to
build bigger systems. An important property for such systems is "compositionality", meaning that
logical properties, and equivalences, can be checked locally, and will be preserved by composition.
In previous work, a notion of equivalence named FH-Bisimulation was defined for open automata,
and proved to be a congruence for their composition. But this equivalence was defined for a variant
of open automata that are intrinsically infinite, making it unsuitable for algorithmic treatment.
We define a new form of equivalence named StrFH-Bisimulation, working on finite encodings of
OAs. We prove that StrFH-Bisimulation is consistent and complete with respect to the FH-
Bisimulation.
Then we propose two algorithms to check StrFH-Bisimulation: the first one requires a (user-
defined) relation between the states of two finite OAs, and checks whether it is a StrFH-
Bisimulation. The second one takes two finite OAs as input, and builds a "weakest StrFH-
bisimulation" such that their initial states are bisimilar. We prove that this algorithm terminates
when the data domains are finite. Both algorithms use an SMT-solver as a basis to solve the proof
obligations.

Key-words: Concurrent Systems, Symbolic Bisimulation, Open Systems, SMT Solver

KAIROS is a common team between the I3S Lab (Univ. Côte d’Azur and CNRS) and INRIA Sophia
Antipolis Méditerranée

∗ East China Normal University, Shanghai, China
† INRIA Sophia Antipolis Méditerranée, BP 93, 06902 Sophia Antipolis, France
‡ UCA, Université Côte d’Azur

Bisimulation symbolique pour les systèmes paramétrés
ouverts - Version étendue

Résumé : Les Automates Ouverts (OA) sont des modèles symboliques et paramétrés pour les
systèmes concurrents ouverts. Ici, open désigne des systèmes partiellement spécifiés, qui peuvent
être instanciés ou assemblés pour construire de plus grands systèmes. Une propriété importante
pour de tels systèmes est la "compositionnalité", ce qui signifie que les propriét́éś logiques et
les éq́uivalences peuvent être véŕifiéés localement et seront préservées par la composition. Dans
des travaux antérieurs, une notion d’équivalence nommée FH-Bisimulation était définie pour
les automates ouverts et se révélait être une congruence pour leur composition. Mais cette
équivalence a été définie pour une variante des automates ouverts intrinsèquement infinis, ce qui
la rend impropre au traitement algorithmique.

Nous définissons une nouvelle forme d’équivalence nommée StrFH-Bisimulation, travaillant
sur des encodages finis des OA. Nous prouvons que la StrFH-Bisimulation est cohérente et com-
plète pour la FH-Bisimulation.

Ensuite, nous proposons deux algorithmes pour vérifier la StrFH-Bisimulation: le premier
nécessite la donnée d’une relation (définie par l’utilisateur) entre les états de deux OA finis, et
vérifie s’il s’agit d’une StrFH-Bisimulation. Le second prend deux OA finies en entrée et construit
une "StrFH-bisimulation la plus faible" telle que leurs états initiaux soient bisimilaires. Nous
prouvons que cet algorithme se termine lorsque les domaines de données sont finis. Les deux
algorithmes utilisent un solveur SMT comme base pour résoudre les obligations de preuve.

Mots-clés : Systèmes concurrents, Bisimulation Symbolique, Systèmes ouverts, Solveur SMT

Symbolic Bisimulation for Open and Parameterized Systems 3

1 Introduction

How to reduce the state space of system models, being a challenging area of formal verification,
attracts the interest of many researchers approaching this problem from different angles.

Some approaches focus on the structure of the system models. This is the case with the
proposal of open systems, which provide a way to represent incomplete systems, like parallel
skeletons, or process algebra operators. The idea is to define (small) open systems for which
you can prove crucial properties, then assemble these systems to build full applications, while
preserving the properties.

Some approaches are dealing with semantics of the system models in a symbolic way. This
provides a way to use abstract (parameterized) terms to describe the states or transitions, ma-
nipulating explicitly potentially unbounded data domains, and thus decreasing drastically the
model size.

Bisimulation is also an important approach, in which attention on the equivalence between
different systems, allows for hierarchical model minimization, enhancing the practical capabilities
for further analysis, typically model-checking.

The approach of [1] offers a methodology using open, symbolic, and parameterized models,
endowed with a notion of symbolic bisimulation. It defines a new behavioural specification for-
malism called "Open parameterized Networks of Synchronized Automata (pNet)" for distributed,
synchronous, asynchronous or heterogeneous systems. The pNet model has a hierarchical and
tree-like structure that gives it a strong ability for describing and composing complex systems.
The symbolic and open aspects of pNets give them the potential to use small state space to
represent large systems. Figures 1 show examples of pNets inspired from [1], and that we will
use as running examples in this paper. We won’t go here into the details of the pNet model,
because each pNet will generate a corresponding open automaton as it’s operational semantics,
and all the further analysis and verification are defined on this open automaton.

Current work define open automata with some semantic flavor, in which each automaton
has an interesting "Closure" property under substitution. These Semantic Open Automata are
endowed with a notion of symbolic bisimulation called FH-Bisimulation, and it is proved in
[2] that this equivalence is a congruence for pNet composition, that allows for compositional
verification methods. But this definition cannot be used as such in algorithms and tools, because
all the semantic open automaton are infinite, according to their closure property.

Another important inspiration for our work was from the seminal research in [3] on Symbolic
Transition Graphs with Assignements (STGA). STGA share with open automata the ability
to manipulate explicitly symbolic expressions in transitions, guards and assignments. They
are endowed with a notion of symbolic bisimulation, and [4] defined an "On-the-fly" algorithm
for computing this bisimulation, although this was limited to data-independent systems. Also
STGAs were addressing only closed systems, so open automata are significantly different.

Our main goal in this work is to define an alternative bisimulation relation, suitable for finitely
represented open automata, as can be generated from the semantic rules of open pNets, and to
define algorithms checking or generating this relation.

Our main contributions in this paper are the following:

Contribution 1: We propose a new structural Bisimulation equivalence called StrFH-Bisimulation
between open automata that are not necessarily closed under substitution. This allows us to ad-
dress the finite systems that can be computed from pNets. We define a correspondence between
such "finite" and "semantic" open automata, and prove that StrFH-Bisimulation is correctly
and completely corresponding to FH-Bismulation. Thus, we generalize the interesting proper-
ties of FH-Bisimulation to StrFH-Bisimulation. Details of this Bisimulation equivalence and its
properties are in section 3.

RR n° 9304

4 Hou & Madelaine & Liu & Deng

0

1l r

P Q

δ

<δ(x2), acc(x2), δ> -> δ(x2)

{<-, a2, r> -> a2}

C1

{<a1, -, l> -> a1}a1 6=δ(x1)Enable1

0

P Q
<δ(y2), acc(y2), δ> -> δ(y2)

{<-, b2, r> -> b2}

C2

{<b1, -, l> -> b1}b1 6=δ(y1)

l [s0=0]

δ [s0=0] s0:=1

r [s0=1]

Enable2

s0:=0

Figure 1: Two pNet encodings for Enable

Contribution 2: The StrFH-Bisimulation we mentioned above, is defined between a kind of
open and symbolic systems with parameterized action, value-passing and assignments, all these
features will bring great challenges. Our second contribution is proposing an SMT-solver based
algorithm that can check if a relation is a StrFH-Bisimulation between input automata. The
details of this approach are in Section 4.

Contribution 3: We go further than above approach, and devise a new on-the-fly algorithm
that generates a weakest StrFH-Bisimulation between two given open automata. We prove that
the result of the algorithm is correct and indeed the weakest. The algorithm terminates whenever
both the (symbolic) open-automata and the data-domains are finite. Details of this algorithm
are in Section 5. Note that this is definitely better than the "data-independence" constraint
of the STGA algorithm. If used in association with some abstract interpretation of the data
domains, we can address a large set of infinite systems.

2 Background

2.1 Notations

2.1.1 Term algebra

Our models rely on a notion of parameterised actions, that are symbolic expressions using data
types and variables. As our model aims at encoding the low-level behaviour of possibly very
different programming languages, we do not want to impose one specific algebra for denoting
actions, nor any specific communication mechanism. So we leave unspecified the constructors
of the algebra that will allow building expressions and actions. Moreover, we use a generic
action interaction mechanism, based on (some sort of) unification between two or more action
expressions, to express various kinds of communication or synchronisation mechanisms.

Formally, we assume the existence of a term algebra T, where Σ is the signature of the data
and action constructors. Within T, we distinguish a set of expressions E, including a set of
boolean expressions E (B ⊆ E). We let ei range over expressions (ei ∈ E). On top of E we build
the action algebra A, with A ⊆ T,E∩A = ∅; naturally action terms will use data expressions as
subterms.

Let a range over action labels, op be operators, and xi range over variable names.

Inria

Symbolic Bisimulation for Open and Parameterized Systems 5

The set of actions is defined as:

α ∈ A ::= a(p1, . . . , pn) action terms
pi ::= ?x | ei parameters (in-

put variable or
expression)

ei ::= Value | x | op(e1, .., en) Expressions

The input variables in an action term are those marked with the symbol ?. We additionally
assume that each input variable does not appear somewhere else in the same action term: pi =
?x⇒ ∀j 6= i. x /∈ vars(pj)

Bound variables are the variables quantified by a quantifier ∀ or ∃, and other variables are
free variables. The function vars(t) identifies the set of free variables in a term t ∈ T, and
iv(t) returns the name of its input variables (without the ’?’ marker). Action algebras can
encode naturally usual point-to-point message passing calculi (using a(?x1, ..., ?xn) for inputs,
a(v1, .., vn) for outputs), but it also allows for more general synchronisation mechanisms, like
gate negotiation in Lotos, or broadcast communications.

2.1.2 Substitutions

We denote (xk ← ek)k∈K a substitution, also ranged by σ, where (xk)k∈K is a set of variables
and (ek)k∈K is a set of expressions. The application of the substitution to an expression is
denoted e′{{(xk ← ek)k∈K}}, the operation replaces in parallel all free occurrences of the variables
xk∈Kk by the expression ek∈Kk in e′. We define dom(σ) as the domain of substitution σ, ranged
by variables, and codom(σ) the set of variables in the right hand side expressions in σ. For
example, if σ = (x ← e1, y ← e2) then dom(σ) denotes the variable set {x, y}, and codom(σ) is
vars(e1) ∪ vars(e2).

We write] the union operator between substitutions. Suppose σ1 and σ2 are two sub-
stitutions, then {{σ1] σ2}} means applying the substitution σ1 and σ2 parallel. If there are
conflict between σ1 and σ2, preference is given to the substitution in σ1. Formally, suppose
a substitution σinter where dom(σinter) = dom(σ1) ∩ dom(σ2) and σinter ⊆ σ2, we have:
{{σ1] σ2}} = {{σ1] (σ2 \ σinter)}}.

We write ⊗ the application operator between substitutions, which means apply the second
substitution to the first. Formally: (xk ← ek)k∈K ⊗ σ = (xk ← ek{{σ}})k∈K .

We write � the composition operator between substitutions. When there are two substitu-
tion applied sequentially, we can use this operator to compose these two substitutions as one
substitution. Formally, e′{{σ1 � σ2}} = (e′{{σ1}}){{σ2}}

Supposing σ = (xk ← ek)k∈K , it’s easy to see we can derive that:

(σ ⊗ σ1)⊗ σ2 = (xk ← ek{{σ1}})k∈K ⊗ σ2
= (xk ← ek{{σ1}}{{σ2}})k∈K

= (xk ← ek{{σ1 � σ2}})k∈K
= σ ⊗ (σ1 � σ2)

2.1.3 Valuation

For a set V = (xk)k∈K of variables, we denote ρ(V) = (xk ← vk)k∈K a valuation defined on
V , where vk is an element in data domain of xk. It’s easy to see that a valuation is a specific
substitution.

RR n° 9304

6 Hou & Madelaine & Liu & Deng

For example, let fv be a set of free variables fv = {x, y} with x an Integer variable and y a
Boolean variable, then {x← 1, y ← True} is a valuation defined on fv .

2.2 Open Automaton

Open Automata[2] are semantic symbolic models representing the operational semantics of open
data-dependant systems. In[2] a set of structural operational semantics rules is introduced, which
defines the behavioural semantics of Open pNets in terms of Open Automata.

Each open automaton consists of a set of States and a set of Open Transitions, each with its
(disjoint) set of state variables, and Open Transitions relates the behavior of holes (encoding the
environment) with the behavior of the system. This section will show the formal definition of an
open automaton.

Definition 2.1. Open Automaton: An open automaton is a structure A = 〈J,S, s0, T 〉 where:
• J is a set of holes indices,
• S is a set of states and s0 is a state among S,
• T is a set of open transitions and for each t ∈ T there exists J ′ with J ′ ⊆ J , such that t

is an open transition over J’ and S.

Definition 2.2. Open Transition: An open transition of an open automaton 〈J,S, s0, T 〉 is a
structure of the form

·····································
βj∈J

′

j , P red, Post

s
α−→ s′

where J ′ ⊆ J , s, s′ ∈ S and βj is an action of the hole j. Holes (represented above by their
indices) are used to represent unspecified subsystems, that are parts of the environment. These
unspecified subsystems can have any possible behaviour, but their interaction with the system
is specified by the predicate Pred. α is an action expression denoting the resulting action of
this open transition. We call source variables of an OT the union of all variables in the terms
βj and α, and the state variables of s. Pred is a predicate over the source variables. Post is
a set of variable substitutions represented as (xk ← ek)k∈K where xk are state variables of s′,
and ek are expressions over the source variables. Open transitions are identified modulo logical
equivalence on their predicate. In the algorithms, this will be checked using a combination of
predicate inclusions.

Suppose OT is an open transition starting from state s to t. We denote the set of all the
free variables in open transition OT as vars(OT), and vars(s) is set of all the state variables of
state s. Last, fvOT denotes the set of variables in the open transition OT besides all the state
variables. More precisely, fvOT = vars(OT) \

(
vars(s) ∪ vars(s′)

)
.

These definitions will be widely used in subsequent sections.

Figure 2 shows two open automata generated by the pNets in Figure 1. Here we don’t need
to figure out the process of this generation, and just need to understand that, for any system
modeled by a pNet, we can generate an open automaton, representing the behavioral semantics
of the original pNet, and any property we proved on this open automaton is also owned by
original pNets.

This provides us a clear way to verify the property of systems. We can use some open data-
dependent modeling language, like pNet, which are more readable and easier to use, to model

Inria

Symbolic Bisimulation for Open and Parameterized Systems 7

Figure 2: The 2 open automata derived from pNets in Fig. 1

the systems we are interested in. Then, we can use some operational rules to construct an open
automaton, which is less readable but easier for operation and verification, from the original
system we modeled.

2.3 Semantic Open Automata

Previous researches were taking a semantics and logical understanding of these automata: Se-
mantic Open Automata are closed under a simple form of refinement that allows to refine the
predicate, or substitute any free variable by an expression. Formally:

Definition 2.3. Semantic Open Automata: A semantic open automaton is an open automa-
ton oa = 〈J,S, init, T 〉, such that for any open transition ot ∈ T :

Let σ be any substitution such that dom(σ)∩(vars(s)∪vars(s′)) = ∅, let pred be any predicate
on vars(ot), then

··
β{{σ}}, P red{{σ}} ∧ pred{{σ}}, Post⊗ σ

s
α{{σ}}−−−−→ s′

∈ T

In fact, the reason why this definition deserves our attention is, it’s closely related to the
nature of symbolic systems. In semantics, symbolic attribution implies each variables in system
can represent a huge set of values. In terms of it, any open transition in an open automaton,
can represent large sets of ground open transitions, in which all the variables are valuated with
constants, as long as these constants satisfy the predicate of original transition. Thus, thanks

RR n° 9304

8 Hou & Madelaine & Liu & Deng

to the above "closure" definition, for any open transition OT in a semantic open automata oa,
not only OT can represent large sets of ground open transitions, but also for any subset of these
ground open transitions, one can always find an open transition OT ′ in oa, which can represent
this subset.

With this definition, researchers defined a relation between semantic open automata, called
FH-Bisimulation [2], which have an interesting "Composability" property with respect to pNet
composition, allowing compositional reasoning on open systems.

2.4 FH-Bisimulation
Bisimulations are equivalence relations between transition systems, where systems behave in the
same way in the sense of one system simulates the other, in terms of the actions they do, not of
their internal state.

FH-Bisimulation is a kind of strong bisimulation relation between Semantical Open automata,
introduced in . FH-Bisimulation can be formally defined in the following way:

Definition 2.4. FH-Bisimulation:

Suppose that A1 = 〈J,S1, init1, T1〉 and A2 =
〈J,S2, init2, T2〉 are two semantic open automata with iden-
tical activated holes, with disjoint state variables. Then R
is an FH-Bisimulation iff for any triple (s, t|Preds,t) ∈ R
where s ∈ S1 ∧ t ∈ S2, we have the following:

....

PredOT

J J J
PredOTx

ts R

PredOT1

s′
t1

tx

Preds,t

R
R

Preds′,t1

Preds′,tx

• For any open transition OT ∈ T1 starting from s

··
βj∈J

′

j , P redOT , PostOT

s
α−→ s′

there exists a set of open transitions OT x∈Xx ⊆ T2 starting from t

···
β
jx∈J′

x
jx

, P redOTx
, PostOTx

t
αx−−→ t′x

such that J ′ ⊆ J, J ′x ⊆ J, ∀x.J ′ = J ′x, {s′, t′x|Preds′,t′x} ∈ R and

Preds,t ∧ PredOT =⇒∨
x∈X

(∀j ∈ J ′.βj = βjx ∧ α = αjx ∧ PredOTx

∧ Preds′,t′x{{PostOT] PostOTx
}})

that means each open transition starting from s in T1 can be covered by a set of transitions
OT x∈Xx starting from t in T2.

Inria

Symbolic Bisimulation for Open and Parameterized Systems 9

• and symmetrically, for any open transition starting from t in T2, should be covered by a set
of transitions starting from s in T1.

The word covered here means that each ot on one side, representing symbolically a set of
"ground" transitions, can be covered on the other side by several open transitions on the other
sides, each implementing transitions for a subset of ot instantiations, and eventually leading to
different though still equivalent, states.

The (slightly complicated) implication means that for each instantiation fulfilling Preds,t ∧
PredOT , it is possible to find an instantiation of one of the corresponding OTx, satisfying the
corresponding property.

It maybe a little unclear also why we need Preds,t in Triples. In fact, recall the name of
FH-Bisimulation, here "FH" is a short cut of "Formal Hypotheses", showing the fact that FH-
Bisimulation is a relation based on a certain hypotheses. Thus, Preds,t in Triples is a formal way
to describe this hypotheses, and in particular express the relations between the state variables
of the two open automata.

In [2]’s work, it is proved that FH-Bisimulation is an equivalence, which is reflexive, symmetric
and transitive. And as mentioned before, FH-Bisimulation also has a powerful property of Com-
posability : Given two semantic open automata such that there exist a FH-Bisimulation between
them, if we compose these two automata with another semantic open automata (technically,
using an open pNet), then the two result automata is still FH-Bisimulation.

And that’s an important motivation of our work. Obviously, any semantic open automaton
is infinite, thus it’s hard to do any verification of FH-Bisimulation on semantic open automata.
What we want, is to generalize this FH-Bisimulation to a relation between all the open automata,
not only between the "infinite" subset of open automata, and thus it’s become possible for us to
do any verification on this relation. At next section, we will discuss how we do that.

3 StrFH-Bisimulation

As mentioned before, the closure property of semantic open automata bring the important com-
posability properties, but also does not allow implementing FH-Bisimulation algorithms between
them. So we want to generalize this FH-Bisimulation to a relation between all the open automata,
including the finite ones generated from the pNets semantic rules[2].

In this section, we first give the definition of our new relation StrFH-Bisimulation, which is
defined between open automata. Then we define an Expansion function E , such that for any
open automata we can build a corresponding semantic open automata. Finally, with the above
definitions, we will show how our relation is consistent and complete with respect to the FH-
Bisimulation. From following figure, we can easily have a first intuition about what all these
definitions are:

RR n° 9304

10 Hou & Madelaine & Liu & Deng

3.1 StrFH-Bisimulation
We provide a new relation, which is between open automata, called StrFH-Bisimulation, defined
formally as:

Definition 3.1. StrFH-Bisimulation: Let StrA1 = 〈J,S1,
init1, T1〉 and StrA2 = 〈J,S2, init2, T2〉 be two open automata with identical activated holes, and
disjoint state variables. Then R is an StrFH-Bisimulation iff for any triple (s, t|Preds,t) ∈ R,
where s ∈ S1 ∧ t ∈ S2 and we have the following:

• For any open transition OT ∈ T1 starting from s

··
βj∈J

′

j , P redOT , PostOT

s
α−→ s′

there exist a set of open transitions OT x∈Xx ⊆ T2 starting from t

···
β
jx∈J′

x
jx

, P redOTx
, PostOTx

t
αx−−→ t′x

such that J ′x ⊆ J, ∀x.J ′ = J ′x, {s′, t′x|Preds′,t′x} ∈ R and

∀fvOT .{Preds,t ∧ PredOT =⇒∨
x∈X

[∃fvOTx
.(∀j ∈ J ′.βj = βjx ∧ α = αjx

∧ PredOTx ∧ Preds′,t′x{{PostOT] PostOTx}})]} (1)

that means open transition start from s in T1 can be covered by a set of transitions OT x∈Xx

starting from t in T2

• and symmetrically, for any open transition starting from t in T2 can be covered by a set of
transitions starting from s in T1.

There may be another confusing term here: ∀fvOT .ϕ, for a set of variables fvOT . This means
that for any valuation of all the variables in fvOT , the inside formula is true. For example, for
an open transition OT , if fvOT = {x, y, z}, then ∀fvOT .ϕ means ∀x, y, z.ϕ.

Inria

Symbolic Bisimulation for Open and Parameterized Systems 11

3.2 Expansion
Here, we define a Expansion function E , such that for any open automaton, we can use this
function to get a corresponding semantic open automaton.

Definition 3.2. Expansion: Let OA be the set of all open automata, then we define an Ex-
pansion Function E :

E : OA→ OA

where for any open automata A = 〈J,S, s0, T 〉, E(A) ∈ OA, we can have E(A) = 〈J,S, s0, T ′〉.
The only difference between A and E(A) is on transitions set, where T ′ is the smallest set of

open transitions such that: for any open transition OT ∈ T

···
βj∈Jj , P redOT , PostOT

s
α−→ s′

let’s denote

OT{{σ, pred}} = ··
βj∈Jj {{σ}}, P red{{σ}} ∧ pred{{σ}}, Post⊗ σ

s
α{{σ}}−−−−→ s′

Then for any substitution σ where dom(σ) ⊆ fv(OT), for any additional predicate pred, we
have:

OT{{σ, pred}} ∈ T ′

Obviously, in this definition, after applying function E , the result we have is an open automa-
ton. The following theorem states that this result E(A) is a semantic open automaton.

Theorem 3.3. For any open automaton A, the expanded open automaton E(A) is a semantic
open automaton.

We give a formal proof for this theorem in Appendix A. Briefly, the proof will show that all the
open transitions in the open automaton generated by Expansion Function, meet the "Closure"
property of Semantic Open Automata.

Note: by construction, the states of E(A) are same as the states of A. As a consequence, all
relations we construct as triple sets R = {(s, t|Preds,t)}, are both relations on A and E(A).

3.3 Correct Correspondence
Here we want to prove that StrFH-Bisimulation correctly corresponds to FH-Bisimulation, as
expressed by:

Theorem 3.4. Correctness
For any two open automata A1 and A2, construct the two corresponding semantic open automata
E(A1) and E(A2). Then we have: Suppose Triple Set R is a StrFH-Bisimulation between A1 and
A2, then R is also a FH-Bisimulation between E(A1) and E(A2).

We give a formal proof for Theorem 3.4 in Appendix B.1. Briefly, the intuition of the proof
is: for any open transition OT ′ in E(A1), supposing it’s original open transition is OT in A1, we
know that OT can be covered with a set of open transition OT x∈Xx in A2. From this set, We
can always construct a set of ground open transitions {OT ′x,y}x∈X

∧
y∈Y belonging to E(A2) such

that this set of open transitions covers the OT ′. And symmetrically, for any open transition in
E(A2).

RR n° 9304

12 Hou & Madelaine & Liu & Deng

3.4 Complete Correspondence
Here we want to prove that StrFH-Bisimulation completely corresponds to FH-Bisimulation, as
expressed by:

Theorem 3.5. Completeness
For any two open automata A1 and A2, construct the two corresponding semantic open automata
E(A1) and E(A2). Then we have: Suppose Triple Set R is a FH-Bisimulation between E(A1)
and E(A2), then R is also a StrFH-Bisimulation between A1 and A2.

We give a formal proof for Theorem 3.5 in Appendix B.2. The intuition of the proof is: for
any open transition OT in A1, applying any (ground) valuation ρi defined on fvOT to OT , the
result can be represented by an open transition OT ′i , which belongs to E(A1). We know that
OT ′i can be covered by a set of open transitions {OT ′x,i}x∈X in E(A2), corresponding to open
transitions {OTx,i}x∈X in A2 (may contain duplicate open transition). Collecting all the open
transitions {OTx,y}x∈X constructed with each valuation ρy, and we can finally get a larger set
{OTx,y}x∈X∧y∈Y . We will prove OT is covered by this larger set. And symmetrically for any
open transition in A2.

3.5 Running Example
Recall the two open automata in Figure 2, both automata are generated from enable model in
Figure 1, respectively by pNets Enable1 and Enable2. It’s easy to see, the former automaton, we
name it as A1, uses different states to represent before and after activation (the δ transition); and
the latter automaton, we name it as A2, uses different values of a state variable s to represent that.
It’s a very typical situation that two equivalent systems essentially express the same meaning in
different ways.

Here we provide these two automata as a running example, to illustrate why Triple Set
{(T1, S1|s = 0), (T2, S1|s = 1)} is a StrFH-Bisimulation between these two automata. Details are
presented in Appendix B.3.

4 Checking Algorithm
As we mentioned before, in the formal definition, for any two open automata 〈J1,S1, init1, T1〉,
〈J2,S2, init2, T2〉, a StrFH-Bisimulation R is a set of triples {(s, t|Preds,t)}.

Given two open automata and a set of Triples, it seems that following the definition, we
can easily verify if the given relation is a StrFH-Bisimulation. But for that, we need to check
whether a first order logic formula is a tautology or not, and due to the fact that first order logic
is undecidable, and that we want to use this approach with realistic data types and expressions
in the pNets, it may becomes very hard.

Thanks to the development of Satisfiability Modulo Theory (SMT) technology, which has
a great ability for solving satisfiable problems of first order logic[5], we have a practical way
to do this checking: for any proof obligation, we can generate its negation, and use an SMT-
solver to check if it is satisfiable. If yes, thus the original proof obligation is not a tautology.
This does not break the undecidability problem, but gives us a semi-decidable method: our
StrFH-Bisimulation check is decidable whenever satisfiability of the first-order formulas used in
the relation is decidable by our SMT encoding. In practice, this last property depends on the
axiomatisation of the data domains and operators used in a particular use case.

In this section we will first explain a basic algorithm, which checks whether a given Triple Set
is a StrFH-Bisimulation between two input open automata. Note that, in this algorithm, the user

Inria

Symbolic Bisimulation for Open and Parameterized Systems 13

needs to provide the Triple Set, which may be difficult for some complicated systems. In next
section we will give another algorithm which can automatically compute a StrFH-Bisimulation
for given open automata.

4.1 Checking Algorithm

algorithm 1 Verify StrFH-Bisimulation with Given Triple Set

input: A1 and A2 are two open automata, where A1 = 〈J1,S1, init1, T1〉, A2 = 〈J2,S2, init2, T2〉.
R is a set of triples, where R = {(s, t|Preds,t)}.

output: a boolean value, means whether R is a StrFH-Bisimulation between A1 and A2

1: function TraverseTriples(A1, A2,R)
2: for each Triple (s, t|Preds,t) in R do
3: for each Open Transition OT from state s, suppose it’s target is s′ do
4: OTSet← an empty set for Open Transitions
5: PredSet← an empty set for Formula
6: for each Open Transition OT ′ from state t, suppose it’s target is t′ do
7: if there exists a Triple (s′, t′|Preds′,t′) ∈ R and OT have same activated holes

as OT ′ then
8: OTSet.add(OT ′)
9: PredSet.add(Preds′,t′)

10: end if
11: end for
12: if OTSet is empty then
13: return False
14: end if
15: res← Verify(OT,OTSet, Preds,t, P redSet)
16: if res is False then
17: // means proof obligation proofOb is not a tautology.
18: return False
19: end if
20: end for
21: end for
22: return True
23: end function

From two open automata A1 = 〈J1,S1, init1, T1〉 , A2 = 〈J2,S2, init2, T2〉, and a set of triplesR =
{(s, t|Preds,t)}, our algorithm will output whether the given Triple Set is a StrFH-Bisimulation
between A1 and A2 or not. We explain this algorithm in two parts:

4.1.1 Traverse Triples

The main function is TraverseTriples. It this function, we will traverse all the Triples, and check
whether all of them meet the definition of StrFH-Bisimulation. For each Triple (s, t|Preds,t), we
will check both directions: first, check if all the open transitions from s can be covered by the
open transitions from t under the Preds,t; then symmetrically, check if all the open transitions
from t can be covered by the open transitions from s under the same predicate. The algorithm
is the same for both, thus we only show the first direction.

RR n° 9304

14 Hou & Madelaine & Liu & Deng

Let Triple (s, t|Preds,t) be the one we are checking. For each open transition OT from state
s, let s′ be it’s target. Then, we will filter all the open transitions starting from t, and collect a
set of open transitions OTSet and a set of formulas PredSet, such that for any open transition
OTx ∈ OTSet, we have:

• OT has the same active holes as OTx

• let t′x be the target of transition OTx, then there exists a Triple (s′, t′x|Preds′,t′x) in R

and each predicate formula Preds′,t′x is the predicate formula of Triple (s′, t′x|Preds′,t′x), corre-
sponding to the open transition OTx.

Then, we call function Verify(OT,Preds,t, OTSet, PredSet). In that function, will generate
and check the proof obligation (that is Formula (1) from Definition 3.1), and return a boolean
value as result. If this result is false, means proof obligation is not a tautology, thus Triple
(s, t|Preds,t) doesn’t meet the definition, and Triple Set R won’t be a StrFH-Bisimulation be-
tween A1 and A2, so function TraverseTriples will return false.

If all the Triples pass this check, it means all the Triples in R meet the definition, thus we
can say R is a StrFH-Bisimulation between A1 and A2 and return true.

4.1.2 Generate and Verify Proof Obligation

Then we come to the details of function Verify.

algorithm 2 Generate and Verify Proof Obligation
input: OT is an open transition, OTSet is a set of open transitions, Pred is a formula, PredSet

is a set of formulas.
output: result, a boolean value, means whether the proof obligation generated from input is a

tautology or not.
1: function Verify(OT,OTSet, Pred, PredSet)
2: negateOb← generate negation of proof obligation
3: use SMT-solver to check if negateOb is satisfiable
4: if SMT-solver doesn’t terminate then
5: // negateOb is not decidable by SMT-solver
6: return FAILED
7: end if
8: if negateOb is sat then
9: // negateOb is satisfiable, means original proof obligation is not a tautology

10: return False
11: else
12: return True
13: end if
14: end function

For the input open transition OT , open transition set OTSet, formula Preds,t and formula
set PredSet, without losing generality, we can suppose that:

OT = ···
βj∈J

′

j , P redOT , PostOT

s
α−→ s′

Inria

Symbolic Bisimulation for Open and Parameterized Systems 15

and for any open transition OTx ∈ OTSet where x ∈ X is the index of OTSet, we have:

OTx = ···
β
j∈J′

x
j , P redOTx

, PostOTx

t
αx−−→ t′x

and have a corresponding predicate Preds′,t′x ∈ PredSet. Thus, the proof obligation by definition
as following:

∀fvOT .{Preds,t ∧ PredOT =⇒∨
x∈X

[∃fvOTx
.(∀j ∈ J ′.βj = βjx ∧ α = αx

∧ PredOTx ∧ Preds′,t′x{{PostOT] PostOTx}})]}

and note that if negate this proof obligation, then we will get:

∃fvOT .{Preds,t ∧ PredOT∧∧
x∈X

[∀fvOTx
.(∃j ∈ J ′.βj 6= βjx ∨ α 6= αx

∨ ¬PredOTx
∨ ¬Preds′,t′x{{PostOT] PostOTx

}})]} (2)

Thus, we can check the satisfiability of this Formula 2 with SMT-solver, if this Formula 2 is
unsatisfiable, means the original proof obligation is a tautology, and function will return True;
otherwise, return False.

The checking of proof obligation is strongly depending on SMT-solver, as long as SMT solver
can determine all the generated proof obligation, then we can say our algorithm can determine
StrFH-Bisimulation problem on given automata and Triple Set. If there exists a proof obligation
can’t be solved by SMT-solver, our algorithm will return FAILED and terminate.

Thus, our algorithm succeeds whenever the theories (over the data domains, expressions, and
predicates) used in the SMT engine are decidable.

4.2 Correctness and Termination
4.2.1 Correctness

The algorithm will traverse all the given triples, check whether all the triples satisfied definition.
It’s easy to see that, this period is closely corresponding to the definition of StrFH-Bisimulation,
so we can say: Given two open automata A1, A2 and a set of triples R, then R is a StrFH-
Bisimulation between A1 and A2 iff the result of applying A1, A2 and R into this checking
algorithm is True, when the case is decidable.

4.2.2 Termination

It’s easy to see that, for each Triple (s, t|Preds,t), as long as the open transitions starting from
s and starting from t are finite, the algorithm will generate finite proof obligations according
to this Triple. For each proof obligation, as long as it can be decided by SMT-solver, it will
terminate and give a result.

Thus, we can say, as long as we input a finite Triple Set, and each Triple corresponding to
finite open transitions(even inputted open automata are infinite), and the case is decidable, our
algorithm will terminate.

RR n° 9304

16 Hou & Madelaine & Liu & Deng

5 Weakest StrFH-Bisimulation and StrFH-Bisimilar Automata

In the previous section, we gave a checking algorithm, which accepts two open automata and a
relation (given as a Triple set), and outputs whether the input Triple set is a StrFH-Bisimulation
between the two input open automata.

Obviously, this algorithm has a strong need of a reasonable input. If user failed to find
out or correctly encode a proper Triples Set, then algorithm can only get the result that a
incorrect Triple set is not a StrFH-Bisimulation, but couldn’t answer whether there exists a
StrFH-Bisimulation between the two input automata.

And in fact, between any two open automata, there always exists many worthless StrFH-
Bisimulation relations. For example, suppose there is a Triple set, where for each Triple (s, t|Preds,t)
in this set, Preds,t is always unsatisfiable. Obviously, this Triple set meet the definition of StrFH-
Bisimulation, but it makes no sense.

For these reasons, in this section, we will first give a new algorithm, which can accept two open
automata, and output the weakest StrFH-Bisimulation between the given open automata; Then,
we will define a new property called StrFH-Bisimilar. If two open automata are StrFH-Bisimilar,
it means there exists a meaningful StrFH-Bisimulation between them; From the weakest StrFH-
Bisimulation generated, we can check if given open automata are StrFH-Bisimilar. We give
a formal proof of our algorithm’s correctness, prove a (partial) termination property for this
algorithm.

5.1 Generate Weakest StrFH-Bisimulation

We will first give a function calledGenerateWeakestStrFH. The input of functionGenerateWeakest-
StrFH are two open automata A1 = 〈J1,S1, init1, T1〉 and A2 = 〈J2,S2, init2, T2〉. It’s output
is a Triple set TripleSet, which is a StrFH-Bisimulation between A1 and A2. Here we will first
describe the procedure of this function, and its pseudo-code in algorithm 3. In this section, we
will show the fact that the output is a StrFH-Bisimulation between given open automata. Later
in the next section, we will show why it’s result is the weakest StrFH-Bisimulation.

First let us give some definitions: We denote (s, t) as a StatePair, where s and t are states
from different open automata.

We denote (spre, tpre) as a pre-StatePair of (s, t) where there exists an open transition from
spre to s, and exists an open transition from tpre to t.

We denote (snext, tnext) as a next-StatePair of (s, t) where there exists an open transition
from s to snext, and exists an open transition from t to tnext.

We denote (s′, t′) as a reachable StatePair of (s, t) iff there exists a path from (s, t) to (s′, t′),
where each step in this path is a StatePair move to it’s next-StatePair.

At the very beginning, function will construct an empty StatePair stack, named StateStack.
Function will also construct an empty Triple set, named TripleSet.

In fact, here we hope TripleSet become the final output of the function, which means after
the function terminating, TripleSet become an StrFH-Bisimulation between A1 and A2, and
any Triple in TripleSet will meet the requirement: all the proof obligations generated from it
are tautologies. And StateStack here exists as a register, temporarily cache all StatePairs whose
corresponding Triples may not satisfy this requirement.

To initialize StateStack and TripleSet, function will call a sub-function PushReachableStatePairs,
inputting two states: init1 and init2 and an empty StatePair stack: StateStack. It’s a recursive
function, and after it finished, StateStack will contain all the StatePairs which are reachable from
(init1, init2). Then, for each StatePair (s, t) in StateStack, function will add a corresponding
Triple (s, t|True) into a Triple set TripleSet.

Inria

Symbolic Bisimulation for Open and Parameterized Systems 17

algorithm 3 Generate Weakest StrFH-Bisimulation

input: A1, A2 two open automata, where A1 = 〈J1,S1, init1, T1〉 and A2 = 〈J2,S2, init2, T2〉.
output: TripleSet, a Triple’s set, which is a Weakest StrFH-Bisimulation between two open

automata
1: function GenerateWeakestStrFH(StateStack)
2: StateStack ← an empty stack for StatePair
3: TripleSet← an empty set for Triple
4: PushReachableStatePairs(init1, init2, StateStack)
5: for each StatePair (s, t) in StateStack do
6: add a Triple (s, t|True) into TripleSet
7: end for
8: while StateStack is not empty do
9: (s, t)← StateStack.pop()

10: let i be the index of Triple (s, t|Preds,t) in the TripleSet
11: UpdatePredicate(i, T ripleSet)
12: if predicate of Triple (s, t|Preds,t) has been changed then
13: for each pre-StatePair (spre, tpre) of (s, t) do
14: if StateStack doesn’t contains this StatePair (spre, tpre) then
15: push StatePair (spre, tpre) into StateStack
16: end if
17: end for
18: end if
19: end while
20: end function

After above initialization, function will enter a loop that: pops a StatePairs from StateStack
and updates the corresponding Triple, loops until the stack StateStack becomes empty.

In each loop, let (s, t) be the StatePair just popped, function will find the corresponding Triple
(s, t|Preds,t) in the TripleSet, and call function UpdatePredicate to update this Triple. After
processed by function UpdatePredicate, Triple (s, t|Preds,t) will definitely meet the requirement:
all the proof obligations generated from this Triple are tautology.

Finally, function will check if (s, t|Preds,t) has been updated after calling UpdatePredicate.
If not, the function will continue to pop next StatePair. If changed, we can’t simply go to next
StatePair, because the change of Preds,t may change the proof obligations of other Triples, we
need to push their corresponding StatePairs into StateStack again.

In more detail, let {(sprex , tprex)}x∈X be all pre-StatePairs of (s, t). Due to the fact that
Preds,t has been changed to newPreds,t, the proof obligation of Triple (sprex , tprex |Predprex)
will also be changed, and we need to update this Triple again. So, we will push StatePair
(sprex , tprex) into StateStack , and the function will definitely pop this StatePair and update
corresponding Triple at some later time.

We know that, at the beginning, StateStack contains all the reachable StatePairs. Each time
a StatePair is popped, the corresponding Triple will be update so that it will meet the current
requirement. On the other hand, after updating, if this updating changes other Triples’ proof
obligation, make these Triples may no longer meet the requirement, then their corresponding
StatePair will be pushed into stack again. Thus, we can see, if any Triple which does not
conclusively meet the requirement, it’s corresponding StatePair will be pushed into stack. As
long as this function GenerateWeakestStrFH terminates, which means the stack becomes empty,
all the Triples in TripleSet will meet the requirement, and TripleSet is definitely a StrFH-

RR n° 9304

18 Hou & Madelaine & Liu & Deng

Bisimulation between A1 and A2.

5.1.1 Sub-Functions

Recall that there are two sub-functions during generating the weakest StrFH-Bisimulation. Here
we will give a short summary for these two sub-functions, detailed description and pseudo-code
can be seen in Appendix C.1.

Sub-function PushReachableStatePairs is a recursive function, a variant of DFS (depth first
search). Every time it visits a StatePair (s, t), it will pop (s, t) into stack, and call the same
function with next-StatePair of (s, t) recursively. Thus, after function PushReachableStatePairs
terminates, the stack will contain all the reachable StatePairs from initial input (init1, init2).

Sub-function UpdatePredicate will generate and verify the proof obligation of given Triples,
using the SMT engine, like what we did in Section 4.1.2. If the proof obligation is not a tautology,
the function will update the predicate with the conjunction of original predicate and simplified
proof obligation. So that after this updating, the new proof obligation generated by this updated
predicate will definitely be a tautology.

5.1.2 Weakestness

The output of function GenerateWeakestStrFH will be the weakest StrFH-Bisimulation between
two given open automata. Remember that for any pair of states (s, t), there can be only one
triple (s, t|Preds,t) in a FH-bisimulation relation. Then the weakest StrFH-bisimulation between
2 automata is the one in which each Triple is the weakest:

Definition 5.1. Weakest Triple: Triple (s, t|Preds,t) is a weakest Triple between open au-
tomata A1 and A2, meaning that A1 and A2 contains states s and t respectively, and for any
predicate formula Prednew, which can’t imply the predicate Preds,t, any Triple Set containing
Triple (s, t|Prednew) won’t be a StrFH-Bisimulation between A1 and A2.

Theorem 5.2. Weakest StrFH-Bisimulation: For a StrFH-Bisimulation R between open
automata A1 and A2, all the Triples in R are Weakest Triples, meaning R is a Weakest StrFH-
Bisimulation.

Theorem 5.3. Weakestness: For any pair of open automata A1 and A2, the TripleSet com-
puted by algorithm is the weakest StrFH-Bisimulation between A1 and A2.

We give a detailed proof of these two theorems in Appendix C.2.
Proof of theorem 5.2 relies on the fact that a weakest Triple can be either (strictly) logically

weaker, or incomparable, to the original Triple, but in both cases having at least one weakest
Triple contradicts definition 5.1.

Proof of theorem 5.3 is by mathematical induction over the set of Triplpes: for all Beginning
Triples (we define it in proof), we prove that they satisfy Definition 5.1 after updating. Then,
let (s, t|Preds,t) be a general Triple, suppose all the other Triple satisfy Definition 5.1, then
(s, t|Preds,t) will also satisfy Definition 5.1.

5.2 Checking StrFH-Bisimilar
With above functions, we can finally check if two open automata are StrFH-Bisimilar. First let
us give a formal definition for StrFH-Bimilar:

Definition 5.4. FH-Bisimilar: Let A1 = 〈J1,S1, init1, T1〉 and A2 = 〈J2,S2, init2, T2〉 be two
open automata. A1 and A2 are FH-Bisimilar if and only if there exists a StrFH-Bisimulation R
between A1 and A2, such that:

Inria

Symbolic Bisimulation for Open and Parameterized Systems 19

• for any Triple (s, t|Preds,t) in R, formula (Preds,t =⇒ False) is not a tautology, or we
can say Preds,t is satisfiable.

• there must exists a predicate Predinit such that Triple (init1, init2|Predinit) ∈ R
In this definition, all the predicates are satisfiable, meaning the hypothesis of this Bisimulation

are satisfiable; and there exists a initial Triple in this Bisimulation, meaning this Bisimulation
will become effective as long as both two open automata start from initial state at same time.

algorithm 4 Check StrFH-Bisimilar

input: A1, A2 two open automata, where A1 = 〈J1,S1, init1, T1〉 and A2 = 〈J2,S2, init2, T2〉.
output: result, a boolean value, means whether A1 and A2 are StrFH-Bisimilar
1: function CheckStrFH-Bisimilar(A1, A2)
2: TripleSet← GenerateWeakestStrFH(StateStack)
3: for each Triple (s, t|Preds,t) ∈ TripleSet do
4: delete this Triple if Preds,t is unsatisfiable
5: end for
6: if TripleSet contains Triple (init1, init2, P redinit) then
7: return True
8: else
9: return False

10: end if
11: end function

After we generated a weakest StrFH-Bisimulation between A1 and A2 called R, in which any
Triple has weakest predicate, we can easily check if A1 and A2 are StrFH-Bisimilar by: first,
deleting all the Triples with unsatisfiable Predicate formula, and get a new Triple set Rnew;
then, if Rnew contains Triple (init1, init2|Predinit), we can say A1 and A2 are StrFH-Bisimilar.
Algorithm 4 shows the pseudo-code of this procedure.

5.3 Algorithm Correctness
Proving this algorithm is correct also contains two parts: Correctness and Completeness.

Theorem 5.5. Correctness: Inputting two open automata A1 and A2, as long as the result
of algorithm is True, means A1 and A2 are StrFH-Bisimilar.

Theorem 5.6. Completeness: Inputting two open automata A1 and A2, if A1 and A2 are
StrFH-Bisimilar, then the result of algorithm is True as long as the problem is decidable by our
algorithm.

5.3.1 Correctness

We give a formal proof for Theorem 5.5 in Appendix D.1. Key point is: after deleting all the
unsatisfiable Triples in the generated StrFH-Bisimulation, the result is still a StrFH-Bisimulation.

5.3.2 Completeness

We give a formal proof for Theorem 5.6 in Appendix D.2. Key point is: Contrapositive of this
Theorem will be easier to prove. With the Theorem 5.3, it’s easy to see that, as long as the
function return False, it’s impossible to find a StrFH-Bisimulation between given automata
which contains a initial Triple (init1, init2|Predinit) and Predinit is satisfiable.

RR n° 9304

20 Hou & Madelaine & Liu & Deng

5.4 Conditional Termination
In this section, we give a conditional termination result for algorithm 4: for any two given open
automata, if they are finite, and data domain of all variables in given automata are finite, and the
StrFH-Bisimilar problem for these two automata is decidable, then our algorithm will terminate.

Noting that it’s may not the most general hypothesis ensuring termination, but it’s a very
reasonable hypothesis, due to the fact that many widely used realistic systems meet this require-
ment.

Proof. Suppose there are two finite open automata A1 and A2.
Considering the function GenerateWeakestStrFH, because A1 and A2 are finite, then we will

generate a finite StateStack, and thus have a finite TripleSet.
And for each time we call function UpdatePredicate with an input Triple (s, t|Preds,t), due

to the fact that both two automata are finite, we will only generate finite proof obligation.
On the other hand, denoting {ρx}x∈X as set of all possible valuations on all variables. If

the data domain of all variables in A1 and A2 are finite, we know that {ρx}x∈X is definitely
finite. For any Predicate Formula Preds,t, we denote {ρy}y∈Y as a set of valuations (defined
on all variables, the same below) which can satisfy Preds,t, we know {ρy}y∈Y is finite, and
Y ⊆ X. Every times we change the predicate formula Preds,t to newPreds,t during function
UpdatePredicate, we know that:

newPreds,t = Preds,t ∧ po

where po is the proof obligation. And Preds,t is being updated implies the fact that there exists
some valuations ρy

′∈Y
y′ which can’t satisfy po. Thus, if we denote {ρz}z∈Z as the set of valuations

which can satisfy proof obligation po, it’s easy to see that the set of valuations which can satisfy
newPreds,t equals to {ρy}y∈Y ∩{ρz}z∈Z , and it’s definitely smaller than {ρy}y∈Y . Thus we come
to the conclusion that this kind of change must be finite, because this updating is a decrement
within a finite field.

Moreover, for any Triple (s, t|Preds,t), only when there exists at least a new “next-Triple”
that has changed predicate, the function UpdatePredicate will be called with (s, t|Preds,t) as
input.

Due to the fact that next-Triples of any Triple are finite, and the changes of predicates are also
finite, we know that there are always finitely many calls to function UpdatePredicate with any
Triple. Thus, function GenerateWeakestStrFH will definitely terminate, and obviously function
CheckStrFH-Bisimilar will also terminate.

5.5 Running Example
In Appendix D.3, we also provide the open automata in Fig.2 as a running example for our
algorithm, to illustrate it’s procedure.

6 Related Work
To the best of our knowledge, there is no other research works on the Bisimulation Equivalence
between such complicated (open, symbolic, parameterized, with loops and assignments) system
models, with providing fully complete algorithms. For the sake of completeness, we give a brief
overview of other Symbolic Bisimulation researches.

One line of research is providing Symbolic Bisimulation for different model or language. In
Calder’s work [6], they define a symbolic semantic for full LOTOS, with a symbolic bisimulation

Inria

Symbolic Bisimulation for Open and Parameterized Systems 21

over it; Borgstrom et al., Delaune et al. and Buscemi et al. provide symbolic semantic and
equivalence for different variants of pi calculus respectively [7, 8, 9], and later in 2012 Liu’s work
provided symbolic bisimulation for full applied pi calculus [10]. The most recent work, Feng et
al. provide a symbolic bisimulation for quantum processes [11]. All the above works are based
on models quite different from ours, and most of them have no available implementation.

Another line of research is devising algorithms for computing symbolic Bisimulation Equiv-
alence. In Dovier’s work, they provide a rank-based algorithm, layering the input model to
compute bisimulation [12]. Baldan et al. also focus on open systems, using a logical program-
ming language Prolog to model the systems and compute Bisimulation [13]. Wimmer et al.
present a signature-based approach to compute Bisimulation, implemented by using BDDs [14].
Lin [4] presents a symbolic bisimulation between symbolic transition graph with assignments
(STGA); as mentioned in the Introduction, this work brought us lots of inspiration, but they had
a strong "data-independence" constraint that our approach significantly overcomes.

Going further than computing symbolic bisimulation, there are several works on devising
approach to minimize the system by symbolic bisimulation. The well-known partition refinement
algorithm, which first devised by Paige et al. [15], is unsuitable for symbolic models. Thus
Bonchi et al. devised a symbolic partition refinement algorithm to compute bisimilarity and
redundancy at same time [16]; D’Antoni et al. provided a Forward Bisimulation for minimizing
the nondeterministic symbolic finite automata [17]. The above approaches, due to the difference
of system models they use, are not applicable to our issues, but we are still inspired a lot from
these related work.

7 Conclusion

Based on previous research, we have proposed StrFH-Bisimulation, a new structural Bisimulation
equivalence between open automata which are symbolic, open and parameterized system models
and can address all the finitely represented systems computed from pNets. By proving that
StrFH-Bisimulation correctly and completely corresponds to FH-Bisimulation, we generalize the
interesting properties of FH-Bisimulation to StrFH-Bisimulation.

After that, we proposed two algorithms for checking and computing StrFH-Bisimulation: the
first one requires a (user-defined) relation and two finite open automata, to check whether the
given relation is a StrFH-Bisimulation between the given automata; the second one go further,
for any two given open automata, it computes the weakest StrFH-Bisimulation R between them,
which means all the generated conditions in R are the (logicaly) weakest. We provided a non-
trivial proof to show the "weakestness" of our algorithm, and show that this algorithm terminates
when the data domains are finite.

We have started implementing these algorithms, and need to evaluate their practical perfor-
mances on realistic use cases. There are also several interesting directions to further develop our
work. One idea is about computing weakest StrFH-Bisimulation algorithm. Our preliminary
termination conditional is certainly not the best we can get. While it is clear that we cannot get
unconditional termination, it would be interesting to find a more liberal condition or to improve
the algorithm to handle more practical cases.

Second idea is to develop a minimization algorithm from our StrFH-Bisimulation. Minimizing
system models is the most common way to use a bisimulation equivalence, especially in the case
of hierarchical models like pNets, where minimization can be used in a compositional way.

Noting that we only developed the theory of symbolic bisimulation between open automata
for Strong Bisimulation. Devising a symbolic bisimulation for Weak Bisimulaiton, which takes
invisible or internal moves into account, would also be interesting, and some of our colleagues

RR n° 9304

22 Hou & Madelaine & Liu & Deng

are already working on that.

References
[1] Henrio, L., Madelaine, E., Zhang, M.: pNets: An expressive model for parameterised

networks of processes. In: 2015 23rd Euromicro International Conference on Parallel, Dis-
tributed, and Network-Based Processing, IEEE (2015) 492–496

[2] Henrio, L., Madelaine, E., Zhang, M.: A Theory for the Composition of Concurrent Pro-
cesses. In Albert, E., Lanese, I., eds.: 36th International Conference on Formal Techniques
for Distributed Objects, Components, and Systems (FORTE). Volume LNCS-9688 of Formal
Techniques for Distributed Objects, Components, and Systems., Heraklion, Greece (June
2016) 175–194

[3] Lin, H.: Symbolic transition graphs with assignment. In: International Conference on
Concurrency Theory, Springer (1996) 50–65

[4] Lin, H.: "on-the-fly instantiation" of value-passing processes. In: Formal Description
Techniques and Protocol Specification, Testing and Verification. Springer (1998) 215–230

[5] De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: International conference on Tools
and Algorithms for the Construction and Analysis of Systems, Springer (2008) 337–340

[6] Calder, M., Shankland, C.: A symbolic semantics and bisimulation for full LOTOS. In:
International Conference on Formal Techniques for Networked and Distributed Systems,
Springer (2001) 185–200

[7] Borgström, J., Briais, S., Nestmann, U.: Symbolic bisimulation in the spi calculus. In:
International Conference on Concurrency Theory, Springer (2004) 161–176

[8] Delaune, S., Kremer, S., Ryan, M.: Symbolic bisimulation for the applied pi-calculus. In:
International Conference on Foundations of Software Technology and Theoretical Computer
Science, Springer (2007) 133–145

[9] Buscemi, M.G., Montanari, U.: Open bisimulation for the concurrent constraint pi-calculus.
In: European Symposium on Programming, Springer (2008) 254–268

[10] Liu, J., Lin, H.: A complete symbolic bisimulation for full applied pi-calculus. In: Interna-
tional Conference on Current Trends in Theory and Practice of Computer Science, Springer
(2010) 552–563

[11] Feng, Y., Deng, Y., Ying, M.: Symbolic bisimulation for quantum processes. ACM Trans-
actions on Computational Logic (TOCL) 15(2) (2014) 14

[12] Dovier, A., Gentilini, R., Piazza, C., Policriti, A.: Rank-based symbolic bisimulation:(and
model checking). Electronic Notes in Theoretical Computer Science 67 (2002) 166–183

[13] Baldan, P., Corradini, A., Ehrig, H., Heckel, R.: Compositional modeling of reactive systems
using open nets. In: International Conference on Concurrency Theory, Springer (2001) 502–
518

[14] Wimmer, R., Herbstritt, M., Hermanns, H., Strampp, K., Becker, B.: Sigref–a symbolic
bisimulation tool box. In: International Symposium on Automated Technology for Verifica-
tion and Analysis, Springer (2006) 477–492

Inria

Symbolic Bisimulation for Open and Parameterized Systems 23

[15] Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM Journal on Comput-
ing 16(6) (1987) 973–989

[16] Bonchi, F., Montanari, U.: Minimization algorithm for symbolic bisimilarity. In: European
Symposium on Programming, Springer (2009) 267–284

[17] D’Antoni, L., Veanes, M.: Forward bisimulations for nondeterministic symbolic finite au-
tomata. In: International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, Springer (2017) 518–534

RR n° 9304

24 Hou & Madelaine & Liu & Deng

A Expansion Function
Here we give a formal proof for Theorem 3.3, which means the Open Automata generated by
Expansion Function is definitely a Semantic Open Automata.

Proof. Let A = 〈J,S, s0, T 〉 be a general open automaton, and E(A) = 〈J,S, s0, T ′〉 be the open
automaton generated from applying function E on A. Let OT ∈ T ′ be an open transition in
E(A), starting from state s and targeting state s′. By construction there always exists an original
open transition OTorigin in A:

OTorigin = ···
βj∈Jj , P redorigin, Postorigin

s
α−→ s′

together with a substitution σOT and an additional predicate predOT , such that:

OT = OTorigin{{σOT , predOT }}

To prove that E(A) is closed under Definition 3, we need to prove that for any σnew be
any substitution where dom(σnew) ⊆ fv(OT), and let prednew be any additional predicate on
vars(OT), let denote OTnew = OT{{σnew, prednew}}, then OTnew ∈ T ′.

Developing the definition, and using substitution properties, we get that :

OTnew = ···

βj∈Jj {{σOT }}{{σnew}}, P redorigin{{σOT }}{{σnew}} ∧ predOT {{σOT }}{{σnew}}
∧prednew{{σnew}}, (Postorigin ⊗ σOT)⊗ σnew

s
α{{σOT}}{{σnew}}−−−−−−−−−−−→ s′

= ···

βj∈Jj {{σOT � σnew}}, P redorigin{{σOT � σnew}}
∧
(
predOT {{σOT }} ∧ prednew

)
{{σnew}}, Postorigin ⊗ (σOT � σnew)

s
α⊗(σOT�σnew)−−−−−−−−−−→ s′

Now let ∆ be a new (boolean) variable which didn’t occurred in open transition OTorigin and
predOT , such that

∆ /∈
(
vars(βj) ∩ vars(Predorigin) ∩ vars(predOT) ∩ vars(Postorigin) ∩ vars(α)

)
and construct a new substitution σextra = (∆← prednew). Thus, we can deriveOT like following:

OTnew = ··

βj∈Jj {{(σOT � σnew)] σextra}}, P redorigin{{(σOT � σnew)] σextra}}
∧
(
predOT ∧∆

)
{{(σOT � σnew)] σextra}}, Postorigin ⊗ [(σOT � σnew)] σextra]

s
α{{(σOT�σnew)]σextra}}−−−−−−−−−−−−−−−−→ s′

thus, we have constructed a substitution σfinal = (σOT � σnew)] σextra, and a additional
predicate predfinal = predOT ∧∆, such that

OTnew = OTorig{{σfinal, predfinal}}, so OTnew ∈ T ′.

Inria

Symbolic Bisimulation for Open and Parameterized Systems 25

B Correspondence between StrFH-Bisimulation and FH-Bisimulation

B.1 Proof of Correctness
In this section, we will prove that StrFH-Bisimulation correctly corresponds to FH-Bisimulation,
which is formally expressed by Theorem 3.4. Before attempting to prove this theorem, we start
with several Lemma which may help the proof.

Lemma B.1. Let A1, A2 be two open automata, OT a transition of A1, and OT x∈Xx a set of
transitions of A2:

OT = ··
βj∈J

′

j , P redOT , PostOT

s
α−→ s′

OTx = ···
β
j∈J′

x
j , P redOTx

, PostOTx

t
αx−−→ t′x

Then the following formula

∀fvOT .{Preds,t ∧ PredOT =⇒∨
x∈X

[∃fvOTx
.(∀j.βj = βjx ∧ α = αx

∧ PredOTx ∧ Preds′,t′x{{PostOT] PostOTx}})]} (3)

holds if and only if for any valuation ρy(fvOT) defined on fvOT , there exist a set of valuations
{ρx,y(fvOTx

)}x∈X defined on fvOTx
respectively, such that the following formula holds:{

Preds,t ∧ PredOT =⇒ ∨
x∈X

[(
∀j.βj = βjx ∧ α = αx ∧ PredOTx

∧ Preds′,t′x{{PostOT] PostOTx
}}
)
{{ρx,y(fvOTx

)}}
]}
{{ρy(fvOT)}} (4)

Generally speaking, in above Lemma, we hope to convert a first-order logic formula consisting
of quantifiers, into a formula with quantified valuations. Intuitively, forall quantifier ∀ means for
any valuation, the formula will hold ; while existence quantifier ∃ means there exist a valuation
such that the formula will hold.

Lemma B.1 use this intuitive sense, rewriting the Formula 3. Of cause, intuition is not enough
for proving a Lemma, we give a formal proof as following:

Proof. First we prove the Necessity of Lemma B.1, that is (3) => (4). In the given situation,
suppose formula 3 holds. Let ρy(fvOT) be any valuation defined on fvOT , applying ρy(fvOT) to
formula (3) we will get:{

Preds,t ∧ PredOT =⇒∨
x∈X

[
∃fvOTx

.
(
∀j.βj = βjx ∧ α = αx ∧ PredOTx

∧ Preds′,t′x{{PostOT] PostOTx}}
)]}
{{ρy(fvOT)}} (5)

RR n° 9304

26 Hou & Madelaine & Liu & Deng

Considering the existential quantifier in formula 5, for any variable ai ∈ fvOTx
, let Cx,i be the

existent value for variable ai. Then we can construct a set of valuation {ρx,y(fvOTx
)}x∈X such

that for any ai ∈ fvOTx
, we have a valuation (ai ← Cx,i) in ρx,y(fvOTx

). Obviously, with this
constructed set of valuation, formula 4 will holds.

For any valuation ρy(fvOT) there exist a valuation set {ρx,y(fvOTx
)}x∈X such that formula 4

holds, thus the Necessity is proved.

Next we prove the Sufficiency of Lemma B.1, that is (4) => (3). In the given situa-
tion, suppose that for any valuation ρy(fvOT) defined on fvOT , there exist a set of valuations
{ρx,y(fvOTx

)}x∈X , such that formula 4 holds.
Considering that making valuation set {ρx,y(fvOTx

)}x∈X effective in formula 4, all the vari-
ables in {fvOTx

}x∈X will be valuated with a constant value, which means all these variables has
an extent constant value can make formula 4 hold. This implies the fact that following formula{

Preds,t ∧ PredOT =⇒∨
x∈X

[
∃fvOTx

.
(
∀j.βj = βjx ∧ α = αx ∧ PredOTx

∧ Preds′,t′x{{PostOT] PostOTx
}}
)]}
{{ρy(fvOT)}} (6)

holds.
On the other hand, for any variables ai ∈ fvOT assigned with any constant value Ci, we

can always construct a corresponding valuation ρ′(fvOT) such that for any ai ∈ fvOT , have a
valuation (ai ← Ci) in ρ′(fvOT). With the constructed valuation ρ′(fvOT), we know following
formula{

Preds,t ∧ PredOT =⇒∨
x∈X

[
∃fvOTx

.
(
∀j.βj = βjx ∧ α = αx ∧ PredOTx

∧ Preds′,t′x{{PostOT] PostOTx
}}
)]}
{{ρ′(fvOT)}} (7)

holds. Imaging that if we make this constructed valuation ρ′(fvOT) effective in formula 7, any
variable ai ∈ fvOT will be valuated with Ci, and formula 7 still holds.

For any variables in fvOT assigned with any value, the formula 7 always holds, it’s meaning is
definitely same as the ForAll quantifier ∀fvOT . With using this quantifier, we will have formula
3, and it holds. Thus Sufficiency is proved.

Lemma B.2. For any formula ϕ, any substitution σ, if ϕ holds then ϕ{{σ}} holds. Formally, we
have

ϕ =⇒ ϕ{{σ}}

Moreover, considering that valuation is a kind of substitution, for any valuations ρ, we have

ϕ =⇒ ϕ{{ρ}}

Lemma B.2 is a basic property for logic language with substitutions and valuations, so we
won’t give a formal proof for it.

With the above lemmas, we can now prove Theorem 3.4.

Inria

Symbolic Bisimulation for Open and Parameterized Systems 27

Proof. Let A1, A2 be two open automata A1 =< J,S1, init1, T1 > and A2 =< J,S2, init2, T2 >,
and their expansions E(A1) =< J,S1, init1, T ′1 > and E(A2) =< J,S2, init2, T ′2 >.

Then suppose there exists a Triple set R that is an StrFH-Bisimulation between A1 and A2.
We want to prove that R is also a FH-Bisimulation between E(A1) and E(A1).

Let (s, t|Preds,t) be any triple in R. By construction, for any open transition OT ′ ∈ T ′1
starting from state s in E(A1), there exists at least one origin open transition OT ∈ T1 starting
from state s in A1 :

OT = ···
βj∈J

′

j , P redOT , PostOT

s
α−→ s′

and there exists a substitution σ and an additional predicate pred, such that

OT ′ = ···
βj∈J

′

j {{σ}}, P redOT {{σ}} ∧ pred{{σ}}, PostOT ⊗ σ

s
α{{σ}}−−−−→ s′

Due to the fact that R is a StrFH-Bisimulation between A1 and A2, and (s, t|Preds,t) is a
Triple in R, we know that there exists a set of open transitions OT x∈Xx ⊆ T2 starting from state
t in A2:

OTx = ··
β
jx∈J′

x
jx

, P redOTx , PostOTx

t
αx−−→ t′x

from Lemma B.1, suppose that {ρy}y∈Y contains all possible valuations defined on variable set
fvOT , we have that for any valuation ρy∈Yy (fvOT), there exists a set of valuations {ρx,y(fvOTx

)}x∈X
which corresponding to open transitions OTx respectively, such that the following formula{

Preds,t ∧ PredOT =⇒ ∨
x∈X

[(
∀j.βj = βjx ∧ α = αx ∧ PredOTx

∧ Preds′,t′x{{PostOT] PostOTx}}
)
{{ρx,y(fvOTx

)}}
]}
{{ρy(fvOT)}}

holds.
For any valuation ρy∈Yy (fvOT) and any open transition OT x∈Xx with corresponding valuation

ρx,y(fvOTx
), we can construct an open transition OT ′x,y:

OT ′x,y = ··
β
jx∈J′

x
jx

{{ρx,y(fvOTx
)}}, P redOTx{{ρx,y(fvOTx

)}}, PostOTx ⊗ ρx,y(fvOTx
)

t
αxρx,y(fvOTx

)
−−−−−−−−−→ t′x

it’s easy to see that, OT ′x,y is an open transition in E(A2), with substitution σ = ρx,y(fvOTx
)

and additional predicate pred2 = True. From this rule, we will construct a large set of open
transitions {OT ′x,y}x∈X∧y∈Y . Before continuing to prove, we would like to have a new lemma
first, to help the rest part of proof:

RR n° 9304

28 Hou & Madelaine & Liu & Deng

Lemma B.3. With all the above pre-condition, we have following

Preds,t ∧ PredOT ∧AddPredOT =⇒∨
x∈X

∨
y∈Y

[(
∀j.βj = βjx ∧ α = αx ∧ PredOTx

∧ Preds′,t′x{{PostOT] PostOTx
}}
)
{{ρx,y(fvOTx

)}}
]

(8)

holds.

Proof. Here we assume that Lemma B.3 doesn’t hold, and try to reduction to absurdity. From
formula 8, after unfolding the Implies, we have:

¬Preds,t ∨ ¬PredOT ∨ ¬AddPredOT∨∨
x∈X

∨
y∈Y

[(
∀j.βj = βjx ∧ α = αx ∧ PredOTx

∧ Preds′,t′x{{PostOT] PostOTx}}
)
{{ρx,y(fvOTx

)}}
]

and the negation of above formula is the following:

Preds,t ∧ PredOT ∧AddPredOT∧∧
x∈X

∧
y∈Y
¬
[(
∀j.βj = βjx ∧ α = αx ∧ PredOTx

∧ Preds′,t′x{{PostOT] PostOTx
}}
)
{{ρx,y(fvOTx

)}}
]

(9)

Suppose the Lemma B.3 doesn’t hold, means that with the given pre-condition, formula 8
doesn’t hold. Thus, the negation of formula 9 is satisfiable, and we can say that there exist a set
of valuation ρ where dom(ρ) equals all the free variables in formula 9, such that{

Preds,t ∧ PredOT ∧AddPredOT∧∧
x∈X

∧
y∈Y
¬
[(
∀j.βj = βjx ∧ α = αx ∧ PredOTx

∧ Preds′,t′x{{PostOT] PostOTx
}}
)
{{ρx,y(fvOTx

)}}
]}
{{ρ}} (10)

holds. We define V as the set of all the free variables in formula 9, due to the fact that all
the free variables in formula 9 comes from open transitions OT and OT x∈Xx , and vars(OT) =
fvOT ∪ (vars(s) ∪ vars(s′)), it’s easy to see that

V = vars(OT)
⋃
x∈X

vars(OTx)

= fvOT ∪ vars(s) ∪ vars(s′)
⋃
x∈X

(fvOTx
∪ vars(t) ∪ vars(t′x))

All the variables in fvOTx
have been valuated with a concrete value by valuation ρx,y(fvOTx

) in
formula 10, thus for any variable in fvOTx

, ρ has no effect on them, so ρ doesn’t need to contain

Inria

Symbolic Bisimulation for Open and Parameterized Systems 29

any valuation defined on variables in fvOTx
. We know that fvOT is disjoint with the set of state

variables involved in these transitions. Let vars(s, s′, t, t′x) denote the set of variables: vars(s) ∪
vars(s′)∪vars(t)∪x∈X vars(t′x). Then we can see, there must exist a valuation ρneg(fvOT) defined
on fvOT , and a valuation ρneg(vars(s, s′, t, t′x)), such that ρ = ρneg(fvOT) ∪ ρneg(vars(s, s′, t, t′x))
and by unfolding ρ on formula 10, we have:

{
Preds,t ∧ PredOT ∧AddPredOT∧∧

x∈X

∧
y∈Y
¬
[(
∀j.βj = βjx ∧ α = αx ∧ PredOTx

∧ Preds′,t′x{{PostOT] PostOTx}}
)
{{ρx,y(fvOTx

)}}
]}

{{ρneg(fvOT)}}{{ρneg(vars(s, s′, t, t′x))}} (11)

holds.
Now let’s consider the pre-condition. From Lemma B.1, due to the fact that neg ∈ Y , we know

that for this negative valuation ρneg(fvOT), there also exists a set of valuations ρx,neg(fvOTx
)x∈X

that make the following

{
Preds,t ∧ PredOT =⇒ ∨

x∈X

[(
∀j.βj = βjx ∧ α = αx ∧ PredOTx

∧ Preds′,t′x{{PostOT] PostOTx
}}
)
{{ρx,neg(fvOTx

)}}
]}

{{ρneg(fvOT)}}

hold. From Lemma B.2, we know that applying this last valuation ρneg(vars(s, s′, t, t′x)) to the
above formula, we will have following

{
Preds,t ∧ PredOT =⇒ ∨

x∈X

[(
∀j.βj = βjx ∧ α = αx ∧ PredOTx

∧ Preds′,t′x{{PostOT] PostOTx
}}
)
{{ρx,neg(fvOTx

)}}
]}

{{ρneg(fvOT)}}{{ρneg(vars(s, s′, t, t′x))}}

still holds. But due to the fact that neg ∈ Y , this formula is obviously conflict with formula 11,
so we have proved Lemma B.3 holds.

From Lemma B.3, we know that formula 8 holds. And from Lemma B.2, we know that after

RR n° 9304

30 Hou & Madelaine & Liu & Deng

applying substitution σ on the formula 8,{
Preds,t ∧ PredOT ∧AddPredOT =⇒∨

x∈X

∨
y∈Y

[(
∀j.βj = βjx ∧ α = αx ∧ PredOTx

∧ Preds′,t′x{{PostOT] PostOTx
}}
)
{{ρx,y(fvOTx

)}}
]}
{{σ}}

still holds. Due to the fact that A1 and A2 have disjoint variables, we can distribute the substi-
tutions into the formula and get following

Preds,t ∧ PredOT {{σ}} ∧AddPred{{σ}} =⇒∨
x∈X

∨
y∈Y

(∀j.βj{{σ}} = βjx{{ρx,y(fvOTx
)}}

∧ α{{σ}} = αx{{ρx,y(fvOTx
)}} ∧ PredOTx

{{ρx,y(fvOTx
)}}

∧ Preds′,t′x{{(PostOT ⊗ σ)] (PostOTx
⊗ ρx,y(fvOTx

))}}) (12)

holds. Note that the above formula is the same as the proof obligation in the definition of
FH-Bisimulation, which means OT ′ can be covered by the open transition set {OT ′x,y}x∈X∧y∈Y .

In summary, above proof has proves that: for any triples (s, t|Preds,t) in a StrFH-Bisimulation
R between A1 and A2, and for any open transition OT ′ start from s in E(A1), one can always
find a large set of open transitions OT x∈X∧y∈Yx,y starting from t in E(A2), such that formula
(12) holds. And symmetrically, for any open transition OT” starting from t in E(A2) the same
property holds.

This result means, the StrFH-Bisimulation R is also a FH-Bisimulation between E(A1) and
E(A2).

Inria

Symbolic Bisimulation for Open and Parameterized Systems 31

B.2 Proof of Completeness

In this section, we will prove that StrFH-Bisimulation is completely corresponding to FH-
Bisimulation, which is formally expressed by Theorem 3.5.

Proof. Suppose there are two general open automataA1 = 〈J1,S1, init1, T1〉 andA2 = 〈J2,S2, init2, T2〉,
and we generate two semantic open automata E(A1) = 〈J1,S1, init1, T ′1〉 and E(A2) = 〈J2,S2, init2, T ′2〉
through expansion.

Then suppose there exists a triple set R that is a FH-Bisimulation between E(A1) and E(A2).
What we want to prove is: triple set R is also a StrFH-Bisimulation between A1 and A2.

For any triple (s, t|Preds,t) ∈ R, let OT ∈ T1 be a general open transition starting from s in
A1

OT = ···
βj∈J

′

j , P redOT , PostOT

s
α−→ s′

then for any valuation ρy(fvOT) defined on variable set fvOT , we can construct an open transition
OT ′ with substitution σ = ρy(fvOT) and additional predicate addPred = True:

OT ′ = ··
βj∈J

′

j {{ρy(fvOT)}}, P redOT {{ρy(fvOT)}} ∧ True, PostOT ⊗ ρy(fvOT)

s
α{{ρy(fvOT)}}−−−−−−−−−→ s′

Obviously, OT ′ is an open transition in E(A1). Due to the fact that E(A1) and E(A2) are FH-
Bisimilar, we know that there exist a set of open transitions {OT ′x}x∈X in E(A2), which start
from state t. For each OT ′x in this set, there must exist an origin open transition OTx in A2

OTx = ···
β
jx∈J′

x
jx

, P redOTx , PostOTx

t
αx−−→ t′

and there exist a substitution σx and a additional predicate addPredx, such that OT ′x =
OTx{{σx}}, and through definition of FH-Bisimulation, we know that following formula

Preds,t ∧ PredOT {{ρy(fvOT)}} ∧ True =⇒∨
x∈X

{
∀j.βj{{ρy(fvOT)}} = βjx{{σx}}

∧ α{{ρy(fvOT)}} = αx{{σx}} ∧ PredOTx
{{σx}} ∧ addPredx{{σx}}

∧ Preds′,t′x{{(PostOT ⊗ ρy(fvOT))] (PostOTx
⊗ σx)}}

}
holds. Then using the following properties mentioned in previous sections:

vars(OT) ∩ vars(OTx) = ∅
dom(σx) ⊆ fvOTx

, dom(ρy(fvOT)) = fvOT

(vars(Preds,t) ∪ vars(Preds′,t′x)) ∩ (fvOT ∪ fvOTx
) = ∅

RR n° 9304

32 Hou & Madelaine & Liu & Deng

we can extract two substitutions out of the bracket and have the following formula

{
Preds,t ∧ PredOT ∧ True =⇒∨

x∈X

[(
∀j.βj = βjx ∧ α = αx ∧ PredOTx

∧ addPredx

∧ Preds′,t′x{{PostOT] PostOTx
}}
)
{{σx}}

]}
{{ρy(fvOT)}} (13)

holds. From the basic property of first order logic

ϕ =⇒ ∃x, y, z.ϕ

we can have the following

{
∀j.βj = βjx ∧ α = αx ∧ PredOTx

∧ addPredx ∧ Preds′,t′x{{PostOT] PostOTx}}
}

=⇒
∃fvOTx

.
{
∀j.βj = βjx ∧ α = αx ∧ PredOTx

∧ Preds′,t′x{{PostOT] PostOTx}}
}

we can use another way to describe above formula: due to the existential quantifier, we know
there always exists a valuation ρx,y(fvOTx

) on variables fvOTx
, such that following

{
∀j.βj = βjx ∧ α = αx ∧ PredOTx

∧ addPredx ∧ Preds′,t′x{{PostOT] PostOTx
}}
}

=⇒{
∀j.βj = βjx ∧ α = αx ∧ PredOTx

∧ Preds′,t′x{{PostOT] PostOTx
}}
}
{{ρx,y(fvOTx

)}}

holds. From the Lemma B.2, applying σx, we have that there exist a valuation ρx,y(fvOTx
) such

that

{
∀j.βj = βjx ∧ α = αx ∧ PredOTx

∧ addPredx ∧ Preds′,t′x{{PostOT] PostOTx
}}
}
{{σx}}

=⇒{(
∀j.βj = βjx ∧ α = αx ∧ PredOTx

∧ Preds′,t′x{{PostOT] PostOTx
}}
)
{{ρx,y(fvOTx

)}}
}
{{σx}}

holds. We know that dom(σx) ⊆ fvOTx
while dom(ρy(fvOTx

)) = fvOTx
, thus after applying

ρy(fvOTx
), all the variables in fvOTx

will be substituted with a constant value, which means σx
will have no effect on right part of above formula, remove this substitution won’t change the

Inria

Symbolic Bisimulation for Open and Parameterized Systems 33

formula. So we can have the following: there exists a valuation ρx,y(fvOTx
) such that{

∀j.βj = βjx ∧ α = αx ∧ PredOTx

∧ addPredx ∧ Preds′,t′x{{PostOT] PostOTx
}}
}
{{σx}}

=⇒{(
∀j.βj = βjx ∧ α = αx ∧ PredOTx

∧ Preds′,t′x{{PostOT] PostOTx
}}
)
{{ρx,y(fvOTx

)}}
}

holds. Let’s expand this property to all the open transitions OT
′x∈X
x , we can have that: there

exists a set of valuations {ρx,y(fvOTx
)}x∈X , where each ρx,y(fvOTx

) corresponding to OT ′x re-
spectively, we have following∨

x∈X

{(
∀j.βj = βjx ∧ α = αx ∧ PredOTx

∧ addPredx

∧ Preds′,t′x{{PostOT] PostOTx}}
)
{{σx}}

}
=⇒∨

x∈X

{(
∀j.βj = βjx ∧ α = αx ∧ PredOTx

∧ Preds′,t′x{{PostOT] PostOTx
}}
)
{{ρx,y(fvOTx

)}}
}

(14)

holds. Finally, applying formula 14 to formula 13, we get: for any valuation ρy(fvOT) on fvOT ,
there always exists a set of valuations {ρx,y(fvOTx

)}x∈X which correspond to OT
′x∈X
x respec-

tively, such that{
Preds,t ∧ PredOT ∧ True =⇒∨

x∈X

[(
∀j.βj = βjx ∧ α = αx ∧ PredOTx ∧ addPredx

∧ Preds′,t′x{{PostOT] PostOTx
}}
)
{{ρx,y(fvOT)}}

]}
{{ρy(fvOT)}}

holds. Note that ρy(fvOT) is a general valuation defined on fvOT . Thus, from Lemma B.1, we
know that it can be deducted that

∀fvOT .
{
Preds,t ∧ PredOT =⇒∨

x∈X

[
∃fvOTx

.(∀j.βj = βjx ∧ α = αx ∧ PredOTx
∧ Preds′,t′x{{PostOT] PostOTx

}})
]}

(15)

holds, which is definitely the proof obligation of StrFH-Bisimulation.
In summary, above proof has proved that: for any triple (s, t|Preds,t) in a FH-Bisimulation

R between E(A1) and E(A2), selecting any open transition OT starting from state s in A1, one
can always find a set of open transitions {OTx}x∈X starting from state t in A2, such that formula
15 holds. And obviously, selecting any open transition OT

′′
starting from state t in A2 also share

same property.
This result means, a FH-BisimulationR between E(A1) and E(A2) is also a StrFH-Bisimulation

between A1 and A2. Thus, using a StrFH-Bisimulation to represent a corresponding FH-
Bisimulation is complete.

RR n° 9304

34 Hou & Madelaine & Liu & Deng

Figure 3: The two open automata

B.3 Running Example for StrFH-Bisimulation

In this section, we will provide the open automata in figure above as a running example, and
show why Triple Set {(T1, S1|s = 0), (T2, S1|s = 1)} is a StrFH-Bisimulation between these two
automata. We name the first automaton as A1 and second one as A2.

Starting from the first Triple (T1, S1|s = 0) in given Triple set, it’s easy to see that there are
five open transitions starting from T1 or S1, thus we will construct five proof obligations from
this Triple.

For any open transition OT with corresponding set of open transitions OT x∈Xx , We know the
form of proof obligation is

∀fvOT .{Preds,t ∧ PredOT =⇒∨
x∈X

[∃fvOTx
.(∀j ∈ J ′.βj = βjx ∧ α = αjx

∧ PredOTx
∧ Preds′,t′x{{PostOT] PostOTx

}})]}

Thus for open transition ot1 starting from T1, with corresponding open transition set {ot′1}(all
the other open transitions from S1 have different activated holes), we can build proof obligation
following:

∀a1.
{
s = 0 ∧ ∀x.[a1 6= δ(x)] =⇒

∃b1.{a1 = b1 ∧ a1 = b1 ∧ s = 0 ∧ ∀y.[b1 6= δ(y)] ∧ s = 0}
}

and it’s a tautology, means ot1 can be covered by ot′1 under the hypothesis s = 0. Then for open

Inria

Symbolic Bisimulation for Open and Parameterized Systems 35

transition ot2 with corresponding open transition set {ot′2}, we can build following:

∀x1.{s = 0 ∧ True =⇒
∃y1.[δ(x1) = δ(y1) ∧ acc(x1) = acc(y1)

∧ δ(x1) = acc(y1) ∧ s = 0 ∧ (s = 1{{s← 1}})]}

again it’s a tautology, means ot2 can be covered by ot′2 under the hypothesis s = 0. The proof
obligations for ot′1 and for ot′2 are similar with the above, thus we will not show them.

The last proof obligation of Triple (T1, S1|s = 0) may be more interesting. It is built from
ot′3, with corresponding open transition set ∅:

∀b2.{s = 0 ∧ s = 1 =⇒ False}

because for all the open transitions starting from T1, none have same activated holes with ot′3, the
formula on right side of "Implication" operator are unsatisfiable, represented by False. Despite
this, the proof obligation is still a tautology, because it can be derived as False =⇒ False.
That means, when Automaton A1 is in state T1 and Automaton A2 is in state S1, this open
transition ot′3 won’t be activated with the given hypothesis s = 0. Thus, we know that all the
proof obligations built from Triple (T1, S1|s = 0) are tautology.

From Triple (T2, S1|s = 1), we can build three proof obligations. The procedures of building
them are very close to the above, even simpler, so we will leave it to the readers. And it’s easy
to see all the proof obligation from Triple (T2, S1|s = 1) are also tautologies, thus Triple set
{(T1, S1|s = 0), (T2, S1|s = 1)} meets the definition of StrFH-Bisimulation, and we can say it’s a
StrFH-Bisimulation between A1 and A2.

RR n° 9304

36 Hou & Madelaine & Liu & Deng

C Generate Weakest StrFH-Bisimulation

C.1 Detail of sub-functions

Push Reachable StatePairs

First let us focus on a sub-function PushReachableStatePairs, which will be called during Ini-
tialization period in GenerateWeakestStrFH. It’s input are two States s and t belonging to two
different open automata, and a StatePair’s stack called StateStack.

The function is a variant of DFS (Depth First Search). It first visit StatePair (s, t) and push it
into the stack StateStack, then for each next-StatePair (snextx , tnextx) of (s, t), call the function
PushReachableStatePairs with inputting this next-StatePair recursively. Note that each time
visiting a StatePair (s, t), function will record that this StatePair has been visited, and won’t
visit it again.

It’s easy to see that, all the StatePair which are reachable from (s, t), will be visited during
this recursion. Thus obviously, after end of this recursive function, for any StatePair (s, t) in
StateStack, all the StatePairs which are reachable from (s, t) will also exist in StateStack.
Algorithm 5 is the pseudo-code for this recursive function.

algorithm 5 Push Reachable StatePairs
input: s, t two states, where s belong to A1 and t belong to A2. StateStack a StatePair stack.
1: function PushReachableStatePairs(s, t, StateStack)
2: if StatePair (s, t) has been visited then
3: return
4: end if
5: push StatePair (s, t) into StateStack
6: mark that (s, t) has been visited
7: for each open transition OT starting from s and targeting to s′x do
8: for each open transition OT ′ starting from t and targeting to t′y do
9: PushReachableStatePairs(s′x, t

′
y, StateStack)

10: end for
11: end for
12: end function

Update Predicate

Then, let us focus on another sub-function UpdatePredicate, which will also be called by Gener-
ateWeakestStrFH. It’s input is TripleSet, a Triple set, and i, index of an element in TripleSet.
What function UpdatePredicate do is updating the Triple TripleSet[i], to make sure that this
Triple can meet the Definition of a Triple in StrFH-Bisimulation. Algorithm 6 is the pseudo-code
of this function.

More detailed, suppose Triple TripleSet[i] = (s, t|Preds,t), then for any open transition OT
starting from s

OT =
βj∈J

′

j , P redOT , PostOT

s
α−→ s′

and let set {OTx}x∈X be all open transitions starting from state t and have the same active holes

Inria

Symbolic Bisimulation for Open and Parameterized Systems 37

than OT

OTx =
β
j∈J′

x
j , P redOTx

, PostOTx

t
αx−−→ t′x

With {OTx}x∈X , we can construct a proof obligation po

∀fvOT .{Preds,t ∧ PredOT =⇒∨
x∈X

[∃fvOTx .(∀j.βj = βjx ∧ α = αx

∧ PredOTx ∧ Preds′,t′x{{PostOT] PostOTx}})]}
Then we use SMT solver to check the negation of proof obligation po, same as what we did in
checking algorithm in last section. If po is a tautology, function will keep going on; If not, means
we need to update the Triple’s Predicate formula.

Without losing generality, suppose it will be update to (s, t|newPreds,t). We have newPreds,t =
Preds,t ∧ po, where po is the proof obligation just generated. Then we have newPreds,t:

Preds,t ∧ ∀fvOT .{Preds,t ∧ PredOT =⇒∨
x∈X

[∃fvOTx
.(∀j.βj = βjx ∧ α = αx

∧ PredOTx
∧ Preds′,t′x{{PostOT] PostOTx

}})]}
and due to the fact that vars(Preds,t)∩ fvOT = ∅, we can distribute Preds,t into the quantifier
and derive newPreds,t to:

Preds,t ∧ ∀fvOT .
{
Preds,t

∧
{Preds,t ∧ PredOT =⇒∨
x∈X

[∃fvOTx
.(∀j.βj = βjx ∧ α = αx

∧ PredOTx
∧ Preds′,t′x{{PostOT] PostOTx

}})]}
}

and then simplify it to:

Preds,t ∧ ∀fvOT .
{
PredOT =⇒∨

x∈X
[∃fvOTx

.(∀j.βj = βjx ∧ α = αx

∧ PredOTx
∧ Preds′,t′x{{PostOT] PostOTx

}})]
}

It’s easy to see that, in the above formula, all the variables in fvOT and fvOTx are bound
variables, and thus free variables in above formula represented by vars(newPreds,t) = vars(s)∪
vars(t) ∪x∈X vars(Preds′,t′x), only contains state variables, meet the definition of the Predicate
in a Triple.

Moreover, if we use C to represent following formula:∨
x∈X

[∃fvOTx
.(∀j.βj = βjx ∧ α = αx

∧ PredOTx
∧ Preds′,t′x{{PostOT] PostOTx

}})]

RR n° 9304

38 Hou & Madelaine & Liu & Deng

then we can use following to represent predicate formula newPreds,t:

Preds,t ∧ ∀fvOT .{PredOT =⇒ C}

and we can generate new proof obligation newpo from above new Predicate

∀fvOT .{newPreds,t ∧ PredOT =⇒ C}

and we can derive newpo to :

∀fvOT .{[Preds,t ∧ ∀fvOT .(PredOT =⇒ C) ∧ PredOT] =⇒ C}

which is obviously a tautology. Thus we can say, after updating any Triple, all the proof obligation
constructed by this Triple is a tautology.

algorithm 6 UpdatePredicate

1: function UpdatePredicate(i, T ripleSet)
2: (s, t|Preds,t)← TripleSet[i]
3: for each open transition OT starting from s to s′ do
4: using the same way as Checking Algorithm, to collect an open transition set {OTx}x∈X

from t to t′x and a corresponding predicate formula set {Preds′,t′x}x∈X
5: if {OTx}x∈X is an empty set then
6: set[i]← (s, t|False)
7: return
8: end if
9: use OT , {OTx}x∈X , Preds,t and {Preds′,t′x}x∈X to generate proof obligation po

10: if negate(po) is unSatisfiable then
11: Preds,t ← Preds,t ∧ po
12: end if
13: end for
14: for each open transition OT ′ starting from t to t′ do
15: using the same way as Checking Algorithm, to collect an open transition set {OT ′y}y∈Y

from s to s′y and a corresponding predicate formula set {Preds′y,t′}y∈Y
16: if {OT ′y}y∈Y is an empty set then
17: set[i]← (s, t|False)
18: return
19: end if
20: use OT ′, {OT ′y}y∈Y , Preds,t and {Preds′y,t′}y∈Y to generate proof obligation po
21: if negate(po) is unSatisfiable then
22: Preds,t ← Preds,t ∧ po
23: end if
24: end for
25: if Preds,t is unSatisfiable then
26: Preds,t ← False
27: end if
28: set[i]← (s, t|Preds,t)
29: end function

Inria

Symbolic Bisimulation for Open and Parameterized Systems 39

C.2 Proof of Weakestness

In this section, we will prove that the StrFH-Bisimulation generated by functionGenerateWeakest-
StrFH is the weakest, which is formally expressed by Theorems 5.2 and 5.3.

We start with Theorem 5.2:

Proof. Suppose R is a StrFH-Bisimulation between A1 and A2, and all the Triples in R are
weakest according to Definition 5.1. Let’s assume there exists a weaker StrFH-Bisimulation
Rweak, which means two possibilities:

• either there exists a Triple (s, t|Predweaker) in Rweaker, and Predweaker is weaker than the
predicate in the corresponding Triple in R.

• or there exists a Triple (s, t|Predincomp in Rweaker, and Predincomp is incomparable with
the predicate in the corresponding Triple in R.

It’s easy to see that, both situations violate the definition of Weakest Triple, thus R is the
Weakest StrFH-Bisimulation.

Now we prove Theorem 5.3 that states that each Triple in the result of algorithm Gener-
ateWeakestStrFH is, individually, a weakest Triple.

Proof. Now we use Mathematical induction to prove Theorem 5.3. First, during calling function
GenerateWeakestStrFH, after initialize the TripleSet, we will definitely face a kind of Triples
(s, t|Preds,t), where:

• it’s predicate formula Preds,t has initial value True;

• and for any next-Triple (snextx , tnextx |Prednextx) of (s, t|Preds,t) (meaning there exists an
open transition from s to snextx and an open transition from t to tnextx), Prednextx has
also initial value True.

and we call them Beginning Triples.
First, let Triple (s, t|True) be any Beginning Triple. For any open transition OT starting

from s:

OT = ···
βj∈J

′

j , P redOT , PostOT

s
α−→ s′

and set of open transitions {OTx}x∈X starting from t

OTx = ···
β
j∈J′

x
j , P redOTx

, PostOTx

t
αx−−→ t′x

we will have proof obligation poOT :

∀fvOT .{True ∧ PredOT =⇒∨
x∈X

[∃fvOTx
.(∀j ∈ J ′.βj = βjx ∧ α = αx

∧ PredOTx
∧ True)]}

RR n° 9304

40 Hou & Madelaine & Liu & Deng

and if poOT is a tautology, we don’t need to update the initial Predicate True, it’s the weakest; if
poOT is not a tautology, according to function UpdatePredicate, we will generate a new predicate
formula newPredOT . To simplify the formula, we use term Cx to represent following formula:

∀j ∈ J ′.βj = βjx ∧ α = αx ∧ PredOTx

thus, we can represent the updated predicate formula newPredOT as:

True ∧ ∀fvOT .{PredOT =⇒
∨
x∈X

[∃fvOTx
.(Cx ∧ True)]}

Suppose predicate predweak is any predicate formula, that there exists a StrFH-Bisimulation
R between given automata and this StrFH-Bisimulation contains the Triple (s, t|Predweak).

We know that (s, t|Preds,t) is a Begining Triples, which means the predicate of any next-
Triple (snextx , tnextx |Prednextx) is True and couldn’t be weaker. Thus, the proof obligation
generated from Predweak

∀fvOT .{Predweak ∧ PredOT =⇒
∨
x∈X

[∃fvOTx
.(Cx ∧ True)]}

should be a tautology.
Then, from the basic rule of propositional logic, we can have:

∀fvOT .
{
Predweak =⇒ {

PredOT =⇒
∨
x∈X

[∃fvOTx
.(Cx ∧ True)]

}}
and note that Predweak is a predicate formula in Triple, which only contains state variables as
free variables, means vars(Predweak) ∩ fvOT = ∅, thus we have:

Predweak =⇒ ∀fvOT .{PredOT =⇒
∨
x∈X

[∃fvOTx
.(Cx ∧ True)]}

and it can be derive to:

Predweak =⇒ newPredOT

thus we can say, for any predicate formula Predweak, which can make the proof obligation
generated from it be a tautology, definitely implies the updated predicate formula newPredOT .

Obviously, base on the above conclusion, we can know: for any predicate formula Pred′,
which can’t imply predicate newPredOT , there always exists a proof obligation generated by
Triple (s, t|Pred′) is not a tautology, and any Triple Set containing (s, t|Pred′) won’t be a StrFH-
Bisimulation between given automata. Thus Triple (s, t|newPredOT) satisfies the Definition 5.1.

For each proof obligation poy∈Yy constructed from (s, t|Preds,t), newPredy is the updated
predicate formula from our algorithm, and we know that Triple (s, t|newPredy) satisfies the
Theorem 5.1. Considering all the proof obligations constructed from Triple (s, t|Preds,t), we
want all of them be tautologies. Thus, it’s easy to see that Triple (s, t|∧y∈Y newPredy) also
satisfies the Theorem 5.1.

Note that function UpdatePredicate will update original predicate to the conjunction of
newPredy∈Yy , So, the final predicate newPreds,t =

∧
y∈Y newPredy generated from function

satisfies the Theorem 5.1.

Inria

Symbolic Bisimulation for Open and Parameterized Systems 41

In summary, we can say, after applying any Beginning Triple (s, t|True) to function Up-
datePredicate, the result Triple will satisfy the Theorem 5.1.

Then, we can focus on other Triples. Without losing generality, let Triple (s, t|Preds,t) be
any Triple which isn’t Beginning Triple and need to be updated, and suppose all the Triples
already satisfied Theorem 5.1. For any open transition OT starting from s:

OT = ···
βj∈J

′

j , P redOT , PostOT

s
α−→ s′

and set of open transitions {OTx}x∈X starting from t

OTx = ···
β
j∈J′

x
j , P redOTx

, PostOTx

t
αx−−→ t′x

we will have proof obligation poOT :

∀fvOT .{Preds,t ∧ PredOT =⇒∨
x∈X

[∃fvOTx
.(∀j ∈ J ′.βj = βjx ∧ α = αx

∧ PredOTx
∧ Preds′,t′x{{PostOT] PostOTx

}})]}
Same as before, to simplify the formula, we use Cx to represent

∀j ∈ J ′.βj = βjx ∧ α = αx ∧ PredOTx

and then, with using function UpdatePredicate, we may update the predicate to newPredOT ,
and we can represent it as following:

Preds,t ∧ ∀fvOT .{PredOT =⇒ ∨
x∈X

[∃fvOTx
.(Cx ∧ Preds′,t′x{{PostOT] PostOTx}})]} (16)

Again, suppose formula Predweak is any predicate formula, that there exists a StrFH-Bisimulation
between given automata such that this StrFH-Bisimulation contains Triple (s, t|Predweak).

We know that all the Triples satisfy the Definition 5.1, which means the predicate of any the
next-Triple (s′, t′x|Preds′,t′x) should be implied in the proof obligation.

Thus, the proof obligation generated from predicate Predweak

∀fvOT .{Predweak ∧ PredOT =⇒ ∨
x∈X

[∃fvOTx
.(Cx ∧ Preds′,t′x{{PostOT] PostOTx

}})]}

should be a tautology, and we can have

Predweak =⇒ ∀fvOT .{PredOT =⇒ ∨
x∈X

[∃fvOTx
.(Cx ∧ Preds′,t′x{{PostOT] PostOTx}})]}

same as before.
Then we need to prove Predweak implies newPredOT . Note that Triple (s, t|Preds,t) is not

a Beginning Triple, means two possibilities:

RR n° 9304

42 Hou & Madelaine & Liu & Deng

• Preds,t is initial value True, but there exist at least one next-Triple (s′, t′|Pred′) of it,
which has just been updated after the beginning, thus Pred′ is not initial value True.

• Preds,t is not initial value True, but the fact that we are calling function UpdatePredicate
to update this Triple, means there exists at least one next-Triple (s′, t′|Pred′) of it, which
has just been updated after the last update of Triple (s, t|Preds,t).

For the first situation, we can derive newPredOT to

∀fvOT .{PredOT =⇒ ∨
x∈X

[∃fvOTx
.(Cx ∧ Preds′,t′x{{PostOT] PostOTx}})]}

and have

Predweak =⇒ newPredOT

And for the second situation, we can collect a set of predicate formula: {Preds′,t′y}y∈Y ⊆
{Preds′,t′x}x∈X , where for any predicate formula Preds′,t′y , it has just been updated after the last
update of Triple (s, t|Preds,t), and we can represent it as Preds′,t′y = oldPreds′,t′y∧newPreds′,t′y ,
where oldPreds′,t′y is the predicate formula before last update of Triple (s′, t′y|Preds′,t′y), and
newPreds′,t′y is the additional predicate formula during updating.

Then, we can derive that

Predweak =⇒ ∀fvOT .
{
PredOT =⇒∨

z∈X\Y
[∃fvOTz

.(Cz ∧ Preds′,t′z{{PostOT] PostOTz
}})]

∨
y∈Y

[
∃fvOTy

.
(
Cy ∧ (oldPreds′,t′y ∧ newPreds′,t′y){{PostOT] PostOTy

}}
)]}

(17)

And we know that Triple (s, t|Preds,t) has been updated before {Preds′,t′y}y∈Y was updated,
and Triple (s, t|Preds,t) satisfies Definition 5.1 after last update. Thus, for any Triple predicate
formula oldPredweak such that

oldPredweak =⇒ ∀fvOT .
{
PredOT =⇒∨

z∈X\Y
[∃fvOTz

.(Cz ∧ Preds′,t′z{{PostOT] PostOTz
}})]

∨
y∈Y

[
∃fvOTy

.
(
Cy ∧ oldPreds′,t′y{{PostOT] PostOTy

}}
)]}

we know that

oldPredweak =⇒ Preds,t

And according to basic rule of first order logic, we can derive following from formula 17:

Predweak =⇒ ∀fvOT .
{
PredOT =⇒∨

z∈X\Y
[∃fvOTz

.(Cz ∧ Preds′,t′z{{PostOT] PostOTz
}})]

∨
y∈Y

[
∃fvOTy

.
(
Cy ∧ oldPreds′,t′y{{PostOT] PostOTy

}}
)]}

Inria

Symbolic Bisimulation for Open and Parameterized Systems 43

thus, we know that

Predweak =⇒ Preds,t

and recall the structure of newPredOT in Formula 16, finally we can derive that

Predweak =⇒ newPredOT

As the same reason we used during proving Beginning Triples, we proved that, after applying
any Triple (s, t|Preds,t), which are not a Beginning Triple, to function UpdatePredicate, if we get
the result (s, t|newPreds,t), then Triple (s, t|newPreds,t) satisfies the Definition 5.1.

Thus, in summary, we proved all the Triples in generated StrFH-Bisimulation satisfy the
Defintion 5.1, thus Theorem 5.3 holds.

RR n° 9304

44 Hou & Madelaine & Liu & Deng

D Check StrFH-Bisimilar

D.1 Proof of Algorithm Correctness

In this section, we will prove that the StrFH-Bisimilar checking algorithm is correct, which is
formally expressed by Theorem 5.5.

Proof. Suppose we inputting two structural open automata A1 and A2 into the algorithm, if the
result of algorithm is True, means for the Triple set R we generate by calling GenerateWeakest-
StrFH, after deleting all unsatisfiable Triples in R, the new Triple Set Rrefined we got still
contains intial Triple (init1, init2|Predinit). And what we want to prove is: A1 and A2 are
StrFH-Bisimilar.

As we mentioned previous section, function GenerateWeakestStrFH will generate a Triple Set
R, where R is definitely a StrFH-Bisimulation between A1 and A2.

Thus, the key point is to prove that Rrefined is still a StrFH-Bisimulation between A1 and
A2. If it is, Rrefined is the StrFH-Bisimulation which meet the definition of StrFH-Bisimilar,
means A1 and A2 are StrFH-Bisimilar.

Let Triple (s, t|Preds,t) be any Triple in Rrefined. For any open transition OT starting from
s

OT = ···
βj∈J

′

j , P redOT , PostOT

s
α−→ s′

we can find a set of open transitions {OTx}x∈X , where for any open transition OTx in this set,
we have

OTx =
β
j∈J′

x
j , P redOTx

, PostOTx

t
αx−−→ t′x

and there exist a corresponding Triple (s′, t′x|Preds′,t′x) in R.
And through same method, we can find another set of open transitions {OTy}y∈Y , which

for any open transition OTy in this set, exist a Triple (s′, t′y|Preds′,t′y) in Rrefined. Obviously,
{OTy}y∈Y ⊆ {OTx}x∈X

We can construct the following proof obligation po from OT and {OTy}y∈Y :

∀fvOT .{Preds,t ∧ PredOT =⇒∨
y∈Y

[∃fvOTy
.(∀j ∈ J ′.βj = βjy ∧ α = αy

∧ PredOTy
∧ Preds′,t′y{{PostOT] PostOTy

}})]} (18)

and we want to prove that the above formula is a tautology.
Due to the fact that R is a StrFH-Bisimulation between A1 and A2, we know that proof

obligation generated from OT and set of open transitions {OTx}x∈X

∀fvOT .{Preds,t ∧ PredOT =⇒∨
x∈X

[∃fvOTx
.(∀j ∈ J ′.βj = βjx ∧ α = αx

∧ PredOTx ∧ Preds′,t′x{{PostOT] PostOTx}})]}

Inria

Symbolic Bisimulation for Open and Parameterized Systems 45

is a tautology. And we can derive this formula to

∀fvOT .
{
Preds,t ∧ PredOT =⇒∨

y∈Y

[
∃fvOTy

.(∀j ∈ J ′.βj = βjy ∧ α = αy

∧ PredOTy
∧ Preds′,t′y{{PostOT] PostOTy

}})
]

∨
∨

z∈X\Y

[
∃fvOTz

.(∀j ∈ J ′.βj = βjz ∧ α = αz

∧ PredOTz ∧ Preds′,t′z{{PostOT] PostOTz}})
]}

and we know that all the predicate formula Predz∈X\Ys′,t′z
are unsatisfiable, thus we can derive

that:

∀fvOT .
{
Preds,t ∧ PredOT =⇒∨

y∈Y

[
∃fvOTy

.(∀j ∈ J ′.βj = βjy ∧ α = αy

∧ PredOTy
∧ Preds′,t′y{{PostOT] PostOTy

}})
]

∨
∨

z∈X\Y
False

}
is a tautology. It means the formula 18 is a tautology.

Thus, we have prove that for any Triple in Rrefined, any proof obligation generated from it
is always a tautology, means Rrefined is also a StrFH-Bisimulation between A1 and A2.

D.2 Proof of Algorithm Completeness
In this section, we will prove that the StrFH-Bisimilar checking algorithm is complete, which is
formally expressed by Theorem 5.6.

Proof. Compared to proving theorem 5.6, we prefer to prove the Contrapositive of it. That is, for
any two input open automata A1 and A2, as long as the problem is decidable by our algorithm
and the output is False, then A1 and A2 are not StrFH-Bisimilar.

Suppose we input two open automata A1 and A2 into the algorithm, and states init1 and
init2 are initial states of A1 and A2 respectively. If the result of algorithm is False, it means we
generate a Triple set R by calling GenerateWeakestStrFH and in Triple (init1, init2|Predinit) ∈
R, the predicate formula Predinit is unsatisfiable. And what we want to prove is: A1 and A2

are not StrFH-Bisimilar.
Considering that if we suppose A1 and A2 are StrFH-Bisimilar, means there exist a StrFH-

Bisimulation Rweak between A1 and A2, such that there exist a Triple (init1, init2|Predweak)
in Rweak and Predweak is satisfiable. We know that Predinit is unsatisfiable, thus Predweak is
weaker than Predinit. But from Theorem 5.3, we know Triple set Rweak couldn’t be a StrFH-
Bisimulation between A1 and A2, contradictory with assumption.

Thus, we know that as long as the algorithm outputs False, then A1 and A2 are not StrFH-
Bisimilar.

RR n° 9304

46 Hou & Madelaine & Liu & Deng

Figure 4: The two open automata

D.3 Running Example
In this section, we will provide the open automata in figure 4 above as a running example for
the Check StrFH-Bisimilar algorithm.

Let us naming the first automaton as A1 and second one as A2. After accepting A1 and A2,
algorithm will provide A1 and A2 as argument to function GenerateWeakestStrFH to generate
the weakest StrFH-Bisimulation. Obviously, it will first call function PushReachableStatePairs
and initialize the StatePair’s stack(right side is top of stack):

StateStack =@ (T1, S1) @ (T2, S1)

and construct a initial Triple Set:

TripleSet = {(T1, S1|True), (T2, S1|True)}
Then, we pop the first element from StateStack and get StatePair (T2, S1), and call sub-

function UpdatePredicate to update corresponding Triple (T2, S1|True).
During updating, we first consider the open transition starting from state T2. There are

only one open transition from T2, thus we will only generate one proof obligation from this side.
Recall the form of proof obligation in definition is:

∀fvOT .{Preds,t ∧ PredOT =⇒∨
x∈X

[∃fvOTx
.(∀j ∈ J ′.βj = βjx ∧ α = αjx

∧ PredOTx
∧ Preds′,t′x{{PostOT] PostOTx

}})]}
thus we will generate the following proof obligation

∀a2.{True ∧ True =⇒
False

∨
False

∨
[∃b2.(a2 = b2 ∧ a2 = b2 ∧ s = 1 ∧ True)]} (19)

Inria

Symbolic Bisimulation for Open and Parameterized Systems 47

Noting that although there are three open transitions starting from S1, but open transition ot′1
and ot′2 have different activated holes with ot3, thus atomic formula ∀j.βj = βjx of them won’t
be satisfied, the corresponding formula are represented by False.

Moreover, the first atomic formula a2 = b2 is generated according to the atomic formula
∀j.βj = βjx , and the second atomic formula a2 = b2 is generated according to the atomic
formula α = αx.

We know that formula 19 is not a tautology, thus we need to update predicate of Triple
(T2, S1|True) to a new predicate Pred2,1. After removing the repeated atomic formula, we will
have following:

Pred2,1 = ∀a2.{∃b2.(a2 = b2 ∧ s = 1)}

and modifying name of bound variables to make it more readable and avoid conflict, we can
have:

Pred2,1 = ∀a′.{∃b′.(a′ = b′ ∧ s = 1)}

But for now, updating of Triple (T2, S1|Pred2,1) is not finished. Consider the other side of
Triple, there are three open transitions starting from S1, means it will construct three proof
obligation. First we construct the proof obligation for ot′1:

∀b1.{∀a′.[∃b′.(a′ = b′ ∧ s = 1)]

∧ s = 0 ∧ ∀y.[b1 6= δ(y)] =⇒ False}

It’s easy to see, due to the fact that ot′1 have a different activated hole with ot3, the right side of
"Implication" operator can be represented by False.

But the above formula is still a tautology, because the conflict of s = 1 and s = 0 on the
left side of "Implication" operator, the above formula can be derived to False =⇒ False. And
similarly, the proof obligation for ot′2 also can be derived to False =⇒ False.

Finally consider the proof obligation constructed by ot′3, we have:

∀b2.
{
∀a′.[∃b′.(a′ = b′ ∧ s = 1)] ∧ s = 1 =⇒

∃a2.
{
b2 = a2 ∧ b2 = a2 ∧ True ∧ ∀a′.[∃b′.(a′ = b′ ∧ s = 1)]

}}
which is obviously a tautology.

Thus, the updating for Triple (T2, S1|Pred2,1) is finished. For this moment, we have StatePair’s
stack as following:

StateStack =@ (T1, S1)

and Triple Set as following:

TripleSet =
{(
T1, S1|True

)
,
(
T2, S1|∀a′.{∃b′.(a′ = b′ ∧ s = 1)}

)}
Due to the fact that Triple (T2, S1|True) is updated to (T2, S1|Pred2,1), we need to push the

pre-StatePair of (T2, S1) into the stack. It’s easy to see that both (T2, S1) and (T1, S1) are the
pre-StatePair of (T2, S1), and (T1, S1) is already in the stack. So after pushing, the StatePair’s
stack is becoming following:

StateStack =@ (T1, S1) @ (T2, S1)

RR n° 9304

48 Hou & Madelaine & Liu & Deng

again.
Pop the top element in stack, we will get (T2, S1) again, thus we need to update Triple

(T2, S1|Pred2,1) one more time. It’s easy to see that all the proof obligations of it are already
tautology, thus the predicate of it won’t be changed after this updating, and we don’t to push
any thing into stack this time.

Then we will pop top element once again, get StatePair (T1, S1), and call function UpdatePred-
icate to update Triple (T1, S1|True).

There are two open transitions starting from T1, thus we will need to construct two proof
obligation from T1 side. First we construct proof obligation from ot1, and we will have following
proof obligation:

∀a1.
{
True ∧ ∀x.[a1 6= δ(x)] =⇒

∃b1.{a1 = b1 ∧ a1 = b1 ∧ s = 0 ∧ ∀y.[b1 6= δ(y)] ∧ True}∨
False

∨
False

}
it’s not a tautology, thus we will update predicate of Triple (T1, S1|True) to Pred1,1 where:

Pred1,1 = ∀a1.
{
∀x.[a1 6= δ(x)] =⇒

∃b1.{a1 = b1 ∧ s = 0 ∧ ∀y.[b1 6= δ(y)]}
}

rename the bound variables, we will have:

Pred1,1 = ∀c′.
{
∀x′.[c′ 6= δ(x′)] =⇒

∃d′.{c′ = d′ ∧ s = 0 ∧ ∀y′.[d′ 6= δ(y′)]}
}

And from open transition ot2, we can also construct a proof obligation like following:

∀x1.
{
Pred1,1 ∧ True =⇒ False

∨
∃y1.

{
δ(x1) = δ(y1) ∧ acc(x1) = acc(y1) ∧ δ(x1) = δ(y1)

∧ s = 0 ∧ ∀a′.{∃b′.(a′ = b′ ∧ s = 1)}{{(s← 1)}}
} ∨

False
}

it is also not a tautology. According to the updating rule, the predicate of Triple (T1, S1|Pred1,1)
will be updated to:

∀c′.
{
∀x′.[a1 6= δ(x′)] =⇒

∃d′.{c′ = d′ ∧ s = 0 ∧ ∀y′.[d′ 6= δ(y′)]}
}∧

∀x1.
{
True =⇒ ∃y1.{δ(x1) = δ(y1) ∧ s = 0}

}
We’ve finished all the proof obligation from T1 side. From the other side, there are three

open transitions starting from S1, and will construct three proof obligation. But all these three
proof obligation are tautology, thus we won’t show the detail of them.

Finishing the updating of Triple (T1, S1|True), and due to the fact that it’s predicate has
been changed, we need to push the pre-StatePair of (T1, S1) into stack. The only pre-StatePair
of it is itself, thus we will have following situation after that:

StateStack =@ (T1, S1)

TripleSet =
{

(T1, S1|Pred1,1), (T2, S1|Pred2,1)
}

Inria

Symbolic Bisimulation for Open and Parameterized Systems 49

Pop the StatePair (T1, S1) again, and all the proof obligation for Triple (T1, S1|Pred1,1) are
tautology. Thus the StateStack become empty, and the function terminate, we have the Triple
Set following:

TripleSet =
{

(
T1, S1 | ∀c′.

{
∀x′.[a1 6= δ(x′)] =⇒

∃d′.{c′ = d′ ∧ s = 0 ∧ ∀y′.[d′ 6= δ(y′)]}
}∧

∀x1.
{
True =⇒ ∃y1.{δ(x1) = δ(y1) ∧ s = 0}

})
,
(
T2, S1 | ∀a′.{∃b′.(a′ = b′ ∧ s = 1)}

)}
we know that Triple Set is the weakest StrFH-Bisimulation between A1 and A2, and both the
predicate formula in two Triple are satisfiable. Thus it’s easy to see that A1 and A2 are StrFH-
Bisimilar.

RR n° 9304

RESEARCH CENTRE
SOPHIA ANTIPOLIS – MÉDITERRANÉE

2004 route des Lucioles - BP 93
06902 Sophia Antipolis Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Background
	Notations
	Term algebra
	Substitutions
	Valuation

	Open Automaton
	Semantic Open Automata
	FH-Bisimulation

	StrFH-Bisimulation
	StrFH-Bisimulation
	Expansion
	Correct Correspondence
	Complete Correspondence
	Running Example

	Checking Algorithm
	Checking Algorithm
	Traverse Triples
	Generate and Verify Proof Obligation

	Correctness and Termination
	Correctness
	Termination

	Weakest StrFH-Bisimulation and StrFH-Bisimilar Automata
	Generate Weakest StrFH-Bisimulation
	Sub-Functions
	Weakestness

	Checking StrFH-Bisimilar
	Algorithm Correctness
	Correctness
	Completeness

	Conditional Termination
	Running Example

	Related Work
	Conclusion
	Expansion Function
	Correspondence between StrFH-Bisimulation and FH-Bisimulation
	Proof of Correctness
	Proof of Completeness
	Running Example for StrFH-Bisimulation

	Generate Weakest StrFH-Bisimulation
	Detail of sub-functions
	Proof of Weakestness

	Check StrFH-Bisimilar
	Proof of Algorithm Correctness
	Proof of Algorithm Completeness
	Running Example

