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Abstract. Synthetic modelling and reconstruction of the geometry of
real plants have been a center of attention of research for decades. Due
to the complex architecture and growth pattern of plants, accurate mod-
elling of the plant geometry is an extremely challenging task. Although
realistic modelling of plants are widely studied in the context of computer
graphics research, it also has profound impact on the biological study of
plants. In order to perform various types of simulation studies under dif-
ferent environmental conditions and in understanding the physiology of
plants in more details, synthetic models can be an extremely useful tool.
Synthetic modelling approaches can be broadly categorized into three
types. The first type is the rule based procedural modeling approach,
which does not account the real data into consideration. The second
type of approach (also known as data driven modelling) performs mod-
elling based on the real data obtained from 3D acquisition procedures.
The third type of approach is interactive, which is based on user assis-
tance. In this chapter, we focus on the modelling of the second category
and revisit the recent state-of-the-art techniques performing reconstruc-
tion of plant geometry from real data. The algorithms can be classified
into different interlinked categories, which constitute the general pipeline
of geometry reconstruction in data driven modelling framework. In the
context of biological relevance of different types of techniques, we discuss
about the strengths and limitations of the approaches and the need of
prior botanical knowledge to reconstruct the plant geometry in biolog-
ically feasible manner. Finally, we explore the quantitative assessment
techniques which can be used to measure the quality of the reconstruc-
tion result with respect to the actual data.

Keywords: Geometry Modelling, Reconstruction, Point Cloud, Skele-
ton, Phenotyping, Laser Scan, Data Driven Modelling, Flower Recon-
struction, Quantitative Evaluation.

1 Introduction

Modelling the interesting and complex geometry of plants have been a center
of attention of research for biologists and mathematicians for decades [1, 7]. Nu-
merous approaches have been proposed in order to mathematically model the
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geometrical structure of plants in a robust manner. While one motivation of
studying the plant geometry is to better understand the structure of plants
from mathematical perspective, realistic modelling of plants have become an
active area of research in computer graphics nowadays, in particular due to
the explosion of phenotyping platforms for agronomic research [8]. We are fast
progressing towards intelligent imaging based systems for automated analysis
of different types of phenotypic traits of plants. Due to the non-invasive nature
and automated analysis techniques, imaging based systems are getting extremely
popular. Now we start to be able to reconstruct a full 3D model of a plant from
multiple view images which mimics the original plant, and can extract desired
biological features of the plant in a non-invasive way [9]. Numerous systems have
been proposed to study the effect of different environmental conditions on vari-
ous types of plant species as well as on the genetically modified versions. These
types of systems are extremely useful in order to quantitatively analyze differ-
ent experimental outcomes in the field of crop science research. For example,
one might want to study the effect of different types of lighting conditions on
different genetic modifications of a particular species, the growth pattern of a
plant over certain period, or track a leaf development in order to study the shape
changes over time. With the advent of imaging based technologies, such analyses
are becoming possible in a fully automated manner.

Although the notion of realistic plant model in computer graphics and ani-
mation does not necessarily imply the actual biological relevance of the models
with the real plants, the ultimate goal of synthetic plant modelling is to mimic
the apperance of the original plant, both in terms of geometrical structure and
of the texture realism effect. Synthetic modelling of plants can be beneficial to
broadly two types of research studies. First, this can be a quintessential tool
to perform simulation experiments. Accurate modelling of the plant geometry
can help us to build models which can be used to simulate the behavior of the
actual plant [10]. For example, let’s say we intend to study the mechanical ef-
fect of wind on a particular plant. If we have reconstructed the 3D model of
a plant in such a way that the mathematical representation and interaction of
different organs are well defined in terms of plant dynamics, we can simulate the
effect of wind on different organs and simultaneously can model the behavior
of the plant as a whole in biologically plausible manner. Similarly, we might be
able to simulate the growth of a plant over time from its synthetic model. The
goal is to study specific aspects of the plant behavior in a fully virtual manner
without the need of experimentation with a real plant. One can compare this
with a flight simulator, where the actual flying is virtually simulated without the
expensive process of real flying. Similar type of modelling of chemical bonding
structures are also studied in drug development research. Basically the goal is
to minimize the overhead and luxury of working on a real object, and replace it
with a synthetic model.

Second type of application of synthetic models include quantitative analy-
sis of different types of biological traits of plants. The models can help us to
compute phenotypes such as internode distances, insertion and divergence an-
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gles of individual branches, length and diameter of each branch, extraction of
branching points, etc. in a fully automatic manner. Also, studying properties
like plant growth (e.g. volume, surface area), change of leaf shape, inflorescence
of flowers, etc. is possible with the help of synthetic models. However, one of
the biggest challenges associated with these type of analyses is to accurately
reconstruct the geometry of the plant under consideration. Due to the complex
structure of plants, the problem is extremely challenging. For example, self oc-
clusion results in incomplete or missing data problem, which directly affects the
quality of geometry reconstruction in occluded regions. Also, reconstruction of
very thin branches is a common problem in this context. Various types of com-
puter vision and machine learning algorithms are reported in the literature to
solve these type of problems, but most of the techniques are task specific due to
the lack of robustness and lack of generality to be applied to varieties of plants.
In general, geometry modelling of plants can be broadly categorized into three
types of approaches [29]. The first type of approach is the rule based procedural
modelling approach. This type of approach is based on a set of predefined rules
to define complex objects by successively replacing parts of a simple initial ob-
ject. A classical example of this type of approach is the L-system [1]. Although
rule based procedural approaches have been widely used in plant modelling, it
is hard to incorporate the framework to work on real data and reconstruct the
original plant geometry. Also, the implementation of procedural model is very
cumbersome. However, due to the recent advancements of the implementation
framework of L-system based modelling using high level programming languages,
the approach has become more flexible to implement [2, 31]. The second type of
modelling approach is based on real data (e.g. 2D image or 3D point cloud for-
mat), called data driven modelling. The goal of this type of approach is mostly
focused on the biological relevance of the model to reconstruct the geometry
of the original plant from the input data. Finally, the third type of approach
is based on interaction from the user, and may be used to refine the result of
previous two approaches [3]. This approach is mostly used in computer graphics
and animation applications, where the user can interactively edit the geometry
according to the need of the aplication.

In this chapter, we focus on the state-of-the-art techniques to reconstruct
the plant geometry from real data (data driven modelling techniques). A large
number of works are reported in the literature focusing on different aspects
of data driven modelling techniques. We observe that these techniques can be
clustered into different categories. Each of these categories constitute a block
of a pipeline, which can be thought of as a general sequence of steps for data
driven modelling. In a broader sense, the pipeline consists of the following main
building blocks: 1) Raw point cloud extraction, 2) Connectivity graph formation,
3) Initial skeleton construction, 4) Skeleton refinement, 5) Organ surface and
volume reconstruction. The pipeline can be visually represented as in Figure
1, where each circle represents a building block (or a state). In general, many
of the techniques follow all the steps in the pipeline in a sequential manner,
and some algorithms skip certain steps. Basically the underlying idea is that,
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the pipeline can be followed only in the forward direction, and skipping states
is allowed. The possible transitions are indicated by the arrows in the figure.
The states are sequentially numbered at the bottom, and we use the following
convention to denote the steps followed by a particular algorithm. For example,
if an algorithm takes raw point cloud data as input, constructs a graph from the
data, followed by skeletonization of the input data using the graph, and finally
reconstructs a particular organ of the plant, we denote the transition sequence
as, 1→ 2→ 3→ 5. In the next section we discuss about the building blocks of
the pipeline with respect to the recent state-of-the-art techniques.

Fig. 1: The general pipeline of data driven modelling. Each circle represents a
block of the pipeline and the arrows represent possible transitions of the work-
flow.

2 Data Driven Modelling of Plants

2.1 Step-1 : Raw Point Cloud Data Extraction

A point cloud is a set of data points, which are the 3D point coordinates at
the surface of an object. Point clouds can be generated by different types of
techniques. One of the primitive techniques for point cloud generation was the
manual digitization strategy by contact [4], where the user-clicks on the surface
of the object (plant) are recorded and stored as point cloud format. In recent
years, two main techniques are widely used in generating point cloud data: back
projection technique to generate 3D data from a sequence of overlapping 2D
images around the plant ([5, 6]), and laser scanner technology to record surface
point coordinates at the surface of an object ([32–34]). While 2D image based
techniques generate 3D data using structure from motion techniques, laser scan-
ning is an efficient way to obtain 3D data directly by scanning. Laser scanning is
a state-of-the-art technology to perform non-invasive 3D analysis of plant phe-
notyping. Depending on the need of the application, the resolution of the point
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spacing in the generated point cloud is possible to control. The 3D model of the
plant can be generated by registering multiple overlapping views of overlapping
scans.

2.2 Step-2 : Connectivity Graph Formation

The raw point cloud data does not contain any topological connectivity informa-
tion of the points. One of the very first step of geometry reconstruction consists
of constructing a graph from the raw point cloud data. A typical way to construct
the graph is to connect the points by nearest neighbour strategy (e.g. kd -tree
search). The graph is also known as Riemannian graph. The points represent
vertices of the graph, and the edges are denoted by connection of the vertices.
The edge weight is determined by the distance between the vertices connected
by the edge. Different types of distance measures can be used (e.g. Euclidean
distance, geodesic distance, etc). Graphs having edge weights are called wighted
Riemannian graph. Riemannian graph structure is used as a basis of geometry
reconstruction by many techniques [13, 14, 18].

2.3 Step-3 : Initial Skeleton Construction

A skeleton is a thin structure obtained from an object shape, which encodes
the topology and basic geometry of the original object. Skeletons are compact
representation of the shape and is extremely useful in various types of shape
analysis tasks [11]. Say P ∈ R3 is a point set. Let’s define a ball of radius r
centered at p ∈ P as S(p) = {q ∈ R3, d(p, q) < r}, where d(p, q) is the distance
between p and q in R3. A maximal ball is defined as a ball S(p) ⊂ P which is not
completely included in any other ball included in P. A general way of defining
skeleton is that, a skeleton is the set of centers of all maximal balls included in
P. Extracting accurate skeleton from a shape is an extremely challenging task.
By accurate, it means that ideally the skeleton should pass through the exact
centerline of the shape. In other words, within a local neighbourhood of the
shape, the distances from the skeleton point to the enclosing shape boundaries
should be the same. Although 2D skeleton extraction is a well studied problem
in the literature, 3D skeletonization of point cloud data is still an open problem.
The task is even more challenging in the case of plants, because of their complex
geometry. Moreover, the problem of non-uniform point density and missing data
make the task extremely complicated.

Different types of techniques have been proposed for skeleton extraction from
point cloud data. Some of these approaches are based on Riemanian graph con-
struction, and some of them compute skeleton from the point cloud data along
with the sequence of 2D images. While these skeletons are constructed in the
form of a graph, there might be loops in the graph due to the factors like close
branches, missing data, etc. We discuss about recent advancements of skele-
tonization techniques along with their strengths and limitations.
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A semi-automatic method of skeletonization by Xu et al. [13] is one of the
notable work on skeleton extraction from point cloud data. The workflow tran-
sition sequence is 1 → 2 → 3 as in Figure 1. The goal is to reconstruct the
original plant model along with completing the missing information caused by
self occlusion. Initially, assuming that the root of the tree is located at the bot-
tom, all the points in the scanned data are connected as a weighted Riemanian
graph, where the weight is defined as the edge length. Then the shortest path
from each vertex in the graph to the root vertex are computed using Dijkstra’s
shortest path algorithm. The whole point cloud is then clustered based on the
quantized shortest path lengths and graph adjacency information. The center of
each cluster is assigned as a skeleton point (node), which are connected to each
other according to their spatial locations. This idea produces a basic skeleton of
the plant in the form of a graph. However due to occlusion and missing data,
there might exist components (or sub-graphs) which are not connected to the
main skeleton. In order to solve this problem, a breadth first traversal is initiated
from the root node. During the traversal, a cone of certain angle is projected
along the direction vector from the parent node to the current node. This process
is performed for every node of the graph. If any point other than the nodes of
the skeleton graph falls within the current volume of the cone, it is attached to
the current node of the skeleton graph and becomes a node of the graph. Then
the above mentioned process is repeated by considering newly added point as
the root node and searching for more points closer to the current point. This
ensures that disconnected parts are joined to the main skeleton in a meaningful
way. This approach is reported to work well on deciduous trees (when the trees
shed all the leaves) in a qualitative/visual evaluation manner. In order to extract
the skeleton in the presence of leaves, some heuristics are used to synthesize the
skeleton near the tree crown where most of the leaves are located. Finally, para-
metric curve smoothing (Hermite curve) is performed to incorporate “smooth”
transition at the branching points to make the skeleton more realistic.

One problem associated with the technique is that, the skeleton points do
not maintain the centerdness criteria, and results in a zigzag structure near
the branching points (we discuss this issue later). This type of result does not
support the biological relevance of the skeleton (although visually it might look
good at a distance), and leads to incorrect geometry reconstruction by the data
driven modelling pipeline. Also, the skeleton might contain loops resulting from
close branches of the tree (this problem is later handled by Yan et al. [14] by
transforming the skeleton graph into a tree structure using some heuristics).

Motivated by these type of problems, Bucksch et al. [22] proposed a skele-
tonization technique to compute tree parameters with the emphasis on botani-
cal accuracy of measurements of the parameters (height, length and diameter of
branches, etc). Instead of constructing Riemmanian graph from discrete points,
the method exploits the voxel structure and applies some local heuristics to in-
fer the connectivity of skeleton points (the state transition sequence is 1 → 3
in Figure 1). Initially the input point cloud is organized in an octree structure
by subdividing the point cloud into octree cells, where each cell contains cer-
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tain number of points. Then a graph is formed from the octree representation
by forming vertices from the cells and connecting the vertices by edges using a
nearest neighbour strategy. However, simply considering the center of gravity of
each octree cell as graph vertex and joining the vertices by edges might lead to
incorrect tree topology because of the inevitable noise and varying point den-
sity of typical real world laser scans. In order to solve this problem, a heuristic
method is used. For any two adjacent octree cell centroids and the midpoint of
the line connecting them, three planes are passed through these points, perpen-
dicular to the line joining the points. The median values of the squared distances
of the points in each cell to the corresponding planes (d1 and d2 respectively),
and also the same for all the points to the intersecting plane is computed (d3).
Then based on a threshold on these values, the inference is made wheather the
cells are connected to each other. The idea is that, if d3 is sufficiently smaller
than d1 and d2, then it is likely that the points in the cells are more “scattered”
and there is a connection between the two cells (unlike the case where the points
are “clustered” around a small neighbourhood in each cell, and thus it is likely
that the cells are independent of each other). Finally, the centeredness of the
skeleton is achieved by embedding the octree graph into the point cloud by a
graph embedding technique [23]. Experimental results demonstrate the effective-
ness of the technique on bad sampling conditions and accurate skeleton geometry
reconstruction for various types of cases. However, the method is based on many
heuristic assumptions and less robust to be useful for varieties of applications.

On a different type of approach, particle flow based techniques build the
skeleton from the sequence of input photographs (state transition sequence 1→ 3
in Figure 1). The motivation of particle simulation based approach is based on
the process of transport and exchange of energy, water and sustenance between
roots, branches and leaves of a plant [15, 16].

Initially a standard segmentation algorithm is used to extract the tree from
the background of the input photograph. Then some random (or user assisted)
seed pixels are chosen, which are denoted as particles. By choosing the lowermost
pixel at the root of the tree as target point, a path is traced starting from each
seed pixel to the target. The path is created by standard Livewire segmentation
technique [17] which is based on Dijkstra’s shortest path algorithm using the edge
information of the image. This idea is motivated by the fact that each particle
is assumed to contain some energy, and the transportation rule directs each
particle towards a target. The 2D skeleton or branching structure is computed by
tracing the paths of the particles at the end of the simulation. Neubert et al. [16]
called the combination of all the paths as attractor graph in an image. The final
attractor graph is obtained by combining the direction vectors of the attractor
graphs for each image plane. Next, a 3D voxel model of the tree is computed by
assuming parallel projection model and back projecting the sequence of images
(similar to the well known space carving approach). Each voxel is assigned to a
density estimate and the 2D attractor graphs are used to compute the direction
field of the particles (see [16] for details). These voxels and density information
are used to initialize the positions of another set of particles (which are not the
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same as the seed pixels used in the 2D image). Then the process of path tracing
from each particle to the target point is repeated (as done before in the 2D
image). However, a different strategy is used in the 3D case. Unlike the Livewire
approach, the fundamental laws of Newtonian mechanics are used to compute
the path. The position of a particle is updated according to certain rules of
force and velocity of a particle [16], and nearby particles within some distance
threshold are joined together to form a new particle. The trace of the particles
forms the skeleton of the plant.

Although the technique is motivated by the energy transport phenomena of
real plants, the skeleton geometry is not guaranteed to follow the actual geometry
of the input data. The choise of seed points play an important role in forming
the skeleton structure. Random placement of seed points may result in skeleton
construction at wrong places. The attractor graph computation has inherent
limitations. For the 2D attractor graph computation, Livewire technique is used
to compute the branches of the tree. However, the generic Livewire technique
is mainly designed to follow the edges of the image, but not spefically to follow
the branching structures. For computing the 3D attractor graph, flow of the
particles by the Newtonian mechanics rules are not supported by the branching
geometry of the original plant.

Space colonization algorithm [19, 20] has been successful in modelling the
complex branching structure of plants. The main idea of the algorithm is to
generate a random set of point cloud at first to indicate the free space where
the plant can grow. Then starting from the lowermost point (which will be the
root of the reconstructed plant), “eat-up” the points (or particles) in the cloud
in an iterative manner. It is assumed that each bud (undeveloped or embryonic
shoot located at the tip of a stem) is surrounded by a spherical occupancy zone
of certain radius (also called the kill distance) within a conical perception vol-
ume of certain angle and radius. Initially each particle is labelled as unprocessed.
At every iteration, a bud searches in its perception volume to find the closest
particles. If there are more than one particle in the volume, the branch direction
is set to the average direction of all the particles from the current particle, and
these particles are labelled as processed. The same operation is continued in every
iteration, until there is no particle left in the cloud which is labelled as unpro-
cessed. Although this idea can produce visually pleasing skeletal structures, it is
not fully supported by the biological constraints of plants. The “eat-up” process
might result in creation of branching structure in the wrong direction, and there
is no mechanism to constrain the process to the original branching structure.
Space colonization algorithm was proposed to generate synthetic plants, and no
real dataset was used to reconstruct the original plant geometry. Preuksakarn
et al. [21] later exploited the space colonization approach and applied to point
cloud data instead of random (or user defined) set of points, thus improving the
result regarding the biological relevance of the reconstructed plant.

The overall technique is a local optimization based strategy. In each iteration
a local neighbourhood is considered, and no backtracking is possible to correct a
wrong move or to refine the particle search from a global point of view. Although
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the space colonization approach can produce wrong branching geometry, it can
perform well if prior knowledge of the plant geometry is embedded along with
the algorithm (we discuss this type of method in the later stage of the pipeline).

2.4 Step-4 : Skeleton refinement via local and global optimization

With the motivation to improve or refine the skeleton structure obtained in
the previous step, different types of techniques are proposed in the literature.
Refinement refers to deforming the skeleton according to the botanical rules in
order to follow the geometry of the original input point cloud data. While some
of the skeleton refinement techniques are optimization based, others are ad-hoc
and locally heuristic in nature. The general goal of all these type of approaches
is to make the skeleton biologically relevant.

Livny et al. [18] proposed a series of optimization techniques to improve the
imperfect skeletal structure (contaminated by noise, outliers and missing data).
The method is based on the initial Riemanian graph structure and the particle
flow method (state transition sequence 1 → 3 → 4 in Figure 1). Initially, a
minimum weight spanning tree is computed from the graph by Dijkstra’s shortest
path algorithm. This is called the initial Branch Structure Graph (BSG). In the
context of BSG, the following attributes are defined. A simple branch is defined
as the type of branch which does not contain any junction point (where two or
more branches meet). A branch chain is defined as the set of edges corresponding
to a simple branch. Each node of the BSG is assigned a weight, which is equal
to the size of its subtree. At this stage, the BSG hardly looks like a real tree
structure due to the lack of smoothness in the branching structure, noise and
occlusion. A number of biological constraints are proposed on the BSG structure
to refine the branching geometry, and a series of global optimization strategies
are used to apply the constraints on the BSG.

For skeleton refinement, the following criteria is imposed: the branch chains
should be smooth, which ensures that the bending angles should be small. This
is achieved by using the notion of orientation field [16] on the BSG vertices.
Consider a BSG denoted as G. An orientation field is a map as-

sociating each vertex v ∈ G with a vector
−→
Ov ∈ R3. This vector

represents an estimated direction for moving each vertex v, so as
to smooth out the skeleton. Given a vertex v ∈ G having par-

ent vp and the vector −→vpv along the edge e(vp, v), each
−→
Ov is

computed to minimize the following two factors: i) the change
in direction with the vector −→vpv, ii) the change in direction with

the orientation
−→
Ovp of the parent node. The minimization is per-

formed simultaneously over all the vertices of the graph G in a
least square fashion [18]. This leads to an optimal orientation O∗v
at each vertex. Then the algorithm updates the vertex positions

on the basis of the computed orientation
−→
Ov. Further refinement

is obtained by performing similar type of optimization considering the center of
the edges in the skeleton graph. Finally, allometric rules are used to reconstruct
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the branch thickness. Figure 2 shows some results of realistic plant modelling by
this approach.

The optimization technique does not incorporate prior botanical knowledge
of plants into the framework, and thus suffers from botanical inconsistency of
the model. For example, the skeleton points might get shifted away from the
original branch point cloud after the optimization. Also, there is no strategy for
the skeleton points to follow the centerline of the branches.

Fig. 2: Modelling results from the approach of Livny et al. [18]. Two examples
are shown in two rows. In each row, the first images shows a photo of the scene,
the second image is the point cloud of a (zoomed-in) part the scene, the thrid
image is the reconstructed tree, and the last one is the rendered model with the
leaves.

In a similar line of work (state transition sequence 1 → 3 → 4 in Figure 1),
Wang et al. [36] proposed a combined local and global optimization technique
to refine an existing skeleton, especially to handle the case of occlusion/missing
data. Given an input point cloud P = {pi} in 3D point cloud format obtained
from terrestrial laser scanning (having missing/incomplete points), first a rough
skeleton is extracted from the data using a standard skeletonization technique.
The missing parts of the data results in disconnected components in the skeleton,
which are connected together by a spanning tree based approach. However, this
approach does not necessarily support the actual topology of the structure. In the
next step, skeletonization of the input data is performed again by contracting the
original point cloud to the previously obtained skeleton points using the Lapla-
cian contraction method of Cao et al. [25]. The idea of Laplacian contraction
method is to first contract or collapse the input point cloud to a 1D structure of
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points using a Laplacian smoothing technique [26]. An energy function is defined
which consists of two terms: the first term removes geometrical details along the
surface normal direction, and the second term preserves the shape of the original
point cloud [26]. The advantage of performing two stage skeletonization process
is to exploit the strengths of both type of techniques. While the skeleton obtained
in the first step roughly completes the missing parts of the data, the contraction
technique in [25] can not handle missing data problem. On the contrary, while
rough skeletonization does not guarantee to preserve the topology of the object
shape, the contraction technique in [25] performs better in this aspect. Further
processing is performed on the skeleton to fine tune the result by minimizing
an objective function which takes into account the branch dominant direction
and point density factors. In the optimization process, the skeleton point cloud
S = {sj} is pushed to move by means of a repulsive force Fr away from the
original point cloud, while the original point cloud is forced to contract toward
towards the skeleton point cloud by means of a constraint force Fs. The opti-
mal skeleton points are obtained by solving the following energy minimization
problem,

min
S

∑
pi∈P

||Fr(pi,S) + λFs(pi,S)||2, (1)

where λ controls the trade-off between the two terms [36].

In order to prevent large displacement of the points during the optimization
process, the points are constrained to move very short distances and an iterative
procedure is used to refine the displacements. Figure 3 shows some results from
the technique.

In a recent work, Wu et al. [24] developed a skeleton refinement technique
specifically for maize plants focusing the local issues like centeredness and main-
taining the geometry of the original point cloud. Like the previous approach, the
initial skeleton is obtained by a Laplacian based contraction method of Cao et
al. [25]. In order to adaptively sample the contracted skeleton points, principal
component analysis is performed to determine the intersection points of tree
branches (junctions), which are used as keypoints. The sampling is performed in
higher density near the keypoint regions. After connecting the skeleton points
by edges using nearest neighbor strategy, a final refinement step is performed
in order to alleviate the problem of zigzag structure in the skeleton (Figure 4).
Assuming that the points near the junctions are mainly responsible for the zigzag
structure, a least square straight line is fitted locally to the stem skeleton points
except the points near the junction. This removes the zigzag locally. For the
leaf vein skeleton points, first a tangent line is constructed through the adjacent
points. Then a cutting plane perpendicular to the tangent line is projected on
the line, and the central point of the intersection is considered as the refined
skeleton point. The model is based on the geometry of maize plant and not
reported to work on other types of species.

In general, the above mentioned skeletonization algorithms have their strengths
and limitations based on the type of application. There is no algorithm that can
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Fig. 3: Handling missing data in skeletonization by Wang et al. [36]. Two rows
shows two examples. In each row, the left image is the raw point cloud, the middle
image is the reconstructed 3D model, and the right image is the photograph of
the original tree.

Fig. 4: Skeletonization approach of Wu et al. [24]. The left one is the original
plant, next one is the skeleton extracted by Laplacian contraction [25] which
suffers from the zigzag structure. The third one is the result of proposed skele-
tonization algorithm that solves this problem. In the right most image, the skele-
ton points are embedded on the original plant for visualization purposes.
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handle any type of data in a robust manner. Basic skeletonization techniques
discussed in the first stage of the pipeline can be used for general purpose ap-
plications, whereas the refined skeletons may suit better for specific cases. Local
optimization techniques tend to focus on the issues like centerdness criteria,
whereass the global optimization techniques focus on maintaining the overall
shape of the skeleton. Ideally, the trade-off between two types of optimization
techniques is the crucial factor in the performance of the skeletonization process.

Apart from the above mentioned skeletonization algorithms which are mostly
focused on plants, some other types of general skeletonization techniques have
been successful on plants as well to some extent. Some notable works in this
aspect include [27] and [28]. The technique proposed in [27] is based on the no-
tion of generalized rotational symmetry axis. The local neighbourhood of each
point on the object is assumed to be cylindrical, and surface normal information
is exploited to compute the skeleton. For handling the (non-cylindrical) regions
where different (cylinderical) object parts join, a spatial coherence strategy is
used. The L1 median skeleton technique [28] extended the idea of classical L1-
median statistics by introducing a regularization term in the energy function.
For a recent survey of 3D skeletonization algorithms, interested readers are en-
couraged to read [12].

2.5 Step-5 : Organ Surface and Volume Reconstruction

While skeletonization of plant point cloud data provides the basic geometry of
the branching structure of plants, reconstruction of different organs in terms of
volumetric (e.g. for branch thickness) and surface (e.g. for leaf, flower) recon-
struction is the ultimate goal of plant modelling. There are different types of
techniques to achieve this. In the subsequent sections, we discuss about recent
approaches of volume and surface reconstruction techniques by categorizing the
algorithms as follows (for most of these algorithms, the transition sequence is
1→ 5 in Figure 1).

Reconstruction using Real Plant Parts: The main idea of this type of tech-
nique is to dissect a plant into different parts, followed by scanning of individual
parts in an offline manner, and then reconstruct the original tree geometry using
these scanned parts. The technique performs skeletonization as an intermediate
step, and thus the state transition sequence is 1→ 3→ 5 in Figure 1.

Yin et al. [34] proposed a method to reconstruct plants consisting of mainly
leaves. The motivation of the work is to handle the case of occlusion explicitly.
Due to the cases of heavy self occlusion, inaccessible parts, diverse topologies,
slim petioles and complex foliage geometry, it is extremely hard to obtain a
complete model of the plant via conventional acquisition techniques (like using
laser scanner to scan the whole plant from multiple views and then reconstructing
the overlapping views to obtain a full 3D model). To handle this problem, a two-
step approach is proposed. In the first step, the plant is scanned from several
overlapping views, which are then registered to obtain a coarse 3D point cloud
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model of the plant. In the next step, the plant is disassembled into disjoint
parts. Each of these parts are scanned at a finer level of detail, and a mesh is
reconstructed for each part. Then using some user assistance, each part is placed
near the corresponding part in the coarse 3D model, and point set registration
is performed to fit the part in the coarse model. This process is repeated for all
the parts, which results in improving the coarse 3D model to obtain a complete
3D model of the plant.

Mesh reconstruction of the individual plant parts are performed as follows.
After dissecting the k -th part from the plant, it is scanned to obtain a point
cloud Sk. The point cloud is converted into a skeleton via the L1-median skele-
ton method [28] and the points are resampled to the desired number of points
in an uniform manner. Then for each skeleton point pi, a slicing plane perpen-
dicular to the skeleton curve is computed, and the original points from Sk are
projected to the closest slicing plane. This forms a set of cross-sectional slices
(si) along the skeleton. Now the points in this model are classified as leaf or stem
(or petiole) points by a segmentation technique proposed by Li et al. [37], which
is an extension of the classical graph cut segmentation technique [38] for 3D
case. Then each slice si in the stem is approximated by a circular Non-Uniform
Rational Basis Spline (NURBS) curve, and the slices in the leaf are approxi-
mated by closed NURBS curves (except the tip of the leaf). The thickness of the
closed curves are modelled as gradually decaying values from the center to the
boundary. Finally, the profile curves are joined together to form a manifold mesh
Mk by a sweeping reconstruction technique [39]. The idea is shown in Figure 5.

Fig. 5: Part reconstruction technique proposed in [34]. Left: raw point cloud
labelled as leaf (blue) and stem (green), Middle: circular NURBS profile curve for
each slice, Right: reconstructed manifold mesh using the sweeping reconstruction
technique [39].
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Once all the individual parts are reconstructed, each of these part meshesMk

are registered to the coarse plant model P. A joint global and local geometry
reconstruction method is used to perform the registration task. The global step of
the registration starts with an interactive procedure. The user places a part close
to its actual location in the coarse model. Then a point-by-point correspondence
set is obtained by nearest neighbour strategy. Using this coarse correspondence
set, the part mesh is transformed (rotation and translation) towards the full
model. The optimal set of transformation parameters are obtained as,

arg min
ri,ti

(
D(Mk(ri, ti),P) + λL(Sk(ti))

)
, (2)

where the first term D(·, ·) is the data fitting term which transforms Mk by
the transformation parameters (ri, ti), the second term L(·) is the regularization
term which transslates the skeleton curve by ti, and λ is the weighting factor of
the regularization (or smoothness) term. The data term computes the weighted
sum of the inner correspondence distances, and the smoothness term ensures
the uniform point distribution along the curve skeleton with the skeleton length
preservation.

In the local registration step, similar type of objective function is created. The
objective functions are minimized by a standard framework (Broyden-Fletcher-
Goldfarb-Shanno solver). Figure 6 shows the whole pipeline.

Fig. 6: The pipeline of the method proposed in [34].
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In a similar line of work, Xie et al. [33] proposed a semi-automatic modelling
approach using scanned tree parts. The method is designed for computer graphics
applications, where the user can choose certain parts of the tree from a number
of parts stored in the database, and then the algorithm automatically constructs
the whole plant model by joining these parts in a biologically meaningful manner
(state transition sequence 1→ 5 in Figure 1).

Initially, 15 different tree species are cut into about 200 tree parts. Each of
these parts are scanned separately to obtain point cloud of each tree part, which
are stored in a database. Next, the user chooses to reconstruct a particular tree
from a template photograph, and places the required tree parts from the database
in the 3D space according to the photograph. This represents the basic structure
of the tree, which remains in a disconnected or incomplete stage (Figure 7).

Fig. 7: The modelling process proposed by Xie et al. [33]. Initially, tree cuts are
placed in space in an intuitive manner, which will be joined in the next phase
to complete the tree structure. Two examples are shown. In each example, the
first image is the photograph of the real tree and the second image is the initial
stage of placing the tree cuts in space.

In the next phase, the tree cuts are connected to form a realistic tree in bi-
ologically relevant manner. Given a tree cut, first the Euclidean distances from
the end point of the current tree cut to the end points of all the cuts are com-
puted. The tree cut having the minimum distance is considered as the nearest
object from the current tree cut. Now the transformation parameters (rotation
and translation) between the contours (a contour is assumed to be closed, and
thus forms a “loop”) of the two tree cuts are estimated to obtain point to point
correspondence between the two parts. In order to estimate the branch surface
between the two parts, an interpolation strategy is used. A Hermite curve is
computed between the center points of the two contours, and a number of loops
are generated along the curve by keeping the loop centers to be perpendicu-
lar to the curve direction. Incorporation of additional bifurcations (apart from
the bifurcation data in the database) are introduced in the model by means of
some user assistance. The user gives input for the position of a bifurcation, and
the algorithm automatically connects different tree parts associated with the
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bifurcation in a automatic manner by an interpolation strategy. The branching
diameters and angles are estimated using standard allometry rules to add realism
in the reconstruction process. Figure 8 shows some examples of reconstructed
trees from the tree cuts.

Fig. 8: Results of connecting the tree cuts to reconstruct full 3D plant model
[33].

One drawback of the above approach is that, the method demands a number
of tree parts to build the database. Also, it needs some user assistance in order to
work properly. Although modelling the missing branch parts are approximated
by parametric curves, it is not fully supported by biological relevance of the
structure. The technique is not fully data driven in the sense that the input
point cloud data of the whole plant is not used, and thus the algorithm does not
focus on reconstructing the original plant geometry.

Hybrid Approach The hybrid approach is based on a combined framework of
procedural (i.e. the type of modelling that is based on a set of predefined rules
to produce the output) and data driven modelling techniques (state transition
sequence 1 → 5 in Figure 1). The Inverse Procedural Model approach [29] is a
hybrid approach where the main idea is to estimate the parameter of a proce-
dural model that best represents the input scan data, instead of defining rules
that generate a tree model as typically done in classical procedural modelling
techniques. Each set of parameter defines the general architecture of a partic-
ular species, and by varying the parameters, different varieties of the species
in different environmental conditions can be modelled. The model is based on
a set of 24 parameters which describe the geometry of a tree. These parame-
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ters include branching angle, internode distance, number of lateral buds, etc.
which are based on geometric and environmental factors acting on the plant.
Several biological assumptions/constraints are employed in the modelling pro-
cess to mathematically represent different entities of the tree. For example, the
apical bud is assumed to be located at the tip of the plant shoot. The orientation
of the apical bud with respect to the shoot is modelled as the following polar
and azimuthal angle in a spherical coordinate system,

θ ∼ N (0, σv),

φ ∼ U(0, 2π),
(3)

where σv is the apical angle variance parameter, N and U are normal and uni-
form distributions respectively. So by varying σv, it is possible to generate dif-
ferent branching structures as shown in Figure 9. In this way, the parametric
model of the tree is defined by using the selected set of parameters. In order
to find the parameters that maximize the similarity measure between the input
data and the model, a number of trees are generated by perturbing the discrete
values of the parameters empirically by the user. Then, each of these tree is
compared with the input tree by a similarity measure based on three types of
distances: shape distance, geometric distance, and structural distance (refer to
Sec. 3 for details). However, there can be infinite number of tree models that
can be generated by different combinations of the parameters. The best set of
parameters corresponding to the best matching tree is obtained using a Monte
Carlo technique.

Fig. 9: The effect of apical angle variance parameter σv in the model proposed
in [29]. The angles are increased from left to right image.

Recently, Guo et al. [35] proposed a hybrid approach to the reconstruct plant
geometry with the motivation to alleviate the need of tuning of large number of
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parametrs in the previous approach. The technique extends the space coloniza-
tion technique of Preuksakarn et al. [21] by introducing an L-system type rule
based framework in the model.

Initially, a technique is proposed to generate high quality 3D point cloud
data from a sequence of overlapping images around a plant. Next, a parametric
model is fitted to the point cloud by using a rule-based method. The model is
based on 5 parameters to represent the skeletal structure of the tree: internode
length (l), roll angle (φ), branching angle (ψ), growth units (ρ), and diameter
coefficient (ρ). Starting from the root/bottom of the plant, the model simulates
a set of rules by certain assumptions. Basically the rules make use of the points
in a biologically meaningful manner. From the seed locations, the following set
of rules are used,

Seed(p,v) → A(p,v),

A(p,v) → {Metamer(p′,v′)∗} A(p′′,v′′),

Metamer(p,v) → Internode(p,v) L(p′,v′),

L(p,v) → A(p′,v′),

(4)

where p is the seed position and v is the orientation, which indicates the growth
direction of each bud. Initially the growth direction is upward, and is adjusted
according to the branching structure and roll angles at each stage. A(p,v) is the
kernel of the growth process, which results in a chain of metamers (or a growth
unit) represented by {∗} in the rules. At any particular stage, the position of a
metamer is computed from the previous metamer, orientation and length. The
orientation is also updated by the phyllotaxy (roll) angle. In the implementation
level, the data points are selected similar to the technique of space coloniza-
tion algorithm [20, 21]. Finally, standard allometric rules are applied to compute
branch diameter and length.

Other Types of Approaches: Zhang et al. [32] proposed a technique by first
reconstructing the visible parts of the scanned input point cloud data, and then
synthesized the non-visible parts by a shape prediction model. The approach is a
combination of geometry reconstruction at different hierarchical levels (from fine
to coarse), and attempts to model the multiscale aspect of tree reconstruction.

Initially, all the points in the input point cloud data are labelled as unlabelled.
Then starting from an user specified point, an initial cylinder is fitted to the local
neighbourhood. Once a set of points are fitted within a cylinder, these points
are labelled as processed, and are not considered any more for processing. An
iterative process is continued to fit successive cylinders until no cylinder can be
fitted any more to the data (cylinder marching process). This process is based
on the assumption that branch shapes are cylindrical with gradually varying
radii. If the number of connected cylinders go beyond a threshold value, the
cylinders constitute a single branch of the tree. At this stage, visible branches
of the tree are obtained from the fitted cylinders. To reconstruct the non-visible
branches of the tree (due to the occlusion), the following heuristics is used. At
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the end of cylinder marching process, remaining unlabelled scattered points are
classified as tree crown points, which mostly belong to the leaves at the tip of
the branches. Then the classical particle flow technique is used to model the
non-visible branches by considering the crown points as the source and nearest
main branch point as the destination. The direction of flow of the particles are
computed using the conical search operation of the space colonization algorithm
as discussed earlier. Finally, some standard techniques are applied to produce
texture effect, mesh model, and leaf configurations.

One drawback of the technique is that, lot of heuristics are used in the whole
process. Also, tuning of parameters are very important to obtain the desired
result.

Flower Geometry Reconstruction While the goal of volume reconstruction
is to model mainly the branching system the the plant, reconstruction of organs
like flower and leaf require surface based techniques. Because of the complicated
thin structure of the petals and their tight configurations along with high level
of occlusions, geometry reconstruction of flowers is an important as well as a
hard problem. Unlike the case of branching structure reconstruction, there are
only a handful of techniques which take into account the real data to model the
flower geometry.

Recently, Yan et al. [40] proposed a model to reconstruct the flower geometry
from single photograph. The model is based on the assumption that the 3D
shapes of different petals are roughly the same. Initially, modelling flowers having
single layer of petals is considered and then the idea is extended for flowers having
multiple layers of petals. First, the petals of a single layer flower are segmented in
an interactive way by the well known GrabCut [41] technique. Individual petals
are located from the segmented image using the following technique. First, the
center of the flower is located by user assistance ((red dot in the first image of
Figure 10)). The the contour of the segmendted flower is traversed and distance
from each contour point to the center is computed. Valleys in the sequence of the
distance values indicate the intersection points between adjacent petals (yellow
dots in the middle image of Figure 10). The contour of each petal is identified
by simulating the classical particle flow technique, where a particle is traced
from the intersection point towards the flower center by following the edge of
the petal (similar to the Livewire technique discussed earlier). The tip of each
petal is located at the midpoint of the contour (green dots in the right image of
Figure 10).

In the next phase, the underlying surface of the petals are modelled by a 3D
cone, assuming the flower structure to be of conical shape. The 3D cone is fitted
to the extracted petals, where the apex of the cone is positioned at the center
and the base is aligned with the petal tips. This cone is used as a special case
of a surface of revolution, which can be defined by rotating a curve around the
main axis of the flower. By an iterative procedure, each petal contour is fitted
to the surface of revolution framework, and the template of individual petal
is obtained. Once the petal contour is obtained, a 3D mesh is constructed by
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Fig. 10: Petal contour detection technique proposed in [40]. (Left image) Initially,
the center of the flower is located by user assistance (red dot). (Middle image)
The intersection points of the petals are located as yellow dots. (Right image)
The petals tips are located as the green dots.

sampling points enclosed in the contour and triangulating these points. However,
at this stage the mesh does not reflect the geometry of bending of each petal. In
order to facilitate this feature, the mesh needs to be deformed to approximate
the petal shape. The deformation drags the vertices on the boundary of the
mesh, so that the differences between the observed contours and the projections
of the corresponding mesh is minimized. This is performed by minimizing the
following energy,

E = λgeoEgeo + λconEcon, (5)

where Egeo is the geometric preserving energy that maintains the geometric fea-
tures of the mesh, Econ is the contour fitting energy that drags boundary vertices
to their new locations, and λgeo, λcon are the weighting factors for the two terms.
The deformation is performed in an iterative manner. Figure 11 shows some re-
sults of the modelling approach.

Fig. 11: Reconstruction of flower model from single image [40]. Two models are
shown, where the left image is the original flower, the middle shows the recon-
structed mesh, and the right is the rendered result.
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In a similar type of work, Zheng et al. [42] presented an algorithm to dynam-
ically track a blooming flower over time. The idea is based on the reconstruction
of flower geometry and deformation of the model over time via a template model.

During the blooming stage, the flower is scanned over the time span 1 · · ·T
to obtain a sequence of point clouds Q = Q1:T . During the early stage, interior
petals are completely occluded, whereas during the later stage, exterior petals
decay, bend and twist heavily. So, none of the scans can actually represent the
whole flower geometry by itself. Initially, one intermediate frame is selected man-
ually which is considered as the key frame, and the geometry M of the full flower
is reconstructed from this frame by in an interactive manner (assuming that the
petals are at least partially visible at the selected key frame). The main idea
of the technique is to use M as the template, and fit this to the point cloud in
the adjacent frames by deformation. The track and fit operation is formulated
as Expectation Maximization (EM) framework, where the E-step computes the
correspondence between the template and the captured point cloud, and the M-
step updates the vertex locations based on the computed correspondence of the
vertices. The tracking is performed both forward and backward in time, which
yields a series of 3D model sequence M1:T , which represents the flower blooming
process.

Let Qt represents the captured data at time t and Mt represents the deformed
template mesh model (which we are seeking) of the original template model M.
In the EM framework, Qt is assumed to be the observation of a Gaussian Mixture
Model (GMM), whose centroids are the vertices of the unknown mesh Mt. The
problem is formulated as Maximum a Posteriori (MAP) problem to obtain the
deformed mesh vertices M∗t , which is obtained by maximizing the probability of
the observation,

M∗t = arg max
Mt

p(Qt|Mt)p(Mt), (6)

where p(Qt|Mt) is the likelihood term, and p(Mt) is the prior term. During
the E-step, vertex correspondences between M and Q are computed. Instead
of computing the correspondence using the point cloud as a whole, these are
classified into different parts (petals) where each part Qk ∈ Q corresponds to
a part Mk ∈ M. The classification is performed by standard Gaussian Mixture
Model (GMM) clustering strategy. Assuming that a point qj ∈ Q is normally
distributed around mi ∈M as qj ∼ N (mi, σi) with covariance σi, the probability
of qj given mi is,

p(qj |mi) =
1√

(2π)3|σi|
exp

(
− 1

2
(qj −mi)

Tσ−1i (qj −mi)

)
. (7)

The probability that a point qj belongs to Qk is computed as,

p(qj ∈ Qk) =

∑
mi∈Mk φip(qj |mi)νi∑
mi∈M φip(qj |mi)νi

, (8)
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where φi =
∑
qj∈Qk p(qj |mi), and νi ∈ {0, 1} is called the visibility term, which

is set to 1 if the point is visible (within a threshold distance from the mesh),
otherwise it is set to 0.

Now, for each part (petal) k, the correspondence between Qk and Mk is
computed as a point correspondence matrix Z : Mk → Qk, where each element
Zij of Z is computed as,

Zij =
φip(qj |mi)νi∑

mi∈Mk φip(qj |mi)νi
. (9)

Once the correspondences of vertex locations are estimated for each petal,
now the task is to optimize the vertex locations in M, so that M fits better to the
data Q (the M-step). This is formulated as the following stochastic minimization
problem,

arg min
M

(− log p(M|Q,Z)− log p(M)). (10)

The first term in the above equation is the data term, where the goal is to
minimize the distances between mesh vertices and their corresponding points.
Along with an additional penalty to ensure that the mesh follows the contour of
the petal, the data term is written as,

− log p(M|Q,Z) =
∑
k

(ω1D(Qk,Mk) + ω2D(Qkb ,Mk
b )), (11)

where Qkb and Mk
b are the boundary points, which are not taken into consid-

ertation at the initial stage of the blooming process since the petals are not
sufficiently separated at this stage. ω1, ω2 are the weighting factors for the two
terms. The second term of Equation 10 is the prior term which regularizes the
solution. This term is modelled as a combination of 3 different types of priors as
follows,

− log p(M) = Eshape + Ecollision + Eroot. (12)

The first term is used to preserve the flower shape. Using some user interven-
tion, a reliable template mesh is created and the deformation of Mk is constrained
by this template mesh. In the second term, avoidance of the penetration of two
petals are ensured. Whenever a penetration is detected, the point is moved to an-
other location so that the surface normal directions are not violated. The third
term ensures that the root (or the base) point of each petal does not change
during deformation. Finally the energy is minimized by alternate optimization
strategy using different types of nonlinear least square solvers. Figure 12 shows
some results of the modelling.

One of the drawback of the method lies in it’s limitation to model fine geo-
metric details. Also, large deformation of petals will result in poor registration
of the point cloud, which will affect the overall accuracy of the reconstructed
model.
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Fig. 12: Example of reconstruction of a blooming Golden Lily. The top row shows
the point cloud and the bottom row shows the rendered reconstructed model [42].

3 Evaluation Techniques

So far we have discussed different types of modelling techniques which aim at
reconstructing the geometry of plants from real data. However, an important
aspect of reconstruction is to measure the quality of the solution. From com-
puter graphics perspective, the results are analyzed mostly on qualitative or
visual assessements. However in biological applications, quantitative analysis
of the results is extremely important. Given a reference plant structure (the
groundtruth), different types of measures are proposed in the literature to quan-
tify the similarity between the reconstructed model and the reference model. A
naive approach is to measure quantities like crown volume, total branch length,
etc. and then compare the two models by the difference of these quantities.
However, this type of method cannot truly asses the quality of reconstruction
of tree topology. Ferraro et al. [30] proposed an advanced metric to compare
2D tree structures by means of edit distance. The distance is computed as the
minimum cost of a sequence of edit operations that transforms an initial tree
into a target tree. Boudon et al. [43] adopted the idea of 2D edit distance into
the 3D case to compare two trees. An optimization framework is proposed to
compute geometric and structural similarities of two trees. Initially, the scales
(or the resolutions) of the scan data of two trees are homogenized. Then Similar
elements of the trees are determined by adopting the Hausdorff distance between
their skeleton curves. Structural similarity between the two trees is computed
by computing the similarity of the organization of the edges.

Stava et al. [29] proposed a similarity measure by introducing two different
types of distance measure along with the edit distance [30]. Shape distance is
used to measure the difference between the overall shapes of the trees. Different
types of descriptors (e.g. height, radius, etc.) are evaluated in the shape distance
function as,
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δ = 1− exp

[
1−

(ξτi − ξτj )2

2σ2

]
, (13)

where ξτi and ξτj are the descriptors of the two trees and σ is a normalization
factor which is set empirically. Another type of measure, the geometric distance
computes the difference between global branching structure of the two trees
from some sample points over the trees. Several parameters like branch angle,
branch slope with respect to the horizontal plane, etc. are computed for all
the sample points over the tree, and the descriptor is defined as the weighted
mean and variance of these samples. The geometric distance is computed using
these descriptors. The final similarity measure δ̄(τi, τj) of two trees τi and τj is
computed as the sum of the three measures, along with the weighting factors
that control the influence of each measure.

On a different type of evaluation strategy, Guo et al. [35] used two types of
evaluation metrics: model based and scan based. In the model based strategy,
synthetic plant models are used as ground-truth and a number of views are
generated from the model. Then the similarity distance as proposed in [29] are
used as the evaluation metric. In the scan based strategy, the comparison is
made directly on the real data. For every point in the reconstructed model, the
distance to the nearest point in the actual scan data are computed. The average
and standard deviation of the distances are used as performance measurement.
If the values are lower, then the performance is treated as better, whereas higher
values indicate worse performance.

4 Conclusion

In this chapter, we have broadly concentrated on the topic of geometry recon-
struction of plants from real world data. A number of state-of-the-art techniques
are discussed, along with their strengths and limitations. We infer from the
thorough literature survey that there handful of techniques which actually take
care into account the actual biological relevance of the results. Also, not much
work has focused on exploiting the prior botanical knowledge in the modelling
framework. Given the huge varieties of plant species, there is lot of scope of
geometry modelling to accurately reconstruct the plant geometry in a robust
manner. Ideally, the ultimate goal of geometry reconstruction will be to develop
a generalized algorithm which will be able to handle a diverse varieties of species
that can work in real time.
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