
HAL Id: hal-02415758
https://hal.archives-ouvertes.fr/hal-02415758

Submitted on 17 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Types by Need
Beniamino Accattoli, Giulio Guerrieri, Maico Leberle

To cite this version:
Beniamino Accattoli, Giulio Guerrieri, Maico Leberle. Types by Need. ESOP 2019 - 28th European
Symposium on Programming, Apr 2019, Prague, Czech Republic. �10.1007/978-3-030-17184-1_15�.
�hal-02415758�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/275916524?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-02415758
https://hal.archives-ouvertes.fr

Types by Need

Beniamino Accattoli1, Giulio Guerrieri2(B) , and Maico Leberle1

1 Inria & LIX, École Polytechnique, UMR 7161, Palaiseau, France
{beniamino.accattoli,maico-carlos.leberle}@inria.fr

2 Department of Computer Science, University di Bath, Bath, UK
g.guerrieri@bath.ac.uk

Abstract. A cornerstone of the theory of λ-calculus is that intersection
types characterise termination properties. They are a flexible tool that
can be adapted to various notions of termination, and that also induces
adequate denotational models.

Since the seminal work of de Carvalho in 2007, it is known that multi
types (i.e. non-idempotent intersection types) refine intersection types
with quantitative information and a strong connection to linear logic.
Typically, type derivations provide bounds for evaluation lengths, and
minimal type derivations provide exact bounds.

De Carvalho studied call-by-name evaluation, and Kesner used his
system to show the termination equivalence of call-by-need and call-by-
name. De Carvalho’s system, however, cannot provide exact bounds on
call-by-need evaluation lengths.

In this paper we develop a new multi type system for call-by-need. Our
system produces exact bounds and induces a denotational model of call-
by-need, providing the first tight quantitative semantics of call-by-need.

1 Introduction

Duplications and erasures have always been considered as key phenomena in
the λ-calculus—the λI-calculus, where erasures are forbidden, is an example of
this. The advent of linear logic [38] gave them a new, prominent logical status.
Forbidding erasure and duplication enables single-use resources, i.e. linearity,
but limits expressivity, as every computation terminates in linear time. Their
controlled reintroduction via the non-linear modality ! recovers the full expressive
power of cut-elimination and allows a fine analysis of resource consumption.
Duplication and erasure are therefore the key ingredients for logical expressivity,
and—via Curry-Howard—for the expressivity of the λ-calculus. They are also
essential to understand evaluation strategies.

In a λ-term there can be many β-redexes, that is, places where β-
reduction can be applied. In this sense, the λ-calculus is non-deterministic. Non-
determinism does not affect the result of evaluation, if any, but it affects whether
evaluation terminates, and in how many steps. There are two natural determin-
istic evaluation strategies, call-by-name (shortened to CbN) and call-by-value
(CbV), which have dual behaviour with respect to duplication and erasure.
c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 410–439, 2019.
https://doi.org/10.1007/978-3-030-17184-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_15&domain=pdf
http://orcid.org/0000-0002-0469-4279
https://doi.org/10.1007/978-3-030-17184-1_15

Types by Need 411

Call-by-Name = Silly Duplication + Wise Erasure. CbN never evaluates argu-
ments of β-redexes before the redexes themselves. As a consequence, it never
evaluates in subterms that will be erased. This is wise, and makes CbN a nor-
malising strategy, that is, a strategy that reaches a result whenever one exists1.
A second consequence is that if the argument of the redex is duplicated then it
may be evaluated more than once. This is silly, as it repeats work already done.

Call-by-Value = Wise Duplication + Silly Erasure. CbV, on the other
hand, always evaluates arguments of β-redexes before the redexes themselves.
Consequently, arguments are not re-evaluated—this is wise with respect to
duplication—but they are also evaluated when they are going to be erased. For
instance, on t := (λx.λy.y)Ω, where Ω is the famous looping λ-term, CbV evalu-
ation diverges (it keeps evaluating Ω) while CbN converges in one β-step (simply
erasing Ω). This CbV treatment of erasure is clearly as silly as the duplicated
work of CbN.

Call-by-Need = Wise Duplication + Wise Erasure. It is natural to try to combine
the advantages of both CbN and CbV. The strategy that is wise with respect
to both duplications and erasures is usually called call-by-need (CbNeed), it was
introduced by Wadsworth [57], and dates back to the ’70s. Despite being at the
core of Haskell, one of the most-used functional programming languages, and—
in its strong variant—being at work in the kernel of Coq as designed by Barras
[16], the theory of CbNeed is much less developed than that of CbN or CbV.

One of the reasons for this is that it cannot be defined inside the λ-calculus
without some hacking. Manageable presentations of CbNeed indeed require first-
class sharing and micro-step operational semantics where variable occurrences
are replaced one at a time (when needed), and not all at once as in the λ-calculus.
Another reason is the less natural logical interpretation.

Linear Logic, Names, Values, and Needs. CbN and CbV have neat interpreta-
tions in linear logic. They correspond to two different representations of intuition-
istic logic in linear logic, based on two different representations of implication2.

The logical interpretation of CbNeed—studied by Maraist et al. in [47]—is
less neat than those of CbN and CbV. Within linear logic, CbNeed is usually
understood as corresponding to the CbV representation where erasures are gen-
eralised to all terms, not only those under the scope of a ! modality. So, it is seen
as a sort of affine CbV. Such an interpretation however is unusual, because it
does not match exactly with cut-elimination in linear logic, as for CbN and CbV.

Call-by-Need, Abstractly. The main theorem of the theory of CbNeed is that it is
termination equivalent to CbN, that is, on a fixed term, CbNeed evaluation ter-
minates if and only if CbN evaluation terminates, and, moreover, they essentially

1 If a term t admits both converging and diverging evaluation sequences then the
diverging sequences occur in erasable subterms of t, which is why CbN avoids them.

2 The CbN translation maps A ⇒ B to (!ACbN) � BCbN, while the CbV maps it to
!ACbV � !BCbV, or equivalently to !(ACbV � BCbV).

412 B. Accattoli et al.

produce the same result (up to some technical details that are irrelevant here).
This is due to the fact that both strategies avoid silly divergent sequences such
as that of (λx.λy.y)Ω. Termination equivalence is an abstract theorem stating
that CbNeed erases as wisely as CbN. Curiously, in the literature there are no
abstract theorems reflecting the dual fact that CbNeed duplicates as wisely as
CbV—we provide one, as a side contribution of this paper.

Call-by-Need and Denotational Semantics. CbNeed is then usually considered
as a CbV optimisation of CbN. In particular, every denotational model of CbN
is also a model of CbNeed, and adequacy—that is the fact that the denotation of
t is not degenerated if and only if t terminates—transfers from CbN to CbNeed.

Denotational semantics is invariant by evaluation, and so is insensitive
to evaluation lengths by definition. It then seems that denotational seman-
tics cannot distinguish between CbN and CbNeed. The aim of this paper is,
somewhat counter-intuitively, to separate CbN and CbNeed semantically. We
develop a type system whose type judgements induce a model—this is typ-
ical of intersection type systems—and whose type derivations provide exact
bounds for CbNeed evaluation—this is usually obtained via non-idempotent
intersection types. Unsurprisingly, the design of the type system requires a del-
icate mix of erasure and duplication and builds on the linear logic understand-
ing of CbN and CbV.

Multi Types. Our typing framework is given by multi types, which is an alterna-
tive name for non-idempotent intersection types3. Multi types characterise termi-
nation properties exactly as intersection types, having moreover the advantages
that they are closely related to (the relational semantics of) linear logic, their
type derivations provide quantitative information about evaluation lengths, and
the proof techniques are simpler—no need for the reducibility method.

The seminal work of de Carvalho [23] (appeared in 2007 but unpublished until
2018, see also [22]) showed how to use multi types to obtain exact bounds on
evaluation lengths in CbN. Ehrhard adapted multi types to CbV [34], and very
recently Accattoli and Guerrieri adapted de Carvalho’s study of exact bounds to
Ehrhard’s system and CbV evaluation [8]. Kesner used de Carvalho’s CbN multi
types to obtain a simple proof that CbNeed is termination equivalent to CbN
[40] (first proved with other techniques by Maraist, Odersky, and Wadler [48]
and Ariola and Felleisen [11] in the nineties), and then Kesner and coauthors
continued exploring the theory of CbNeed via CbN multi types [14,15,42].

Kesner’s use of CbN multi types to study CbNeed is qualitative, as it deals
with termination and not with exact bounds. For a quantitative study of CbNeed,
de Carvalho’s CbN system cannot really be informative: CbN multi types provide
bounds for CbNeed which cannot be exact because they already provide exact
bounds for CbN, which generally takes more steps than CbNeed.

3 The new terminology is due to the fact that a non-idempotent intersection A ∧ A ∧
B ∧ C can be seen as a multi-set [A, A, B, C].

Types by Need 413

Multi Types by Need. In this paper we provide the first multi type system charac-
terising CbNeed termination and whose minimal type derivations provide exact
bounds for CbNeed evaluation lengths. The design of the type system is delicate,
as we explain in Sect. 6. One of the key points is that, in contrast to Ehrhard’s
system for CbV [34], multi types for CbNeed cannot be directly extracted by
the relational semantics of linear logic, given that CbNeed does not have a clean
representation in it. A by-product of our work is a new denotational semantics
of CbNeed, the first one to precisely reflect its quantitative properties.

Beyond the result itself, the paper tries to stress how the key ingredients of
our type system are taken from those for CbN and CbV and combined together.
To this aim, we first present multi types for CbN and CbV, and only then we
proceed to build the CbNeed system and prove its properties.

Along the way, we also prove the missing fundamental property of CbNeed,
that is, that it duplicates as efficiently as CbV. The result dualizes the termi-
nation equivalence of CbN and CbNeed, which shows that CbNeed erases as
wisely as CbN. Careful : the CbV system is correct but of course not complete
with respect to CbNeed, because CbNeed may normalise when CbV diverges.
The proof of the result is straightforward, because of our presentations of CbV
and CbNeed. We adopt a liberal, non-deterministic formulation of CbV, and
assuming (without loss of generality, see [1]) that garbage collection is always
postponed. These two ingredients turn CbNeed into a fragment of CbV, obtain-
ing the new fundamental result as a corollary of correctness of CbV multi types
for CbV evaluation.

Technical Development. The paper is extremely uniform, technically speaking.
The three evaluations are presented as strategies of Accattoli and Kesner’s Linear
Substitution Calculus (shortened to LSC) [1,6], a calculus with a simple but
expressive form of explicit sharing. The LSC is strongly related to linear logic
[2], and provides a neat and manageable presentation of CbNeed, introduced
by Accattoli, Barenbaum, and Mazza in [3], and further developed by various
authors in [4,5,10,14,15,40,42]. Our type systems count evaluation steps by
annotating typing rules in the exact same way, and the proofs of correctness
and completeness all follow the exact same structure. While the results for CbN
are very minor variations with respect to those in the literature [7,23], those for
CbV are the first ones with respect to a presentation of CbV with sharing.

As it is standard for CbNeed, we restrict our study to closed terms and
weak evaluation (that is, out of abstractions). The main consequence of this fact
is that normal forms are particularly simple (sometimes called answers in the
literature). Compared with other recent works dealing with exact bounds such
as Accattoli, Graham-Lengrand, and Kesner [7] and Accattoli and Guerrieri [8]
the main difference is that the size of normal forms is not taken into account by
type derivations. This is because of the simple notions of normal forms in the
closed and weak case, and not because the type systems are not accurate.

Related Work About CbNeed. Call-by-need was introduced by Wadsworth [57]
in the ’70s. In the ’90s, it was first reformulated as operational semantics by

414 B. Accattoli et al.

Launchbury [46], Maraist, Odersky, and Wadler [48], and Ariola and Felleisen
[11,12], and then implemented by Sestoft [55] and further studied by Kutzner
and Schmidt-Schauß [45]. More recent papers are Garcia, Lumsdaine, and Sabry
[36], Ariola, Herbelin, and Saurin [13], Chang and Felleisen [26], Danvy and
Zerny [29], Downen et al. [33], Pédrot and Saurin [53], and Balabonski et al. [14].

Related Work About Multi Types. Intersection types are a standard tool to study
λ-calculi—see Coppo and Dezani [27,28], Pottinger [54], and Krivine [44]. Non-
idempotent intersection types, i.e. multi types, were first considered by Gardner
[37], and then by Kfoury [43], Neergaard and Mairson [50], and de Carvalho
[23]—a survey is Bucciarelli, Kesner, and Ventura [20].

Many recent works rely on multi types or relational semantics to study prop-
erties of programs and proofs. Beyond the cited ones, Diaz-Caro, Manzonetto,
and Pagani [32], Carraro and Guerrieri [21], Ehrhard and Guerrieri [35], and
Guerrieri [39] deal with CbV, while Bernadet and Lengrand [17], de Carvalho,
Pagani, and Tortora de Falco [24] provide exact bounds. Further related work is
by Bucciarelli, Ehrhard, and Manzonetto [18], de Carvalho and Tortora de Falco
[25], Tsukada and Ong [56], Kesner and Vial [41], Piccolo, Paolini and Ronchi
Della Rocca [52], Ong [51], Mazza, Pellissier, and Vial [49], Bucciarelli, Kesner
and Ronchi Della Rocca [19]—this list is not exhaustive.

Proofs. Proofs are omitted. They can be found in the technical report [9].

2 Closed λ-Calculi

In this section we define the CbN, CbV, and CbNeed evaluation strategies. We
present them in the context of the Accattoli and Kesner’s linear substitution cal-
culus (LSC) [1,6]. We mainly follow the uniform presentation of these strategies
given by Accattoli, Barenbaum, and Mazza [3]. The only difference is that we
adopt a non-deterministic presentation of CbV, subsuming both the left-to-right
and the right-to-left strategies in [3], that makes our results slightly more gen-
eral. Such a non-determinism is harmless: not only CbV evaluation is confluent,
it even has the diamond property, so that all evaluations have the same length.
Moreover, the non-deterministic presentation, together with the postponement
of erasing steps discussed below, allows us to see CbNeed as a fragment of CbV,
which shall provide a free proof that CbNeed duplicates as wisely as CbV.

Terms and Contexts. The set of terms Λlsc of the LSC is given by the grammar
below, where t[x←s] is an explicit substitution (shortened to ES), that is a more
compact notation for let x = s in t (intuitively, “t where x will be substituted
by s”). Both λx.t and t[x←s] bind x in t, with the usual notion of α-equivalence.

LSC Terms t, s, u ::= x | v | ts | t[x←s] LSC Values v ::= λx.t

The set fv(t) of free variables of a term t is defined as expected, in particular,
fv(t[x←s]) := (fv(t)\{x})∪fv(s). A term t is closed if fv(t) = ∅, open otherwise.
As usual, terms are identified up to α-equivalence.

Types by Need 415

Contexts are terms with exactly one occurrence of the hole 〈·〉, an additional
constant. We shall use many different contexts. The most general ones are weak
contexts W (i.e. not under abstractions). The (evaluation) contexts C, V and
E—used to define CbN, CbV and CbNeed evaluation strategies, respectively—
are special cases of weak contexts (in fact, CbV contexts coincide with weak
contexts, the consequences of that are discussed on p. 8). To define evaluation
strategies, substitution contexts (i.e. lists of explicit substitutions) also play a
role.

Weak contexts W ::= 〈·〉 | Wt | W [x←t] | tW | t[x←W]
Substitution contexts S ::= 〈·〉 | S[x←t]

CbN contexts C ::= 〈·〉 | Ct | C[x←t]
CbV contexts V ::= W

CbNeed contexts E ::= 〈·〉 | Et | E[x←t] | E〈〈x〉〉[x←E′]

We write W 〈t〉 for the term obtained by replacing the hole 〈·〉 in context
W by the term t. This plugging operation, as usual with contexts, can capture
variables—for instance ((〈·〉t)[x←s])〈x〉 = (xt)[x←s]. We write W 〈〈t〉〉 when we
want to stress that the context W does not capture the free variables of t.

Micro-step Semantics. The rewriting rules decompose the usual small-step
semantics for λ-calculi, by substituting linearly one variable occurrence at the
time, and only when such an occurrence is in evaluation position. We empha-
sise this fact saying that we adopt a micro-step semantics. We now give the
definitions, examples of evaluation sequences follow right next.

Formally, a micro-step semantics is defined by first giving its root-steps and
then taking the closure of root-steps under suitable contexts.

Multiplicative root-step S〈λx.t〉s �→m S〈t[x←s]〉
Exponential CbN root-step C〈〈x〉〉[x←t] �→ecbn C〈〈t〉〉[x←t]
Exponential CbV root-step V 〈〈x〉〉[x←S〈v〉] �→ecbv S〈V 〈〈v〉〉[x←v]〉

Exponential CbNeed root-step E〈〈x〉〉[x←S〈v〉] �→eneed S〈E〈〈v〉〉[x←v]〉

where, in the root-step �→m (resp. �→ecbv ; �→eneed), if S := [y1←s1] . . . [yn←sn]
for some n ∈ N, then fv(s) (resp. fv(V 〈〈x〉〉); fv(E〈〈x〉〉)) and {y1, . . . , yn} are
disjoint. This condition can always be fulfilled by α-equivalence.

The evaluation strategies −→cbn for CbN, −→cbv for CbV, and −→need for
CbNeed, are defined as the closure of root-steps under CbN, CbV and CbNeed
evaluation contexts, respectively (so, all evaluation strategies do not reduce
under abstractions, since all such contexts are weak):

416 B. Accattoli et al.

CbN CbV CbNeed
−→mcbn

:= C〈�→m〉
−→ecbn

:= C〈�→ecbn〉
−→cbn := C〈�→m∪ �→ecbn〉

−→mcbv
:= V 〈�→m〉

−→ecbv
:= V 〈�→ecbv〉

−→cbv := V 〈�→m∪ �→ecbv〉

−→mneed
:= E〈�→m〉

−→eneed
:= E〈�→eneed〉

−→need := E〈�→m∪ �→eneed〉

where the notation −→ := W 〈�→〉 means that, given a root-step �→, the evaluation
−→ is defined as follows: t −→s if and only if there are terms t′ and s′ and a context
W such that t = W 〈t′〉 and s = W 〈s′〉 and t′ �→ s′.

Note that evaluations −→cbn, −→cbv and −→need can equivalently be defined
as −→mcbn

∪ −→ecbn
, −→mcbn

∪ −→ecbv
and −→mneed

∪ −→eneed
, respectively.

Given an evaluation sequence d : t −→∗
cbns we note with |d| the length of d,

and with |d|m and |d|e the number of multiplicative and exponential steps in d,
respectively—and similarly for −→cbv and −→need.

Erasing Steps. The reader may be surprised by our evaluation strategies, as none
of them includes erasing steps, despite the absolute relevance of erasures pointed
out in the introduction. There are no contradictions: in the LSC—in contrast to
the λ-calculus—erasing steps can always be postponed (see [1]), and so they are
often simply omitted. This is actually close to programming language practice,
as the garbage collector acts asynchronously with respect to the evaluation flow.
For the sake of clarity let us spell out the erasing rules—they shall nonetheless
be ignored in the rest of the paper. In CbN and CbNeed every term is erasable,
so the root erasing step takes the following form

t[x←s] �→gc t if x /∈ fv(t)

and it is then closed by weak evaluation contexts.
In CbV only values are erasable; so, the root erasing step in CbV is:

t[x←S〈v〉] �→gc S〈t〉 if x /∈ fv(t)

and it is then closed by weak evaluation contexts.

Example 1. A good example to observe the differences between CbN, CbV, and
CbNeed is given by the term t := ((λx.λy.xx)(II))(II) where I := λz.z is
the identity combinator. In CbN, it evaluates with 5 multiplicative steps and 5
exponential steps, as follows:

t −→mcbn(λy.xx)[x←II](II) −→mcbn(xx)[y←II][x←II]

−→ecbn((II)x)[y←II][x←II] −→mcbn(z[z←I]x)[y←II][x←II]

−→ecbn(I[z←I]x)[y←II][x←II] −→mcbnw[w←x][z←I][y←II][x←II]

−→ecbnx[w←x][z←I][y←II][x←II] −→ecbn(II)[w←x][z←I][y←II][x←II]

−→mcbnx′[x′←I][w←x][z←I][y←II][x←II] −→ecbnI[x′←I][w←x][z←I][y←II][x←II]

In CbV, t evaluates with 5 multiplicative steps and 5 exponential steps, for
instance from right to left, as follows:

Types by Need 417

t −→mcbv (λx.λy.xx)(II)(z[z←I]) −→ecbv (λx.λy.xx)(II)(I[z←I])

−→mcbv (λx.λy.xx)(w[w←I])(I[z←I]) −→ecbv (λx.λy.xx)(I[w←I])(I[z←I])

−→mcbv (λy.xx)[x←I[w←I]](I[z←I]) −→mcbv (xx)[y←I[z←I]][x←I[w←I]]

−→ecbv (xI)[y←I[z←I]][x←I][w←I] −→ecbv (II)[y←I[z←I]][x←I][w←I]

−→mcbvx′[x′←I][y←I[z←I]][x←I][w←I] −→ecbvI[x′←I][y←I[z←I]][x←I][w←I]

Note that the fact that CbN and CbV take the same number of steps is by
chance, as they reduce different redexes: CbN never reduce the unneeded redex
II associated to y, but it reduces twice the needed II redex associated to x,
while CbV reduces both, but each one only once.

In CbNeed, t evaluates in 4 multiplicative steps and 4 exponential steps.

t −→mneed(λy.xx)[x←II](II) −→mneed(xx)[y←II][x←II]

−→mneed(xx)[y←II][x←z[z←I]] −→eneed(xx)[y←II][x←I[z←I]]

−→eneed(Ix)[y←II][x←I][z←I] −→mneed(w[w←x])[y←II][x←I][z←I]

−→eneedw[w←I][y←II][x←I][z←I] −→eneedI[w←I][y←II][x←I][z←I]

CbV Diamond Property. CbV contexts coincide with weak ones. As a conse-
quence, our presentation of CbV is non-deterministic, as for instance one can
have

x[x←I](y[y←I]) mcbv← (II)(y[y←I]) −→ecbv
(II)(I[y←I])

but it is easily seen that diagrams can be closed in exactly one step (if the two
reducts are different). For instance,

x[x←I](y[y←I]) −→ecbv
x[x←I](I[y←I]) mcbv← (II)(I[y←I])

Moreover, the kind of steps is preserved, as the example illustrates. This is an
instance of the strong form of confluence called diamond property. A consequence
is that either all evaluation sequences normalise or all diverge, and if they nor-
malise they have all the same length and the same number of steps of each
kind. Roughly, the diamond property is a form of relaxed determinism. In par-
ticular, it makes sense to talk about the number of multiplicative/exponential
steps to normal form, independently of the evaluation sequence. The proof of
the property is an omitted routine check of diagrams.

Normal Forms. We use two predicates to characterise normal forms, one for
both CbN and CbNeed normal forms, for which ES can contain whatever term,
and one for CbV normal forms, where ES can only contain normal terms:

normal(λx.t)
normal(t)

normal(t[x←s]) normalcbv(λx.t)
normalcbv(t) normalcbv(s)

normalcbv(t[x←s])

418 B. Accattoli et al.

Proposition 1 (Syntactic characterization of closed normal forms).
Let t be a closed term.
1. CbN and CbNeed: For r ∈ {cbn,need}, t is r-normal if and only if normal(t).
2. CbV: t is cbv-normal if and only if normalcbv(t).

The simple structure of normal forms is the main point where the restriction
to closed calculi plays a role in this paper.

From the syntactic characterization of normal forms (Proposition 1) it follows
immediately that among closed terms, normal forms for CbN and CbNeed coin-
cide, while normal forms for CbV are a subset of them. Such a subset is proper
since the closed term I[x←δδ] (where I := λz.z and δ := λy.yy) is normal for
CbN and CbNeed but not for CbV (and it cannot normalise in CbV).

3 Preliminaries About Multi Types

In this section we define basic notions about multi types, type contexts, and
(type) judgements that are shared by the three typing systems of the paper.

Multi-sets. The type systems are based on two layers of types, defined in a
mutually recursive way, linear types L and finite multi-sets M of linear types.
The intuition is that a linear type L corresponds to a single use of a term, and
that an argument t is typed with a multi-set M of n linear types if it is going
to end up (at most) n times in evaluation position, with respect to the strategy
associated with the type system. The three systems differ on the definition of
linear types, that is therefore not specified here, while all adopt the same notion
of finite multi-set M of linear types (named multi type), that we now introduce:

Multi types M,N ::= [Li]i∈J (for any finite set J)

where [. . .] denotes the multi-set constructor. The empty multi-set [] (the multi
type obtained for J = ∅) is called empty (multi) type and denoted by the special
symbol 0. An example of multi-set is [L,L,L′], that contains two occurrences of
L and one occurrence of L′. Multi-set union is noted
.

Type Contexts. A type context Γ is a (total) map from variables to multi types
such that only finitely many variables are not mapped to 0. The domain of Γ is
the set dom(Γ) := {x | Γ (x) �= 0}. The type context Γ is empty if dom(Γ) = ∅.

Multi-set union
 is extended to type contexts point-wise, i.e. (Γ
Π)(x) :=
Γ (x)
 Π(x) for each variable x. This notion is extended to a finite family
of type contexts as expected, so that

⊎
i∈J Γi denotes a finite union of type

contexts—it stands for the empty context when J = ∅. A type context Γ is
denoted by x1 : M1, . . . , xn : Mn (for some n ∈ N) if dom(Γ) ⊆ {x1, . . . , xn} and
Γ (xi) = Mi for all 1 ≤ i ≤ n. Given two type contexts Γ and Π such that
dom(Γ) ∩ dom(Π) = ∅, the type context Γ,Π is defined by (Γ,Π)(x) := Γ (x) if
x ∈ dom(Γ), (Γ,Π)(x) := Π(x) if x ∈ dom(Π), and (Γ,Π)(x) := 0 otherwise.

Types by Need 419

x : [L] ���(0,1)x :L
ax

���(0,0)λx.t : normal
normal

Γ, x :M ���(m,e)t :L

Γ ���(m,e)λx.t :M � L
fun

(Πi ���(mi,ei)t :Li)i∈J
⊎

i∈J Πi ���(
∑

i∈Jmi,
∑

i∈Jei)t : [Li]i∈J

many

Γ ���(m,e)t :M � L Π ���(m′,e′)s :M

Γ � Π ���(m+m′+1,e+e′)ts :L
app Γ, x :M ���(m,e)t :L Π ���(m′,e′)s :M

Γ � Π ���(m+m′,e+e′)t[x←s] :L
ES

Fig. 1. Type system for CbN evaluation

Judgements. Type judgements are of the form Γ ���(m,e)t : L or Γ ���(m,e)t : M
(noted also ���(m,e)t : L and ���(m,e)t : M , respectively, when Γ is the empty con-
text), where the indices m and e are natural numbers whose intended meaning
is that t evaluates to normal form in m multiplicative steps and e exponential
steps, with respect to the evaluation strategy associated with the type system.

To make clear in which type systems the judgement is derived, we write
Φ�cbn Γ ���(m,e)t : L if Φ is a derivation in the CbN system ending in the judgement
Γ ���(m,e)t : L, and similarly for CbV and CbNeed.

4 Types by Name

In this section we introduce the CbN multi type system, together with intuitions
about multi types. We also prove that derivations provide exact bounds on CbN
evaluation sequences, and define the induced denotational model.

CbN Types. The system is essentially a reformulation of de Carvalho’s system
R [23], itself being a type-based presentation of the relational model of the CbN
λ-calculus induced by relational model of linear logic via the CbN translation of
λ-calculus into linear logic. Definitions:
– CbN linear types are given by the following grammar:

CbN linear types L,L′ ::= normal | M � L

Multi(-sets) types are defined as in Sect. 3, relatively to CbN linear types.
Note the linear constant normal (used to type abstractions, which are normal
terms): it plays a crucial role in our quantitative analysis of CbN evaluation.

– The CbN typing rules are in Fig. 1.
– The many rule: it has as many premises as the elements in the (possibly

empty) set of indices J . When J = ∅, the rule has no premises, and it types
t with the empty multi type 0. The many rule is needed to derive the right
premises of the rules app and ES, that have a multi type M on their right-
hand side. Essentially, it corresponds to the promotion rule of linear logic,
that, in the CbN representation of the λ-calculus, is indeed used for typing
the right subterm of applications and the content of explicit substitutions.

420 B. Accattoli et al.

– The size of a derivation Φ �cbn Γ ���(m,e)t : L is the sum m + e of the indices.
A quick look to the typing rules shows that indices on typing judgements are
not needed, as m can be recovered as the number of app rules, and e as the
number of ax rules. It is however handy to note them explicitly.

Subtleties and Easy Facts. Let us overview some facts about our presentation of
the type system.
1. Introduction and destruction of multi-sets: multi-set are introduced on the

right by the many rule and on the left by ax. Moreover, on the left they are
summed by app and ES.

2. Vacuous abstractions: the abstraction rule fun can always abstract a variable
x; note that if M = 0, then Γ, x : M is equal to Γ .

3. Relevance: No weakening is allowed in axioms. An easy induction on type
derivations shows that

Lemma 1 (Type contexts and variable occurrences for CbN). Let Φ�cbn
Γ ���(m,e)t : L be a derivation. If x �∈ fv(t) then x /∈ dom(Γ).

Lemma 1 implies that derivations of closed terms have empty type context. Note
that there can be free variables of t not in dom(Γ): the ones only occurring in
subterms not touched by the evaluation strategy.

Key Ingredients. Two key points of the CbN system that play a role in the
design of the CbNeed one in Sect. 6 are:
1. Erasable terms and 0: the empty multi type 0 is the type of erasable terms.

Indeed, abstractions that erase their argument—whose paradigmatic example
is λx.y—can only be typed with 0 � L, because of Lemma 1. Note that in
CbN every term—even diverging ones—can be typed with 0 by rule many
(taking 0 premises), because, correctly, in CbN every term can be erased.

2. Adequacy and linear types: all CbN typing rules but many assign linear types.
And many is used only as right premise of the rules app and ES, to derive M .
It is with respect to linear types, in fact, that the adequacy of the system is
going to be proved: a term is CbN normalising if and only if it is typable with
a linear type, given by Theorems 1 and 2 below.

Tight Derivations. A term may have several derivations, indexed by different
pairs (m, e). They always provide upper bounds on CbN evaluation lengths. The
interesting aspect of our type systems, however, is that there is a simple descrip-
tion of a class of derivations that provide exact bounds for these quantities, as
we shall show. Their definition relies on the normal type constant.

Definition 1 (Tight derivations for CbN). A derivation Φ�cbn Γ ���(m,e)t:L
is tight (for CbN) if L = normal and Γ is empty.

Example 2. Let us return to the term t := ((λx.λy.xx)(II))(II) used in Exam-
ple 1 for explaining the difference in reduction lengths among the different strate-
gies. We now give a derivation for it in the CbN type system.

Types by Need 421

First, let us shorten normal to n. Then, we define Φ as the following derivation
for the subterm λx.λy.xx of t:

x : [[n] � n] �(0,1) x : [n] � n
ax

x : [n] �(0,1) x : n
ax

x : [n] �(0,1) x : [n]
many

x : [n, [n] � n] �(1,2) xx : n
app

x : [n, [n] � n] �(1,2) λy.xx :0 � n
fun

�(1,2) λx.λy.xx : [n, [n] � n] � (0 � n)
fun

Now, we need two derivations for II, one of type n, given by Ψ as follows

z : [n] �(0,1) z : n
ax

�(0,1) λz.z : [n] � n
fun

�(0,0) λw.w : n
normal

�(0,0) λw.w : [n]
many

�(1,1) II : n
app

and one of type [n] � n, given by Ξ as follows

z : [[n] � n] �(0,1) z : [n] � n
ax

�(0,1) λz.z : [[n] � n] � ([n] � n)
fun

w : [n] �(0,1) w : n
ax

�(0,1) λw.w : [n] � n
fun

�(0,1) λw.w : [[n] � n]
many

�(1,2) II : [n] � n
app

Finally, we put Φ, Ψ and Ξ together in the following derivation Θ for t =
(s(II))(II), where s := λx.λy.xx and n[n] := [n] � n

.... Φ

���(1,2)s : [n, n[n]] � (0 � n)

.... Ψ

�(1,1) II : n

.... Ξ

�(1,2) II : n[n] many
�(2,3) II : [n, n[n]]

app
�(4,5) s(II) :0 � n

many
�(0,0) II :0

app
�(5,5) (s(II))(II) : n

Note that Θ is a tight derivation and the indices (5, 5) correspond to the number
of mcbn-steps and ecbn-steps, respectively, from t to its cbn-normal form, as shown
in Example 1. Theorem 1 below shows that this is not by chance: tight derivations
for CbN are minimal and provide exact bounds to evaluation lengths in CbN.

The next two subsections prove the two halves of the properties of the CbN
type system, namely correctness and completeness.

422 B. Accattoli et al.

4.1 CbN Correctness

Correctness is the fact that every typable term is CbN normalising. In our setting
it comes with additional quantitative information: the indices m and e of a
derivation Φ �cbn Γ ���(m,e)t : L provide upper bounds on the length of the CbN
evaluation of t, that are exact when the derivation is tight.

The proof technique is standard. Moreover, the correctness theorems for CbV
and CbNeed in the next sections follow exactly the same structure. The proof
relies on a quantitative subject reduction property showing that m decreases
by exactly one at each mcbn-step, and similarly for e and ecbn-steps. In turn,
subject reduction relies on a linear substitution lemma. Last, correctness for
tight derivations requires a further property of normal forms.

Let us point out that correctness is stated with respect to closed terms only,
but the auxiliary results have to deal with open terms, since they are proved by
inductions (over predicates defined by induction) over the structure of terms.

Linear Substitution. The linear substitution lemma states that substituting over
a variable occurrence as in the exponential rule consumes exactly one linear type
and decreases of one the exponential index e.

Lemma 2 (CbN linear substitution). If Φ �cbn Γ, x : M ���(m,e)C〈〈x〉〉 : L
then there is a splitting M = [L′]
 N such that for every derivation Ψ �cbn

Π ���(m′,e′)t : L′ there is a derivation Φ′ �cbn Γ
 Π,x : N ���(m+m′,e+e′−1)C〈〈t〉〉 : L.

The proof is by induction over CbN evaluation contexts.

Quantitative Subject Reduction. A key point of multi types is that the size of type
derivations shrinks after every evaluation step, which is what allows to bound
evaluation lengths. Remarkably, the size (defined as the sum of the indices)
shrinks by exactly 1 at every evaluation step.

Proposition 2 (Quantitative subject reduction for CbN). Let Φ �cbn
Γ ���(m,e)t : L be a derivation.
1. Multiplicative: if t −→mcbn

s then m ≥ 1 and there exists a derivation Ψ �cbn

Γ ���(m−1,e)s : L.
2. Exponential: if t −→ecbn

s then e ≥ 1 and there exists a derivation Ψ �cbn

Γ ���(m,e−1)s : L.

The proof is by induction on t −→mcbn
s and t −→ecbn

s, using the linear substi-
tution lemma for the root exponential step.

Tightness and Normal Forms. Since the indices are always non-negative, quan-
titative subject reduction (Proposition 2) implies that they bound evaluation
lengths. The bound is not necessarily exact, as derivations of normal forms can
have strictly positive indices. If they are tight, however, they are indexed by
(0, 0), as we now show. The proof of this fact (by induction on the predicate
normal) requires a slightly different statement, for the induction to go through.

Types by Need 423

Proposition 3 (normal typing of normal forms for CbN). Let t be such
that normal(t), and Φ �cbn Γ ���(m,e)t : normal be a derivation. Then Γ is empty,
and so Φ is tight, and m = e = 0.

The Tight Correctness Theorem. The theorem is then proved by a straightfor-
ward induction on the evaluation length relying on quantitative subject reduc-
tion (Proposition 2) for the inductive case, and the properties of tight typings
for normal forms (Proposition 3) for the base case.

Theorem 1 (CbN tight correctness). Let t be a closed term. If Φ �cbn
���(m,e)t : L then there is s such that d : t −→∗

cbns, with normal(s), |d|m ≤ m and
|d|e ≤ e. Moreover, if Φ is tight then |d|m = m and |d|e = e.

Note that Theorem 1 implicitly states that tight derivations have minimal
size among derivations.

4.2 CbN Completeness

Completeness is the fact that every CbN normalising term has a (tight) type
derivation. As for correctness, the completeness theorem is always obtained via
three intermediate steps, dual to those for correctness.

Normal Forms. The first step is to prove (by induction on the predicate normal)
that every normal form is typable, and is actually typable with a tight derivation.

Proposition 4 (Normal forms are tightly typable for CbN). Let t be
such that normal(t). Then there is tight derivation Φ �cbn ���(0,0)t : normal.

Linear Removal. In order to prove subject expansion, we have to first show
that typability can also be pulled back along substitutions, via a linear removal
lemma dual to the linear substitution lemma.

Lemma 3 (Linear removal for CbN). Let Φ �cbn Γ, x : M ���(m,e)C〈〈s〉〉 : L,
where x /∈ fv(s). Then there exist
– a linear type L′ and two type contexts Γ ′ and Π,
– a derivation Φ′ �cbn Γ ′ ���(m′,e′)s : L′, and
– a derivation Ψ �cbn Π,x : M
 [L′] ���(m′′,e′′)C〈〈x〉〉 : L
such that
– Type contexts: Γ = Γ ′
 Π.
– Indices: (m, e) = (m′ + m′′, e′ + e′′ − 1).

Quantitative Subject Expansion. This property is the dual of subject reduction.

Proposition 5 (Quantitative subject expansion for CbN). Let Φ �cbn
Γ ���(m,e)s : L be a derivation.
1. Multiplicative: if t −→mcbn

s then there is a derivation Ψ �cbn Γ ���(m+1,e)t : L.
2. Exponential: if t −→ecbn

s then there is a derivation Ψ �cbn Γ ���(m,e+1)t : L.

The proof is by induction on t −→mcbn
s and t −→ecbn

s, using the linear removal
lemma for the root exponential step.

424 B. Accattoli et al.

The Tight Completeness Theorem. The theorem is proved by a straightforward
induction on the evaluation length relying on quantitative subject expansion
(Proposition 5) in the inductive case, and the existence of tight typings for
normal forms (Proposition 4) in the base case.

Theorem 2 (CbN tight completeness). Let t be a closed term. If d : t−→∗
cbns

and normal(s) then there is a tight derivation Φ �cbn ���(|d|m,|d|e)t : normal.

Back to Erasing Steps. Our system can be easily adapted to measure also garbage
collection steps (the CbN erasing rule is just before Example 1). First, a new,
third index g on judgements is necessary. Second, one needs to distinguish the
erasing and non-erasing cases of the app and ES rules, discriminated by the 0
type. For instance, the ES rules are (the app rules are similar):

Γ �(m,e,g) t :L Γ (x) = 0

Γ �(m,e,g+1) t[x←s] :L
ESgc

Γ, x :M �(m,e,g) t :L Π �(m′,e′,g′) s :M M �= 0

Γ � Π �(m+m′,e+e′,g+g′) t[x←s] :L
ES

The right premise of rule ESgc has been removed because the only way to intro-
duce 0 is via a many rule with no premises. The index g bounds to the number
of erasing steps. In the closed case, however, the bound cannot be, in general,
exact. Variables typed with 0 by Γ do not exactly match variables not appearing
in the typed term (that is the condition triggering the erasing step), because a
variable typed with 0 may appear in the body of abstractions typed with the
normal rule, as such bodies are not typed.

It is reasonable to assume that exact bounds for erasing steps can only by
provided by a type system characterising strong evaluation, whose typing rules
have to inspect abstraction bodies. These erasing typing rules are nonetheless
going to play a role in the design of the CbNeed system in Sect. 6.

4.3 CbN Model

The idea to build the denotational model from the multi type system is that the
interpretation (or semantics) of a term is simply the set of its type assignments,
i.e. the set of its derivable types together with their type contexts. More precisely,
let t be a term and x1, . . . , xn (with n ≥ 0) be pairwise distinct variables. If
fv(t) ⊆ {x1, . . . , xn}, we say that the list �x = (x1, . . . , xn) is suitable for t. If
�x = (x1, . . . , xn) is suitable for t, the (relational) semantics of t for �x is

[[t]]CbN
�x := {((M1, . . . ,Mn), L) | ∃Φ �cbn x1 : M1, . . . , xn : Mn ���(m,e)t : L} .

Subject reduction (Proposition 2) and expansion (Proposition 5) guarantee
that the semantics [[t]]CbN

�x of t (for any term t, possibly open) is invariant by CbN
evaluation. Correctness (Theorem 1) and completeness (Theorem 2) guarantee
that, given a closed term t, its interpretation [[t]]CbN

�x is non-empty if and only if
t is CbN normalisable, that is, they imply that relational semantics is adequate.

Types by Need 425

x :M ���(0,1)x :M
ax

Γ ���(m,e)t : [N � M] Π ���(m′,e′)s :N

Γ � Π ���(m+m′+1,e+e′)ts :M
app

Γ, x :N ���(m,e)t :M

Γ ���(m,e)λx.t :N � M
fun

(Πi ���(mi,ei)λx.t :Li)i∈J
⊎

i∈J Πi ���(
∑

i∈Jmi,
∑

i∈Jei)λx.t : [Li]i∈J

many

Γ, x :N ���(m,e)t :M Π ���(m′,e′)s :N

Γ � Π ���(m+m′,e+e′)t[x←s] :M
ES

Fig. 2. Type system for CbV evaluation.

In fact, adequacy also holds with respect to open terms. The issue in that
case is that the characterisation of tight derivations is more involved, see Accat-
toli, Graham-Lengrand and Kesner’s [7]. Said differently, weaker correctness and
completeness theorems without exact bounds also hold in the open case. The
same is true for the CbV and CbNeed systems of the next sections.

5 Types by Value

Here we introduce Ehrhard’s CbV multi type system [34] adapted to our presen-
tation of CbV in the LSC, and prove its properties. The system is similar, and
yet in many aspects dual, to the CbN one, in particular the grammar of types
is different. Linear types for CbV are defined by:

CbV linear types L,L′ ::= M � N

Multi(-sets) types are defined as in Sect. 3, relatively to CbV linear types. Note
that linear types now have a multi type both as source and as target, and that
the normal constant is absent—in CbV, its role is played by 0.

The typing rules are in Fig. 2. It is a type-based presentation of the relational
model of the CbV λ-calculus induced by relational model of linear logic via the
CbV translation of λ-calculus into linear logic. Some remarks:
– Right-hand types : all rules but fun assign a multi type to the term on the

right-hand side, and not a linear type as in CbN.
– Abstractions and many: the many rule has a restricted form with respect to

the CbN one, it can only be applied to abstractions, that in turn are the only
terms that can be typed with a linear type.

– Indices: note as the indices are however incremented (on ax and app) and
summed (in many and ES) exactly as in the CbN system.

Intuitions: The Empty Type 0. The empty multi-set type 0 plays a special role
in CbV. As in CbN, it is the type of terms that can be erased, but, in contrast
to CbN, not every term is erasable in CbV.

426 B. Accattoli et al.

In the CbN multi type system every term, even a diverging one, is typable
with 0. On the one hand, this is correct, because in CbN every term can be
erased, and erased terms can also be divergent, because they are never evaluated.
On the other hand, adequacy is formulated with respect to non-empty types: a
term terminates if and only if it is typable with a non-empty type.

In CbV, instead, terms have to be evaluated before being erased; and, of
course, their evaluation has to terminate. Thus, terminating terms and erasable
terms coincide. Since the multi type system is meant to characterise terminating
terms, in CbV a term is typable if and only if it is typable with 0, as we shall
prove in this section. Then the empty type is not a degenerate type excluded for
adequacy from the interesting types of a term, as in CbN, it rather is the type,
characterising (adequate) typability altogether. And this is also the reason for
the absence of the constant normal—one way to see it is that in CbV normal = 0.

Note that, in particular, in a type judgement Γ � t : M the type context Γ
may give the empty type to a variable x occurring in t, as for instance in the
axiom x :0 � x :0—this may seem very strange to people familiar with CbN
multi types. We hope that instead, according to the provided intuition that 0 is
the type of termination, it would rather seem natural.

Definition 2 (Tight derivation for CbV). A derivation Φ�cbv Γ ���(m,e)t : M
is tight (for CbV) if M = 0 and Γ is empty.

Example 3. Let’s consider again the term t := ((λx.λy.xx)(II))(II) of Exam-
ple 1 (where I := λz.z), for which a CbN tight derivation was given in Example 2,
and let us type it in the CbV system with a tight derivation.

We define the following derivation Φ1 for the subterm s := λx.λy.xx of t

x : [0 � 0] �(0,1) x : [0 � 0]
ax

x : 0 �(0,1) x :0
ax

x : [0 � 0] �(1,2) xx :0
app

x : [0 � 0] �(1,2) λy.xx :0 � 0
fun

x : [0 � 0] �(1,2) λy.xx : [0 � 0]
many

�(1,2) s : [0 � 0] � [0 � 0]
fun

�(1,2) s : [[0 � 0] � [0 � 0]]
many

Note that [0 � 0]
 0 = [0 � 0], which explains the shape of the type context
in the conclusion of the app rule. Next, we define the derivation Φ2 as follows

z : [0 � 0] �(0,1) z : [0 � 0]
ax

�(0,1) λz.z : [0 � 0] � [0 � 0]
fun

�(0,1) λz.z : [[0 � 0] � [0 � 0]]
many

w : 0 �(0,1) w :0
ax

�(0,1) λw.w :0 � 0
fun

�(0,1) λw.w : [0 � 0]
many

�(1,2) II : [0 � 0]
app

Types by Need 427

and the derivation Φ3 as follows

x′ : 0 �(0,1) x′ :0
ax

�(0,1) λx′.x′ :0 � 0
fun

�(0,1) λx′.x′ : [0 � 0]
many

�(0,0) I :0
many

�(1,1) II :0
app

Finally, we put Φ1, Φ2 and Φ3 together in the following derivation Φ for t
..... Φ1

�(1,2) s : [[0 � 0] � [0 � 0]]

..... Φ2

�(1,2) II : [0 � 0]
app

�(3,4) (λx.λy.xx)(II) : [0 � 0]

..... Φ3

�(1,1) II :0
app

�(5,5) ((λx.λy.xx)(II))(II) :0
Note that Φ is a tight derivation and the indices (5, 5) correspond to the number
of mcbv-steps and ecbv-steps, respectively, from t to its cbv-normal form, as shown
in Example 1. Theorem 3 below shows that this is not by chance: tight derivations
for CbV are minimal and provide exact bounds to evaluation lengths in CbV.

Correctness (i.e. typability implies normalisability) and completeness (i.e.
normalisability implies typability) of the CbV type system with respect to CbV
evaluation (together with quantitative information about evaluation lengths)
follow exactly the same pattern of the CbN case, mutatis mutandis.

5.1 CbV Correctness

Lemma 4 (CbV linear substitution). Let Φ �cbv Γ, x :M ���(m,e)V 〈〈x〉〉 : N
and v be a value. There is a splitting M = O
 P such that,
for any derivation Ψ �cbv Π ���(m′,e′)v : O, there is a derivation Φ′ �cbv

Γ
 Π,x : P ���(m+m′,e+e′−1)V 〈〈v〉〉 : N .

Proposition 6 (Quantitative subject reduction for CbV). Let Φ �cbv
Γ ���(m,e)t : M be a derivation.
1. Multiplicative: if t −→mcbv

t′ then m ≥ 1 and there exists a derivation Φ′ �cbv

Γ ���(m−1,e)t′ : M .
2. Exponential: if t −→ecbv

t′ then e ≥ 1 and there exists a derivation Φ′ �cbv

Γ ���(m,e−1)t′ : M .

Proposition 7 (Tight typings for normal forms for CbV). Let Φ �cbv
Γ ���(m,e)t :0 be a derivation, with normalcbv(t). Then Γ is empty, and so Φ is
tight, and m = e = 0.

Theorem 3 (CbV tight correctness). Let t be a closed term. If Φ �cbv
Γ ���(m,e)t : M then there is s such that d : t −→∗

cbvs, with normalcbv(s), |d|m ≤ m
and |d|e ≤ e. Moreover, if Φ is tight then |d|m = m and |d|e = e.

428 B. Accattoli et al.

5.2 CbV Completeness

Proposition 8 (Normal forms are tightly typable for CbV). Let t be
such that normalcbv(t). Then there exists a tight derivation Φ �cbv ���(0,0)t :0.

Lemma 5 (Linear removal for CbV). Let Φ �cbv Γ, x : M ���(m,e)V 〈〈v〉〉 : N
and v be a value, where x /∈ fv(v). Then, there exist
– a multi type M ′ and two type contexts Γ ′ and Π,
– a derivation Φ′ �cbv Γ ′ ���(m′,e′)v : M ′ and
– a derivation Ψ �cbv Π,x : M
 M ′ ���(m′′,e′′)V 〈〈x〉〉 :N
such that
– Type contexts: Γ = Γ ′
 Π,
– Indices: (m, e) = (m′ + m′′, e′ + e′′ − 1).

Proposition 9 (Quantitative subject expansion for CbV). Let Φ′ �cbv
Γ ���(m,e)t′ : M be a derivation.
1. Multiplicative: if t −→mcbv

t′ then there is a derivation Φ �cbv Γ ���(m+1,e)t : M .
2. Exponential: if t −→ecbv

t′ then there is a derivation Φ �cbv Γ ���(m,e+1)t : M .

Theorem 4 (CbV tight completeness). Let t be a closed term. If d : t −→∗
cbvs

with normalcbv(s), then there is a tight derivation Φ �cbv ���(|d|m,|d|e)t :0.

CbV Model. The interpretation of terms with respect to the CbV system is
defined as follows (where �x = (x1, . . . , xn) is a list of variables suitable for t):

[[t]]CbV
�x := {((M1, . . . ,Mn), N) | ∃Φ �cbv x1 : M1, . . . , xn : Mn ���(m,e)t : N} .

Note that rule fun assigns a linear type but the interpretation considers only
multi types. The invariance and the adequacy of [[t]]CbV

�x with respect to CbV
evaluation are obtained exactly as for the CbN case.

6 Types by Need

CbNeed as a Blend of CbN and CbV. The multi type system for CbNeed is
obtained by carefully blending ingredients from the CbN and CbV ones:
– Wise erasures from CbN : in CbN wise erasures are induced by the fact that

the empty multi type 0 (the type of erasable terms) and the linear type normal
(the type of normalisable terms) are distinct and every term is typable with
0 by using the many rule with 0 premises. Adequacy is then formulated with
respect to (non-empty) linear types.

– Wise duplications from CbV : in CbV wise duplications are due to two
aspects. First, only abstractions can be collected in multi-sets by rule many.
This fact accounts for the evaluation of arguments to normal form—that is,
abstractions—before being substituted. Second, terms are typed with multi
types instead of linear types. Roughly, this second fact allows the first one to
actually work because the argument is reduced once for a whole multi set of
types, and not once for each element of the multi set, as in CbN.

Types by Need 429

x :M ���(0,1)x :M
ax

Γ ���(m,e)t : [N � M] Π ���(m′,e′)s :N

Γ � Π ���(m+m′+1,e+e′)ts :M
app

���(0,0)t :0
many0

(Πi ���(mi,ei)λx.t :Li)i∈J J �= ∅
⊎

i∈J Πi ���(
∑

i∈Jmi,
∑

i∈Jei)λx.t : [Li]i∈J

many>0

Γ, x :N ���(m,e)t :M

Γ ���(m,e)λx.t :N � M
fun

Γ, x :N ���(m,e)t :M Π ���(m′,e′)s :N

Γ � Π ���(m+m′,e+e′)t[x←s] :M
ES

�(0,0) λx.t : normal
normal

Fig. 3. Näıve type system for CbNeed evaluation.

It seems then that a type system for CbNeed can easily be obtained by basically
adopting the CbV system plus
– separating 0 and normal, that is, adding normal to the system;
– modifying the many rule by distinguishing two cases: with 0 premises it can

assign 0 to whatever term—as in CbN—otherwise it is forced to work on
abstractions, as in CbV;

– restricting adequacy to non-empty types.
Therefore, the grammar of linear types is:

CbNeed linear types L,L′ ::= normal | M � N

Multi(-sets) types are defined as in Sect. 3, relatively to CbNeed linear types.
The rules of this näıve system for CbNeed are in Fig. 3.

Issue with the Näıve System. Unfortunately, the näıve system does not work:
tight derivations—defined as expected: empty type context and the term typed
with [normal]—do not provide exact bounds. The problem is that the näıve
blend of ingredients allows derivations of 0 with strictly positive indices m and
e. Instead, derivations of 0 should always have 0 in both indices—as is the
case when they are derived with a many0 rule with 0 premises—because they
correspond to terms to be erased, that are not evaluated in CbNeed. For any
term t, indeed, one can for instance derive the following derivation Φ:

�(0,0) x :0
many0

�(0,0) λx.x :0 � 0
fun

�(0,0) λx.x : [0 � 0]
many>0 �(0,0) t :0

many0

�(1,0) (λx.x)t :0
app

430 B. Accattoli et al.

Note that introducing �(0,1) x :0 with rule ax rather than via many0 (the typing
context x :0 is equivalent to the empty type context) would give a derivation
with final judgement �(1,1) (λx.x)t :0—thus, the system messes up both indices.

Such bad derivations of 0 are not a problem per se, because in CbNeed one
expects correctness and completeness to hold only for derivations of non-empty
multi types. However, they do mess up also derivations of non-empty multi types
because they can still appear inside tight derivations, as sub-derivations of sub-
terms to be erased; consider for instance:

normal
�(0,0) I : normal

many>0�(0,0) I : [normal]
fun

�(0,0) λy.I :0 � [normal]
many>0�(0,0) λy.I : [0 � [normal]]

.... Φ

�(1,0) (λx.x)t :0
app

�(2,0) (λy.I)((λx.x)t) : [normal]
The term normalises in just 1 mneed-step to I[y←(λx.x)t] but the multiplicative
index of the derivation is 2. The mismatch is due to a bad derivation of 0 used
as right premise of an app rule. Similarly, the induced typing of I[y←(λx.x)t] is
an example of a bad derivation used as right premise of a rule ES:

normal
�(0,0) I : normal

many>0�(0,0) I : [normal]

.... Φ

�(1,0) (λx.x)t :0
ES

�(1,0) I[y←(λx.x)t] : [normal]

The Actual Type System. Our solution to such an issue is to modify the system
as to avoid derivations of 0 to appear as right premises of rules app and ES.
We follow the schema of the rules for counting erasing steps given right after
Theorem 2.

Therefore, we add two dedicated rules appgc and ESgc, and constrain the
right premise of rules app and ES to have a non-empty type. The system is in
Fig. 4 and it is based on the same grammar of types of the näıve system. Note
that rules many and ax can still introduce 0. These 0s, however, can no longer
mess up the indices of tight derivations, as we are going to show.

Note that the indices m and e are incremented and summed exactly as in
the CbN and CbV type systems.

Definition 3 (Tight derivations for CbNeed). A derivation Φ �need
Γ �(m,e) t : M is tight (for CbNeed) if M = [normal] and Γ is empty.

Example 4. We return to the term t := ((λx.λy.xx)(II))(II) used in Example 1
and we give it a tight derivation in the CbNeed type system.

Again, we shorten normal to n. Then, we define Ψ as follows

Types by Need 431

x :M �(0,1) x :M
ax

�(0,0) λx.t : normal
normal

Γ, x :N �(m,e) t :M

Γ �(m,e) λx.t :N � M
fun

(Γi �(mi,ei) λx.t :Li)i∈J
⊎

i∈J Γi �(
∑

i∈Jmi,
∑

i∈Jei) λx.t : [Li]i∈J

many

Γ �(m,e) t : [0 � M]

Γ �(m+1,e) ts :M
appgc

Γ �(m,e) t : [N � M] Π �(m′,e′) s :N N �= 0

Γ � Π �(m+m′+1,e+e′) ts :M
app

Γ �(m,e) t :M Γ (x) = 0

Γ �(m,e) t[x←s] :M
ESgc

Γ, x :N �(m,e) t :M Π �(m′,e′) s :N N �= 0

Γ � Π �(m+m′,e+e′) t[x←s] :M
ES

Fig. 4. Type system for CbNeed evaluation.

x : [[n] � [n]] �(0,1) x : [[n] � [n]]
ax

x : [n] �(0,1) x : [n]
ax

x : [n, [n] � [n]] �(1,2) xx : [n]
app

x : [n, [n] � [n]] �(1,2) λy.xx :0 � [n]
fun

x : [n, [n] � [n]] �(1,2) λy.xx : [0 � [n]]
many

�(1,2) λx.λy.xx : [n, [n] � [n]] � [0 � [n]]
fun

�(1,2) λx.λy.xx : [[n, [n] � [n]] � [0 � [n]]]
many

and, shortening [n] � [n] to [n][n], we define Θ as follows

ax
z : [n, [n][n]] �(0,1) z : [n, [n][n]]

fun
�(0,1)λz.z : [n, [n][n]] � [n, [n][n]]

many
�(0,1)λz.z : [[n, [n][n]] � [n, [n][n]]]

normal
�(0,0)λw.w : n

ax
w : [n] �(0,1)w : [n]

fun
�(0,1)λw.w : [n][n]

many
�(0,1)λw.w : [n, [n][n]]

app
�(1,2) II : [n, [n][n]]

Finally, we put Ψ and Θ together in the following derivation Φ for t

.... Ψ

�(1,2) λx.λy.xx : [[n, [n][n]] � [0 � [n]]]

.... Θ

�(1,2) II : [n, [n][n]]
app

�(3,4) (λx.λy.xx)(II) : [0 � [n]]
appgc�(4,4) ((λx.λy.xx)(II))(II) : [n]

Note that the indices (4, 4) correspond exactly to the number of mneed-steps and
eneed-steps, respectively, from t to its need-normal form—as shown in Exam-
ple 1—and that Φ is a tight derivation. Forthcoming Theorem 5 shows once
again that this is not by chance: tight derivations for CbNeed are minimal and
provides exact bounds to evaluation lengths in CbNeed.

432 B. Accattoli et al.

Remarkably, the technical development to prove correctness and complete-
ness of the CbNeed type system with respect to CbNeed evaluation follows
smoothly along the same lines of the two other systems, mutatis mutandis.

6.1 CbNeed Correctness

Lemma 6 (CbNeed linear substitution). Let Φ�need Γ, x:M �(m,e)E〈〈x〉〉:N
and v be a value. There is a splitting M = O
 P such that for any derivation
Ψ�need Π �(m′,e′) v : O there exists Φ′�need Γ
 Π,x : P �(m+m′,e+e′−1) E〈〈v〉〉 : N .

Proposition 10 (Quantitative subject reduction for CbNeed). Let
Φ �need Γ �(m,e) t : M be a derivation such that M �= 0.
– Multiplicative: if t −→mneed

s then m ≥ 1 and there is a derivation Φ′ �need
Γ �(m−1,e) t : M .

– Exponential: if t −→eneed
s then e ≥ 1 and there exists a derivation Φ′ �need

Γ �(m,e−1) t : M .

Note the condition M �= 0 in the statement of subject reduction, that is
in contrast to the CbV system but akin to the CbN one. It is due to the way
multi types are used as arguments, via rules ESgc and appgc. The restriction is
necessary: the CbNeed type system derives �(0,1) x[x←δδ] :0, but x[x←δδ] is
not normalising for CbNeed evaluation. And it is expected, as it amounts to
the fact that adequacy holds only with respect to non-empty types, as for CbN,
and as stressed when introducing the CbNeed type system. The same restriction
appears in Theorem 5, Proposition 13 and Theorem 6 below, for the same reason.

Proposition 11 ([normal] typings for normal forms for CbNeed). Let
Φ �need Γ �(m,e) t : [normal] be a derivation, with normal(t). Then Γ is empty,
and so Φ is tight, and m = e = 0.

Theorem 5 (CbNeed tight correctness). Let t be a closed term. If Φ �need
�(m,e) t : M where M �= 0, then there is s such that d : t −→∗

needs, with normal(s),
|d|m ≤ m and |d|e ≤ e. Moreover, if Φ is tight then |d|m = m and |d|e = e.

6.2 CbNeed Completeness

Proposition 12 (Normal forms are tightly typable for CbNeed). Let t
be such that normal(t). Then there is a tight derivation Φ�need �(0,0) t : [normal].

Lemma 7 (Linear removal for CbNeed). Let Φ �need Γ, x : M �(m,e)

E〈〈v〉〉 : N be a derivation and v be a value, with x /∈ fv(v). Then there exist
– a multi type M ′ and two type contexts Γ ′ and Π,
– a derivation Φ′ �need Γ ′ �(m′,e′) v : M ′, and
– a derivation Ψ �need Π,x : M
 M ′ �(m′′,e′′) E〈〈x〉〉 : N
such that
– Type contexts: Γ = Π
 Γ ′.
– Indices: (m, e) = (m′ + m′′, e′ + e′′ − 1).

Types by Need 433

Proposition 13 (Quantitative subject expansion for CbNeed). Let
Φ �need Γ �(m,e) s : M be a derivation such that M �= 0. Then,
– Multiplicative: if t −→mneed

s then there is a derivation Φ′�need Γ �(m+1,e) t : M ,
– Exponential: if t −→eneed

s then there is a derivation Φ′ �need Γ �(m,e+1) t : M .

Theorem 6 (CbNeed tight completeness). Let t be a closed term. If
d : t −→∗

needs and normal(s) then there exists a tight derivation Φ �need �(|d|m,|d|e)

t : [normal].

CbNeed Model. The interpretation [[t]]CbNeed
�x with respect to the CbNeed system

is defined as the set (where �x = (x1, . . . , xn) is a list of variables suitable for t):

{((M1, . . . ,Mn), N) | ∃Φ �need x1 :M1, . . . , xn : Mn ���(m,e)t : N and N �= 0} .

Note that the right multi type is required to be non-empty. The invariance
and the adequacy of [[t]]CbNeed

�x with respect to CbNeed evaluation are obtained
exactly as for the CbN and CbV cases.

7 A New Fundamental Theorem for Call-by-Need

CbNeed Erases Wisely. In the literature, the theorem about CbNeed is the fact
that it is operationally equivalent to CbN. This result was first proven inde-
pendently by two groups, Maraist, Odersky, and Wadler [48], and Ariola and
Felleisen [11], in the nineties, using heavy rewriting techniques.

Recently, Kesner gave a much simpler proof via CbN multi types [40]. She
uses multi types to first show termination equivalence of CbN and CbNeed, from
which she then infers operational equivalence. Termination equivalence means
that a given term terminates in CbN if and only if terminates in CbNeed, and
it is a consequence of our slogan that CbN and CbNeed both erase wisely.

With our terminology and notations, Kesner’s result takes the following form.

Theorem 7 (Kesner [40]). Let t be a closed term.
1. Correctness: if Φ �cbn ���(m,e)t : L then there exists s such that d : t −→∗

needs,
normal(s), |d|m ≤ m and |d|e ≤ e.

2. Completeness: if d : t−→∗
needs and normal(s) then there is Φ�cbn ���(m,e)t:normal.

Note that, with respect to the other similar theorems in this paper, the result
does not cover tight derivations and it does not provide exact bounds. In fact, the
CbN system cannot provide exact bounds for CbNeed, because it does provide
them for CbN evaluation, that in general is slower than CbNeed. Consider for
instance the term t in Example 1 and its CbN tight derivation in Example 2:
the derivation provides indices (5, 5) for t (and so t evaluates in 10 CbN steps),
but t evaluates in 8 CbNeed steps. Closing such a gap is the main motivation
behind this paper, achieved by the CbNeed multi type system in Sect. 6.

434 B. Accattoli et al.

CbNeed Duplicates Wisely. Curiously, in the literature there are no dual results
showing that CbNeed duplicates as wisely as CbV. One of the reasons is that
it is a theorem that does not admit a simple formulation such as operational
or termination equivalence, because CbNeed and CbV are not in such relation-
ships. Morally, this is subsumed by the logical interpretation according to which
CbNeed corresponds to an affine variant of the linear logic representation of
CbV. Yet, it would be nice to have a precise, formal statement establishing that
CbNeed duplicates as wisely as CbV —we provide it here.

Our result is that the CbV multi type system is correct with respect
to CbNeed evaluation. In particular, the indices (m, e) provided by a CbV
type derivation provide bounds for CbNeed evaluation lengths. Two important
remarks before we proceed with the formal statement:
– Bounds are not exact : the indices of a CbV derivation do not generally provide

exacts bounds for CbNeed, not even in the case of tight derivations. The
reason is that CbNeed does not evaluate unneeded subterms (i.e. those typed
with 0), while CbV does. Consider again the term t of Example 1, for instance,
whose CbV tight derivation has indices (5, 5) (and so t evaluates in 10 CbV
steps) but it CbNeed evaluates in 8 steps.

– Completeness cannot hold : we prove correctness but not completeness simply
because the CbV system is not complete with respect to CbNeed evaluation.
Consider for instance (λx.I)Ω: it is CbV untypable by Theorem 4, because
it is CbV divergent, and yet it is CbNeed normalisable.

CbV Correctness with Respect to CbNeed. Pleasantly, our presentations of CbV
and CbNeed make the proof of the result straightforward. It is enough to
observe that, since we do not consider garbage collection and we adopt a non-
deterministic formulation of CbV, CbNeed is a subsystem of CbV. Formally, if
t −→needs then t −→cbvs, as it is easily seen from the definitions (CbNeed reduces
only some subterms of applications and ES, while CbV reduces all such sub-
terms). The result is then a corollary of the correctness theorem for CbV.

Corollary 1 (CbV correctness w.r.t. CbNeed). Let t be a closed term and
Φ �cbv ���(m,e)t : M be a derivation. Then there exists s such that d : t −→∗

needs
and normal(s), with |d|m ≤ m and |d|e ≤ e.

Since the CbNeed system provides exact bounds (Theorem 5), we obtain that
CbNeed duplicates as wisely as CbV, when the comparison makes sense, that is,
on CbV normalisable terms.

Corollary 2 (CbNeed duplicates as wisely as CbV). Let d : t −→∗
cbvu with

normalcbv(u). Then there is d′ : t −→∗
needs with normal(s) and |d′|m ≤ |d|m and

|d′|e ≤ |d|e.

8 Conclusions

Contributions. This paper introduces a multi type system for CbNeed evalua-
tion, carefully blending ingredients from multi type systems for CbN and CbV

Types by Need 435

evaluation in the literature. Notably, it is the first type system whose mini-
mal derivations—explicitly characterised—provide exact bounds for evaluation
lengths. It also characterises CbNeed termination, and thus its judgements pro-
vide an adequate relational semantics.

The technical development is simple, and uniform with respect to those of
CbN and CbV multi type systems. The typing rules count evaluation steps fol-
lowing exactly the same schema of the CbN and CbV rules. The proofs of cor-
rectness and completeness also follow exactly the same structure.

A further side contribution of the paper is a new fundamental result of
CbNeed, formally stating that it duplicates as wisely as CbV. More precisely, the
CbV multi type system is (quantitatively) correct with respect to CbNeed eval-
uation. Pleasantly, our presentations of CbV and CbNeed provide the result for
free. This result dualizes the other fundamental theorem stating that CbNeed
erases as wisely as CbN, usually formulated as termination equivalence, and
recently re-proved by Kesner using CbN multi types [40].

Future Work. Recently, Barenbaum et al. extended CbNeed to strong evaluation
[14], and it is natural to try to extend our type system as well. The definition
of the system, in particular the extension of tight derivations to that setting,
seems however far from being evident. Barembaum, Bonelli, and Mohamed also
apply CbN multi types to a CbNeed calculus extended with pattern matching
and fixpoints [15], that might be interesting to refine along the lines of our work.

An orthogonal direction is the study of the denotational models of CbNeed.
It would be interesting to have a categorical semantics of CbNeed, as well as a
categorical way of discriminating our quantitative precise model from the quanti-
tatively lax one given by CbN multi types. It would also be interesting to obtain
game semantics of CbNeed, hopefully satisfying a strong correspondence with
our multi types in the style of what happens in CbN [30,31,51,56].

A further, unconventional direction is to dualise the inception of the CbNeed
type system trying to mix silly duplication from CbN and silly erasure from CbV,
obtaining—presumably—a multi types system measuring a perpetual strategy.

Acknowledgements. This work has been partially funded by the ANR JCJC grant
COCA HOLA (ANR-16-CE40-004-01) and by the EPSRC grant EP/R029121/1
“Typed Lambda-Calculi with Sharing and Unsharing”.

References

1. Accattoli, B.: An abstract factorization theorem for explicit substitutions. In: 23rd
International Conference on Rewriting Techniques and Applications (RTA 2012).
LIPIcs, vol. 15, pp. 6–21 (2012). https://doi.org/10.4230/LIPIcs.RTA.2012.6

2. Accattoli, B.: Proof nets and the linear substitution calculus. In: Fischer, B.,
Uustalu, T. (eds.) ICTAC 2018. LNCS, vol. 11187, pp. 37–61. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-02508-3 3

3. Accattoli, B., Barenbaum, P., Mazza, D.: Distilling abstract machines. In: Proceed-
ings of the 19th ACM SIGPLAN International Conference on Functional Program-
ming (ICFP 2014), pp. 363–376 (2014). https://doi.org/10.1145/2628136.2628154

https://doi.org/10.4230/LIPIcs.RTA.2012.6
https://doi.org/10.1007/978-3-030-02508-3_3
https://doi.org/10.1145/2628136.2628154

436 B. Accattoli et al.

4. Accattoli, B., Barras, B.: Environments and the complexity of abstract machines.
In: Proceedings of the 19th International Symposium on Principles and Practice of
Declarative Programming (PPDP 2017), pp. 4–16. ACM (2017). https://doi.org/
10.1145/3131851.3131855

5. Accattoli, B., Barras, B.: The negligible and yet subtle cost of pattern matching.
In: Chang, B.-Y.E. (ed.) APLAS 2017. LNCS, vol. 10695, pp. 426–447. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-71237-6 21

6. Accattoli, B., Bonelli, E., Kesner, D., Lombardi, C.: A nonstandard standardiza-
tion theorem. In: The 41st Annual Symposium on Principles of Programming Lan-
guages (POPL 2014), pp. 659–670. ACM (2014). https://doi.org/10.1145/2535838.
2535886

7. Accattoli, B., Graham-Lengrand, S., Kesner, D.: Tight typings and split bounds.
PACMPL 2(ICFP), 94:1–94:30 (2018). https://doi.org/10.1145/3236789

8. Accattoli, B., Guerrieri, G.: Types of fireballs. In: Ryu, S. (ed.) APLAS 2018.
LNCS, vol. 11275, pp. 45–66. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-02768-1 3

9. Accattoli, B., Guerrieri, G., Leberle, M.: Types by Need (Extended Version). CoRR
abs/1902.05945 (2019)

10. Accattoli, B., Sacerdoti Coen, C.: On the value of variables. Inf. Comput. 255,
224–242 (2017). https://doi.org/10.1016/j.ic.2017.01.003

11. Ariola, Z.M., Felleisen, M.: The call-by-need lambda calculus. J. Funct. Program.
7(3), 265–301 (1997)

12. Ariola, Z.M., Felleisen, M., Maraist, J., Odersky, M., Wadler, P.: The call-by-
need lambda calculus. In: Conference Record of POPL 1995: 22nd Symposium on
Principles of Programming Languages, pp. 233–246. ACM Press (1995). https://
doi.org/10.1145/199448.199507

13. Ariola, Z.M., Herbelin, H., Saurin, A.: Classical call-by-need and duality. In: Ong,
L. (ed.) TLCA 2011. LNCS, vol. 6690, pp. 27–44. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21691-6 6

14. Balabonski, T., Barenbaum, P., Bonelli, E., Kesner, D.: Foundations of strong call
by need. PACMPL 1(ICFP), 20:1–20:29 (2017). https://doi.org/10.1145/3110264

15. Barenbaum, P., Bonelli, E., Mohamed, K.: Pattern matching and fixed points:
resource types and strong call-by-need: extended abstract. In: Proceedings of the
20th International Symposium on Principles and Practice of Declarative Program-
ming (PPDP 2018), pp. 6:1–6:12. ACM (2018). https://doi.org/10.1145/3236950.
3236972

16. Barras, B.: Auto-validation d’un système de preuves avec familles inductives. Ph.D.
thesis, Université Paris 7 (1999)

17. Bernadet, A., Graham-Lengrand, S.: Non-idempotent intersection types and strong
normalisation. Logical Methods Comput. Sci. 9(4) (2013). https://doi.org/10.
2168/LMCS-9(4:3)2013

18. Bucciarelli, A., Ehrhard, T., Manzonetto, G.: A relational semantics for parallelism
and non-determinism in a functional setting. Ann. Pure Appl. Logic 163(7), 918–
934 (2012). https://doi.org/10.1016/j.apal.2011.09.008

19. Bucciarelli, A., Kesner, D., Ronchi Della Rocca, S.: Inhabitation for non-
idempotent intersection types. Logical Methods Comput. Sci. 14(3) (2018).
https://doi.org/10.23638/LMCS-14(3:7)2018

20. Bucciarelli, A., Kesner, D., Ventura, D.: Non-idempotent intersection types for the
lambda-calculus. Logic J. IGPL 25(4), 431–464 (2017). https://doi.org/10.1093/
jigpal/jzx018

https://doi.org/10.1145/3131851.3131855
https://doi.org/10.1145/3131851.3131855
https://doi.org/10.1007/978-3-319-71237-6_21
https://doi.org/10.1145/2535838.2535886
https://doi.org/10.1145/2535838.2535886
https://doi.org/10.1145/3236789
https://doi.org/10.1007/978-3-030-02768-1_3
https://doi.org/10.1007/978-3-030-02768-1_3
https://doi.org/10.1016/j.ic.2017.01.003
https://doi.org/10.1145/199448.199507
https://doi.org/10.1145/199448.199507
https://doi.org/10.1007/978-3-642-21691-6_6
https://doi.org/10.1145/3110264
https://doi.org/10.1145/3236950.3236972
https://doi.org/10.1145/3236950.3236972
https://doi.org/10.2168/LMCS-9(4:3)2013
https://doi.org/10.2168/LMCS-9(4:3)2013
https://doi.org/10.1016/j.apal.2011.09.008
https://doi.org/10.23638/LMCS-14(3:7)2018
https://doi.org/10.1093/jigpal/jzx018
https://doi.org/10.1093/jigpal/jzx018

Types by Need 437

21. Carraro, A., Guerrieri, G.: A semantical and operational account of call-by-value
solvability. In: Muscholl, A. (ed.) FoSSaCS 2014. LNCS, vol. 8412, pp. 103–118.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54830-7 7

22. de Carvalho, D.: Sémantiques de la logique linéaire et temps de calcul. Ph.D. thesis,
Université Aix-Marseille II (2007)

23. de Carvalho, D.: Execution time of λ-terms via denotational semantics and inter-
section types. Math. Struct. Comput. Sci. 28(7), 1169–1203 (2018). https://doi.
org/10.1017/S0960129516000396

24. de Carvalho, D., Pagani, M., Tortora de Falco, L.: A semantic measure of the
execution time in linear logic. Theoret. Comput. Sci. 412(20), 1884–1902 (2011).
https://doi.org/10.1016/j.tcs.2010.12.017

25. de Carvalho, D., Tortora de Falco, L.: A semantic account of strong normalization
in linear logic. Inf. Comput. 248, 104–129 (2016). https://doi.org/10.1016/j.ic.
2015.12.010

26. Chang, S., Felleisen, M.: The call-by-need lambda calculus, revisited. In: Seidl,
H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 128–147. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-28869-2 7

27. Coppo, M., Dezani-Ciancaglini, M.: A new type assignment for λ-terms. Arch.
Math. Log. 19(1), 139–156 (1978). https://doi.org/10.1007/BF02011875

28. Coppo, M., Dezani-Ciancaglini, M.: An extension of the basic functionality theory
for the λ-calculus. Notre Dame J. Formal Logic 21(4), 685–693 (1980). https://
doi.org/10.1305/ndjfl/1093883253

29. Danvy, O., Zerny, I.: A synthetic operational account of call-by-need evaluation. In:
15th International Symposium on Principles and Practice of Declarative Program-
ming (PPDP 2013), pp. 97–108. ACM (2013). https://doi.org/10.1145/2505879.
2505898

30. Di Gianantonio, P., Honsell, F., Lenisa, M.: A type assignment system for game
semantics. Theor. Comput. Sci. 398(1–3), 150–169 (2008). https://doi.org/10.
1016/j.tcs.2008.01.023

31. Di Gianantonio, P., Lenisa, M.: Innocent game semantics via intersection type
assignment systems. In: Computer Science Logic 2013 (CSL 2013). LIPIcs, vol. 23,
pp. 231–247 (2013). https://doi.org/10.4230/LIPIcs.CSL.2013.231

32. Dı́az-Caro, A., Manzonetto, G., Pagani, M.: Call-by-value non-determinism in a
linear logic type discipline. In: Artemov, S., Nerode, A. (eds.) LFCS 2013. LNCS,
vol. 7734, pp. 164–178. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-35722-0 12

33. Downen, P., Maurer, L., Ariola, Z.M., Varacca, D.: Continuations, processes, and
sharing. In: Proceedings of the 16th International Symposium on Principles and
Practice of Declarative Programming (PPDP 2014), pp. 69–80. ACM (2014).
https://doi.org/10.1145/2643135.2643155

34. Ehrhard, T.: Collapsing non-idempotent intersection types. In: Computer Science
Logic (CSL 2012) - 26th International Workshop/21st Annual Conference of the
EACSL. LIPIcs, vol. 16, pp. 259–273 (2012). https://doi.org/10.4230/LIPIcs.CSL.
2012.259

35. Ehrhard, T., Guerrieri, G.: The bang calculus: an untyped lambda-calculus gen-
eralizing call-by-name and call-by-value. In: Proceedings of the 18th International
Symposium on Principles and Practice of Declarative Programming (PPDP 2016),
pp. 174–187. ACM (2016). https://doi.org/10.1145/2967973.2968608

https://doi.org/10.1007/978-3-642-54830-7_7
https://doi.org/10.1017/S0960129516000396
https://doi.org/10.1017/S0960129516000396
https://doi.org/10.1016/j.tcs.2010.12.017
https://doi.org/10.1016/j.ic.2015.12.010
https://doi.org/10.1016/j.ic.2015.12.010
https://doi.org/10.1007/978-3-642-28869-2_7
https://doi.org/10.1007/BF02011875
https://doi.org/10.1305/ndjfl/1093883253
https://doi.org/10.1305/ndjfl/1093883253
https://doi.org/10.1145/2505879.2505898
https://doi.org/10.1145/2505879.2505898
https://doi.org/10.1016/j.tcs.2008.01.023
https://doi.org/10.1016/j.tcs.2008.01.023
https://doi.org/10.4230/LIPIcs.CSL.2013.231
https://doi.org/10.1007/978-3-642-35722-0_12
https://doi.org/10.1007/978-3-642-35722-0_12
https://doi.org/10.1145/2643135.2643155
https://doi.org/10.4230/LIPIcs.CSL.2012.259
https://doi.org/10.4230/LIPIcs.CSL.2012.259
https://doi.org/10.1145/2967973.2968608

438 B. Accattoli et al.

36. Garcia, R., Lumsdaine, A., Sabry, A.: Lazy evaluation and delimited control.
In: Proceedings of the 36th Symposium on Principles of Programming Lan-
guages (POPL 2009), pp. 153–164. ACM (2009). https://doi.org/10.1145/1480881.
1480903

37. Gardner, P.: Discovering needed reductions using type theory. In: Hagiya, M.,
Mitchell, J.C. (eds.) TACS 1994. LNCS, vol. 789, pp. 555–574. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-57887-0 115

38. Girard, J.Y.: Linear logic. Theoret. Comput. Sci. 50, 1–102 (1987). https://doi.
org/10.1016/0304-3975(87)90045-4

39. Guerrieri, G.: Towards a semantic measure of the execution time in call-by-value
lambda-calculus. In: Proceedings of ITRS 2018 (2018, to appear)

40. Kesner, D.: Reasoning about call-by-need by means of types. In: Jacobs, B.,
Löding, C. (eds.) FoSSaCS 2016. LNCS, vol. 9634, pp. 424–441. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-662-49630-5 25

41. Kesner, D., Vial, P.: Types as resources for classical natural deduction. In: 2nd
International Conference on Formal Structures for Computation and Deduction
(FSCD 2017). LIPIcs, vol. 84, pp. 24:1–24:17 (2017). https://doi.org/10.4230/
LIPIcs.FSCD.2017.24

42. Kesner, D., Ŕıos, A., Viso, A.: Call-by-need, neededness and all that. In: Baier,
C., Dal Lago, U. (eds.) FoSSaCS 2018. LNCS, vol. 10803, pp. 241–257. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-89366-2 13

43. Kfoury, A.J.: A linearization of the lambda-calculus and consequences. J. Logic
Comput. 10(3), 411–436 (2000). https://doi.org/10.1093/logcom/10.3.411

44. Krivine, J.L.: Lambda-Calculus, Types and Models. Ellis Horwood Series in Com-
puters and Their Applications. Ellis Horwood, Upper Saddle River, NJ, USA
(1993)

45. Kutzner, A., Schmidt-Schauß, M.: A non-deterministic call-by-need lambda calcu-
lus. In: Proceedings of the Third International Conference on Functional Program-
ming (ICFP 1998), pp. 324–335. ACM (1998). https://doi.org/10.1145/289423.
289462

46. Launchbury, J.: A natural semantics for lazy evaluation. In: Conference Record
of the Twentieth Annual Symposium on Principles of Programming Languages
(POPL 1993), pp. 144–154. ACM Press (1993). https://doi.org/10.1145/158511.
158618

47. Maraist, J., Odersky, M., Turner, D.N., Wadler, P.: Call-by-name, call-by-value,
call-by-need and the linear lambda calculus. Theor. Comput. Sci. 228(1–2), 175–
210 (1999). https://doi.org/10.1016/S0304-3975(98)00358-2

48. Maraist, J., Odersky, M., Wadler, P.: The call-by-need lambda calculus. J. Funct.
Program. 8(3), 275–317 (1998)

49. Mazza, D., Pellissier, L., Vial, P.: Polyadic approximations, fibrations and intersec-
tion types. PACMPL 2(POPL), 6:1–6:28 (2018). https://doi.org/10.1145/3158094

50. Neergaard, P.M., Mairson, H.G.: Types, potency, and idempotency: why nonlin-
earity and amnesia make a type system work. In: Proceedings of the Ninth Inter-
national Conference on Functional Programming (ICFP 2004), pp. 138–149. ACM
(2004). https://doi.org/10.1145/1016850.1016871

51. Ong, C.L.: Quantitative semantics of the lambda calculus: some generalisations of
the relational model. In: 32nd Annual Symposium on Logic in Computer Science
(LICS 2017), pp. 1–12. IEEE Computer Society (2017). https://doi.org/10.1109/
LICS.2017.8005064

https://doi.org/10.1145/1480881.1480903
https://doi.org/10.1145/1480881.1480903
https://doi.org/10.1007/3-540-57887-0_115
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1007/978-3-662-49630-5_25
https://doi.org/10.4230/LIPIcs.FSCD.2017.24
https://doi.org/10.4230/LIPIcs.FSCD.2017.24
https://doi.org/10.1007/978-3-319-89366-2_13
https://doi.org/10.1093/logcom/10.3.411
https://doi.org/10.1145/289423.289462
https://doi.org/10.1145/289423.289462
https://doi.org/10.1145/158511.158618
https://doi.org/10.1145/158511.158618
https://doi.org/10.1016/S0304-3975(98)00358-2
https://doi.org/10.1145/3158094
https://doi.org/10.1145/1016850.1016871
https://doi.org/10.1109/LICS.2017.8005064
https://doi.org/10.1109/LICS.2017.8005064

Types by Need 439

52. Paolini, L., Piccolo, M., Ronchi Della Rocca, S.: Essential and relational mod-
els. Math. Struct. Comput. Sci. 27(5), 626–650 (2017). https://doi.org/10.1017/
S0960129515000316

53. Pédrot, P.-M., Saurin, A.: Classical by-need. In: Thiemann, P. (ed.) ESOP 2016.
LNCS, vol. 9632, pp. 616–643. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49498-1 24

54. Pottinger, G.: A type assignment for the strongly normalizable λ-terms. In: Seldin,
J., Hindley, J. (eds.) To H.B. Curry: Essays on Combinatory Logic, Lambda Cal-
culus and Formalism, pp. 561–578. Academic Press, Cambridge (1980)

55. Sestoft, P.: Deriving a lazy abstract machine. J. Funct. Program. 7(3), 231–264
(1997)

56. Tsukada, T., Ong, C.L.: Plays as resource terms via non-idempotent intersection
types. In: Proceedings of the 31st Annual Symposium on Logic in Computer Science
(LICS 2016), pp. 237–246. ACM (2016). https://doi.org/10.1145/2933575.2934553

57. Wadsworth, C.P.: Semantics and pragmatics of the lambda-calculus. Ph.D. thesis,
University of Oxford (1971). Chapter 4

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1017/S0960129515000316
https://doi.org/10.1017/S0960129515000316
https://doi.org/10.1007/978-3-662-49498-1_24
https://doi.org/10.1007/978-3-662-49498-1_24
https://doi.org/10.1145/2933575.2934553
http://creativecommons.org/licenses/by/4.0/

	Types by Need
	1 Introduction
	2 Closed -Calculi
	3 Preliminaries About Multi Types
	4 Types by Name
	4.1 CbN Correctness
	4.2 CbN Completeness
	4.3 CbN Model

	5 Types by Value
	5.1 CbV Correctness
	5.2 CbV Completeness

	6 Types by Need
	6.1 CbNeed Correctness
	6.2 CbNeed Completeness

	7 A New Fundamental Theorem for Call-by-Need
	8 Conclusions
	References

