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Abstract

Broadly used and applied in many domains, Hidden Markov Mod-

els are a well established formalism, both in computer science and

statistics. Among other reasons, they owe their popularity to a fast

fitting method, i.e., the Baum-Welch algorithm, allowing to adjust

models to a variety of input data. Using expectation and maxi-

mization phases, BW assures an increase to the model likelihood

at every iteration. Yet, to initialize the sequence of expectation-

maximization (EM) steps, it is a standard procedure to start the BW

algorithm from randomly generated values. We propose a, simple

and fast, deterministic pre-fitting approach which derives the BW’s

initial values directly from the input data.

1 Introduction

Due to their relative simplicity and power to represent com-

plex systems, Hidden Markov Models (HMMs) are one of

the most widely used stochastic formalism for time series

[31]. HMMs owe their flexibility and their ease of appli-

cation to a well-developed methodological framework, in-

cluding a model fitting algorithm. The so-called Baum-

Welch algorithm (BW) can be considered a special case of

the Expectation-Maximization (EM) algorithm (Section 2).

In essence, it derives the maximum likelihood estimates for

the parameters of a given model, i.e., the best fit for the in-

put data in the sense that the probability to observe the data

given the model parameters is maximal. This is achieved by

an iterative procedure guaranteed to increase the value of the

likelihood at each iteration and such procedure finds a local

maximum; therefore, offering a model solution even when

the likelihood is untraceable or too costly to maximize di-

rectly. However, as well as EM algorithms in general, BW

tends to be sensitive to its input parameters [6][9].

Several extensions have been suggested to overcome the

flaws of EM [9][18][13][29]. They are based on combi-

nations of algorithms and techniques such as classification,

randomization or more complex stochastic additions. Oth-
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ers, focused on improving the BW, have different approaches

performing changes within the algorithm, which can also

deal with possible convergence problems [4][26][16] [20].

Several extensions have been suggested to overcome the

flaws of EM [9][18][13][29]. They are based on combi-

nations of algorithms and techniques such as classification,

randomization or more complex stochastic additions. Oth-

ers, focused on improving the BW, have different approaches

performing changes within the algorithm, which can also

deal with possible convergence problems [4][26][16] [20].

Our solution focuses on the initialization only. It keeps

the BW’s structure and adds a pre-fitting deterministic step,

which by avoiding bad initial parameters tends to obtain

higher likelihood values in the first iteration, thus reducing

the number of iterations needed to find a local maximum,

which leads to a fast model fitting (Section 3). Although the

difference is minimal, the possibility of deriving the initial

values directly from the input data can be interesting for

applying these models into different scenarios.

Since an HMM is usually used having serial data as its

input [31], the idea is to use a deterministic discretization

technique for time series prior to the actual model fitting.

From this approximate description of the original observa-

tions, we then derive initial parameters which are fed into

BW. These parameters are, in general, reasonably close to

a local maximum. Thus, the combination of the parame-

ter’s selection step, in combination with the BW algorithm,

is more likely to reduce the number of iterations to maxi-

mize the parameters, therefore leading to a local maximum

likelihood faster than the most traditional approach, which is

using random numbers to initialize the parameters.

Our approach is based on a Piecewise Aggregate Ap-

proximation (PAA) technique, which is used in the algorithm

(Figure 1, Piecewise Expectation). The use of PAA with EM,

Piecewise Aggregation EM (PAEM), has advantages regard-

ing fitting speed and practicality due to its simpler set of pa-

rameters.



Figure 1: PAEM, schematic representation

Finally, we performed experiments and measures to

compare the traditional use of BW against PAEM (Section

5). The main contribution of our approach is to reduce the

time needed to fit HMM models. However, this is performed

with a pre-fitting without modifying the original algorithm,

which is a different approach than the others (Section 2.1).

This pre-fitting can also be seamlessly used on time series

data, reducing the modeling time.

2 Baum-Welch

The Baum-Welch algorithm (BW) is a version of EM algo-

rithm for HMMs [5]. The goal is to estimate the parameters

of an HMM given an input data [31], in the statistics litera-

ture, commonly described as observations. This goal implies

that unlike a manual fitting approach, the initial distribution

δ , the transition probability matrix Γ and the emission proba-

bilities λ , are not estimated by the modeler observations but,

automatically, by the model itself.

The BW algorithm works iteratively by successive max-

imizing local approximations of the likelihood function. It

is guaranteed to maximize the likelihood at each iteration.

EM alternates between two steps. The E-step computes the

conditional expectation of the hidden states given the obser-

vations and the model current parameters, Γ, δ and λ . These

computations are based on the complete data log-likelihood,

which is basically the natural logarithm of the likelihood

function to avoid the underflow problem [14]. In the M-step,

the expectations are maximized according to its parameters.

2.1 Variants and derivations There are several variants

and extension for the standard EM algorithm, also described

as Generic EM (GEM). This section concisely shows an ex-

tensive literature review for the EM variants and derivations.

We briefly classify the GEM-based algorithm, in order to es-

tablish their relations and differences compared to our ap-

proach.

We can globally classify these variants into determin-

istic and stochastic versions. Among the deterministic

versions, Classification EM (CEM) [9], Accelerated EM

(AEM) [18], Aitken’s accleration (AA)[13], [25], Expec-

tation Conditional Maximization (ECM)[29], ECM Either

(ECME) [23], Space-Alternating Generalized EM (SAGE)

[15], Parameter-Expanded EM (PX-EM) [24].

The stochastic versions include Stochastic EM (SEM)

[8], Stochastic Approximation type EM (SAEM) [8], Data

Augmentation algorithm (DA) [27] and Monte Carlo EM

(MCEM) [30]. Although many of them are focused on

Gaussian mixture models, all these variants have slightly

different approaches to solving slightly different problems.

A common problem is the EM step sensitiveness to the initial

parameters [6]. Bad initial parameters will lead to more

EM steps (iterations), which are necessary to find the local

maximum likelihood.

All these GEM-based algorithms have in common the

use of an iterative MLE or Recursive MLE (RMLE). How-

ever, not all fitting algorithms are based on the MLE. Some

are based on Minimum Model Divergence (MMD) and Min-

imum Prediction Error (MPE), which can be extended to

Recursive Prediction Error (RPE) as a general recursive

stochastic algorithm [3]. MMD, in few words, can be de-

scribed as a combination of MLE and the minimization of

parameter’s divergence using entropy measures. Also, Min-

imum Prediction Error (MPE) which consists of measuring

an HMM error output prediction and provide an updated es-

timation for the HMM parameters [11]. Among the algo-

rithms, using MPE we can emphasize Collings et al., [11]

and LeGland and Mevel [21]. Using MMD we can empha-

size Garg and Warmuth [17].

Despite the uses of MMD and MPE, we focus on the

classic MLE, which is commonly used for HMMs. So far,

works based on MLE are the following: [4][26][16][20][7].

However, our approach does not intend to create an entirely

new algorithm nor improve it within itself. Instead, we

perform a pre-fitting to avoid the BW sensitiveness, an

approach used by some EM variants. Also, we do not intend

to create an optimal algorithm, but a better version of the

traditional BW, which aims to be a practical option that does

not suffer from the same flaws of a GEM, which as well

as BW, is strongly dependent on its initial parameters [9].

Therefore, the convergence time is directly dependent on

how good are these initial conditions.

3 PAEM

The efficiency of fitting HMMs can be improved by com-

bining the EM algorithm with data mining techniques such

as classification methods or the K-means algorithm [9][31].

These techniques are used to choose the initial parameters

intelligently, thus reducing the impact of the EM/BW sensi-

tiveness to them.

As showed in the Section 2.1, there are many algorithms

which have been derived from the generic EM. However,

they are based on different techniques and adapted for dif-

ferent situations. Here, we adapt and combine a Piecewise



Aggregation technique for time series to represent the orig-

inal observations and perform a pre-fitting for the BW al-

gorithm, calling this extension the Piecewise Aggregation

EM (PAEM). PAEM profits from the simplicity of the PAA

method and the dynamism of a SAX [22] inspired method,

which can be applied for different kinds of distributions con-

cerning time series. These characteristics allow us to derive

meaningful initial parameters by a fast approximation of the

data, avoiding failing on dimensionality problems, such as a

fail to converge, which can be given by higher dimensions;

or imprecise representations, which can be lead by a strong

dimensionality reduction.

PAEM’s initial approximation enhances the initial pa-

rameters Γ and λ , making them close to the global max-

imum, which leads to a faster fitting compared to the tra-

ditional random initialization. This is due to the need of

a single initialization to maximize the parameters and to a

first better fitting, which reduces the sensitiveness effect and

tend do avoid EM iterations. Fig. 1 illustrates the general

idea: a pre-fitting in a phase called piecewise expectation

prior to the traditional BW. Two of three parameters are pre-

viously updated, Γ and λ , which together with the steady

state, stored in δ , tends to lead to a first better likelihood.

The piecewise expectation cost is ϑ(T ), which is lower than

forward-backward procedures ϑ(N2T ), briefly described in

the previous section. Therefore, once a pre-fitting saves one

iteration, the final computational cost should be lower.

3.1 Piecewise Expectation Piecewise Aggregate Approx-

imation (PAA) is a technique to reduce data dimensional-

ity through discretization. It has been widely applied in

the context of time series analysis. Despite being simple

and intuitive, PAA has been shown to be as powerful as

more sophisticated dimensionality reduction techniques such

as Discrete Fourier Transform [1], Discrete Wavelet Trans-

form [10], Singular Value Decomposition [19].

To perform dimensionality reduction, PAA creates a

discrete version of the original TS in w blocks. These blocks

are usually a division of the length of the TS. In our case, the

faster mapping characteristic is especially attractive. Since

we intend to reduce the total time necessary to fit a model,

more robust approaches might be too costly for a pre-fitting

procedure.

Given a time series S with length n, PAA(S) is defined

as a sequence PAA(S)= {µ(B1,µ(B2), ...,µ(Bw))}, where µ
is the mean, w is the maximum number of blocks and Bi is a

block in the index i, being (1 ≤ i ≤ w). The mean of a block

is given by the Equation 3.1. If the division n/w results in

a float number, the result is truncated and another block is

made of the remaining part of the series.

µ(Bi) =
w

n

n
w i

∑
j= n

w (i−1)+1

S j(3.1)

Despite its simplicity, PAA is enough to start an appro-

priated representation of a given series. We use it as a map-

ping to set up variables and then calculate Γ through MLE.

Other PAA advantage is that it has only one parameter and

due to it being mainly used to reduce a time series dimen-

sionality, it is not critical for our problem. Therefore, given

a set of observations X = (x1,x2, ...,xT ), PAEM only needs

one parameter, the model number of states n. It starts by

getting a sequence of symbolic values φ , with range n, that

better describes X . The total number of Blocks is equal to

w = T/m. Thus, we identify the approximation sequence

with φ = (µ(B1),µ(B2), ...,µ(Bw)).
The number of states n defines the division of the values

µ(Bi). This generates the λ values of the HMM. Thus,

vector φ has a sequence of w elements composed by n

symbols. For instance, in φ = {1,2,3,1,2,3,2,2}, w = 8

and n = 3. Now, we can extend the whole approximation

process to a set of equations.

Vector φ is directly used to get the probabilities and set

the transition probability matrix, Γ, which together with λ
are the two necessary parameters for an HMM model since

δ can be initiated null and then filled with the steady state.

Due to this solution be directly related with PAA, we call this

part of the algorithm, “Piecewise Expectation".

To generate Γ, we use the elements of φ (t), 1 ≤ t ≤ w

and 1 ≤ i, j ≤ n. The non-normalized matrix Γ is filled by

the cumulative sum of the probability to find an element φ
(t)
j

just after an element φ
(t)
i .

Γ(i, j) =
T

∑
t=2

P(φ
(t)
j |φ

(t−1)
i )(3.2)

Different than Γ, the elements of λ are directly extracted

from the piecewise approximation procedure. The generated

values are actually close to the BW’s ones. This small

distance between the pre-fitted and the pos-fitted value is

constantly observed in our experiments.

4 Experiments and Results

Our experiments aim to measure and compare how fast

the local maximum likelihood is achieved through BW and

PAEM. In other words, to prove the efficiency of our algo-

rithm in finding the best model fit. To do so, we used ran-

domly generated and randomly chosen time series from Data

Market [12]. We separated our tests in three steps. First, to

compare the generated maximum likelihood from different

initialization of BW against the PAEM approach. Second,

to detect the number of necessary executions to achieve the

global maximum likelihood; consequently, how long it takes

to achieve the global maximum likelihood. Third, a direct

measurement of the user for PAEM vs BW.

Our tests followed the hypothesis that a human operator

begins with no knowledge about the dataset. In other words,



we consider no previous data mining or machine learning

techniques have been performed. For the last two sets of

test (Section 4.2 and 4.3), the BW initialization followed

the standard strategy [9], it was performed through random

normalized numbers to all parameters. We used 12 different

time series for models ranging from 2 to 4 states. Regarding

these 36 tests, for each BW execution, 50 different seeds

were used. To avoid outliers, the best and the worst 5 were

taken out. From these 40, we used the best, the worst and the

average measurements to compare against PAEM.

4.1 Likelihood Prior to the user time and iteration tests,

we compared the fitness of BW and PAEM with only one

initialization. Since the Expectation-Maximization part is

the same, if the BW parameters are not equiprobable they

should reach the same likelihood. Otherwise, if BW is in-

ferior, it means that not all randomized parameters are good

as an input. If PAEM is inferior, it means that the pre-fitting

fails. Table 1 shows this experiment with BW and PAEM,

where ∗ means that we used an equiprobable λ to initial-

ize the BW. In fact, if the BW’s parameters values are not

equiprobable, it tends to converge to a maximum likelihood.

The problem usually happens when an equiprobable λ or Γ

is given as an input, which is trivial to avoid.

Table 1: Experimental model measurements using random

numbers as parameter initialization.

Model # states mLLk AIC BIC

BW (Equip. λ ) 2 1268.92 2547.84 2560.86

BW 2 635.32 1280.65 1293.67

PAEM 2 635.32 1280.65 1293.67

BW (Equip. λ ) 3 1268.92 2559.84 2588.50

BW 3 510.22 1042.44 1071.09

PAEM 3 510.22 1042.44 1071.09

BW (Equip. λ ) 4 1268.92 2575.84 2625.34

BW 4 471.82 981.65 1031.15

PAEM 4 471.82 981.65 1031.15

Although an equiprobable λ suggests a bad fitting, this

is not true for all scenarios. Despite a tiny improvement, in

some cases, an equiprobable λ retrieved a better likelihood.

For the other datasets, a similar phenomenon occurred in

some models with more than 3 states. This suggests that

a simple condition to avoid an equiprobable parameter may

not be a good solution.

Considering one decimal precision, PAEM reaches a

better likelihood in 3 cases against 2 from the pure BW. Table

2 shows these cases. For all the 36 experiments, PAEM was

better in 17 occurrences against 19 of the pure BW. However

the difference in the vast majority of these cases lies in a nth

decimal precision, which can be seen in Table 2, it represents

a negligible probability.

4.2 Iterations As in the previous section, we started by

checking our hypothesis through experiments using 50 dif-

Table 2: -Log-Likelihood comparison, cases where the dif-

ference exceeds a precision of one float point.

BW PAEM ∆%

210.13 209.71 0.01% favorable to PAEM

740.52 697.38 5.80% favorable to PAEM

773.44 718.20 7.10% favorable to PAEM

471.82 489.84 3.60% favorable to BW

321.55 322.99 0.40% favorable to BW

ferent seeds to BW, excluding the best and the worst 5. From

the 40 remaining we collected the best, the average, and the

worst case concerning the BW initialization and its number

of iterations to reach a convergence. As PAEM generates the

parameters through a deterministic technique, it only needs

one initialization. Figure 2 shows the average scenario. The

other scenarios have a similar behavior.
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Figure 2: Average scenario for the required number of

iterations to find a convergence. Experiments organized

according to the models more favorable to BW (left) to the

ones more favorable to PAEM (right).

In these pictures, we can clearly see PAEM requiring

fewer iterations to find a convergence (right side), while

just in a few cases, the random parameters outperformed

PAEM (left side). Furthermore, these are retrieved from

the experiments described in the Section 4.1, which shows

an equivalent likelihood, between BW and PAEM, for 87%

of the cases. Also, the far most significant scenario which

PAEM performed poorly, loses with a difference of 3.6%

(Table 2, BW=471.8).

Concerning all the results for the ordinary BW; 40 seeds

for all the 12 series and the 2, 3, and 4 states model; the ran-

dom values for BW got an average of 47.4 iterations against

25 from PAEM’s. This shows a significant improvement for

the initial parameters quality against the traditional random

approach. Furthermore, in the vast majority of the tests,

PAEM found a convergence with fewer iterations (Figure 2.

4.3 User Time Since both, BW and PAEM, tend to con-

verge to the same likelihood and the cost to randomize values

to BW is trivial, the real advantage of PAEM lies on a faster



convergence, which is given by fewer iterations derived by a

better likelihood at the first iteration.

We performed time measurements to see how fast each

procedure is in relation with BW. Although the running time

is highly correlated with the number of EM iterations, a

lower running time is the final goal, therefore, a more precise

measure regarding the time actually used by BW and PAEM.

In a standard machine, Intel i5, 2.3GHz, 8GB, a four states

model had an average time of 0.34 seconds running with

PAEM and 1.17 seconds running with BW. This difference

is directly linked with the number of iterations. As described

in the previous sections, in most cases, PAEM’s pre-fitting

tends to avoid at least one iteration of the forward-backward

procedure, which costs ϑ(N2T ), which is more than PAA

ϑ(T ).
The user time spent, from both, had a strong correlation

with their number of iterations. Specifically, BW had a

correlation average of 93% and PAEM 76%. Which can

be explained by the different seeds in BW and the lack of

a precise control considering an ordinary machine running

other applications. Also, PAEM’s pre-fitting has a fixed

running time for series with the same length, which has a

different impact according to the series number of iterations

necessary to find a convergence.

Now, considering the average scenario, we look for

each of the 36 experiments. Thus, the radar showed by

Figure 3, illustrates the total time spent in relation to the

average scenario for each time series. From this figure, we

can clearly see the time percentage difference from each

technique and for each time series. This plot shows the

overall better performance of PAEM, failing in just 6 cases,

which are the time series 1, 10, 16, 21, 24, and 26. However,

a difference in the case 26 is meaningless since the difference

is 0.0004 in favor of BW.

Among these time series, a critical poor performance

was achieved on the time series #1 and #10, which happens

to be the shortest time series in the experiment. Considering

BW and PAEM, respectively, for the first time series, consid-

ering an average case, it required 0.026 and 0.110 seconds.

Time series X10, required, respectively, 0.025 and 0.064 sec-

onds.

Considering larger models, we can verify that PAEM

performed better, in average, for any number of states less

or equal to 22. Further tests are required for larger models.

Finally, we emphasize that, our code was extended from [31]

and they do not have focus on performance. Therefore, the

user time is far from optimal and the difference might be

much less than the observed in our experiments.

5 Discussion

Through exhaustive tests, with different series, we found

PAEM to be faster than BW with its traditional stochastic

initialization. Its performance is due to, usually, fewer itera-
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Figure 3: Radar chart showing the slowest process taking

100% of the time. An average scenario considering the user

time.

tions in the EM procedure. In fact, as shown in Figure 2, in

the vast majority of executions, the convergence is achieved

using a fewer number of iterations than the pure BW. Fur-

thermore, the time needed to the piecewise approximation is

far smaller than one EM iteration.

However, it is important to emphasize the overall bet-

ter performance and that PAEM does not aim to be an op-

timal solution. We focus on a simple alternative to the ini-

tial and usual randomization of parameters. Although there

are other techniques that improve the original BW, PAEM

lies in a simple initialization that is fast and easy to imple-

ment, making it a suitable alternative to performing HMM

fitting. In fact, there are cases where authors related a faster

solution using simpler MLEs [2]. Other techniques such as

the Levenberg-Marquardt algorithm, can be used to maxi-

mize directly the likelihood, which can be faster than EM

approaches [28].

For the future improvements, we shall focus on mea-

suring the initial likelihood and the user time according to

different kinds of data and distributions. PAEM is based on

a simple Piecewise Aggregation technique. It may have a

better global performance if a more advanced technique is

used instead of Piecewise Aggregation. For this reason, we

do not focus on measure the impact of w in its parameters.

In a future work, we can focus on comparisons, such as the

impact of different values of w and more robust techniques,

like SAX [22] and its derivations. However, the time spent

to pre-process the data must be lower than the original one.

Otherwise, the overall performance might decrease. Another

important test is to detect how efficient PAEM scales regard-

ing models with a different number of states.
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