
HAL Id: hal-02416012
https://hal.inria.fr/hal-02416012

Submitted on 17 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing period matrices and the Abel-Jacobi map of
superelliptic curves

Pascal Molin, Christian Neurohr

To cite this version:
Pascal Molin, Christian Neurohr. Computing period matrices and the Abel-Jacobi map of superelliptic
curves. Mathematics of Computation, American Mathematical Society, 2019. �hal-02416012�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/275916316?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-02416012
https://hal.archives-ouvertes.fr

Computing period matrices and the Abel-Jacobi map of
superelliptic curves

Pascal Molin ∗, Christian Neurohr †

September 2017

Abstract
We present an algorithm for the computation of period matrices and the Abel-Jacobi map

of complex superelliptic curves given by an equation ym = f(x). It relies on rigorous numerical
integration of differentials between Weierstrass points, which is done using Gauss method if
the curve is hyperelliptic (m = 2) or the Double-Exponential method. The algorithm is
implemented and makes it possible to reach thousands of digits accuracy even on large genus
curves.

1 Introduction
The Abel-Jacobi map links a complex curve to a complex torus. In particular the matrix of periods
allows to define the Riemann theta function of the curve, which is an object of central interest in
mathematics and physics: let us mention the theory of abelian functions or integration of partial
differential equations.

In the context of cryptography and number theory, periods also appear in the BSD conjecture
or as a tool to identify isogenies or to find curves having prescribed complex multiplication [25]. For
such diophantine applications, it is necessary to compute integrals to large precision (say thousand
digits) and to have rigorous results.

1.1 Existing algorithms and implementations
For genus 1 and 2, methods based on isogenies (AGM [8], Richelot [4], Borchardt mean [16])
make it possible to compute periods to arbitrary precision in almost linear time. However, these
techniques scale very badly when the genus grows.

For modular curves, the modular symbols machinery and termwise integration of expansions
of modular forms give excellent algorithms [18, §3.2].

For hyperelliptic curves of arbitrary genus, the Magma implementation due to van Wamelen [25]
computes period matrices and the Abel-Jacobi map. However, it is limited in terms of precision (less
than 2000 digits) and some bugs are experienced on certain configurations of branch points. The
shortcomings of this implementation motivated our work. Using a different strategy (integration
along a tree instead of around Voronoi cells) we obtain a much faster, more reliable algorithm and
rigorous results.

For general algebraic curves, there is an implementation in Maple due to Deconinck and van
Hoeij [9]. We found that this package is not suitable for high precision purposes.

We also mention the Matlab implementations due to Frauendiener and Klein for hyperelliptic
curves [10] and for general algebraic curves [11].

Moreover, there is an implementation available in Sage (since version 8.0) due to Nils Bruin
and Alexandre Zotine that generalizes van Wamelen’s approach for hyperelliptic curves to general
algebraic curves.
∗IMJ-PRG & Université Paris 7, 8 place Aurélie Nemours, 75013 Paris – France

molin@math.univ-paris-diderot.fr
†Carl von Ossietzky Universität Oldenburg, Institut für Mathematik, 26129 Oldenburg – Germany

neurohrchristian@googlemail.com

1

1.2 Main result
This paper addresses the problem of computing period matrices and the Abel-Jacobi map of
algebraic curves given by an affine equation of the form (see Definition 3.1)

ym = f(x), m > 1, f ∈ C[x] separable of degree deg(f) = n ≥ 3.

They generalize hyperelliptic curves and we refer to them as superelliptic curves.
We take advantage of their specific geometry to obtain the following (see Theorem 8.1)

Theorem 1.1. Let C be a superelliptic curve of genus g defined by an equation ym = f(x) where
f is separable of degree n. We can compute a basis of the period lattice to precision D using

O(n(g + logD)(g +D)2 log2+ε(g +D)) binary operations,

where ε > 0 is chosen so that the multiplication of precision D numbers has complexity O(D log1+εD)
and the implied constant depends on the configuration of complex roots of f1.

There is no clear definition of superelliptic curves in the literature and some authors will allow
f to be non-separable in their definition. In this paper, we rely on the fact that f has no multiple
roots in several places. This restriction could be removed though, this is discussed in Section
10.2.1.

1.3 Rigorous implementation
The algorithm has been implemented in C using the Arb library [12]. This system represents a
complex number as a floating point approximation plus an error bound, and automatically takes
into account all precision loss occurring through the execution of the program. With this model we
can certify the accuracy of the numerical results of our algorithm (up to human or even compiler
errors, as usual).

Another implementation has been done in Magma [3]. Both are publicly available on github at
https://github.com/pascalmolin/hcperiods [21].

1.4 Interface with the LMFDB
Having rigorous period matrices is a valuable input for the methods developed by Costa et al. [7]
to compute endormorphism rings of Jacobians of hyperelliptic curves. During a meeting aimed at
expanding the ‘L-functions and modular forms database’ [17, LMFDB] to include genus 3 curves,
the Magma implementation of our algorithm was incorporated in their framework to successfully
compute the endomorphism rings of Jacobians of 67, 879 hyperelliptic curves of genus 3, and confirm
those of the 66, 158 genus 2 curves that are currently in the database (see [2, LMFDB]).

For these applications big period matrices were computed to 300 digits precision.

1.5 Structure of the paper
In Section 2 we briefly review the objects we are interested in, namely period matrices and the Abel-
Jacobi map of nice algebraic curves. The ingredients to obtain these objects, a basis of holomorphic
differentials and a homology basis, are made explicit in the case of superelliptic curves in Section 3.
We give formulas for the computation of periods in Section 4 and explain how to obtain from them
the standard period matrices using symplectic reduction. In Section 5 we give explicit formulas
for the intersection numbers of our homology basis. For numerical integration we employ two
different integration schemes that are explained in Section 6: the double-exponential integration
and (in the case of hyperelliptic curves) Gauss-Chebychev integration. The actual computation of
the Abel-Jacobi map is explained in detail in Section 7. In Section 8 we analyze the complexity
of our algorithm and share some insights on the implementation. Section 9 contains some tables
with running times to demonstrate the performance of the code. Finally, in Section 10 we conclude
with an outlook on what can be done in the future.

1In this work it involves a factor 1/r ≤ max
∣∣∣x−y

x−z

∣∣∣ for x, y, z roots of f (see Lemma 6.2). Note that this
dependency can be weakened as discussed in Section 8.5.4.

2

https://github.com/pascalmolin/hcperiods

1.6 Acknowledgements
The first author wants to thank the crypto team at Inria Nancy, where a first version of this
work was carried out in the case of hyperelliptic curves. He also acknowledges the support from
Partenariat Hubert Curien under grant 35487PL.

The second author wants to thank Steffen Müller and Florian Hess for helpful discussions.
Moreover, he acknowledges the support from DAAD under grant 57212102.

2 The Abel-Jacobi map
We recall, without proof, the main objects we are interested in, and which will become completely
explicit in the case of superelliptic curves. The exposition follows that of [24, Section 2].

2.1 Definition
Let C be a smooth irreducible projective curve of genus g > 0. Its space of holomorphic differentials
Ω1
C has dimension g; let us fix a basis ω1, . . . ωg and denote by ω̄ the vector (ω1, . . . ωg).
For any two points P,Q ∈ C we can consider the vector integral

∫ Q
P
ω̄ ∈ Cg, whose value

depends on the chosen path from P to Q.
In fact, the integral depends on the path up to homology, so we introduce the period lattice of

C
Λ =

{∫
γ

ωj , γ ∈ H1(C,Z)
}
⊂ Cg,

where H1(C,Z) ∼= Z2g is the first homology group of the curve.
Now the integral

P,Q 7→
∫ Q

P

ω̄ ∈ Cg/Λ

is well defined, and the definition can be extended by linearity to the group of degree zero divisors

Div0(C) =
{∑

aiPi, ai ∈ Z,
∑

ai = 0
}
.

The Abel-Jacobi theorem states that one obtains a surjective map whose kernel is formed by
the set Prin0(C) of divisors of functions, so that the integration provides an explicit isomorphism

A :
{

Jac(C) = Div0(C)/Prin0(C) −→ Cg/Λ∑
i[Qi − Pi] 7→

∑
k

∫ Qi
Pi

ω̄ mod Λ

between the Jacobian variety and the complex torus.

2.2 Explicit basis and standard matrices
Let us choose a symplectic basis of H1(C,Z), that is two families of cycles αi, βj for 1 ≤ i, j ≤ g
such that the intersections satisfy

(αi ◦ βj) = δi,j ,

the other intersections all being zero.
We define the period matrices on those cycles

ΩA =
(∫

αj

ωi

)
1≤i,j≤g

and ΩB =
(∫

βj

ωi

)
1≤i,j≤g

and call the concatenated matrix

Ω = (ΩA,ΩB) ∈ Cg×2g

such that Λ = ΩZ2g a big period matrix.
If one takes as basis of differentials the dual basis of the cycles αj , the matrix becomes

Ω−1
A Ω = (Ig, τ),

where τ = Ω−1
A ΩB ∈ Cg×g, called a small period matrix, is in the Siegel space Hg of symmetric

matrices with positive definite imaginary part.

3

3 Superelliptic curves
3.1 Definition & properties
Definition 3.1. In this paper, a superelliptic curve C over C is a smooth projective curve that
has an affine model given by an equation of the form

Caff : ym = f(x) = cf ·
n∏
k=1

(x− xk), (1)

where m > 1 and f ∈ C[x] is separable of degree n ≥ 3. Note that we do not assume that
gcd(m,n) = 1.

There are δ = gcd(m,n) points P (1)
∞ , . . . , P

(δ)
∞ ∈ C at infinity, that behave differently depending

on m and n (see [22, §1] for details). In particular, ∞ ∈ P1
C is a branch point for δ 6= m. Thus, we

introduce the set of finite branch points X = {x1, . . . , xn} as well as the set of all branch points

X̂ =
{
X ∪ {∞} if m - d,
X otherwise.

(2)

The ramification indices at the branch points are given by ex = m for all x ∈ X and e∞ = m
δ .

Using the Riemann-Hurwitz formula, we obtain the genus of C as

g = 1
2((m− 1)(n− 1)− δ + 1). (3)

We denote the corresponding finite ramification points Pk = (xk, 0) ∈ C for k = 1, . . . , n.
Remark 3.2. Without loss of generality we may assume cf = 1 (if not, apply the transformation
(x, y) 7→ (x, m√cfy)).

Remark 3.3. For any
(
a b
c d

)
∈ PSL(2,C), the Moebius transform φ : u 7→ au+b

cu+d is an automor-

phism of P1. By a change of coordinate x = φ(u) we obtain a different model of C given by the
equation

ṽm = f̃(u)

where f̃(u) = f(φ(u))(cu+ d)`m and v = y(cu+ d)` for the smallest value ` such that `m ≥ n.
If the curve was singular at infinity, the singularity is moved to u = −d/c in the new model.

This happens when δ < m (so that `m > n).
When δ = m we may apply such a transformation to improve the configuration of affine branch

points.

3.2 Complex roots and branches of the curve
3.2.1 The complex m-th root

Working over the complex numbers we encounter several multi-valued functions which we will
briefly discuss here. Closely related to superelliptic curves over C is the complex m-th root. Before
specifying a branch it is a multi-valued function ym = x that defines anm-sheeted Riemann surface,
whose only branch points are at x = 0,∞, and these are totally ramified.

For x ∈ C, it is natural and computationally convenient to use the principal branch of the m-th
root m

√
x defined by

− π
m
< arg(m

√
x) ≤ π

m

which has a branch cut along the negative real axis] −∞, 0]. Crossing it in positive orientation
corresponds to multiplication by the primitive m-th root of unity

ζ := ζm := e
2πi
m .

on the surface. In particular, the monodromy at x = 0 is cyclic of order m.

4

3.2.2 The Riemann surface

For an introduction to the theory of Riemann surfaces, algebraic curves and holomorphic covering
maps we recommend [19].

Over C we can identify the curve C with the compact Riemann surface C(C). Since our defining
equation has the nice form ym =

∏n
k=1(x − xk) it is compelling to do all computations in the

x-plane. We denote by prx : C → P1
C the corresponding smooth cyclic branched covering of degree

m of the projective line that is defined by the x-coordinate.
There are m possibilities to lift a path in x-plane to C(C) using analytic continuation, which

is crucial for the integration of differentials on C. Due to the cyclic structure of C, these lifts are
related in a convenient way:

We call a branch of C a function y(x) such that y(x)m = f(x) for all x ∈ C. At every x, the
branches of C only differ by a factor ζl for some l ∈ {0, . . . ,m − 1}. Thus, following a path, it is
sufficient to know one branch that is analytic in a suitable neighborhood. In the next paragraph,
we will introduce locally analytic branches very explicitly.

We obtain an ordering of the sheets relative to the analytic branches of C by imposing that
multiplication by ζ, i.e. applying the map (x, y(x)) 7→ (x, ζy(x)), corresponds to moving one sheet
up on the Riemann surface.

The local monodromy of the covering prx is cyclic of order m and equal for all xk ∈ X and
the monodromy group is, up to conjugation, the cyclic group Cm. This makes it possible to find
explicit generators for the homology group H1(C,Z) without specifying a base point, as shown in
§3.3.

3.2.3 Locally analytic branches

In order to integrate differential forms on C it is sufficient to be able to follow one explicit analytic
continuation of y along a path joining two branch points a, b ∈ X.

One could of course consider the principal branch of the curve

y(x) = m
√
f(x),

but this is not a good model to compute with: it has discontinuities along the curves f−1(]−∞, 0]),
all wandering around the x-plane in an unpredictable way (see Figure 1a). These are the branch
cuts of y(x), crossing them in positive direction requires multiplying by ζ in order to follow an
analytic continuation.

A better option is to split the product as follows: assume that (a, b) = (−1, 1). Then the
function

y(x) =
∏
xk∈X

m
√
x− xk

has n branch cuts parallel to the real line (see Figure 1b). However, one of them lies exactly on
the interval [−1, 1] we are interested in. We work around this by taking the branch cut towards
+∞ for each branch point xk with positive real part, writing

y(x) = e
iπr+
m

∏
Re(xk)≤0

m
√
x− xk

∏
Re(xk)>0

m
√
xk − x,

where r+ is the number of points with positive real part.

(a) principal branch

-1 1

(b) product

a

b

(c) ya,b

Figure 1: Branch cuts of different m-th roots.

5

In general we proceed in the same way: For branch points a, b ∈ X we consider the affine linear
transformation

xa,b : u 7→ b− a
2

(
u+ b+ a

b− a

)
,

which maps [−1, 1] to the complex line segment [a, b], and denote the inverse map by

ua,b : x 7→ 2x− a− b
b− a

.

We split the image of the branch points under ua,b into the following subsets

{ua,b(x), x ∈ X} = {−1, 1} ∪ U+ ∪ U−, (4)

where points in U+ (resp. U−) have strictly positive (resp. non-positive) real part.
Then the product

ỹa,b(u) =
∏

uk∈U−

m
√
u− uk

∏
uk∈U+

m
√
uk − u (5)

is holomorphic on a neighborhood εa,b of [−1, 1] which we can take as an ellipse 2 containing no
point uk ∈ U− ∪ U+, while the term corresponding to a, b

m
√

1− u2

has two branch cuts]−∞,−1] and [1,∞[, and is holomorphic on the complement U of these cuts.
We can now define a branch of the curve

ya,b(x) = Ca,bỹa,b(ua,b(x)) m

√
1− ua,b(x)2 (6)

by setting r = 1 + #U+ mod 2 and choosing3 the constant

Ca,b =
(
b− a

2

) n
m

e
πi
m r (7)

such that ya,b(x)m = f(x).
The function ya,b(x) has n branch cuts all parallel to [a, b] in outward direction and is holo-

morphic inside]a, b[(see Figure 1c).
More precisely, Va,b = xa,b(εa,b ∩ U), is an ellipse-shaped neighborhood of]a, b[with two

segments removed (see Figure 2) on which the local branch ya,b is well defined and holomorphic.

a bVa,b

Figure 2: Holomorphic neighborhood of ya,b.

We sum up the properties of these local branches:

Proposition 3.4. Let a, b ∈ X be branch points such that X∩]a, b[= ∅. Then, with the notation
as above, the functions ỹa,b (5) and ya,b (6) satisfy

• ỹa,b is holomorphic and does not vanish on εa,b,

• ya,b(x) = Ca,bỹa,b(ua,b(x)) m
√

1− ua,b(x)2 is holomorphic on Va,b,

• ya,b(x)m = f(x) for all x ∈ C,

• ya,b(x), ζya,b(x), . . . , ζm−1ya,b(x) are the m different analytic continuations of y on Va,b.

Moreover, we can assume that for x ∈ Va,b, applying the map (x, ya,b(x)) 7→ (x, ζlya,b(x)) corre-
sponds to moving up l ∈ Z/mZ sheets on the Riemann surface.

2we will exhibit such a neighborhood in Section 6.2
3any choice of the m-th root is valid here

6

3.3 Cycles and homology
For us, a cycle on C is a smooth oriented closed path in π1(C). For simplicity we identify all cycles
with their homology classes in H1(C,Z) = π1(C)/[π1(C), π1(C)].

In the following we present an explicit generating set of H1(C,Z) that relies on the locally
analytic branches ya,b as defined in (6) and the superelliptic structure of C.

Let a, b ∈ X be branch points such that X∩]a, b[= ∅, where [a, b] is the oriented line segment
connecting a and b.

By Proposition 3.4 the lifts of [a, b] to C are given by

γ
(l)
[a,b] = {(x, ζlya,b(x)) | x ∈ [a, b]}, l ∈ Z/mZ.

Similarly, we obtain lifts of [b, a] by reversing the orientation of γ(l)
[a,b]. We denote

−γ(l)
[a,b] = {(x, ζlya,b(x)) | x ∈ [b, a]}, l ∈ Z/mZ.

These are smooth oriented paths that connect Pa = (a, 0) and Pb = (b, 0) on C. We obtain cycles
by concatenating these lifts in the following way:

γ
(l)
a,b = γ

(l)
[a,b] ∪ −γ

(l+1)
[a,b] ∈ π1(C). (8)

Definition 3.5 (Elementary cycles). We say γa,b = γ
(0)
a,b is an elementary cycle and call γ(l)

a,b its
shifts for l ∈ Z/mZ.

In π1(C) shifts of elementary cycles are homotopic to cycles that encircle a in negative and b
in positive orientation, once each and do not encircle any other branch point. This is possible
because we can always find an open neighborhood V of [a, b] such that V ∩X = {a, b} and thus
the homotopy class of a cycle is not changed by deformations within V . By definition of ya,b the
branch cuts at the end points are outward and parallel to [a, b]. Thus, we have the following useful
visualizations of γ(l)

a,b on C:

a b ∼ a b

Figure 3: Homotopic representations of a cycle γ(l)
a,b.

As it turns out, we do not need all elementary cycles and their shifts to generate H1(C,Z), but
only those that correspond to edges in a spanning tree, that is a subset E ∈ X × X of directed
edges (a, b) such that all branch points are connected without producing any cycle. It must contain
exactly n− 1 edges. The actual tree will be chosen in §4.3 in order to minimize the complexity of
numerical integration.

For an edge e = (a, b) ∈ E, we denote by γ(l)
e the shifts of the corresponding elementary cycle

γa,b.

Theorem 3.6. Let E be a spanning tree for the branch points X. The set of cycles Γ ={
γ

(l)
e | 0 ≤ l < m− 1, e ∈ E

}
generates H1(C,Z).

Proof. Denote by αa ∈ π1(P1 \ X̂) a closed path that encircles the branch point a ∈ X̂ exactly
once. Then, due to the relation 1 =

∏
a∈X̂ αa, π1(P1 \ X̂) is freely generated by {αa}a∈X , i.e. in

the case δ 6= m we can omit α∞.

7

Since our covering is cyclic, we have that π1(C\prx
−1(X̂)) ∼= ker(π1(P1\X̂) Φ−→ Aut(C\prx

−1(X̂)))
where Aut(C \ prx

−1(X̂)) ∼= Cm ⊂ Sm and Φ(αa) is cyclic of order m for all a ∈ X. Hence, for
every word α = αs1

1 . . . αsnn ∈ π1(P1 \ X̂) we have that α ∈ ker(Φ)⇔
∑n
i=1 si ≡ 0 mod m.

We now claim that π1(C \ prx
−1(X̂)) = 〈α−sa αsb, α

m
a | s ∈ Z, a, b ∈ X〉 and prove this by induction

on n: for α = αs1
1 , m divides s1 and therefore α is generated by αm1 . For n > 1 we write

α = αs1
1 . . . αsnn = (αs1

1 . . . α
sn−1+sn
n−1)(α−snn−1α

sn
n).

We obtain the fundamental group of C as π1(C) ∼= π1(C \ prx
−1(X̂))/〈αeaa | a ∈ X̂〉, which is

generated by {α−sa αsb | s ∈ Z/mZ, a, b ∈ X}.
All branch points a, b ∈ X are connected by a path (a, v1, . . . , vt, b) in the spanning tree, so we
can write α−sa αsb = (α−sa αsv1

)(α−sv1
αsv2

) . . . (α−svt−1
αsvt)(α

−s
vt α

s
b) and hence we have that {α−sa αsb | s ∈

Z/mZ, (a, b) ∈ E} generates π1(C) and therefore H1(C,Z).
If we choose basepoints p0 ∈ P1 \ X̂ for π1(P1 \ X̂) and P0 ∈ prx

−1(p0) for π1(C \ prx
−1(X̂)) and

π1(C) respectively, then, depending on the choice of P0, for all e = (a, b) ∈ E there exists l0 ∈ Z/mZ
such that γ(l0)

e is homotopic to α−1
a αb in π1(C, P0). In H1(C,Z) we have that α−sa αsb = (α−1

a αb)s,
so we obtain the other powers by concatenating the shifts

∏s−1
l=0 γ

(l0+l)
e = (α−1

a αb)s. This implies
1 =

∏m−1
l=0 γ

(l0+l)
e =

∏m−1
l=0 γ

(l)
e and

{α−sa αsb | s ∈ Z/mZ} ⊂ 〈γ(l)
e | 0 ≤ l < m− 1〉,

and therefore H1(C,Z) = 〈Γ〉.

Remark 3.7. • For δ = 1, we have that #Γ = (m− 1)(n− 1) = 2g. Therefore, Γ is a basis for
H1(C,Z) in that case.

• In the case δ = m, the point at infinity is not a branch point. Leaving out one finite branch
point in the spanning tree results in only n− 2 edges. Hence, we easily find a subset Γ′ ⊂ Γ
such that #Γ′ = (m− 1)(n− 2) = 2g and Γ′ is a basis for H1(C,Z).

3.4 Differential forms
The computation of the period matrix and the Abel-Jacobi map requires a basis of Ω1

C as a C-
vector space. In this section we provide a basis that only depends on m and n and is suitable for
numerical integration.
Among the meromorphic differentials

Wmer = {ωi,j}1≤i≤n−1,
1≤j≤m−1

with ωi,j = xi−1dx
yj

,

there are exactly g that are holomorphic and they can be found by imposing a simple combi-
natorial condition on i and j. The following proposition is basically a more general version of
[22, Proposition 2].

Proposition 3.8. Let δ = gcd(m,n). The following differentials form a C-basis of Ω1
C:

W = {ωi,j ∈ Wmer | −mi+ jn− δ ≥ 0}

Proof. First we show that the differentials in W are holomorphic. Let ωi,j = xi−1y−jdx ∈ Wmer.
We write down the relevant divisors

div(x) =
m∑
k=1

(
0, ζk m

√
f(0)

)
− m

δ
·
δ∑
l=1

P (l)
∞ ,

div(y) =
n∑
k=1

Pk −
n

δ
·
δ∑
l=1

P (l)
∞ ,

div(dx) = (m− 1)
n∑
k=1

Pk −
(m
δ

+ 1
)
·
δ∑
l=1

P (l)
∞ .

8

Putting together the information, for P ∈ C lying over x0 ∈ P1
C, we obtain

vP (ωi,j) = (i− 1)vP (x) + vP (dx)− jvP (y) =

≥ 0 if x0 6= xk,∞,
m− 1− j ≥ 0 if x0 = xk,
(−mi−δ+jn)

δ if x0 =∞.
(9)

We conclude: ωi,j ∈ Wmer is holomorphic if and only if ωi,j ∈ W.
Since the differentials in W are clearly C-linearly independent, it remains to show that there are
enough of them, i.e. #W = g.

Counting the elements in W corresponds to counting lattice points (i, j) ∈ Z2 in the trapezoid
given by the faces

1 ≤ i ≤ n− 1,
1 ≤ j ≤ m− 1,

i ≤ n

m
j − δ

m
.

j

i

1 2 3 4 5 6 7

1

2

3

Figure 4: The points below the line correspond to holomorphic differentials. Illustrated is the case
n = 4,m = 8, and thus g = 9.

Summing over the vertical lines of the trapezoid (see Figure 4), we find the following formula
that counts the points.

#W =
m−1∑
j=1

⌊
n

m
j − δ

m

⌋
=
m−1∑
j=1

nj − δ − rj
m

= n

m

m−1∑
j=1

j − m− 1
m

δ − 1
m

m−1∑
j=1

rj , (10)

where rj = nj − δ mod m.
The desired equality #W = 1

2 ((n− 1)(m− 1)− δ + 1) = g immediately follows from

Lemma 3.9.
m−1∑
j=1

rj = 1
2(m2 − (δ + 2)m+ 2δ).

Proof. Let l := m
δ . First we note that rj = rj+l:

rj+l = n(j + l)− δ mod m = nj + n

δ
m− δ mod m = nj − δ mod m = rj ,

and hence
m−1∑
j=1

rj = δ ·
l∑

j=1
rj − rm = δ ·

l∑
j=1

rj − (−δ +m). (11)

9

Furthermore, rj can be written as a multiple of δ:

rj = δ
(n
δ
j − 1

)
mod m.

From gcd(nδ , l) = 1 we conclude
{
n
δ j − 1 mod l | 1 ≤ j ≤ l

}
= {0, . . . , l − 1}. Therefore,

l∑
j=1

rj =
l−1∑
j=0

δj = δ · l(l − 1)
2 , (12)

and thus (11) and (12) imply

m−1∑
j=1

rj = δ ·
l∑

j=1
rj + δ −m = δ2 · l(l − 1)

2 + δ −m = 1
2(m2 − (δ + 2)m+ 2δ).

Remark 3.10.

• Note that from (9) it follows that the meromorphic differentials in Wmer are homolorphic at
all finite points.

• In practice we order the differentials in W lexicographically by j, i:

ωi,j < ωĩ,j̃ iff. j < j̃ or (j = j̃ and i < ĩ).

4 Strategy for the period matrix
In this section we present our strategy to obtain period matrices ΩΓ,ΩA,ΩB and τ as defined in
§2.2. Although this paper is not restricted to the case gcd(m,n) = 1, we will briefly assume it in
this paragraph to simplify notation.

The main ingredients were already described in Section 3: we integrate the holomorphic differ-
entials in W (§3.4) over the cycles in Γ (§3.3) using numerical integration (§6.1), which results in
a period matrix (§4.1)

ΩΓ =
(∫

γ

ω

)
ω∈W,
γ∈Γ

∈ Cg×2g.

The matrices ΩA and ΩB require a symplectic basis of H1(C,Z). So, we compute the intersection
pairing on Γ, as explained in Section 5, which results in a intersection matrix KΓ ∈ Z2g×2g. After
computing a symplectic base change S ∈ GL(Z, 2g) for KΓ (§4.4), we obtain a big period matrix

(ΩA,ΩB) = ΩΓS, (13)

and finally a small period matrix in the Siegel upper half-space

τ = Ω−1
A ΩB ∈ Hg. (14)

4.1 Periods of elementary cycles
The following theorem provides a formula for computing the periods of the curve. It relates
integration of differential forms on the curve to numerical integration in C.

Note that the statement is true for all differentials inWmer, not just the holomorphic ones. We
continue to use the notation from Section 3.

Theorem 4.1. Let γ(l)
e ∈ Γ be a shift of an elementary cycle corresponding to an edge e = (a, b) ∈

E. Then, for all differentials ωi,j ∈ Wmer, we have∫
γ

(l)
e

ωi,j = ζ−lj(1− ζ−j)C−ja,b
(
b− a

2

)i ∫ 1

−1

ϕi,j(u)
(1− u2) j

m

du, (15)

10

where

ϕi,j =
(
u+ b+ a

b− a

)i−1
ỹa,b(u)−j

is holomorphic in a neighbourhood εa,b of [−1, 1].

Proof. By the definition in (8) we can write γ(l)
e = γ

(l)
[a,b] ∪ γ

(l+1)
[b,a] . Hence we split up the integral

and compute ∫
γ

(l)
[a,b]

ωi,j =
∫
γ

(l)
[a,b]

xi−1

yj
dx = ζ−lj

∫ b

a

xi−1

ya,b(x)j dx

= ζ−ljC−ja,b

∫ b

a

xi−1

ỹa,b(ua,b(x))j(1− ua,b(x)2) j
m

dx.

Applying the transformation x 7→ xa,b(u) introduces the derivative dx =
(
b−a

2
)

du yields∫
γ

(l)
[a,b]

ωi,j = ζ−ljC−ja,b

(
b− a

2

)∫ 1

−1

xa,b(u)i−1

ỹa,b(u)j(1− u2) j
m

du

= ζ−ljC−ja,b

(
b− a

2

)i ∫ 1

−1

(
u+ b+a

b−a

)i−1

ỹa,b(u)j(1− u2) j
m

du

Similarly, we obtain ∫
γ

(l+1)
[b,a]

wi,j = −ζ−j
∫
γ

(l)
[a,b]

wi,j .

By Proposition 3.4 , ỹa,b is holomorphic and has no zero on εa,b, therefore

ϕi,j =
(
u+ b+a

b−a

)i−1
ỹa,b(u)−j is holomorphic on εa,b.

4.2 Numerical integration
In order to compute a period matrix ΩΓ the only integrals that have to be numerically evaluated
are the elementary integrals ∫ 1

−1

ϕi,j(u)
(1− u2) j

m

du (16)

for all ωi,j ∈ W and e ∈ E. By Theorem 4.1, all the periods in ΩΓ are then obtained by multipli-
cation of elementary integrals with constants.

As explained in §8.4.2, the actual computations will be done on integrals of the form

Ia,b(i, j) =
∫ 1

−1

ui−1du
(1− u2) j

m ỹa,b(u)j
(17)

(that is, replacing (u+ b+a
b−a)i−1 by ui−1 in the numerator of ϕi,j), the value of elementary integrals

being recovered by the polynomial shift∫ 1

−1

ϕi,j(u)
(1− u2) j

m

du =
i−1∑
l=0

(
i− 1
l

)(
b+ a

b− a

)i−1−l
Ia,b(l, j). (18)

The rigorous numerical evaluation of (17) is addressed in Section 6: for any edge (a, b), Theo-
rems 6.3 and 6.9 provide explicit schemes allowing to attain any prescribed precision.

4.3 Minimal spanning tree
From the a priori analysis of all numerical integrals Ia,b along the interval [a, b], we choose an
optimal set of edges forming a spanning tree as follows:

• Consider the complete graph on the set of finite branch points G′ = (X,E′) where E′ =
{(a, b) | a, b ∈ X}.

11

• Each edge e = (a, b) ∈ E′ gets assigned a capacity re that indicates the cost of numerical
integration along the interval [a, b].

• Apply a standard ‘maximal-flow’ algorithm from graph theory, based on a greedy approach.
This results in a spanning tree G = (X,E), where E ⊂ E′ contains the n− 1 best edges for
integration that connect all vertices without producing cycles.

Note that the integration process is most favourable between branch points that are far away
from the others (this notion is made explicit in Section 6).

4.4 Symplectic basis
By definition, a big period matrix (ΩA,ΩB) requires integration along a symplectic basis of
H1(C,Z). In §3.3 we gave a generating set Γ for H1(C,Z), namely

Γ =
{
γ(l)
e | 0 ≤ l < m− 1, e ∈ E

}
,

where E is the spanning tree chosen above. This generating set is in general not a (symplectic)
basis.

We resolve this by computing the intersection pairing on Γ, that is all intersections γ(k)
e ◦γ(l)

f ∈
{0,±1} for e, f ∈ E and k, l ∈ {0, . . .m− 1}, as explained in Section 5.

The resulting intersection matrix KΓ is a skew-symmetric matrix of dimension (n− 1)(m− 1)
and has rank 2g.

Hence, we can apply an algorithm, based on [15, Theorem 18], that outputs a symplectic basis
for KΓ over Z, i.e. a unimodular matrix base change matrix S such that

STKΓS = J, where J =

 0 Ig 0
−Ig 0 0

0 0 0δ−1

 .

The linear combinations of periods given by the first 2g columns of ΩΓS then correspond to a
symplectic homology basis

(ΩA,ΩB , 0δ−1) = ΩΓS,

whereas the last δ − 1 columns are zero and can be ignored, as they correspond to the dependent
cycles in Γ and contribute nothing.

5 Intersections
Let (a, b) and (c, d) be two edges of the spanning tree E. The formulas in Theorem 5.1 allow to
compute the intersection between shifts of elementary cycles

(
γ

(k)
a,b ◦ γ

(l)
c,d

)
.

Note that by construction of the spanning tree, we can restrict the analysis to intersections(
γ

(k)
a,b ◦ γ

(l)
c,d

)
such that c is either a or b. Moreover, we may discard the case (a, b) = (c, d).

Theorem 5.1 (Intersection numbers). Let (a, b), (c, d) ∈ E. The intersections of the corresponding
cycles γ(k)

a,b , γ
(l)
c,d ∈ Γ are given by

(
γ

(k)
a,b ◦ γ

(l)
c,d

)
=

1 if l − k ≡ s+ mod m,
−1 if l − k ≡ s− mod m,
0 otherwise,

where s+, s− are given by the following table, which covers all cases occurring in the algorithm

case s+ s−

(i) a = c and b = d 1 −1
(ii) b = c −sb 1− sb
(iii) a = c and ϕ > 0 1− sa −sa
(iv) a = c and ϕ < 0 −sa −1− sa
(v) {a, b} ∩ {c, d} = ∅ no intersection

12

and where sx ∈ Z for x ∈ {a, b} is given by

sx := 1
2π

(
ϕ+m · arg

(
Cc,dỹc,d(x)
Ca,bỹa,b(x)

))
and

ϕ = arg
(
b− a
d− c

)
+ δb=cπ.

Remark 5.2. Note that the intersection matrix KΓ is composed of (n − 1)2 blocks of dimension
m−1, each block corresponding to the intersection of shifts of two elementary cycles in the spanning
tree. It is very sparse.

The proof of Theorem 5.1 is contained in the following exposition.

Consider two cycles γ(k)
a,b , γ

(l)
c,d ∈ Γ and recall from Definition 3.5 that

γ
(k)
a,b = {(x, ζkya,b(x)) | x ∈ [a, b]} ∪ {(x, ζk+1ya,b(x)) | x ∈ [b, a]},

γ
(l)
c,d = {(x, ζlyc,d(x)) | x ∈ [c, d]} ∪ {(x, ζl+1yc,d(x)) | x ∈ [c, d]},

where ζkya,b(x), ζlyc,d(x) are branches of C that are analytic on open sets Va,b and Vc,d (see Figure
2) respectively.

From the definition we see that γ(k)
a,b ∩ γ

(l)
c,d = ∅, whenever [a, b] ∩ [c, d] = ∅. For edges in a

spanning tree this is equivalent to {a, b} ∩ {c, d} = ∅, thus proving (v).
Henceforth, we can assume {a, b} ∩ {c, d} 6= ∅. In order to prove (i)-(iv) we have to introduce

some machinery. Since the ya,b(x), yc,d(x) are branches of C, on the set C \ X we can define the
shifting function s(x), that takes values in Z/mZ, implicitly via

ζs(x) = yc,d(x)
ya,b(x) . (19)

Naturally, (19) extends to the other analytic branches via

ζs(x)+l−k = ζlyc,d(x)
ζkya,b(x) .

We can now define the non-empty, open set

V := Va,b ∩ Vc,d ⊂ C \X.

The shifting function s(x) is well-defined on V and, since ya,b(x) and yc,d(x) are both analytic on
V , s(x) is constant on its connected components.

In §3.2.2 we established that multiplication of a branch by ζ corresponds to moving one sheet
up on the Riemann surface. We can interpret the value of the shifting function geometrically as
γ

(l)
c,d running s(x̃) + l − k sheets above γ(k)

a,b at a point x̃ ∈ V .
This can be used to determine the intersection number in the following way. The homotopy

class of a cycle on C is not changed by deformations that avoid encircling additional branch points.
Since V ∩X = ∅ we can deform the cycles homotopically (as shown in Figure 3) such that

prx

(
γ

(k)
a,b

)
∩ prx

(
γ

(l)
c,d

)
= {x̃} for some x̃ ∈ V .

Consequently, the cycles can at most intersect at the points in the fiber above x̃, i.e.

γ
(k)
a,b ∩ γ

(l)
c,d ⊂ pr−1

x (x̃).

Note that, by definition, any cycle in Γ only runs on two neighbouring sheets, which already implies(
γ

(k)
a,b ◦ γ

(l)
c,d

)
= 0, if s(x̃) + l − k 6∈ {−1, 0, 1}.

In the other cases we can determine the sign of possible intersections by taking into account the
orientation of the cycles.

13

We continue the proof with case (i): Here we have [a, b] = [c, d]. Trivially,
(
γ

(k)
a,b ◦ γ

(k)
a,b

)
= 0

holds. For k 6= l we deform the cycles such that they only intersect above x̃ = b+a
2 ∈ Va,b = V .

We easily see that s(x̃) = 0 and therefore s(x̃) + l − k = l − k. The remaining non-trivial cases
(l = k ± 1), are shown in Figure 5 below where the cycles γ(k)

a,b (black), γ(k+1)
a,b (red) and γ

(k−1)
a,b

(green) are illustrated.

+1

a pr−1
x (x̃) b

−1

Figure 5: Intersections of self-shifts.

We see that, independently of s(x̃), s+ = (k + 1) − k = 1 and s− = (k − 1) − k = −1 are as
claimed.

For (ii)-(iv) we have that [a, b] ∩ [c, d] = {c}, where c is either a or b. Unfortunately, in these
cases s(c) is not well-defined.

Instead, we choose a point x̃ ∈ C \X on the bisectrix of [a, b] and [c, d] that is close enough to
c such that [x̃, c[⊂ V = Va,b ∩ Vc,d (see Figure 6 below), and where

s(x̃) = m

2π arg
(
yc,d(x̃)
ya,b(x̃)

)
. (20)

a bVa,b

d

Vb,d

x̃
a

b

d

Va,b

Va,d

x̃

Figure 6: The set V = Va,b ∩ Vc,d for b = c (left) and a = c (right).

Case (ii):
In this case we have b = c. Choosing x̃ on the upper bisectrix (as shown in Figure 6) and computing
s(x̃) with (20) makes it possible to determine the intersection numbers geometrically.

Figure 7 shows the non-trivial cases s(x̃) + l − k ∈ {−1, 0, 1}. There the cycles γ(k)
a,b (black),

γ
(k−s(x̃))
b,d (gray), γ(k−s(x̃)+1)

b,d (green) and γ(k−s(x̃)−1)
b,d (red) are illustrated.

14

a b

d−1

+1

Figure 7: Intersections for b = c.

By Lemma 5.3 (1) we have s(x̃) ≡ sb, which implies (as claimed)

s+ ≡ k − s(x̃)− k ≡ −sb mod m,

s− ≡ k − s(x̃) + 1− k ≡ 1− sb mod m.

Case (iii):
In this case we have a = c. We choose x̃ on the inner bisectrix (as shown in Figure 6) and compute
s(x̃) with (20).

For ϕ = arg
(
b−a
d−a

)
> 0, the non trivial cases, i.e. s(x̃) + l− k ∈ {−1, 0, 1}, are shown in Figure

8 We illustrate the cycles γ(k)
a,b (black), γ(k−s(x̃))

a,d (gray), γ(k−s(x̃)+1)
a,d (green) and γ(k−s(x̃)−1)

a,d (red).

15

−1
+1 a

b

d

Figure 8: Intersections for a = c and ϕ > 0.

Lemma 5.3 (2) gives us s(x̃) ≡ sa, which implies (as claimed for ϕ > 0)

s+ = k − s(x̃) + 1− k ≡ 1− sa mod m,

s− = k − s(x̃)− k ≡ −sa mod m.

Case (iv):
When ϕ < 0 we can use the antisymmetry of the intersection pairing to fall back to case (iii) by
looking the intersection of the swapped cycles(

γ
(k)
a,b ◦ γ

(l)
a,d

)
= −

(
γ

(l)
a,d ◦ γ

(k)
a,b

)
.

The intersection on the right is then determined by case (iii) with the quantities ϕ′ = −ϕ > 0,
s′a = −sa and s′± = s∓.

Alternatively, we can see this directly from the picture: if we mirror Figure 8 at the horizontal
line through a we are in case (iv). There, the intersection is positive if γ(k)

a,b and γ(l)
a,d start on the

same sheet and negative if γ(l)
a,d starts one sheet below γ

(k)
a,b .

Lemma 5.3. With the choices made in the proof of Theorem 5.1 the following statements hold

(1) s(x̃) ≡ sb mod m in case (ii),

(2) s(x̃) ≡ sa mod m in the case (iii).

Proof. Starting from equation (20), for all x ∈ C \X we have

s(x) = m

2π arg
(
yc,d(x)
ya,b(x)

)
≡ m

2π

(
arg
(

(1− uc,d(x)2) 1
m

(1− ua,b(x)2) 1
m

)
+ arg

(
Cc,dỹc,d(x)
Ca,bỹa,b(x)

))

≡ 1
2π (arg(1 + uc,d(x)) + arg(1− uc,d(x))− arg(1 + ua,b(x))− arg(1− ua,b(x)))

+ m

2π

(
arg
(
Cc,dỹc,d(x)
Ca,bỹa,b(x)

))
mod m.

In case (ii) we have b = c and denote ϕ0 = arg
(
b−a
d−b

)
. Then, we can parametrize all points x̃ 6= b

on the upper bisectrix of [a, b] and [a, d] (see Figure 6) via

x̃ = xb,d(−1 + t exp(i(π + ϕ0)/2)) as well as
x̃ = xa,b(1− t exp(−i(π + ϕ0)/2))

for some t > 0, where xb,d and xa,b are defined as in (3.2.3). Therefore,

arg(1 + ub,d(x̃)) = π + ϕ0

2 and

arg(1− ua,b(x̃)) = −π + ϕ0

2 .

16

For x̃ chosen close enough to b we have that [x̃, b[⊂ V and the shifting function s(x̃) is constant as
x̃ tends towards b. Hence, we can compute its value at x̃ as

s(x̃) ≡ 1
2π

(
π + ϕ0 + arg(1− ub,d(x̃))− arg(1 + ua,b(x̃)) +m arg

(
Cb,dỹb,d(x̃)
Ca,bỹa,b(x̃)

))
≡ 1

2π

(
ϕ+ arg(1− ub,d(b))− arg(1 + ua,b(b)) +m arg

(
Cb,dỹb,d(b)
Ca,bỹa,b(b)

))
≡ 1

2π

(
ϕ+ arg(2)− arg(2) +m arg

(
Cb,dỹb,d(b)
Ca,bỹa,b(b)

))
≡ sb mod m,

thus proving (1).
In the cases (iii) and (iv) we have a = c and denote ϕ = arg

(
b−a
d−a

)
. For ϕ > 0 we can

parametrize all points x̃ 6= a on the inner bisectrix of [a, b] and [a, d] (see Figure 6) via

x̃ = xa,d(−1 + t exp(iϕ/2)) as well as
x̃ = xa,b(−1 + t exp(−iϕ/2))

for some t > 0, where xa,d and xa,b are defined as in (3.2.3). Therefore,

arg(1 + ua,d(x̃)) = ϕ

2 and

arg(1 + ua,b(x̃)) = −ϕ2 .

As before, we let x̃ tend towards a and compute the shifting function at x̃ as

s(x̃) ≡ 1
2π

(
ϕ+ arg(1− ua,d(x̃))− arg(1 + ua,b(x̃)) +m arg

(
Ca,dỹa,d(x̃)
Ca,bỹa,b(x̃)

))
≡ 1

2π

(
ϕ+ arg(1− ua,d(a))− arg(1− ua,b(a)) +m arg

(
Ca,dỹa,d(a)
Ca,bỹa,b(a)

))
≡ 1

2π

(
ϕ+ arg(2)− arg(2) +m arg

(
Ca,dỹa,d(a)
Ca,bỹa,b(a)

))
≡ sa mod m.

Remark 5.4. The intersection numbers given by Theorem 5.1 are independent of the choices of x̃
that were made in the proof. This approach works for any x̃ ∈ V .

Even though the value of s(x̃) changes, if we choose x̃ in a different connected component of V ,
e.g. on the lower bisectrix in case (ii), the parametrization of the bisectrix and the corresponding
arguments will change accordingly.

6 Numerical integration
As explained in Section 4.2, the periods of the generating cycles γ ∈ Γ are expressed in terms of
elementary integrals (17)

Ia,b(i, j) =
∫ 1

−1

ui−1du
(1− u2) j

m ỹa,b(u)j

where (a, b) ∈ E and ωi,j ∈ W. We restrict the numerical analysis to this case.
In this section, we denote by α the value 1− j/m, which is the crucial parameter for numerical

integration. Note that α = 1/2 for hyperelliptic curves, while for general superelliptic curves α
ranges from 1/m to m−1

m depending on the differential form ωi,j considered.
We study here two numerical integration schemes which are suitable for arbitrary precision

computations:

• the double-exponential change of variables is completely general [20] and its robustness allows
to compute rigorously all integrals of periods in a very unified setting even with different
values of α;

17

• in the special case of hyperelliptic curves however, the Gauss-Chebychev method [1, 25.4.38]
applies and provides a better scheme (fewer and simpler integration points).

For m > 2, the periods could also be computed using general Gauss-Jacobi integration of pa-
rameters α, α. However, a different scheme has to be computed for each α and it now involves
computing roots of general Jacobi polynomials to large accuracy, which makes it hard to compete
with the double-exponential scheme.
Remark 6.1. Even for hyperelliptic curves it can happen that the double exponential scheme
outperforms Gauss-Chebychev on particular integrals. This is easy to detect in practice and we
can always switch to the best method.

6.1 Double-exponential integration
Throughout this section, λ ∈ [1, π2] is a fixed parameter. By default the value λ = π

2 is a good
choice, however smaller values may improve the constants. We will not address this issue here.

Using the double-exponential change of variable

u = tanh(λ sinh(t)), (21)

the singularities of (17) at ±1 are pushed to infinity and the integral becomes

Ia,b(i, j) =
∫
R
g(t)dt

with
g(t) = u(t)i−1

ỹa,b(u(t))j
λ cosh(t)

cosh(λ sinh(t))2α .

Let
Zr = {tanh(λ sinh(z)),−r < Im(z) < r}

be the image of the strip of width 2r under the change of variable (21).
Since we can compute the distance of each point uk ∈ U+ ∪U− (see 4) to both [−1, 1] and the

neighborhood Zr (see §8.3.2), we obtain

Lemma 6.2. Let r ∈]0, π2 [be such that λ sin(r) < π
2 and (U+∪U−)∩Zr = ∅, then g is holomorphic

on {−r < Im(z) < r} and there exist explicitly computable constants M1, M2 such that

•
∣∣∣ ui−1

ỹa,b(u)j

∣∣∣ ≤M1 for all u ∈ [−1, 1],

•
∣∣∣ ui−1

ỹa,b(u)j

∣∣∣ ≤M2 for all u ∈ Zr.

Fixing such a value r, we also introduce the following quantitiesXr = cos(r)
√

π
2λ sin r − 1

B(r, α) = 2
cos r

(
Xr
2

(
1

cos(λ sin r)2α + 1
X2α
r

)
+ 1

2α sinh(Xr)2α

)
.

Once we have computed the two boundsM1,M2 and the constant B(r, α), we obtain a rigorous
integration scheme as follows:

Theorem 6.3. With notation as above, for all D > 0, choose h and N such that
h ≤ 2πr

D+log(2M2B(r,α)+e−D)

Nh ≥ asinh
(
D+log

(
22α+1M1

α

)
2αλ

)
,

(22)

then ∣∣∣∣∣Ia,b(i, j)− h
N∑

`=−N
w`

ui−1
`

ỹa,b(u`)j

∣∣∣∣∣ ≤ e−D,
where u` = tanh(λ sinh(`h)),

w` = λ cosh(`h)
cosh(λ sinh(`h))2α .

18

The proof follows the same lines as the one in [20, Thm. 2.10]: we write the Poisson formula
on hZ for the function g

h
∑
|k|>N

g(kh)

︸ ︷︷ ︸
eT

+h
N∑

k=−N
g(kh) =

∫
R
g(t)dt+

∑
k∈Z∗

ĝ

(
k

h

)
︸ ︷︷ ︸

eQ

and control both error terms eT and eQ by Lemma 6.4 and 6.5 below. The actual parameters h
and N follow from bounding each error by e−D/2 (the condition of Lemma 6.4 being automatically
satisfied).

Lemma 6.4 (truncation error). For all N,h such that 2αλ cosh(Nh) > 1 we have∑
|k|>N

|hg(kh)| ≤ 22αM1

α
exp(−2αλ sinh(Nh)).

Proof. We bound the sum by an integral (the condition ensures the function is decreasing)∑
|k|>N

|hg(kh)| ≤ 2M1

∫ ∞
Nh

λ cosh(t)
cosh(λ sinh(t))2α = 2M1

∫ ∞
λ sinh(Nh)

dt
cosh(t)2α

≤ 22α+1M1

∫ ∞
λ sinh(Nh)

e−2αtdt = 22αM1

α
e−2αλ sinh(Nh).

Lemma 6.5 (discretization error). With the current notations,∑
k 6=0

∣∣∣∣ĝ(kh
)∣∣∣∣ ≤ 2M2B(r, α)

e2πr/h − 1
.

Proof. We first bound the Fourier transform by a shift of contour

∀X > 0, ĝ(±X) = e−2πXr
∫
R
g(t∓ ir)e−2iπtXdt

so that ∑
k

∣∣∣∣ĝ(kh
)∣∣∣∣ ≤ 2M2

e2πr/h − 1

∫
R

∣∣∣∣ λ cosh(t+ ir)
cosh(λ sinh(t+ ir))2α

∣∣∣∣dt.
Now the point λ sinh(t+ ir) = X(t) + iY (t) lies on the hyperbola Y 2 = λ2(sin2 r + tan2 rX2),

and |λ cosh(t+ ir)| ≤ λ cosh(t) = X′(t)
cos(r)

|cosh(X + iY)|2 = sinh(X)2 + cos(Y)2,

so that ∫
R

∣∣∣∣ λ cosh(t+ ir)
cosh(λ sinh(t+ ir))2α

∣∣∣∣dt ≤ 2
cos r

∫ ∞
0

dX
(sinh(X)2 + cos(Y)2)α .

For X0 = 0 we get Y0 = λ sin r < π
2 , and Yr = π

2 for Xr = cos(r)
√

π
2Y0
− 1.

We cut the integral at X = Xr and write∫ Xr

0

dX
(sinh(X)2 + cos(Y)2)α ≤

∫ Xr

0

dX
(X2 + cos2 Y)α∫ ∞

Xr

dX
(sinh(X)2 + cos(Y)2)α ≤

∫ ∞
Xr

dX
(sinhX)2α .

We bound the first integral by convexity: since Y (X) is convex and cos is concave decreasing
for Y ≤ Yr we obtain by concavity of the composition

∀X ≤ Xr, cos(Y) ≥ cos(Y0)
(

1− X

Xr

)
.

19

Now X2 + cos2 Y ≥ P2(X) where

P2(X) =
(

1 + cos2(Y0)
X2
r

)
X2 − 2cos2(Y0)

Xr
X + cos2(Y0)

is a convex quadratic, so X 7→ P2(X)−α is still convex and the integral is bounded by a trapezoid∫ Xr

0

dX
P2(X)α ≤

Xr

2
(
P2(0)−α + P2(Xr)−α

)
= Xr

2

(
1

cos(Y0)2α + 1
X2α
r

)
.

For the second integral we use sinh(X) ≥ sinh(Xr)eX−Xr to obtain∫ ∞
Xr

dX
sinh(X)2α ≤

1
2α sinh(Xr)2α .

6.2 Gauss-Chebychev integration
In the case of hyperelliptic curves, we have α = 1

2 (and j = 1) and the integral∫ 1

−1

ϕi,1(u)√
1− u2

du

can be efficiently handled by Gaussian integration with weight 1/
√

1− u2, for which the corre-
sponding orthogonal polynomials are Chebychev polynomials.

In this case, the integration formula is particularly simple: there is no need to actually compute
the Chebychev polynomials since their roots are explicitly given as cosine functions [1, 25.4.38].

Theorem 6.6 (Gauss-Chebychev integration). Let g be holomorphic around [−1, 1]. Then for all
N , there exists ξ ∈]− 1, 1[such that∫ 1

−1

g(u)√
1− u2

du−
N∑
`=1

wkg(u`) = π22N+1

24N
g(2N)(ξ)
(2N)! = E(N), (23)

with constant weights w` = w = π
N and nodes u` = cos

(2`−1
2N π

)
.

Moreover, very nice estimates on the error E(N) can by obtained if g is holomorphic on an
ellipse εr of the form (see Figure 9)

εr = {z ∈ C, |z − 1|+ |z + 1| = 2 cosh(r)} .

−1 1

z

sinh(r)

cosh(r)

εr

Figure 9: ellipse parameters.

Theorem 6.7 ([6, Theorem 5]). Let r > 0 such that g is holomorphic on εr. Then the error in
(23) satisfies

|E(N)| ≤ 2πM(r)
e2rN − 1

where M(r) = max {|g(z)| , z ∈ εr}.

20

Now we apply this theorem with a function gi(u) = ui√∏
(u−uk)

, so that the error can be explicitly
controlled a priori.

Lemma 6.8. Let r > 0 be such that 2 cosh(r) < |uk − 1|+ |uk + 1| for all points uk ∈ U+ ∪ U−,
then there exists an explicitly computable constant M(r) such that for all u ∈ εr∣∣∣∣ ui−1

ỹa,b(u)

∣∣∣∣ ≤M(r).

Proof. We simply compute the distance dr(uk) = infz∈εr |z − uk| from a point uk to the ellipse εr,
and let M(r) = cosh(r)i−1√∏

dr(uk)
. For simplicity, we can use the triangle inequality dr(uk) ≥ cosh(rk)−

cosh(r), where 2 cosh(rk) = |uk − 1|+ |uk + 1|.

Theorem 6.9. With r and M(r) satisfying Lemma 6.8, for all N such that

N ≥ D + log(2πM(r)) + 1
2r ,

we have ∣∣∣∣∣Ia,b(i, 1)− π

N

N∑
`=1

ui−1
`

ỹa,b(u`)

∣∣∣∣∣ ≤ e−D,
where u` = cos

(2`−1
2N π

)
.

More details on the choice of r and the computation of M(r) are given in §8.3.1.

7 Computing the Abel-Jacobi map
Here we are concerned with explicitly computing the Abel-Jacobi map of degree zero divisors; for
a general introduction see Section 2.

Assume for this section that we have already computed a big period period matrix (and all
related data) following the Strategy from Section 4.

Let D =
∑
P∈C vPP ∈ Div0(C). After choosing a basepoint P0 ∈ C, the computation of A

reduces (using linearity) to

A([D]) ≡
∑
P∈C

vP

∫ P

P0

ω̄ mod Λ.

For every P ∈ C,
∫ P
P0
ω̄ is a linear combination of vector integrals of the form∫ Pk

P0

ω̄ (see §7.1),
∫ P

Pk

ω̄ (see §7.2) and
∫ P∞

P0

ω̄ (see §7.3), where

• ω̄ is the vector of differentials in W,

• P = (xP , yP) ∈ C is a finite point on the curve,

• Pk = (xk, 0) ∈ C is a finite ramification point, i.e. xk ∈ X, and

• P∞ ∈ C is an infinite point.

Typically, we choose as basepoint the ramification point P0 = (x0, 0), where x0 ∈ X is the root
of the spanning tree G = (X,E).

Finally, the resulting vector integral has to be reduced modulo the period lattice Λ, which is
covered in §7.4.
Remark 7.1 (Image of Abel-Jacobi map). For practical reasons, we will compute the image of the
Abel-Jacobi map in the canonical torus R2g/Z2g. This representation has the following advantages:

• Operations on the Jacobian variety Jac(C) correspond to operations in R2g/Z2g.

• m-torsion divisors under A are mapped to vectors of rational numbers with denominator
dividing m.

21

7.1 Between ramification points
Suppose we want to integrate ω̄ from P0 = (x0, 0) to Pk = (xk, 0). By construction there exists
a path (x0 = xk0 , xk1 , . . . , xkn−1 , xkt = xk) in the spanning tree which connects x0 and xk. Thus,
the integral splits into ∫ Pk

P0

ω̄ =
t−1∑
j=0

∫ Pkj+1

Pkj

ω̄.

Denote a = xkj , b = xkj+1 ∈ X. From §3.3 we know that for (a, b) ∈ E a smooth path between
Pa = (a, 0) and Pb = (b, 0) is given by

γ
(0)
[a,b] = {(x, ya,b(x)) | x ∈ [a, b]}.

Let ωi,j ∈ W be a differential. According to the proof of Theorem 4.1 the corresponding integral
is given by ∫

γ
(0)
[a,b]

ωi,j = C−ja,b

(
b− a

2

)i ∫ 1

−1

ϕi,j(u)
(1− u2) j

m

du,

which is (up to the constants) an elementary integral (16) and has already been evaluated during
the period matrix computation.
Remark 7.2. Moreover, the image of the Abel-Jacobi map between ramification points ism-torsion,
i.e. for any two k, j ∈ {1, . . . , n} we have

m

∫ Pk

Pj

ω̄ ≡ A([mPk −mPj]) ≡ 0 mod Λ, (24)

since div
(
x−xk
x−xj

)
= mPk −mPj is a principal divisor.

7.2 Reaching non-ramification points
Let P = (xP , yP) ∈ C be a finite point and Pa = (a, 0) a ramification point such that X∩]a, xP] =
∅. In order to define a smooth path between P and Pa we need to find a suitable analytic branch
of C.

This can be done following the approach in §3.2.3, the only difference being that xP is not a
branch point. Therefore, we are going to adjust the definitions and highlight the differences.

Let ua,xP be the affine linear transformation that maps [a, xP] to [−1, 1]. Similar to (4) we
split up the image of X under ua,xP into subsets, but this time

ua,xP (X) = {−1} ∪ U+ ∪ U−.

Then, ỹa,xP (u) can be defined exactly as in (5) and is holomorphic in a neighbourhood εa,xP of
[−1, 1]. The term corresponding to a, that is

m
√

1 + u,

has a branch cut]−∞,−1] and is holomorphic on the complement of this cut.
Now we can define a branch of the curve, that is analytic in a neighbourhood Va,xP of]a, xP],

by
ya,xP (x) = Ca,xP ỹa,xP (ua,xP (x)) m

√
1 + ua,xP (x),

where

Ca,xP =
(
xP − a

2

) n
m

e
πi
m (#U+ mod 2),

so that the statements of Proposition 3.4 continue to hold for ỹa,xP and ya,xP , if we choose the
sets εa,xP and Va,xP as if xP was a branch point.

Therefore, the lifts of [a, xP] to C are given by

γ
(l)
[a,xP] = {(x, ζlya,xP (x)) | x ∈ [a, xP]}, l ∈ Z/mZ.

22

In order to reach P = (xP , yP) we have to pick the correct lift. This is done by computing a
shifting number s ∈ Z/mZ at the endpoint xP :

ζs = yP
ya,xP (xP) = yP

Ca,xP ỹa,xP (ua,xP (xP)) m
√

2

Consequently, γ(s)
[a,xP] is a smooth path between Pa and P on C. We can now state the main theorem

of this section.

Theorem 7.3. Let ωi,j ∈ Wmer be a differential. With the choices and notation as above we have∫ P

Pa

ωi,j = ζ−sjC−ja,xP

(
xP − a

2

)i ∫ 1

−1

ϕi,j(u)
(1 + u) j

m

du,

where

ϕi,j =
(
u+ xP + a

xP − a

)i−1
ỹa,xP (u)−j

is holomorphic in a neighbourhood εa,xP of [−1, 1] and

s = m

2π arg
(

yP
Ca,xP ỹa,xP (ua,xP (xP))

)
.

Proof. We have ∫ P

Pa

ωi,j =
∫
γ

(s)
[a,xP]

xi−1

yj
dx = ζ−sj

∫ xP

a

xi−1

ya,xP (x)j dx

= ζ−sjC−ja,xP

∫ xP

a

xi−1

(1 + ua,xP (x)) j
m ỹa,xP (ua,xP (x))j

dx

Applying the transformation u = ua,xP (x) introduces the derivative dx =
(
xP−a

2
)

du. Hence∫ P

Pa

ωi,j = ζ−sjC−ja,xP

(
xP − a

2

)∫ xP

a

xa,xP (u)i−1

(1 + u) j
m ỹa,xP (u)j

du

= ζ−sjC−ja,xP

(
xP − a

2

)i ∫ xP

a

(
u+ xP+a

xP−a

)i−1

(1 + u) j
m ỹa,xP (u)j

du.

The statement about holomorphicity of ϕi,j is implied, since Proposition 3.4 holds for ỹa,xP and
ya,xP as discussed above.

Remark 7.4. By Theorem 7.3, the problem of integrating ω̄ from P0 to P reduces to numerical
integration of ∫ 1

−1

ϕi,j(u)
(1 + u) j

m

du.

Although these integrals are singular at only one end-point, they can still be computed using the
double-exponential estimates presented in Section 6 (this is not true for the Gauss-Chebychev
method).

7.3 Infinite points
Recall from §3.1 that there are δ = gcd(m,n) points P (i)

∞ at infinity on our projective curve C, so
we introduce the set P = {P (1)

∞ , . . . , P
(δ)
∞ }.

Suppose we want to integrate from P0 to P∞ ∈ P, which is equivalent to computing the
Abel-Jacobi map of the divisor D∞ = P∞ − P0.

Our strategy is to explicitly apply Chow’s moving lemma to D∞: we construct a principal
divisor D ∈ Prin(C) such that supp(D) ∩ P = {P∞} and ordP∞(D) = ±1. Then, by definition of
the Abel-Jacobi map,

A([D∞ ∓D]) ≡ A([D∞]) ≡
∫ P∞

P0

ω̄ mod Λ

23

and supp(D∞ ∓D) ∩ P = ∅.
The exposition in this paragraph will explain the construction of D, while distinguishing three

different cases.
In the following denote by µ, ν > 0 the coefficients of the Bézout identity

−µm+ νn = δ.

Remark 7.5. Note that there are other ways of computing A([D∞]). For instance, using trans-
formations or direct numerical integration. Especially in the case δ = m a transformation (see
Remark 3.3) is the better option and may be used in practice. The advantage of this approach is
that we can stay in our setup, i.e. we can compute solely on Caff and keep the integration scheme.

7.3.1 Coprime degrees

For δ = 1 there is only one infinite point P = {P∞} and we can easily compute A([D∞]) by adding
a suitable principal divisor D

div(yν) = ν

n∑
k=1

Pk − νnP∞,

div((x− x0)−µ) = µmP∞ − µmP0,

D = div(yν(x− x0)−µ) = ν
n∑
k=1

Pk − µmP0 − P∞.

We immediately obtain

A([D∞]) ≡ A([D∞ +D]) = A([ν
n∑
k=1

Pk − (µm+ 1)P0])

≡ ν
n∑
k=1

∫ Pk

P0

ω̄ mod Λ

and conclude that A([D∞]) can be expressed in terms of integrals between ramification points (see
§7.1).
Remark 7.6. In general, the principal divisor

D := div(yν(x− x0)−µ) = ν

n∑
k=1

Pk − µmP0 −
δ∑
l=1

P (l)
∞

yields the useful relation

ν

n∑
k=1

∫ Pk

P0

ω̄ ≡
δ∑
l=1

∫ P (l)
∞

P0

ω̄ mod Λ.

7.3.2 Non-coprime degrees

For δ > 1 the problem becomes a lot harder. First we need a way to distinguish between the infinite
points in P = {P (1)

∞ , . . . , P
(δ)
∞ } and second they are singular points on the projective closure of our

affine model Caff whenever m 6= {n, n± 1}.
As shown in [22, §1] we obtain a second affine patch of C that is non-singular along P in the

following way:
Denoting M = m

δ and N = n
δ , we consider the birational transformation

(x, y) = Φ(r, t) =
(

1
rνtM

,
1

rµtN

)
which results in an affine model

C̃aff : rδ =
n∏
k=1

(1− xkrνtM).

24

The inverse transformation is given by

(r, t) = Φ−1(x, y) =
(
yM

xN
,
xµ

yν

)
.

Under this transformation the infinite points on Caff are mapped to points on C̃aff with either r = 0
or t = 0. Since there are no points with r = 0 on C̃aff, all infinite points in P are mapped to points
with t = 0, namely the finite non-singular points

(r, t) = (ζsδ , 0), s = 1, . . . , δ,

where ζδ = e
2πi
δ . Hence, we can describe the points in P ⊂ C via

P (s)
∞ = Φ(ζsδ , 0).

Note that the infinite points with r = ∞ on C̃aff are exactly the images of points with x = 0 on
Caff (i.e. the fiber prx

−1(0)) under Φ−1, while the infinite points with t =∞ correspond to points
with y = 0 (i.e. the ramification points Pk) respectively.

Suppose we want to compute the Abel-Jacobi map of D(s)
∞ = P

(s)
∞ −P0 for s ∈ {1, . . . , δ}. Again

following our strategy, this time working on C̃aff, we look at the intersection of the vertical line
through (ζsδ , 0) with C̃aff. We write down the corresponding principal divisor

E1 = div(r − ζsδ) =
d∑
i=1

(
ζsδ , t

(s)
i

)
−NE′1

where the t(s)i are the zeros (up to multiplicity) of h(t) =
∏n
k=1(1−xkζsνδ tM)−1 ∈ C[t], d = deg(h)

and

E′1 =
{

(m−M)Φ−1(0, 0), if 0 ∈ X,∑
Q∈pr−1

x (0) Φ−1(Q) otherwise.
(25)

Note that E1 satisfies supp(E1) ∩ Φ−1(P) = {(ζsδ , 0)}. Now, we can define the corresponding
principal divisor on Caff by

D1 := div
(
yM

xN
− ζsδ

)
;

then ord
P

(s)
∞

(D1) ≥ 1 by construction.

Theorem 7.7. Assume ord
P

(s)
∞

(D1) = 1 and 0 6∈ X. Then, for s = 1, . . . , δ, there exist points
Q

(s)
1 , . . . , Q

(s)
n−1 ∈ C \ P such that

A([D(s)
∞]) ≡ −

n−1∑
i=1

∫ Q
(s)
i

P0

ω̄ mod Λ. (26)

Proof. First note that ord
P

(s)
∞

(D1) = 1 implies M = 1, i.e. m = δ. Together with the assumption
0 6∈ X, this gives us deg(h) = n. Moreover, we can assume that t(s)n = 0 and t

(s)
i 6= 0 for

i = 1, . . . , n− 1. Therefore,

A([D(s)
∞]) ≡ A([D(s)

∞ −D1]) ≡ −A
([n−1∑

i=1
Φ(ζsδ , t

(s)
i)−N

∑
Q∈pr−1

x (0)

Q
])

mod Λ.

Since 0 6∈ X the sum over the integrals from P0 to all Q ∈ pr−1
x (0) vanishes modulo the period

lattice Λ (in fact this is true for any non-branch point). Let xk be the branch point that is closest
to 0, then for every ωĩ,j ∈ W we have

∑
Q∈pr−1

x (0)

∫ Q

P0

ωĩ,j =
m−1∑
l=0

∫ (0,ζl m
√
f(0))

P0

ωĩ,j

≡ m
∫ Pk

P0

ωĩ,j +
(

1 + ζ−j + · · ·+ ζ−j(m−1)
)∫ (0, m

√
f(0))

Pk

ωĩ,j

≡ 0 mod Λ

25

by equation (24) and Theorem 7.3. If we take Q(s)
i = Φ(ζsδ , t

(s)
i) ∈ C \ P, i = 1, . . . , n − 1, we are

done:

−A
([n−1∑

i=1
Φ(ζsδ , t

(s)
i)−N

∑
Q∈pr−1

x (0)

Q
])
≡ −

n−1∑
i=1

∫ Q
(s)
i

P0

ω̄ mod Λ.

In the case of Theorem 7.7 there exist additional relations between the vector integrals in (26)
which we are going to establish now. Given i ∈ {1, . . . , n − 1} and denoting t(s) = t

(s)
i we have

that on C̃aff
(ζsδ , t(s)) = (ζsδ , ζ−νsδ t(δ)) for all s = 1, . . . , δ.

Therefore, if we write (x(s), y(s)) := Φ(ζsδ , t(s)) and denote Q(s) = Q
(s)
i , then

Q(s) = (x(s), y(s)) = (x(δ), ζ
(µ+νN)s
δ y(δ))).

The Q(s) having identical x-coordinates implies that there exists a k ∈ {1, . . . , n} such that∫ Q(s)

P0

ω̄ ≡
∫ Pk

P0

ω̄ +
∫ Q(s)

Pk

ω̄ mod Λ,

while the relation between their y-coordinates yields∫ Q(s)

Pk

ωĩ,j = ζ
−(µ+νN)sj
δ

∫ Q(δ)

Pk

ωĩ,j

for all ωĩ,j ∈ W and s = 1, . . . , δ. This proves the following corollary:

Corollary 7.8. Under the assumptions of Theorem 7.7 and with the above notation we can obtain
the image of D(s)

∞ under the Abel-Jacobi map for all s = 1, . . . , δ from the n− 1 vector integrals∫ Q
(δ)
i

Pk

ω̄, i = 1, . . . , n− 1.

Unfortunately, this is just a special case. If ord
P

(s)
∞

(D1) is greater than 1 (for instance, if
δ 6= m), the vertical line defined by r− ζsδ is tangent to the curve C̃aff at (ζsδ , 0) and cannot be used
for our purpose.

Consequently, we must find another function. One possible choice here is the line defined by
r − t− ζsδ , which is now guaranteed to have a simple intersection with C̃aff at (ζsδ , 0) and does not
intersect C̃aff in (ζs′δ , 0), s 6= s′.

The corresponding principal divisor is given by

E2 = div(r − t− ζsδ) =
d∑
i=1

(t(s)i + ζsδ , t
(s)
i)− ν

n∑
k=1

Φ−1(xk, 0)−NE′2,

where the t(s)i are the zeros (up to multiplicity) of h(t) =
∏n
k=1(1 − xk(t + ζ

(s)
δ)νtM) − 1 ∈ C[t],

d = deg(h) and

E′2 =
{

(m− M+ν
N)Φ−1(0, 0), if 0 ∈ X,∑

Q∈pr−1
x (0) Φ−1(Q), otherwise.

(27)

Now,

D2 := div
(
yM

xN
− xµ

yν
− ζsδ

)
is a principal divisor on Caff such that ord

P
(s)
∞

(D2) = 1.

26

Theorem 7.9. Assume ord
P

(s)
∞

(D1) > 1 and 0 6∈ X. Then, for s = 1, . . . , δ, there exist points
Q

(s)
1 , . . . , Q

(s)
d−1 ∈ C \ P such that

A([D(s)
∞]) ≡ −

d−1∑
i=1

∫ Q
(s)
i

P0

ω̄ + ν

n∑
k=1

∫ Pk

P0

ω̄ mod Λ,

where d = n(ν +M).

Proof. First note that 0 6∈ X implies d = deg(h) = n(ν + M). Moreover, our assumption implies
ord

P
(s)
∞

(D2) = 1 so that we may assume t(s)d = 0 and t(s)i 6= 0 for i = 1, . . . , d− 1. Then,

A([D(s)
∞]) ≡A([D(s)

∞ −D2])

≡−A
([d−1∑

i=1
Φ(t(s)i + ζsδ , t

(s)
i)− ν

n∑
k=1

(xk, 0)−N
∑

Q∈pr−1
x (0)

Q
])

mod Λ.

Choosing the points Q(s)
i = Φ(t(s)i + ζsδ , t

(s)
i) ∈ C \ P and using the same reasoning as in the proof

of Theorem 7.7 proves the statement.

Remark 7.10. We can easily modify the statements of the Theorems 7.7 and 7.9 to hold for 0 ∈ X,
i.e. when 0 is a branch point. Using equation (25), the statement of Theorem 7.7 becomes

A([D(s)
∞]) ≡ −

n−2∑
i=1

∫ Q
(s)
i

P0

ω̄ +N(m−M)
∫ (0,0)

P0

ω̄ mod Λ,

whereas, using equation (27), the statement of Theorem 7.9 becomes

A([D(s)
∞]) ≡ −

d−1∑
i=1

∫ Q
(s)
i

P0

ω̄ + ν

n∑
k=1

∫ Pk

P0

ω̄ + (Nm−M − ν)
∫ (0,0)

P0

ω̄ mod Λ,

with d = (n− 1)(ν +M).

7.4 Reduction modulo period lattice
In order for the Abel-Jacobi map to be well defined we have to reduce modulo the period lattice
Λ = ΩZ2g, where Ω = (ΩA,ΩB) is the big period matrix, computed as explained in Section 4.

Let v =
∫ Q
P
ω̄ ∈ Cg be a vector obtained by integrating the holomorphic differentials in W. We

identify Cg and R2g via the bijection

ι : v = (v1, . . . , vg)T 7→ (Re(v1), . . . ,Re(vg), Im(v1), . . . , Im(vg))T .

Applying ι to the columns of Ω yields the invertible real matrix

ΩR =
(

Re(ΩA) Re(ΩB)
Im(ΩA) Im(ΩB)

)
∈ R2g×2g.

Now, reduction of v modulo Λ corresponds bijectively to taking the fractional part of Ω−1
R ι(v)

v mod Λ↔ bΩ−1
R ι(v)e.

8 Computational aspects
8.1 Complexity analysis
We recall the parameters of the problem: we consider a superelliptic curve C given by Caff : ym =
f(x) with f ∈ C[x] separable of degree n. The genus g of C satisfies

g ≤ (m− 1)(n− 1)
2 = O(mn).

Let D be some desired accuracy (a number of decimal digits). The computation of the Abel-
Jacobi map on C has been decomposed into the following list of tasks:

27

1. computing the (n− 1) vectors of elementary integrals,

2. computing the big period matrix Ω = (ΩA,ΩB) (13),

3. computing the small period matrix τ = Ω−1
A ΩB (14),

4. evaluating the Abel-Jacobi map at a point P ∈ C,

all of these to absolute precision D.
Let N(D) be the number of points of numerical integration. If m = 2, we have N(D) = O(D)

using Gauss-Chebychev integration, while N(D) = O(D logD) via double-exponential integration.
For multiprecision numbers, we consider (see [5]) that the multiplication has complexityM(D) =

O(D log1+εD), while simple transcendental functions (log, exp, tanh, sinh,. . .) can be evaluated
in complexity T (D) = O(D log2+εD). For complex m-th roots we also consider the complexity
T (D) using exp(1

m log(·)). Moreover, we assume that multiplication of a g× g matrix can be done
using O(g2.8) multiplications.

8.1.1 Computation of elementary integrals

For each elementary cycle γe ∈ Γ, we numerically evaluate the vector of g elementary integrals
from (17) as sums of the form

Ia,b ≈
N∑
`=1

w`
ui−1
`

yj`
,

where N = N(D) is the number of integration points, w`, u` are integration weights and points,
and y` = ỹa,b(u`).

We proceed as follows:

• for each `, we evaluate the abscissa and weight u`, w` using a few 4 trigonometric or hyperbolic
functions,

• we compute y` = ỹa,b(u`) using n− 2 multiplications and one m-th root, as shown in §8.4.1
below;

• starting from w`
y`
, we evaluate all g terms w` u

i−1
`

yj`
each time either multiplying by u` or by

1
y`
, and add each to the corresponding integral.

Altogether, the computation of one vector of elementary integrals takes

E(D) = N(D)T (D) +N(D)(n− 2 + logD)M(D) +N(D)gM(D) (28)

operations, so that depending on the integration scheme we obtain:

Theorem 8.1. Each of the (n − 1) elementary vector integrals can be computed to precision D
using

O(N(D)M(D)(g + logD)) =
{
O(D2 log1+εD(g + logD)) operations, if m = 2,
O(D2 log2+εD(g + logD)) operations, if m > 2.

8.1.2 Big period matrix

One of the nice aspects of the method is that we never compute the dense matrix ΩΓ ∈ Cg×2g

from Section 4, but keep the decomposition of periods in terms of the elementary integrals
∫
γe
ωi,j

in Cg×(n−1).
Using the symplectic base change matrix S introduced in §4.4, the symplectic homology basis

is given by cycles of the form
αi =

∑
e∈E

l∈Z/mZ

se,lγ
(l)
e (29)

where γ(l)
e ∈ Γ is a generating cycle and se,l ∈ Z is the corresponding entry of S.

4this can be reduced to evaluating a few multiplications and at most one exponential.

28

We use (15) to compute the coefficients of the big period matrix (ΩA,ΩB), so that each term
of (29) involves only a fixed number of multiplications.

In practice, these sums are sparse and their coefficients are very small integers (less than m), so
that the change of basis is performed using O(g3D log1+εD) operations (each of the O(g2) periods
is a linear combination of O(g) elementary integrals, the coefficients involving precision D roots of
unity).

However, we have no proof of this fact and in general the symplectic reduction could produce
dense base change with coefficients of size O(g), so that we state the following far from optimal
result.

Theorem 8.2. Given the (n − 1) × g elementary integrals to precision D, we compute the big
period matrix using O(g3(D + g) log1+ε(D + g)) operations.

8.1.3 Small period matrix

Finally, the small period matrix is obtained by solving ΩAτ = ΩB , which can be done using O(g2.8)
multiplications.

8.1.4 Abel-Jacobi map

This part of the complexity analysis is based on the results of Section 7 and assumes that we have
already computed a big period matrix and all related data.

Let E(D) be the number of operations needed to compute a vector of g elementary integrals
(see (28)). The complexity class of E(D) in O-notation is given in Theorem 8.1.

Theorem 8.3.

(i) For each finite point P ∈ Caff we can compute
∫ P
P0
ω̄ to precision D using E(D) operations.

(ii) For each infinite point P∞ ∈ C we can compute a representative of
∫ P∞
P0

ω̄ mod Λ to precision
D using

• n vector additions in Cg, if δ = gcd(m,n) = 1,
• nE(D) operations in the case of Theorem 7.7,
• n(n+ m

δ)E(D) operations in the case of Theorem 7.9.

(iii) Reducing a vector v ∈ Cg modulo Λ can be done using O(g2.8) multiplications.

Proof. (i) Follows from combining the results from §7.1 and Remark 7.4.

(ii) The statements follow immediately from §7.3.1, Theorem 7.7 and Theorem 7.9.

(iii) By §7.4, the reduction modulo the period lattice requires one 2g × 2g matrix inversion and
one multiplication.

8.2 Precision issues
As explained in §1.3, the ball arithmetic model allows to certify that the results returned by the
Arb program [12] are correct. It does not guarantee that the result actually achieves the desired
precision.

As a matter of fact, we cannot prove a priori that bad accuracy loss will not occur while
summing numerical integration terms or during matrix inversion.

However, we take into account all predictable loss of precision:

• While computing the periods using equations (15) and (18), we compute a sum with coeffi-
cients

C−ja,b

(
b− a

2

)i(
i− 1
l

)(
b+ a

b− a

)i−1−l

whose magnitude can be controlled a priori. It has size O(g).

29

• The size of the coefficients of the symplectic reduction matrix are tiny (less than m in
practice), but we can take their size into account before entering the numerical steps. Notice
that generic HNF estimates lead to a very pessimistic estimate of size O(g) coefficients.

• Matrix inversion of size g needs O(g) extra bits.

This leads to increasing the internal precision from D to D+O(g), the implied constant depending
on the configuration of branch points.
Remark 8.4. In case the end result is imprecise by d bits, the user simply needs to run another
instance to precision D + d to reach the desired accuracy.

In fact, the mathematical quantities and the sequence of arithmetic operations performed in
the algorithm remain the same. Now if the absolute error is reduced by d bits on input of an
elementary operation this remains true on output; by induction this is true for the final result.

8.3 Integration parameters
8.3.1 Gauss-Chebychev case

Recall from §6.2 that we can parametrize the ellipse εr via εr = {cosh(r + it) = cos(t− ir), t ∈]− π, π]}.

p

−1 1

z

sinh(r)

cosh(r)

εr

Figure 10: ellipse parameters.

The sum of its semi-axes is er and one needs

N ≥ D + log(2πM(r) + e−D)
2r

to have |E(N)| ≤ e−D.
The distance dk = dist(uk, εr) from a branch point uk ∈ U+ ∪ U− to the ellipse εr can be

computed applying Newton’s method to the scalar product function s(t) = Re(z′(uk − z)), where
z = cos(t − ir) and we take t = Re(arccos(uk)) as a starting point (see Figure 10). By convexity
of the ellipse, the solution is unique on the quadrant containing uk.

Choice of r Let |uk − 1| + |uk + 1| = 2 cosh(rk). We need to choose r < r0 = mink rk (so that
uk 6∈ εr) in order to minimize the number of integration points (6.9). We first estimate how the
bound M(r) varies for r < r0.

• For all k such that rk > r0, we compute explicitly the distance dk = dist(uk, εr0) <
dist(uk, εr).

• For all k such that rk = r0, we use first order approximation dist(uk, Zr−η) = ηDk +O(η2),
where Dk =

∣∣∣∂uk∂rk

∣∣∣ = |sin(tk − irk)|.

Let K be the number of branch points uk ∈ U+ ∪ U− such that rk = r0 and

M0 =
√ ∏
rk=r0

Dk

∏
rk>r0

dk

−1

,

then the integrand is bounded on εr0−η by

M(r0 − η) = M0
√
η
−K(1 +O(η)).

30

Plugging this into (6.9), the number of integration points satisfies

2N = D + log(2πM0)−K/2 log(η)
r0 − η

(1 +O(η)).

The main term is minimized for η satisfying η
(

2D+log(2πM0)
K + 1− log(η)

)
= r0. The solution

can be written as a Lambert function or we use the approximation

r = r0 − η = r0

(
1− 1

A+ log A
r0

)
,

where A = 1 + 2
K (D + log(2πM0)).

8.3.2 Double-exponential case

For the double-exponential integration (§6.1) we use the parametrization

∂Zr = {z = tanh(λ sinh(t+ ir)), t ∈ R}

to compute the distance from a branch point uk ∈ U+ ∪U− to Zr by Newton’s method as before.
Unfortunately, the solution may not be unique, so once the parameter r < r0 is chosen (see

below), we use ball arithmetic to compute a rigorous bound of the integrand on the boundary of
Zr. The process consists in recursively subdividing the interval until the images of the subintervals
by the integrand form an ε-covering.

Choice of r We adapt the method used for Gauss-Chebychev. This time the number N of
integration points is obtained from equation (22).

Writing uk = tanh(λ sinh(tk + irk)), we must choose r < r0 = mink{rk} to ensure uk 6∈ Zr. Let

M0 = (
∏
rk=r0

Dk

∏
rk>r0

dk)−j/m

where dk = dist(uk, Zr0) < dist(uk, Zr) and

Dk =
∣∣∣∣∂uk∂rk

∣∣∣∣ =
∣∣∣∣ λ cosh(tk + irk)
cosh(λ sinh(tk + irk))2

∣∣∣∣
is such that dist(uk, Zr−η) = ηDk +O(η2), then the integrand is bounded on Zr0−η by

M2 = M0η
− jKm (1 +O(η)).

Then
h = 2π(r0 − η)

D + log(2B(r0, α)M0)− jK/m log(η) +O(η)

and the maximum is obtained for the solution η of η(A − log η) = r0 where A = 1 + m
jK (D +

log(2B(r0, α)M0)).

8.4 Implementation tricks
Here we simply give some ideas that we used in our implementation(s) to improve constant factors
hidden in the big-O notation, i.e. the absolute running time.

In practice, 80 to 90% of the running time is spent on numerical integration of integrals (15).
According to §8.1.1, for each integration point u` ∈] − 1, 1[one first evaluates the y-value y` =
ỹa,b(u`), then adds the contributions w` u

i
`

yj`
to the integral of each of the g differential forms.

We shall improve on these two aspects, the former being prominent for hyperelliptic curves,
and the latter when the g � n.

31

8.4.1 Computing products of complex roots

Following our definition (6), computing ỹa,b(u`) involves (n − 2) m-th roots for each integration
point.

Instead, we fall back to one single (usual) m-th root by computing q(u) ∈ 1
2Z such that

ỹa,b(u) = ζq(u)
(∏
uk∈U−

(u− uk)
∏

uk∈U+

(uk − u)
) 1
m

. (30)

This can be done by tracking the winding number of the product while staying away from the
branch cut of the m-th root. For complex numbers z1, z2 ∈ C we can make a diagram of
m
√
z1 m
√
z2

m
√
z1z2

∈ {1, ζ, ζ−1}, depending on the position of z1, z2 and their product z1z2 in the com-
plex plane, resulting in the following lemma:
Lemma 8.5. Let z1, z2 ∈ C\]∞, 0]. Then,

m
√
z1 m
√
z2

m
√
z1z2

=

ζ, if Im(z1), Im(z2) > 0 and Im(z1z2) < 0,
ζ−1, if Im(z1), Im(z2) < 0 and Im(z1z2) > 0,
1, otherwise.

For z ∈]∞, 0] we use m
√
z = ζ

1
2 · m
√
−z.

Proof. Follows from the choices for m
√
· and ζ that were made in §3.2.

Lemma 8.5 can easily be turned into an algorithm that computes q(u).

8.4.2 Doing real multiplications

Another possible bottleneck comes from the multiplication by the numerator u`, which is usually
done g−m−1 times for each of the N integration points (more precisely, as we saw in the proof of
Proposition 3.8, for each exponent j we use the exponents 0 ≤ i ≤ ni = bnj−δm c, with

∑
ni = g).

Without polynomial shift (18), this numerator would be x` = u` + b+a
b−a . However, x` is a

complex number while u` is real, so computing with u` saves a factor almost 2 on this aspect.

8.5 Further ideas
8.5.1 Improving branch points

As we saw in Section 6, the number of integration points closely depends on the configuration of
branch points.

In practice, when using double-exponential integration, the constant r is usually bigger than
0.5 for random points, but we can exhibit bad configurations with r ≈ 0.1. In this case however,
we can perform a change of coordinate by a Moebius transform x 7→ ax+b

cx+d , as explained in Remark
3.3, to redistribute the points more evenly.

Improving r from 0.1 to say 0.6 immediately saves a factor 6 on the running time.

8.5.2 Near-optimal tree

As explained in §3.3 we integrate along the edges of a maximal-flow spanning tree T = (X,E),
where the capacity re of an edge e = (a, b) ∈ E is computed as

re = min
c∈X\{a,b}

{∣∣∣Im(sinh−1(tanh−1(2c−b−a
b−a)/λ)

∣∣∣ , if m > 2.

Although this can be done in low precision, computing re for all (n − 1)(n − 2)/2 edges of the
complete graph requires O(n3) evaluations of elementary costs (involving transcendental functions
if m > 2).

For large values of n (comparable to the precision), the computation of these capacities has a
noticeable impact on the running time. This can be avoided by computing a minimal spanning tree
that uses the euclidean distance between the end points of an edge as capacity, i.e. re = |b− a|,
which reduces the complexity to O(n2) multiplications.

Given sufficiently many branch points that are randomly distributed in the complex plane,
the shortest edges of the complete graph tend to agree with the edges that are well suited for
integration.

32

8.5.3 Taking advantage of rational equation

In case the equation (1) is given by a polynomial f(x) with small rational coefficients, one can still
improve the computation of ỹa,b(u) in (30) by going back to the computation of y(xa,b(u)) = f(x) 1

m .
The advantage is that baby-step giant-step splitting can be used for the evaluation of f(x), reducing
the number of multiplications toO(

√
n). In order to recover ỹa,b(u), one needs to divide by m

√
1− u2

and adjust a multiplicative constant including the winding number q(u), which can be evaluated
at low precision. This technique must not be used when u gets close to ±1.

8.5.4 Splitting bad integrals or moving integration path

Numerical integration becomes quite inefficient when there are other branch points relatively close
to an edge. The spanning tree optimization does not help if some branch points tend to cluster
while others are far away. A simple example is given by the curve y2 = x(x − i)(x − 1000): the
branch point i is too close to the integration path [0, 1000] and imposes a value r = 0.04 for Gauss-
Chebychev integration and a better but still small r = 0.2 with double-exponential integration.

In a case like this, one can always split the bad integrals to improve the relative distances to
the singularities: in the case of double-exponential integration, writing

∫ 1000
0 =

∫ 6
0 +

∫ 1000
6 gives

two integrals with r = 0.48 each. Splitting further at 2 and 33 gives r = 0.63.
Another option with double exponential integration, as explained in [20, II.3.5], is to shift the

integration path that is used for the change of variable.

9 Examples and timings
For testing purposes we consider a family of curves given by Bernoulli polynomials

Bm,n : ym = Bn(x) =
n∑
k=0

(
n

k

)
bn−kx

k

as well as their reciprocals

B̃m,n : ym = xnBn

(
1
x

)
.

The branch points of these curves present interesting patterns which can be respectively con-
sidered as good and bad cases from a numerical integration perspective (Figure 11).

33

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

0.2

0.1

0.0

0.1

0.2

(a) Bm,8

2 1 0 1 2 3
3

2

1

0

1

2

3

(b) Bm,30

4 3 2 1 0 1 2 3 4
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(c) B̃m,8

4 3 2 1 0 1 2 3 4
0.3

0.2

0.1

0.0

0.1

0.2

0.3

(d) B̃m,30

Figure 11: configurations of branch points.

In the case of hyperelliptic curves, we compare our timings with the existing Magma code [25]
(see Tables 1 and 2). We obtain a huge speedup which is mostly due to the better integration
scheme, but more interesting is the fact that the running time of our algorithm mainly depends on
the genus and the precision, while that of Magma depends a lot on the branch points and behaves
very badly in terms of the precision.

bits 128 512 2000 4000 10000
genus curve digits 38 154 600 1200 3000
3 B2,8 Arb 5e-3 0.01 0.16 0.48 3.99

Magma (new) 0.05 0.08 0.44 2.16 25.3
Magma (old) 0.33 0.44 6.28 421 —

B̃2,8 Arb 5e-3 0.01 0.17 0.54 4.58
Magma (new) 0.06 0.11 0.67 3.42 40.6
Magma (old) 0.42 0.45 6.44 457 —

14 B2,30 Arb 0.05 0.22 1.99 8.74 80.9
Magma (new) 0.55 0.94 4.64 18.7 185.1
Magma (old) 5.15 10.1 134 9291 —

B̃2,30 Arb 0.05 0.23 2.11 9.31 87.8
Magma (new) 0.51 1.02 5.40 21.9 227
Magma (old) 14.8 42.6 370 12099 —

39 B2,80 Arb 0.69 1.64 16.1 70.5 601
Magma (new) 6.29 9.08 36.4 122 1024

Table 1: timings for hyperelliptic curves, single core Xeon E5 3GHz (in seconds).

34

bits 128 512 2000 4000 10000
genus curve digits 38 154 600 1200 3000
21 B7,8 Arb 0.06 0.27 4.25 29.5 455

Magma (new) 0.23 1.06 14.6 83.1 1035

B̃7,8 Arb 0.03 0.19 7.44 58.8 1027
Magma (new) 0.30 1.64 23.9 132 1613

84 B25,8 Arb 0.09 0.45 8.86 55.6 727
Magma (new) 0.74 2.60 27.2 135 1529

87 B7,30 Arb 2.05 6.46 43.9 249 3091
Magma (new) 2.29 10.0 93.8 461 4990

348 B25,30 Arb 2.82 9.57 101 557 6195
Magma (new) 19.9 41.4 234 1014 9614

946 B25,80 Arb 67.8 182 952 4330
Magma (new) 369 585 2132 7474

Table 2: timings for superelliptic curves, single core Xeon E5 3GHz (in seconds).

10 Outlook
In this paper we presented an approach based on numerical integration for multiprecision com-
putation of period matrices and the Abel-Jacobi map of superelliptic curves given by m > 1 and
squarefree f ∈ C[x].

Integration along a spanning tree and the special geometry of such curves make it possible
to compute these objects to high precision performing only a few numerical integrations. The
resulting algorithm has an excellent scaling with the genus and works for several thousand digits
of precision.

10.1 Reduced small period matrix
For a given curve our algorithm computes a small period matrix τ in the Siegel upper half-space
Hg which is arbitrary in the sense that it depends on the choice of a symplectic basis made during
the algorithm.

For applications like the computation of theta functions it is useful to have a small period
matrix in the Siegel fundamental domain Fg ⊂ Hg (see [13, §1.3]).

We did not implement any such reduction. The authors of [13] give a theoretical sketch of
an algorithm (Algorithm 1.9) that achieves this reduction step, as well as two practical versions
(Algorithms 1.12 and 1.14) which work in any genus and have been implemented for g ≤ 3. It
would be interesting to combine this with our implementation.

10.2 Generalizations
We remark that there is no theoretical obstruction to generalizing our approach to more general
curves.

10.2.1 Multiple roots

In a first step the algorithm could be extended to all complex superelliptic curves given by m > 1
and f ∈ C[x], where f can have multiple roots of order at most m− 1, say f =

∏n
k=1(x− xk)nk .

We want to highlight the following issues:

• The differentials are of the form
∏n
k=1(x−xk)ik

yj dx where the exact condition on the holomor-
phicity is given in [14, Theorem 3]. However, these holomorphic differentials can still be
integrated using double-exponential integration as presented in §6.1.

35

• The local monodromies may no longer be equal or even cyclic, but they are completely (up
to conjugacy) determined by the multiplicities nk. We believe that applying the Tretkoff
algorithm [23] to obtain a homology basis and the intersections could be a better approach
than generalizing the methods used in Section 5, although this seems possible.

Although several adjustments would have to be made in the analysis and in the code, staying
within the superelliptic setting promises a fast and rigorous extension of our algorithm.

Moreover, this generalization would allow to perform any Moebius transform on the model of
the curve and to efficiently implement the idea of §8.5.1.

10.2.2 General affine algebraic curves

We also believe that the strategy employed here (numerical integration between branch points com-
bined with information about local intersections) could be adapted to completely general algebraic
curves given by F ∈ C[x, y].

However, serious issues have to be overcome:

• On the numerical side we no longer have a nice m-th root function, it may be replaced by
a combination of Newton’s method between branch points (analytic continuation has to be
performed on all sheets) and Puiseux series expansion around them.

• On the geometric side the combinatorics of loops and intersections become even more intri-
cate than in the non-separable case 10.2.1. It is not clear whether our strategy based on
shifting numbers and local intersection could be generalized. One can instead obtain the
local monodromies from analytic continuation and then employ the Tretkoff algorithm [23],
as described (for example) in [11].

We did not investigate further: at this point the advantages of superelliptic curves which are
utilized by our approach are already lost (simple geometry of branch points and m− 1 integrals at
the cost of one). It is not clear whether this approach would be more efficient than methods that
avoid branch points.

References
[1] Milton Abramowitz and Irene A. Stegun. Handbook of mathematical functions with formulas,

graphs, and mathematical tables, volume 55 of National Bureau of Standards Applied Mathe-
matics Series. For sale by the Superintendent of Documents, U.S. Government Printing Office,
Washington, D.C., 1964.

[2] Andrew R. Booker, Jeroen Sijsling, Andrew V. Sutherland, John Voight, and Dan Yasaki.
A database of genus-2 curves over the rational numbers. LMS Journal of Computation and
Mathematics, 19(A):235–254, 2016.

[3] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The user
language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra and number
theory (London, 1993).

[4] Jean-Benoît Bost and Jean-François Mestre. Moyenne arithmético-géométrique et périodes
des courbes de genre 1 et 2. Gaz. Math., 1(38):36–64, 1988.

[5] Richard P. Brent and Paul Zimmermann. Modern computer arithmetic, volume 18 of Cam-
bridge Monographs on Applied and Computational Mathematics. Cambridge University Press,
Cambridge, 2011.

[6] M. M. Chawla and M. K. Jain. Error estimates for Gauss quadrature formulas for analytic
functions. Math. Comp., 22:82–90, 1968.

[7] Edgar Costa, Nicolas Mascot, Jeroen Sijsling, and John Voight. Rigorous computation of the
endomorphism ring of a jacobian. arXiv preprint arXiv:1705.09248, 2017.

[8] John E. Cremona and Thotsaphon Thongjunthug. The complex AGM, periods of elliptic
curves over C and complex elliptic logarithms. J. Number Theory, 133(8):2813–2841, 2013.

36

[9] Bernard Deconinck and Mark van Hoeij. Computing Riemann matrices of algebraic curves.
Phys. D, 152/153:28–46, 2001. Advances in nonlinear mathematics and science.

[10] Jörg Frauendiener and Christian Klein. Computational approach to hyperelliptic riemann
surfaces. Letters in Mathematical Physics, 105(3):379–400, 2015.

[11] Jörg Frauendiener and Christian Klein. Computational approach to compact Riemann sur-
faces. Nonlinearity, 30(1):138–172, 2017.

[12] F. Johansson. Arb: a C library for ball arithmetic. ACM Communications in Computer
Algebra, 47(4):166–169, 2013.

[13] Pinar Kilicer, Hugo Labrande, Reynald Lercier, Christophe Ritzenthaler, Jeroen Sijsling,
and Marco Streng. Plane quartics over Q with complex multiplication. arXiv preprint
arXiv:1701.06489, 2017.

[14] Ja Kyung Koo. On holomorphic differentials of some algebraic function field of one variable
over c. Bulletin of the Australian Mathematical Society, 43(3):399–405, 1991.

[15] Greg Kuperberg. Kasteleyn cokernels. Electronic Journal of Combinatorics, 9, 2002.

[16] Hugo Labrande. Explicit computation of the Abel-Jacobi map and its inverse. Theses, Uni-
versité de Lorraine ; University of Calgary, November 2016.

[17] The LMFDB Collaboration. The L-functions and modular forms database. http://www.
lmfdb.org, 2013. [Online; accessed 16 September 2013].

[18] Nicolas Mascot. Computing modular Galois representations. Rend. Circ. Mat. Palermo (2),
62(3):451–476, 2013.

[19] Rick Miranda. Algebraic Curves and Riemann Surfaces (Graduate Studies in Mathematics,
Vol 5). American Mathematical Society, 4 1995.

[20] Pascal Molin. Intégration numérique et calculs de fonctions L. PhD thesis, Université de
Bordeaux I, 2010.

[21] Pascal Molin and Christian Neurohr. hcperiods: Arb and Magma packages for periods of
superelliptic curves. http://doi.org/10.5281/zenodo.1098275, July 2017.

[22] Christopher Towse. Weierstrass points on cyclic covers of the projective line. Transactions of
the American Mathematical Society, 348(8):3355–3378, 1996.

[23] C.L. Tretkoff and M.D. Tretkoff. Combinatorial group theory, riemann surfaces and differential
equations. Contemporary Mathematics, 33:467–517, 1984.

[24] Paul van Wamelen. Equations for the jacobian of a hyperelliptic curve. Transactions of the
American Mathematical Society, 350(8):3083–3106, 1998.

[25] Paul B. vanWamelen. Computing with the analytic Jacobian of a genus 2 curve. InDiscovering
mathematics with Magma, volume 19 of Algorithms Comput. Math., pages 117–135. Springer,
Berlin, 2006.

37

http://www.lmfdb.org
http://www.lmfdb.org
http://doi.org/10.5281/zenodo.1098275

	Introduction
	Existing algorithms and implementations
	Main result
	Rigorous implementation
	Interface with the LMFDB
	Structure of the paper
	Acknowledgements

	The Abel-Jacobi map
	Definition
	Explicit basis and standard matrices

	Superelliptic curves
	Definition & properties
	Complex roots and branches of the curve
	The complex m-th root
	The Riemann surface
	Locally analytic branches

	Cycles and homology
	Differential forms

	Strategy for the period matrix
	Periods of elementary cycles
	Numerical integration
	Minimal spanning tree
	Symplectic basis

	Intersections
	Numerical integration
	Double-exponential integration
	Gauss-Chebychev integration

	Computing the Abel-Jacobi map
	Between ramification points
	Reaching non-ramification points
	Infinite points
	Coprime degrees
	Non-coprime degrees

	Reduction modulo period lattice

	Computational aspects
	Complexity analysis
	Computation of elementary integrals
	Big period matrix
	Small period matrix
	Abel-Jacobi map

	Precision issues
	Integration parameters
	Gauss-Chebychev case
	Double-exponential case

	Implementation tricks
	Computing products of complex roots
	Doing real multiplications

	Further ideas
	Improving branch points
	Near-optimal tree
	Taking advantage of rational equation
	Splitting bad integrals or moving integration path

	Examples and timings
	Outlook
	Reduced small period matrix
	Generalizations
	Multiple roots
	General affine algebraic curves

