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Simple Approximations of the SIR Meta
Distribution in General Cellular Networks

Sanket S. Kalamkar, Member, IEEE, and Martin Haenggi, Fellow, IEEE

Abstract—Compared to the standard success (coverage) prob-
ability, the meta distribution of the signal-to-interference ratio
(SIR) provides much more fine-grained information about the
network performance. We consider general heterogeneous cellu-
lar networks (HCNs) with base station tiers modeled by arbitrary
stationary and ergodic non-Poisson point processes. The exact
analysis of non-Poisson network models is notoriously difficult,
even in terms of the standard success probability, let alone
the meta distribution. Hence we propose a simple approach to
approximate the SIR meta distribution for non-Poisson networks
based on the ASAPPP (“approximate SIR analysis based on the
Poisson point process”) method. We prove that the asymptotic
horizontal gap G0 between its standard success probability and
that for the Poisson point process exactly characterizes the gap
between the bth moment of the conditional success probability,
as the SIR threshold goes to 0. The gap G0 allows two simple
approximations of the meta distribution for general HCNs: 1) the
per-tier approximation by applying the shift G0 to each tier and
2) the effective gain approximation by directly shifting the meta
distribution for the homogeneous independent Poisson network.
Given the generality of the model considered and the fine-
grained nature of the meta distribution, these approximations
work surprisingly well.

Index Terms—Interference, heterogeneous cellular networks,
meta distribution, Poisson point process, signal-to-interference
ratio, stochastic geometry

I. INTRODUCTION

A. Motivation and Objective

The accurate modeling of base station (BS) locations is
important to characterize the performance of cellular networks
and obtain useful design insights. Traditionally, in a cellular
network, the BS locations were modeled in a deterministic
(regular) manner using either triangular or square lattices. The
lattice model has been extensively studied using simulations
since it is usually analytically intractable. However, to meet an
exponential growth in mobile traffic and improve the spatial
reuse, the deployment of cellular networks has become more
irregular and heterogeneous. For example, in a geographical
region, macro, pico, and femto BSs can coexist. The network
tiers possess different characteristics such as different BS den-
sities, different path loss exponents, and different deployment
structures (e.g., clustered or repulsive deployments).
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The Poisson point process (PPP) may be used to model
irregular and real-world BS deployments [2]. The modeling
of BS locations by the PPP has become popular due to its
analytical tractability, which leads to crisp insights about the
network performance. However, in an actual cellular network,
the BS deployment is neither completely random (as the PPP)
nor completely regular (as the triangular and square lattices)—
it lies somewhere in between. The BS deployment depends
heavily on the topology and the type of the geographical region
(urban or rural). As a result, a single point process model
may not be applicable in all scenarios. For example, using
actual data from the UK, it is shown in [2] that there exists
repulsion among BSs, which can be modeled using hard-core
point processes [3, Chapter 3]. On the other hand, in [4], the
Poisson cluster process [3, Chapter 3] is shown to accurately
model the BS deployment in many cities. Especially, at a
larger geographical scale, the BSs appear to form a cluster
point process due to the high density in urban regions and low
density in rural regions. Hence it is important to investigate
the performance of non-Poisson cellular networks.

The main impediment to the study of non-Poisson cellular
networks is that, compared to the PPP, their analysis is much
harder due to the dependence between the BS locations. Thus
it would be convenient if the performance of non-Poisson
cellular networks could be related (approximately) to that of
Poisson cellular networks.

Recently, in [5], a new fundamental performance metric
called the meta distribution of the signal-to-interference ratio
(SIR) is introduced for cellular networks. The meta distribu-
tion, defined as the distribution of the conditional success prob-
ability given the point process, is an important performance
metric as it answers a key question: “How are the individual
link success (or coverage) probabilities1 distributed in a real-
ization of the cellular network?” The answer directly leads to
the performance of the “5% user,” which corresponds to the
performance of the top 95% of users and is an important design
criterion for cellular operators. The meta distribution provides
much more fine-grained information about the network than
the standard success (coverage) probability; the latter provides
just the average of individual link success probabilities in each
realization of the network and thus yields limited information
about the network. In contrast, the meta distribution provides
the distribution of the link success probability conditioned on
the point process and thus allows the analysis of the network
at a finer level.

1The success probability of a link is the probability that the SIR at the
receiver of that link is greater than the target SIR threshold θ.
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The goal of this paper is to study the meta distribution
in heterogeneous non-Poisson cellular networks, where the
cellular networks consist of multiple tiers and the BSs in
each tier may form an arbitrary stationary and ergodic point
process. To achieve this goal, we have to overcome two main
difficulties:

1) The direct calculation of the meta distribution seems
infeasible even for the Poisson cellular network [5]—one
has to calculate the moments of the conditional success
probability and then use the Gil-Pelaez theorem [6] to
calculate the meta distribution.

2) The analysis for non-Poisson cellular networks is sig-
nificantly more difficult than that for Poisson cellular
networks. In fact, obtaining an analytical expression of
the (standard) success probability is extremely difficult
in non-Poisson networks. Even for the arguably second-
simplest model, the Ginibre point process, it can only be
given in the form of an expression in which 3 integrals,
an infinite product, and an infinite sum are nested [7,
Theorem 2].

Consequently, analyzing the meta distribution in non-Poisson
networks is very challenging. This problem becomes even
worse in the case of heterogeneous cellular networks, where
one needs to consider the intra-tier as well as the inter-tier
interference. In this paper, we propose two simple and indirect
approaches to approximately calculate the meta distribution for
general heterogeneous cellular networks (HCNs) by comparing
it to that for a homogeneous independent PPP (HIP) model
where the BSs in each tier are modeled by an independent
and homogeneous PPP.

B. Related Work

The works in [8]–[10] obtained analytically tractable results
for the HIP model. For HCNs with non-Poisson deployments,
it is often the case that it is hard to perform an exact
mathematical analysis of key performance metrics such as the
SIR distribution (sometimes called the coverage probability).
Even if an exact expression of the SIR distribution exists, it is
available in a complex form that does not help gain insights
about the performance of the network for different network
parameters [11]–[15].

Fortunately, [2] observed that the SIR distribution for the
downlink of cellular networks modeled by different non-
Poisson point processes can be closely approximated by sim-
ply applying a horizontal shift to the SIR distribution curve for
the PPP model. The approximation becomes asymptotically
exact as the SIR threshold θ → 0 [16]. The horizontal
shift is termed the deployment gain in [16] since the shift
is because of the deployment. This method of approximating
the SIR distribution for a non-Poisson point process model by
that for the PPP model is called “Approximate SIR analysis
based on the PPP” (ASAPPP) in [17]. [18] showed that the
deployment gain as θ → 0 can be expressed as the ratio
of the mean interference-to-signal ratio (MISR) of the two
different point processes under consideration. Further, [19]
proved that the deployment gain as θ → ∞ is determined
by the expected fading-to-interference ratio (EFIR). A key

observation from [19] is that the deployment gain as θ → 0,
denoted by G0, provides an excellent approximation to the
entire SIR distribution. In [20], a formula is derived to
approximately calculate G0 analytically for (stationary) non-
Poisson point process models whenever the second moment of
the contact distance is available. [21] showed that the ASAPPP
approximation works very well for HCNs with non-Poisson
deployment of BSs. First, [21] proposed the per-tier ASAPPP-
based approximation for general HCNs, where the ASAPPP
approximation was used to approximate the SIR distribution
corresponding to each non-Poisson tier using the MISR-based
deployment gain G0. Second, when the path loss of each tier
was the same, [21] showed that the SIR distribution for general
HCNs could be directly obtained from that for the HIP model
by scaling the SIR threshold by the effective gain.

The meta distribution of the SIR for cellular networks was
proposed in [5], where the focus was on the downlink of the
Poisson cellular network. Furthermore, the meta distribution
of the SIR was calculated for both the downlink and the
uplink of the Poisson cellular network with power control
in [22], for the downlink Poisson cellular network underlaid
with a device-to-device (D2D) network in [23], for the non-
orthogonal multiple access (NOMA) network in [24], and
with base station cooperation in [25]. For general cellular
networks with a multi-slope path loss model, [26] gave a
scaling law involving the parameters of BS and user point
processes (e.g., the density of the point process) that keeps
the meta distribution of the SIR the same. For the HIP-based
K-tier HCN, [27] calculated the SIR meta distribution with
cell range expansion.

Overall, for general HCNs with non-Poisson deployment
of BSs, the focus has been only on the SIR distribution,
and the SIR meta distribution is calculated only for Poisson
cellular networks. In this paper, we determine the fine-grained
network performance of general HCNs through the SIR meta
distribution. Since the model for cellular networks considered
is quite general, we cannot expect to obtain exact analytical
expressions for the SIR meta distribution. Hence we propose
simple approximations that enable a quick calculation of the
SIR meta distribution for general HCNs. Note that, until now,
the ideas of the SIR meta distribution and the ASAPPP have
been explored and applied separately. Applying the shift to
the SIR distribution (which is just the mean of the SIR meta
distribution) does not imply that the shifting approach also
works for the entire SIR meta distribution. That said, com-
bining these ideas is of significant importance because “mean
to distribution” and “Poisson to non-Poisson” are highly non-
trivial extensions.

C. Contributions

This paper makes the following contributions:
1) For cellular networks, we apply the idea of ASAPPP to

the meta distribution and propose a simple and novel
method, called AMAPPP which stands for “Approximate
meta distribution analysis using the PPP,” to obtain the
meta distribution for an arbitrary stationary and ergodic
point process from the meta distribution for the PPP.
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TABLE I
NOTATION AND ABBREVIATION

Notation Definition/Meaning
Φk Point process of BSs of kth tier

ΦPPP
k Approximation of the point process of BSs of kth tier by a PPP of the same density as Φk

λk Density of BSs of kth tier
Pk Transmit power of BSs of kth tier
[K] {1, 2, . . . ,K}
SIR Signal-to-interference ratio
θ SIR threshold
αk Path loss exponent of kth tier
δk 2/αk

G0 Asymptotic SIR gain as θ → 0
Gk G0 for kth tier, k ∈ [K]
Geff Effective gain for HCNs
ps(θ) Standard success (coverage) probability
Ps(θ) Conditional link success probability
Mb(θ) bth moment of the conditional link success probability
F̄ (θ, x) SIR meta distribution for the target reliability of x
MISR Mean interference-to-signal ratio
EFIR Expected fading-to-interference ratio
Rpert Perturbation radius for the perturbed triangular lattice
p, u Probability of one-point cluster and the distance between two points in a two-point cluster for

the Gauss-Poisson point process
λp, c̄, rc Density of parent point process, the mean number of points in a cluster, and the radius of the

cluster for the Matérn cluster process

2) We prove that, as θ → 0, the bth moment of the con-
ditional success probability for a stationary and ergodic
point process model can be obtained exactly by shifting
that for the PPP model by the asymptotic deployment
gain G0.

3) For Rayleigh fading and an unbounded path loss model,
we confirm by simulations that applying the horizontal
shift by the gain G0 to the meta distribution for the PPP
closely approximates the meta distribution for the sta-
tionary triangular lattice, the perturbed triangular lattice,
the Gauss-Poisson point process, and the Matérn cluster
process (two regular and two cluster point processes).

4) We extend the AMAPPP approach to general HCNs,
which approximates the bth moment of the conditional
success probability corresponding to each tier using the
MISR-based gain G0. This per-tier approach is further
used to approximately calculate the meta distribution for
general HCNs.

5) When the path loss exponents in all tiers are the same, we
obtain an effective gain using the MISR-based gain G0

corresponding to each tier, which can be simply applied
to shift the meta distribution for the HIP cellular network
to approximately obtain the meta distribution for general
HCNs.

D. Organization of the Paper

The rest of the paper is organized as follows. In Sec. II, we
provide the network model, describe the point process models
considered in this paper, and briefly review the SIR meta
distribution and the ASAPPP method. In Sec. III, we propose
the AMAPPP approach for single-tier non-Poisson cellular
networks, which is extended to general HCNs in Sec. IV. We
provide conclusions in Sec. V.

II. SYSTEM MODEL

A. Network Model

We consider a general K-tier HCN where the locations of
BSs of the kth tier are modeled by arbitrary stationary, ergodic,
and independent point processes Φk ⊂ R2, k = 1, 2, . . . ,K.
The density of Φk is λk. All BSs are always active. A base
station belonging to Φk transmits at power Pk. Due to the
stationarity of the point processes, we focus on the cellular
user situated at the origin o = (0, 0), henceforth called the
typical user. We focus on the downlink with the (on average)
strongest-BS association, where the typical user connects to
the BS with the strongest received power on average. The other
BS transmissions from the same tier as that of the serving BS
and those from different tiers cause interference at the typical
user. The signal propagation experiences fading as well as
path loss. We assume independent and identically distributed
(i.i.d.) Rayleigh fading where the channel power gains are
exponentially distributed with mean 1. The path loss function
corresponding to the tier Φk is given by `(x) = ‖x‖−αk , where
αk > 2 is the path loss exponent.

We focus on an interference-limited network where the
received SIR determines the network performance. Let x0 ,
arg max{x ∈ Φk, k ∈ [K] : Pk‖x‖−αk} be the serving BS of
the typical user, where [K] , {1, 2, . . . ,K}. Also let Φ!

k and
[K]! denote Φk \ {x0} and [K] \ {k}, respectively. When the
typical user connects to a BS of Φk, the SIR at the typical
user is given by

SIR ,
S

IIntra + IInter

=
Pkhx0‖x0‖−αk∑

x∈Φ!
k

Pkhx‖x‖−αk +
∑
i∈[K]!

∑
y∈Φi

Pihy‖y‖−αi
, (1)
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where hx represents the exponential random variable corre-
sponding to the channel power gain between the BS at x and
the typical user, S , Pkhx0‖x0‖−αk is the received signal
power at the typical user, IIntra ,

∑
x∈Φ!

k
Pkhx‖x‖−αk and

IInter ,
∑
i∈[K]!

∑
y∈Φi

Pihy‖y‖−αi denote the interference
power received by the typical user from the intra- and inter-tier
BS transmissions, respectively.

The standard success probability is given as

ps(θ) , P(SIR > θ)

=
∑
k∈[K]

P(SIR > θ, x0 ∈ Φk), (2)

where θ is the SIR threshold.

B. Point Process Models

In this subsection, we describe four stationary and ergodic
point processes, two regular (repulsive) and two cluster point
processes, that may be used to model BS locations. These four
point processes are used as illustrative examples of stationary
and ergodic point processes.

1) Stationary Triangular Lattice (TL): The triangular lattice
is the most regular point process. The stationary triangular
lattice is obtained by randomly translating the non-stationary
triangular lattice L ⊂ R2 given by

L , {v ∈ Z2 : Gv}, (3)

where G = η

[
1 1/2

0
√

3/2

]
is the generator matrix and η is

the distance between any two neighboring points of L. The
density of the triangular lattice is 2/(

√
3η2). We translate L

by a random vector X distributed uniformly over the Voronoi
cell of the origin to obtain the stationary triangular lattice Φ
as2

Φ , {v ∈ Z2 : Gv +X}. (4)

In the rest of the paper, by the “triangular lattice,” we mean
the “stationary triangular lattice.”

2) Perturbed Triangular Lattice (PTL): The second regular
point process that we consider is the perturbed triangular
lattice (PTL) [3, Chapter 2]. The PTL is obtained by perturbing
the stationary triangular lattice, i.e.,

Φ , {v ∈ Z2 : Gv +X + Yv}, (5)

where (Yv)v∈Z2 is a family of i.i.d. random variables. In this
paper, we assume that (Yv) are uniformly distributed on the
disk b(o,Rpert) centered at the origin with radius Rpert.

3) Gauss-Poisson Point Process (GaPPP): The GaPPP is a
Poisson cluster process where each cluster contains either one
or two points with probabilities p and 1−p, respectively [28].
For a one-point cluster, the point is at the parent point location,
while for a two-point cluster, one of the points is at the
parent point location and the other is located at a deterministic
distance u from the parent point in a random direction, i.e., the

2An (easier) alternative to generate the stationary triangular lattice is to
generate the stationary square lattice, which has square Voronoi cells, and
then multiply its points by the generator matrix G.

second point lies uniformly at random on the circle of radius
u centered at the parent point location.

For a Poisson parent point process Φp with density λp, let
Φx with x ∈ Φp be the clusters of the GaPPP, which are
denoted by

Φx =

{
{x} with probability p
{x, x+ ux} with probability 1− p,

(6)

where ux = (u sinφx, u cosφx) with φx uniformly distributed
in [0, 2π]. The density of the GaPPP is λp(2− p).

4) Matérn Cluster Process (MCP): The MCP is a doubly
Poisson cluster process, where the parent point process Φp is
a PPP with density λp and the daughter points are uniformly
distributed within a ball of radius rc with each parent point
xp ∈ Φp as its center [3, Chapter 3]. The density of the
daughter point process of parent xp is given by

λd(x) =
c̄

πr2
c

1B(xp,rc)(x), (7)

where B(xp,rc)(x) , {x ∈ R2 : ‖x − xp‖ ≤ rc}, c̄ is the
average number of daughter points in a cluster, and 1(·) is the
indicator function. The density of the MCP is λ = λpc̄.

C. The SIR Meta Distribution

For an SIR threshold θ and a reliability threshold x, the
meta distribution of the SIR is given by

F̄ (θ, x) = F̄Ps(θ, x) , P(Ps(θ) > x), θ ∈ R+, x ∈ [0, 1],
(8)

where Ps(θ) is a random variable that represents the link
success probability conditioned on the point process Φ, given
by

Ps(θ) , P(SIR > θ | Φ). (9)

Here the probability is taken with respect to the fading. The
SIR is calculated at the receiver of the link under considera-
tion. The meta distribution is the complementary cumulative
distribution function (ccdf) of the conditional link success
probability Ps(θ). Interpreted differently, for a stationary and
ergodic point process, the SIR meta distribution yields the
fraction of cellular users that achieve an SIR of θ with
reliability at least x. Also, note that the meta distribution of
the rate R can be obtained from the meta distribution of the
SIR using the relation R = W log2(1+SIR) with W denoting
the bandwidth [29].

The standard success (coverage) probability ps(θ) (the SIR
distribution) can be obtained from the SIR meta distribution
as the mean of the conditional link success probability Ps(θ),
i.e.,

ps(θ) , P(SIR > θ) = E(Ps(θ)) =

∫ 1

0

F̄ (θ, x)dx. (10)

Clearly, the distribution of Ps(θ) provides much more fine-
grained information than merely its average ps(θ).
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1) Exact Calculation of the Meta Distribution: Finding the
exact meta distribution directly seems infeasible, but if we
can calculate the moments of the conditional link success
probability Ps(θ)

Mb(θ) , E(Ps(θ)
b), b ∈ C, (11)

as has been done in [5] for Poisson cellular networks, we can
calculate the exact meta distribution in (8) using the Gil-Pelaez
theorem [6] as

F̄ (θ, x) =
1

2
+

1

π

∞∫
0

=(e−jt log xMjt)

t
dt, (12)

where =(u) is the imaginary part of u ∈ C. Even though
the expression of the meta distribution in (12) is exact, its
complexity makes it hard to gain direct insights, and it is not
very convenient to evaluate numerically.3

With the nearest-BS association and the path loss exponent
α, for the downlink of a single-tier Poisson cellular network
and K-tier HIP model, the bth moment MPPP

b (θ) of the
conditional link success probability is simply given by [5]

MPPP
b (θ) =

1

2F1(b,−δ; 1− δ;−θ)
, b ∈ C, (13)

where 2F1(·, ·; ·; ·) denotes the Gauss hypergeometric function
and δ , 2/α. On the other hand, in a non-Poisson cellu-
lar network, the calculation of Mb(θ)—let alone the meta
distribution—is quite difficult. Hence it would be extremely
useful to have a simple approximation to obtain Mb(θ) and
the meta distribution in a non-Poisson cellular network. We
propose to do so by combining the meta distribution with the
ASAPPP approach, discussed in the next subsection.

2) Approximate Calculation of the Meta Distribution:
For different network settings, the meta distribution can be
accurately approximated by the beta distribution by matching
the first and the second moments of the conditional link
success probability [5], [22], [23], [25], [27].

D. Approximate SIR Analysis based on the PPP (ASAPPP)

1) Single-tier Network: ASAPPP is the method that pro-
vides an approximation of the SIR distributions in non-Poisson
networks by that in the Poisson network by applying a
horizontal shift to the latter. This method asserts that if the
network model under consideration and the Poisson model
only differ in the type of the underlying point process, then
the SIR ccdf for the network model under consideration can
be closely approximated using the SIR ccdf for the PPP by
scaling the SIR threshold θ by a certain factor G0 [19], i.e.,

ps(θ) ≈ pPPP
s (θ/G0), (14)

which corresponds to a horizontal shift by G0 (in dB) if θ is
plotted in dB. The subscript in G0 corresponds to θ → 0, i.e.,
the shift is calculated for θ → 0. This asymptotic shift G0 can
also be interpreted as an SIR gain, similar to the notion of
the coding gain in coding theory [31]. As shown in [19], the

3To numerically evaluate the integral in (12), one needs to carefully select
the appropriate numerical integration range and the step size [30].

gain G0 provides an excellent approximation to the entire SIR
distribution. This approximation becomes exact as θ → 0, i.e.,

ps(θ) ∼ pPPP
s (θ/G0), θ → 0. (15)

Moreover, the gain G0 shows little sensitivity to the path loss
exponent or the fading model [19]; it is a robust constant
that captures the difference in the network topologies due
to the underlying point process models. The gain G0 can be
expressed using the mean interference-to-signal ratios (MISRs)
of the point process Φ under consideration and the PPP as [18]

G0 =
MISRPPP

MISR
, (16)

=
2

α− 2

1

MISR
, (17)

where α is the path loss exponent for a single-tier network,
and

MISR , E

(∑
x∈Φ\{x0} hx‖x‖

−α

‖x0‖−α

)

= E

(∑
x∈Φ\{x0} ‖x‖

−α

‖x0‖−α

)
(18)

and MISRPPP = 2/(α − 2) are the MISRs of the network
model under consideration and the PPP, respectively. The
numerical calculation of G0 is quite easy since it just depends
on the network geometry.4 This motivates us to investigate
whether a horizontal shift of G0 to the meta distribution for the
Poisson cellular network approximates the meta distribution
for a non-Poisson cellular network. We show that this is indeed
the case. We call this approach “Approximate meta distribution
analysis using the PPP” (AMAPPP).

2) K-tier General Heterogeneous Network: In a general
HCN, as given by (2), the overall standard success probability
is the sum of the probabilities of the joint events that SIR > θ
and that the typical user is served by the kth tier where
k ∈ [K].

When the typical user connects to a tier modeled by a
stationary non-Poisson point process, the tier is treated as a
PPP while shifting the SIR threshold θ to θ/G0 in the SIR
distribution. Also, the interference from other tiers modeled
by stationary non-Poisson point processes is approximated by
that from a PPP. Such an approximation is called the “per-tier
ASAPPP” in [21] since each tier is treated “as a PPP” and is
shown to be quite accurate for the entire SIR distribution. We
extend the per-tier ASAPPP approach to the meta distribution,
which we call the “per-tier AMAPPP” approach. It is discussed
in Sec. IV-A.

III. AMAPPP APPROACH FOR SINGLE-TIER NETWORKS

In this section, we focus on single-tier cellular networks,
where the BS deployment follows a stationary and ergodic
non-Poisson point process.

4For a stationary non-Poisson point process, an analytical expression of
the MISR (and hence that of the gain G0) is currently unavailable. An
approximate formula for G0 is obtained in a very recent paper [20].
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(a) TL, G0 = 3.6099 dB.
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(c) GaPPP, G0 = −1.3768 dB

-25 -20 -15 -10 -5 0 5 10

0.2

0.4

0.6

0.8

1

(d) MCP, G0 = −5.1702 dB

Fig. 1. Approximation of Mb(θ) for four stationary and ergodic non-Poisson point processes by MPPP
b (θ/G0). The path loss exponent α is 4.

A. Main Result

The goal here is to show that an approximation of the form

F̄ (θ, x) ≈ F̄PPP(θ/G0, x) (19)

is accurate, where F̄ (θ, x) and F̄PPP(θ/G0, x) denote the
meta distributions for a stationary and ergodic point process
model and a PPP model, respectively.

We know that the shift of the SIR threshold θ by G0

works quite well for the 1st moment of the conditional link
success probability, i.e., the standard success probability ps(θ),
and the meta distribution can be exactly calculated using the
moments Mb(θ) as shown in (12). These results give rise
to the interesting question how the bth moments Mb(θ) for
an arbitrary stationary and ergodic point process model and
MPPP
b (θ) are related to each other, as θ → 0. The following

theorem answers it.

Theorem 1. For any stationary and ergodic point process and
b ∈ C,

Mb(θ) ∼MPPP
b (θ/G0), θ → 0. (20)

Proof: From [5, (22)], for any stationary and ergodic point
process model, we have

Mb(θ) = E
∏

x∈Φ\{x0}

1

(1 + θ(‖x0‖/‖x‖)α)b
, b ∈ C (21)

(a)∼ E
∏
y∈R

(1− bθyα), θ → 0 (22)

∼ 1− bθ
(
E
∑
y∈R

yα
)
, θ → 0 (23)

(b)
= 1− bθMISR, (24)

where R , {x ∈ Φ \ {x0} : ‖x0‖/‖x‖} is the relative
distance process (RDP) [19, Def. 2], (a) follows by letting
y = ‖x0‖/‖x‖ and using Taylor series expansion, and (b)
follows from the definition of the MISR for the RDP [19].
Using (16) and (24), we obtain the desired result.

Note that even though all moments are shifted by the same
amount G0 asymptotically, this does not imply that the meta
distribution is also shifted by that amount. However, we can
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Fig. 2. The SIR gains G1(θ), G2(θ), and G3(θ) corresponding to the
moments M1(θ), M2(θ), and M3(θ), respectively, for the path loss exponent
α = 4. The asymptotic gain G0 is 3.6099 dB for the TL, 1.8343 dB for the
PTL, −1.3768 dB for the GaPPP, and −5.1702 dB for the MCP.

expect the shifted meta distribution for the PPP to provide a
good approximation. Next, we explore by simulation whether
this is the case.

B. Simulation Results

In this subsection, for a single-tier cellular network, using
simulations, we verify the accuracy of approximating the
meta distribution for stationary and ergodic point processes
by shifting the meta distribution for the PPP by G0.

Simulation setup: We perform simulations over a square
region [−500, 500]2. Unless otherwise mentioned, we assume
the following simulation parameters pertaining to specific
point processes:
• PTL: The perturbation Rpert is 0.5η.
• GaPPP: The probability p that a cluster contains one

point is 0.5. Hence the probability that a cluster contains
two points is 1 − p = 0.5. The density of the parent
point process is 1/15. In a two-point cluster, the distance
between those two points is u = 1.

• MCP: The density of the parent point process λp is 0.01.
The mean number of points c̄ in a cluster is 10. The
radius of the disk rc around a parent point over which
the associated cluster points are distributed is 4.

We average over 5× 105 realizations of the point process.
Fig. 1 shows that the bth moment of the conditional link

success probability for a stationary and ergodic non-Poisson
point process model can be approximately obtained by shifting
that for the PPP model by the asymptotic SIR gain G0 for
the path loss exponent α = 4. The approximation becomes
extremely accurate as the SIR threshold θ becomes small, as
expected from Thm. 1.

Given that the ASAPPP method aims at approximating the
first moment M1(θ) of the conditional link success probability
Ps(θ) and the meta distribution can be obtained using the
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Fig. 3. The meta distribution F̄ (θ, x) for the PPP, the TL, the PTL, the
GaPPP, and the MCP against the SIR threshold θ for the path loss exponent
α = 4 and the reliability threshold x = 0.95. The asymptotic gain G0 is
3.6099 dB for the TL, 1.8343 dB for the PTL, −1.3768 dB for the GaPPP,
and −5.1702 dB for the MCP.
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Fig. 4. The meta distribution F̄ (θ, x) for the GaPPP against the SIR threshold
θ for different values of the path loss exponent and the reliability threshold
x = 0.95. We have G0 = −1.3768 dB for α = 4, G0 = −1.3423 dB
for α = 3.5, G0 = −1.2558 dB for α = 3, and G0 = −0.8661 dB for
α = 2.5.

moments (see (12)), we numerically calculate the deployment
gain Gb(θ) with respect to the bth moment Mb(θ) for an
arbitrary θ. The gain Gb(θ) is the ratio (gap if measured in
dB) θ′/θ, where θ′ is given by Mb(θ

′) = MPPP
b (θ). The

moment MPPP
b (θ) is given by (13). For different values of θ,

Fig. 2 plots the gains G1(θ), G2(θ), and G3(θ) with α = 4.
Recall that the asymptotic deployment gain G0 = lim

θ→0
G1(θ)

corresponds to M1(θ) as θ → 0. We observe from Fig. 2 that
the asymptotic gain G0 is a good approximation of G1(θ),
G2(θ), and G3(θ) for all values of θ and that the asymptotic
value is essentially reached at θ = −15 dB in all cases.
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Fig. 5. The meta distribution F̄ (θ, x) for the PTL against the SIR threshold
θ for different values of the reliability threshold x and the path loss exponent
α = 4. The asymptotic gain G0 for the PTL is 1.8343 dB. The curves are
for x = 0.6, 0.7, 0.8, 0.9, 0.95 (from top to bottom).

For a single-tier cellular network, Fig. 3 plots the meta dis-
tribution values for x = 0.95 against different SIR thresholds
θ for the PPP, the TL, the PTL, the GaPPP, and the MCP at
α = 4. We observe that the meta distribution for the TL, the
PTL, the GaPPP, and the MCP can be obtained approximately
by simply applying a horizontal shift of G0 (in dB) to the meta
distribution for the PPP, i.e., the AMAPPP can indeed be used
to approximately calculate the meta distribution for a non-
Poisson network. Especially, for the values of practical interest
where a high fraction of users meet the target reliability (e.g.,
the 5% user performance), the approximation is quite accurate.
This is quite remarkable given that we use the asymptotic SIR
gain G0 as θ → 0 corresponding to the mean of the distribution
to approximate the distribution itself.

Figs. 4 and 5 confirm the effectiveness of the AMAPPP
method for different values of the path loss exponents α and
the reliability thresholds x, respectively.

In Fig. 6, to check the accuracy of the AMAPPP method
for the entire meta distribution, we take a closer look at the
regime where the SIR threshold θ is small. For the GaPPP, the
approximation is extremely accurate even for small values of
θ, which confirms that the AMAPPP method is accurate for the
entire meta distribution for the GaPPP. For the MCP, there is a
gap between the simulation and the approximation (the shifted
PPP) because the asymptotics kick in slowly compared to that
for the GaPPP. This can be confirmed from Fig. 2, which
shows that, for the MCP, the gains G1(θ), G2(θ), and G3(θ)
corresponding to M1(θ), M2(θ), and M3(θ), respectively,
converge to G0 more slowly than those for the GaPPP as θ
becomes small.

For the stationary triangular lattice, Fig. 6 highlights an
interesting case; at θ = −16.68 dB, the value of 1− F̄ (θ, x)
drops to zero because all users achieve the target reliability
x = 0.95 for θ < −16.68 dB. For all x, such a threshold
can be calculated by shifting the lattice such that the typical

-30 -25 -20 -15 -10 -5 0
10-4

10-3

10-2

10-1

100

Fig. 6. The meta distribution 1 − F̄ (θ, x) against the SIR threshold θ
for the path loss exponent α = 4 and the reliability threshold x = 0.95.
The asymptotic gain G0 is 3.6099 dB for the TL, 1.8343 dB for the PTL,
−1.3768 dB for the GaPPP, and −5.1702 dB for the MCP. For small θ, the
AMAPPP approximation is optimistic for the MCP in that the shifted curve
of the PPP is below that of the simulation curve, while the approximation is
pessimistic for the regular point processes.
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-30
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Fig. 7. The critical SIR threshold θc against the reliability threshold x for
the triangular lattice.

user sits at a Voronoi vertex for the triangular lattice, which
is the worst-case scenario for the triangular lattice since there
are 3 nearest base stations to the user. For all lattices, there
exists such a vertical asymptote, and thus the approximation
by shifting G0 breaks down as θ approaches that threshold.
However, for values of θ for which the 5% user achieves
95% reliability, the approximation is tight. Such a worst-case
scenario could also occur in the case of the perturbed triangular
lattice if the perturbation radius Rpert is small enough. In
this case, the critical θ is smaller compared to that for the
stationary triangular lattice. For example, at Rpert = 0.5η, the
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approximation starts to break down at a smaller value of θ
compared to that for the stationary triangular lattice.

Fig. 7 shows that the critical θ, denoted by θc(x), depends
on the target reliability x—it decreases with an increase in x
because, to meet a higher target reliability, the SIR threshold θ
at the worst-case user needs to be lowered. Such a dependency
of θc(x) on the target reliability illustrates the rate-reliability
trade-off.5 Fig. 7 also provides insight into the support of
the probability density function (pdf) of the conditional link
success probability Ps(θ). For each x > 0, there is a θc(x)
such that the support is reduced to [x, 1] at θ = θc(x). For
θ < θc(x), the support gradually reduces to {1}.

IV. HETEROGENEOUS CELLULAR NETWORKS

A. Per-tier AMAPPP Approximation

We consider a K-tier general cellular network where the ith
tier is modeled by a stationary and ergodic point process Φi of
density λi and each tier is independent of the other tiers. For
this setup, the following theorem provides an approximation
of Mb(θ) for general HCNs.

Theorem 2. Let

M̂b(θ) =
∑
k∈[K]

∫ ∞
0

exp

(
− sF (b, δk, θ/Gk)

−
∑
i∈[K]!

ρiks
αk
αi F (b, δi, θ)

)
ds, (25)

where F (b, δ, θ) , 2F1(b,−δ; 1−δ;−θ), δi , 2/αi, Gk is the
asymptotic SIR gain corresponding to the point process that

models the BS deployment in the kth tier, and ρik =
λiπP

δi
ik

(λkπ)αk/αi

with Pik , Pi/Pk.
For K-tier general HCNs where the typical cellular user

is connected to the BS that results in the strongest average
received power, the bth moment Mb(θ) of the conditional link
success probability is approximated as

Mb(θ) ≈ M̂b(θ). (26)

Proof: See Appendix A.
In this approach, the bth moment of the conditional link

success probability corresponding to each tier modeled by a
non-Poisson point process is approximated by that of the PPP
by shifting the SIR threshold by the MISR-based gain Gk,
which can be further used to calculate the approximate meta
distribution using the Gil-Pelaez (GP) theorem or the beta
distribution approximation. Hence we call this approach the
“per-tier AMAPPP” approach.

In the calculation of the meta distribution using the beta
distribution approximation, there are two approximations in-
volved:

1) The approximate calculation of the first and second
moments based on the MISR gain as shown in Thm. 2,

2) The inherent approximation resulting from matching only
the first and the second moments.

5The rate is a function of the SIR threshold.

Hence we call the combination of the beta distribution approx-
imation with the per-tier AMAPPP approach the “approximate
beta approximation” (ABA).

When all tiers have the same path loss exponent, (25)
reduces to the expression given in the following corollary.

Corollary 1. If α1 = α2 = . . . = αK = α, we have

M̂b(θ) =
∑
k∈[K]

1

F (b, δ, θ/Gk) +
∑
i∈[K]!

λi
λk

(
Pi
Pk

)δ
F (b, δ, θ)

.

(27)

For a K-tier HIP cellular network, we have Gk = 1. Then
when all tiers have the same path loss exponent, (27) simplifies
to

M̂b(θ) = 1/F (b, δ, θ), (28)

as stated in [27, Cor. 1]. Note that (28) is the exact expression
of the bth moment of the conditional link success probability
for the HIP model, i.e., MHIP

b (θ) = M̂b(θ).

B. Effective Gain Approximation

In the per-tier AMAPPP method, a non-Poisson tier is
approximated by the PPP using the MISR-based gain. In this
subsection, we provide an approximation where we directly
shift the meta distribution for the K-tier HIP model by
the effective gain to approximate the meta distribution for
the general K-tier cellular network. This effective gain was
introduced in [21] for the standard success probability. The
following theorem calculates the effective gain corresponding
to Mb.

Theorem 3. When α1 = α2 = . . . = αK = α, for any
b > 0, the approximate bth moment M̂b(θ) for a general K-
tier cellular network is related to the bth moment MHIP

b for
the HIP model as

M̂b(θ) ≤MHIP
b

(
θ

Geff

)
,

where

Geff ,
∑
k∈[K]

wk(wkGk + (1− wk))

= 1 +
∑
k∈[K]

w2
k(Gk − 1), (29)

with wk , λkP
δ
k∑

i∈[K] λiP
δ
i

. For b < 0, we need to replace ‘≤’ by
‘≥’.

Proof: See Appendix B.
Using Thm. 3, we obtain an another approximation of

Mb(θ) for a stationary and ergodic point process as

Mb(θ) ≈MHIP
b

(
θ

Geff

)
. (30)

The effective gain Geff corresponds to the overall SIR gain
of HCNs which can be obtained from the MISR-based gains
of the individual tiers of the HCNs. Hence, similar to ap-
proximating the meta distribution for a stationary and ergodic
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(a) TL/PPP, Geff = 1.2190 dB.
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(b) PTL/PPP, Geff = 0.5361 dB.
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(c) GaPPP/PPP, Geff = −0.3064 dB.
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(d) MCP/PPP, Geff = −0.8301 dB.

Fig. 8. The per-tier AMAPPP approximation and the effective-gain approximation of Mb(θ) for a “Non-Poisson/PPP” deployment (a two-tier general HCN).
The path loss exponent is α = 4.

non-Poisson tier by shifting that for the PPP by the MISR-
based gain, the meta distribution for general HCNs can be
approximated by directly shifting that for the HIP model by
the overall SIR gain, i.e.,

F̄ (θ, x) ≈ F̄HIP(θ/Geff , x). (31)

We call the approximation in (31) the “effective gain approx-
imation.”

C. Results

The simulation parameters are the same as those for a
single-tier cellular network. Unless otherwise mentioned, each
tier has a BS density of 0.1. We assume α1 = α2 = . . . =
αK = α.

For a 2-tier HCN denoted by first tier/second tier, Fig. 8
shows that the per-tier AMPPPP approximation and the effec-
tive gain approximation closely approximate the bth moment
Mb(θ) of the conditional link success probability. As proved
in Thm. 3, the effective gain approximation provides an upper
bound on the per-tier approximation. Fig. 8 also shows that
the gap between the simulation and the per-tier AMAPPP

approximation is larger for the TL compared to that for the
PTL since the former is more regular than the latter, and thus
the approximation of the interference by that of the PPP is
less accurate. Similarly, the gap between the simulation and
the per-tier AMAPPP approximation is smaller for the GaPPP
compared to that for the MCP because the latter is more
clustered than the former.

For the path loss exponents of α = 3, 4, Fig. 9 shows
the meta distribution for a 2-tier HCN. The BSs of the
first tier form a stationary and ergodic non-Poisson point
process and those of the second tier a PPP. The effective
gain approximation and the per-tier approximation both work
quite well over a wide range of θ. Especially, the approximate
beta approximation (ABA) method is remarkably accurate
given that it involves two approximations. Fig. 10 shows the
accuracy of the AMAPPP approximation when each tier of
a multi-tier cellular network is modeled by a stationary and
ergodic point process of different densities. Fig. 11 verifies the
accuracy of both approximations for a 3-tier general HCN.

Figs. 12 and 13 show the contour plots for 2-tier HCNs.
These contour plots illustrate the trade-off between the SIR
threshold θ and the reliability threshold x. The contours
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(a) TL/PPP, Geff = 1.1951 dB for α = 3, Geff = 1.2190 dB for
α = 4.
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(b) PTL/PPP, Geff = 0.5491 dB for α = 3, Geff = 0.5361 dB for
α = 4.
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(c) GaPPP/PPP, Geff = −0.2819 dB for α = 3, Geff = −0.3064
dB for α = 4.
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(d) MCP/PPP, Geff = −0.8511 dB for α = 3, Geff = −0.8301 dB
for α = 4.

Fig. 9. The effective-gain approximation, the per-tier AMAPPP approximation (GP theorem), the approximate beta approximation (ABA) of the meta
distribution F̄ (θ, x) of a “Non-Poisson/PPP” deployment (a two-tier general HCN) against θ.

provide the possible pairs (θ, x) that a fraction v of users
achieves. For example, in Fig. 12, the curve corresponding
to v = 0.95 shows that 95% users achieve an SIR of −10 dB
with probability 0.69 and an SIR of −5 dB with probability
0.34. Furthermore, Figs. 12 and 13 show that the effective
gain approximation and the per-tier AMAPPP method (using
both the GP theorem and ABA) work quite well for different
values of the fraction v of users, the reliability threshold x,
and the SIR threshold θ.

V. CONCLUSIONS

In this paper, we have proposed AMAPPP, a simple and
novel approach to approximately obtain the meta distribution
for an arbitrary stationary and ergodic point process as well
as general HCNs from that for the PPP and the HIP model,
respectively. For the bth moment Mb(θ) of the conditional suc-
cess probability for any stationary and ergodic point process
model, we proved that Mb(θ) ∼ 1 − bθMISR, as θ → 0.
Through detailed simulations for the triangular lattice, the
perturbed triangular lattice, the Gauss-Poisson point process,

and the Matérn cluster process, we have shown that the asymp-
totic deployment gain G0 of the standard success (coverage)
probability can be used to relate the meta distribution to that
for the PPP. The approximation of the meta distribution for
the triangular lattice by that for the PPP becomes pessimistic
in the worst-case scenario, i.e., when the typical cellular user
is located such that it has three nearest base stations. For K-
tier HCNs, the per-tier approach closely approximates the bth
moment of the conditional link success probability, which can
be further used to calculate the approximate meta distribution.
The other approach directly calculates the approximate meta
distribution for general HCNs from that for the HIP model by
simply applying a shift by the effective gain. Overall, given
the generality of the model and the fine-grained nature of the
meta distribution, the AMAPPP approach works surprisingly
well.

There are interesting future directions to our work. It is
important to obtain PPP-based approximations for the SIR
meta distribution for uplink and general fading models. But
one has to be careful in the uplink case since there could be
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Fig. 10. The meta distribution F̄ (θ, x) for a 2-tier cellular network
GaPPP/PPP against the SIR threshold θ for the reliability threshold x = 0.95
and the path loss exponent α = 4. The density of the GaPPP is 0.2, while the
density of the PPP is 0.1. For α = 3, Geff = −0.2226 dB and for α = 4,
Geff = −0.2287 dB.
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Fig. 11. The meta distribution F̄ (θ, x) for a 3-tier cellular network
GaPPP/MCP/PPP against the SIR threshold θ for the reliability threshold
x = 0.95 and the path loss exponent α = 4. For α = 3, Geff = −0.4910
dB and for α = 4, Geff = −0.4959 dB.

an interferer arbitrarily close to a receiver, which makes the up-
link problem intricate. Also there is no work on the SIR meta
distribution with general fading models even for the PPP-based
models. Hence it is naturally more appropriate to first analyze
the SIR meta distribution for the PPP with general fading
and then investigate whether the shifting approach works for
general cellular networks with general fading models. Another
interesting line of research is to consider the association with
a base station that offers the maximum instantaneous SIR,
instead of the nearest-base station association.
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Fig. 12. Contour plot of the meta distribution F̄ (θ, x) for the GaPPP/PPP
cellular network for the path loss exponent α = 4. The effective gain
is Geff = −0.3064 dB. The values at the curves are F̄ (θ, x) = v =
0.95, 0.9, 0.8, 0.7, 0.6, and 0.5 (from bottom to top).
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Fig. 13. Contour plot of the meta distribution F̄ (θ, x) for the PTL/PPP
cellular network for the path loss exponent α = 4. The effective gain
is Geff = 0.5361 dB. The values at the curves are F̄ (θ, x) = v =
0.95, 0.9, 0.8, 0.7, 0.6, and 0.5 (from bottom to top).

APPENDIX A
PROOF OF THM. 2

When the typical user x0 connects to a BS in the kth tier,
the conditional link success probability for the typical user is
given as

P (k)
s (θ) = P

(
Pkh0`k(x0)

I
> θ, x0 ∈ Φk | Φ1, . . . ,ΦK

)

= E

[
exp

(
− θ I

Pk`k(x0)

)
1x0∈Φk | Φ1, . . . ,ΦK

]
,

(32)
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where Pk is the transmit power of a BS associated with the
kth tier, [K] = {1, 2, . . . ,K}, [K]! = [K] \ {k}, and I =∑
x∈Φ!

k
Pkhx`k(x)+

∑
i∈[K]!

∑
y∈Φi

Pihy`i(y). 1 denotes the
indicator function.

Averaging over the fading, it follows that

P (k)
s (θ) =

∏
x∈Φ!

k

1

1 + θ`k(x)
`k(x0)

∏
i∈[K]!

∏
y∈Φi

1

1 + θPik`i(y)
`k(x0)

1x0∈Φk ,

(33)

where Pik = Pi/Pk. The bth moment of P (k)
s follows as

M
(k)
b (θ)

= E

[ ∏
x∈Φ!

k

1(
1 + θ`k(x)

`k(x0)

)b ∏
i∈[K]!

∏
y∈Φi

1(
1 + θPik`i(y)

`k(x0)

)b1x0∈Φk

]

(a)∼ E

[ ∏
x∈Φ!PPP

k

1(
1 + θ`k(x)

Gk`k(x0)

)b
×
∏
i∈[K]!

∏
y∈Φi

1(
1 + θPik`i(y)

`k(x0)

)b1x0∈Φ!PPP
k

]

(b)
≈ E

[ ∏
x∈Φ!PPP

k

1(
1 + θ`k(x)

Gk`k(x0)

)b
×
∏
i∈[K]!

∏
y∈ΦPPP

i

1(
1 + θPik`i(y)

`k(x0)

)b1x0∈Φ!PPP
k

]

(c)
=

∫ ∞
0

fk(r) exp

(
− 2πλk

∫ ∞
r

(
1− 1(

1 + θ
Gk

(
r
t

)αk)b
)
tdt

)

×
∏
i∈[K]!

[
e−λiπ(Pik)δirαkδi

× exp

(
−2πλi

∫ ∞
r
αk
αi (Pik)

1
αi

(
1− 1(

1 + θPikr
αk

tαi

)b
)
tdt

)]
dr

=

∫ ∞
0

2πλkr exp

[
− λkπr2

− 2πλk

∫ ∞
r

(
1− 1(

1 + θ
Gk

(
r
t

)αk)b
)
tdt

−
∑
i∈[K]!

λiπ(Pik)δirαkδi

− 2πλi

∫ ∞
r
αk
αi (Pik)

1
αi

(
1− 1(

1 + θPik
rαk
tαi

)b
)
tdt

]
dr

(d)
=

∫ ∞
0

2πλkr exp

(
− λkπr2F (b, δk, θ/Gk)

−
∑
i∈[K]!

λiπP
δi
ik r

αkδiF (b, δi, θ)

)
dr

(e)
=

∫ ∞
0

exp

(
− sF (b, δk, θ/Gk)−

∑
i∈[K]!

ρiks
αk
αi F (b, δi, θ)

)
ds,

(34)

where fk(r) = 2πλkre
−λkπr2 is the distribution of the

distance of the typical user to the nearest BS that belongs to

the kth tier, ρik ,
λiπP

δi
ik

(λkπ)αk/αi
, and F (b, δ, θ) , 2F1(b,−δ; 1−

δ;−θ). (a) follows from the asymptotically exact AMAPPP
approximation of Φk where the SIR threshold θ is shifted to
θ/Gk and the point process Φk is replaced by a PPP denoted
by ΦPPP

k . (b) follows from the approximation of Φi by a PPP
ΦPPP
i . (c) follows from the probability generating functional

(PGFL) of the PPP and averaging over the distance ‖x0‖ of
the typical user to the nearest BS belonging to ΦPPP

k . (d) uses∫ ∞
1

(
1− 1

(1 + θt−1/δ)b

)
dt ≡ 2F1(b,−δ; 1− δ,−θ)− 1.

(35)

(e) uses the substitution s = λkπr
2. Finally, by summing over

[K], we obtain the result.

APPENDIX B
PROOF OF THM. 3

Let wk , λkP
δ
k∑

i∈[K] λiP
δ
i

. We can then write M̂b(θ) in (27) as

M̂b(θ) =
∑
k∈[K]

wk
wkF (b, δ, θ/Gk) + (1− wk)F (b, δ, θ)

. (36)

Noticing that for b > 0, F (b, δ, θ/G) is convex in G ∈ (0,∞),
we have

M̂b(θ) ≤
∑
k∈[K]

wk

F
(
b, δ, θ

wkGk+(1−wk)

) (37)

(a)

≤ 1

F
(
b, δ, θ∑

k∈[K] wk(wkGk+(1−wk))

) (38)

= MHIP
b

(
θ∑

k∈[K] wk(wkGk + (1− wk))

)
, (39)

where (a) is due to
∑
k∈[K] wk = 1 and 1/F (b, δ, θ/G) being

concave in G.
From the definition of the MISR-based gain, (39) can be

viewed as

M̂b(θ) ≤MHIP
b (θ/Geff), (40)

where

Geff ,
∑
k∈[K]

wk(wkGk + (1− wk)) (41)

is termed the effective gain for K-tier HCNs.
For b < 0, we just need to reverse the inequality, i.e., replace

‘≤’ by ‘≥.’
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