
HAL Id: hal-02419980
https://hal.inria.fr/hal-02419980

Submitted on 19 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Encoding Conformance Checking Artefacts in SAT
Mathilde Boltenhagen, Thomas Chatain, Josep Carmona

To cite this version:
Mathilde Boltenhagen, Thomas Chatain, Josep Carmona. Encoding Conformance Checking Artefacts
in SAT. BPI 2019 - 15th International Workshop on Business Process Intelligence, Sep 2019, Wien,
Austria. �hal-02419980�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/275913397?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-02419980
https://hal.archives-ouvertes.fr

Encoding Conformance Checking Artefacts in SAT

Mathilde Boltenhagen1, Thomas Chatain1, and Josep Carmona2

1 LSV, CNRS, ENS Paris-Saclay, Inria, Université Paris-Saclay, Cachan (France)
{boltenhagen,chatain}@lsv.fr

2 Universitat Politècnica de Catalunya, Barcelona (Spain)
jcarmona@cs.upc.edu

Abstract. Conformance checking strongly relies on the computation of artefacts,
which enable reasoning on the relation between observed and modeled behav-
ior. This paper shows how important conformance artefacts like alignments, anti-
alignments or even multi-alignments, defined over the edit distance, can be com-
puted by encoding the problem as a SAT instance. From a general perspective, the
work advocates for a unified family of techniques that can compute conformance
artefacts in the same way. The prototype implementation of the techniques pre-
sented in this paper show capabilities for dealing with some of the current bench-
marks, and potential for the near future when optimizations similar to the ones in
the literature are incorporated.

1 Introduction

On its core, conformance checking relies on the computation of artefacts that link ob-
served and modeled behavior, which are used with different purposes: spotting devia-
tions, evaluating quality metrics of a process model, extending a process model with
evidence-based information, among others [11].

Conformance checking is expected to be the fastest growing segment within Process
Mining in the years to come3. Still, the field is facing several challenges. Among them,
we highlight two important ones: techniques for a sound replay of event data on top of
process models, and the advent of faithful metrics for evaluating process models with
respect to observed behavior.

The former challenge is strongly related to the notion of alignment artefact: given a
trace and a process model, find a run in the process model that is as close as possible
(in edit distance terms) to the observed trace. The seminal work in [1] describes an
algorithm for computing alignments based on A∗. Alternatives to this algorithm have
appeared recently: in [15], the alignment problem is mapped as an automated planning
instance. Automata-based techniques were proposed in [22,19]. Finally, the work in [5]
proposes using binary decision diagrams to alleviate the computation of alignments. In
this paper, we provide an alternative to the aforementioned techniques, that is based
on encoding the computation of an alignment as a SAT instance. We also show how
to encode also in SAT multi-alignments [13], that generalize the notion of alignments

3 https://www.marketsandmarkets.com/Market-Reports/process-analytics-market-
254139591.html

a

a

a b

a

τ

(a) Model with two types of runs :
〈a, a, . . . , a〉 and 〈a, b, a, b, . . . , a, b〉

Log trace :
〈b, a, b, a, b〉

Hamming
distance

Edit distance

run (size = 6)
〈a, a, a, a, a, a〉

3 6

run (size = 6)
〈a, b, a, b, a, b〉

6 2

(b) Comparision of Hamming and edit distances

Fig. 1: How Hamming distance penalizes alignment and anti-alignment : Trace
〈b, a, b, a, b, a〉 is closer to 〈a, a, a, a, a, a〉 than 〈a, b, a, b, a, b〉 according to Hamming
distance. However there is only a shift of letter a and b between 〈b, a, b, a, b, a〉 and
〈a, b, a, b, a, b〉. The model run 〈a, b, a, b, a, b〉 seems to be a better anti-alignment for
trace 〈b, a, b, a, b, a〉, as the edit distance shows.

so that not one but several traces are considered when computing the closest process
model run.

The latter challenge is mainly concerned with the proposal of sound and meaningful
metrics for precision and generalization, nowadays acknowledged as the quality dimen-
sions with less convincing estimations (e.g., [23]). Anti-alignments, presented in [12],
are an effective conformance artefact to foresee those model runs that deviate most
(again, in terms of edit distance) with respect to a trace or a complete log. In [27] it is
shown how anti-alignments can be used to provide a more consistent estimation to both
precision and generalization. In this paper we provide for the first time an encoding in
SAT of anti-alignments that relies on the edit distance between traces, in contrast to the
Hamming distance used in [12,27]; to the best of our knowledge this is the first im-
plementation of anti-alignments over the edit distance. The use of Hamming distance
for anti-alignment shows important limit highlighted by Fig. 1. In summary, this paper
presents SAT as a common means to compute important conformance checking arte-
facts. The prototype implementation, although not mature and therefore without having
any optimization, shows interesting features that can make it a good alternative for the
state of the art techniques for the same task in the near future.

The paper is organized as follows: next section provides related techniques for the
tasks considered in this paper. Then in Section 2 we provide the background for un-
derstanding the paper. Section 3 shows how to encode the computation of a run at a
given edit distance of a trace. Then Section 4 shows how to adapt this encoding to par-
ticular conformance checking artefacts. Section 5 reports experiments, whilst Section 6
concludes the paper.

Related work. Levenshtein’s edit distance is commonly used in Process Mining to de-
fine similarities between traces [8,9,24], and to align log traces to model traces [7,1,12].
Works of the literature on alignments use the definition of edit distance more or less

pi s

f

c

g

b

a

τ
pf

d

Log traces (some non-fitting):
〈s, f, b, a〉
〈s, g, c〉
〈s, c, b, a〉
〈s, g, c, d, d〉
〈s, a, a〉

Fig. 2: Example of process model of the behaviors of users rating an app. s represents
the start activity, f and c indicate if the user sent a file or wrote a comment. Transitions
g and b separate good and bad marks. Bad ratings get apologies noted by activity a.
Finally, the d loop is enabled when a user donates to the developer of the app.

implicitly [7,16,2]. Alternatively, distance between process models have been charac-
terized in several works [4,17]. The latter uses a dependency edit distance which is
computed in a similar way as our approach.

Recent studies focus on SAT implementation of Data Mining algorithm in order to
satisfy all the constrains and get optima [20,14]. By introducing a SAT implementation
of alignments in this paper, we hope to push a new family of algorithmic methods
for conformance checking in the line of [12,6]. However, these works mostly consider
Hamming distance between log traces and process models, which is usually considered
less appropriate than edit distance (c.f. Fig. 1).

The SAT encoding of the edit distance between words has already been introduced
in previous works [3,18]. The work in [3] studies the computation of edit distance for
its interest in complexity theory.

2 Preliminaries

We use labeled Petri nets as process models.

Definition 1 (Process Model (Labeled Petri Net) [21]). A Process Model defined by
a labeled Petri net system (or simply Petri net) is a tuple N = 〈P, T, F,m0,mf , Σ, Λ〉,
where P is the set of places, T is the set of transitions (with P ∩ T = ∅), F ⊆
(P × T) ∪ (T × P) is the flow relation, m0 is the initial marking, mf is the final
marking, Σ is an alphabet of actions and Λ : T → Σ ∪ {τ} labels every transition by
an action or as silent.

A marking is the set of places that contain tokens for a given instant. A transition x
can fire if all the places before x, noted •x def

= {y ∈ P | (y, x) ∈ F}, are marked. When
a transition fires, all the tokens in •x are removed and all the places in x• def

= {y ∈ P |
(y, x) ∈ F} become marked. A marking m′ is reachable from m if there is a sequence
of firings 〈t1 . . . tn〉 that transforms m into m′, denoted by m[t1 . . . tn〉m′.

Definition 2 (Full runs). A full run of a model N is a firing sequence 〈t1 . . . tn〉 of
transitions that can transform the initial marking m0 of N to the final marking mf of
N . We note Runs(N) the full runs of N .

The run 〈s, f, b, a〉 is a full run of the model of Fig. 2. Now we formalize logs:

Definition 3 (Log). A log L over an alphabet Σ is a finite set of words σ ∈ Σ∗, called
log traces.

2.1 Alignments

Aligning log traces to model traces has been identified as a central problem in Process
Mining [1]. The problem is to find a run in the process model that is as close as possible
to the observed trace. This closeness is usually defined in terms of the edit distance:

Definition 4 (Edit distance). The edit distance dist(u, v) between two words u and
v ∈ Σ∗ is the minimal number of edits needed to transform u to v. In our case, edits
can be deletions or additions of a letter in words.

Example 1. Considering words u = 〈s, g, c〉 and v = 〈s, b, c, a〉 the number of edits
to transform u to v is indeed 3. The letter g has to be removed and the letters b and a
inserted. Then the two words are at distance 3.

Formally, we define alignments in a way that not only achieves the optimal edit
distance between the log trace and a model trace, but also makes explicit where they
match and mismatch.

Definition 5 (Alignment, optimal alignment). An alignment of a log trace s =
〈s1, . . . , sm〉 ∈ L to a run u = 〈u1, . . . , un〉 of process model N =
〈P, T, F,m0,mf , Σ, Λ〉 is a sequence of moves 〈(s′1, u′1), . . . , (s′p, u′p)〉 with p ≤
m+ n such that

– each move (s′i, u
′
i) is either:

• (ei, ti) with ei = Λ(ti) for a synchronous move
• (ei,�) for a log move (� is a skip symbol which indicates the mismatch), i.e.
ei is deleted in the trace

• (�, ti) for a model move, i.e. Λ(ti) is inserted in the trace;
– projection of 〈s′1, . . . , s′p〉 to Σ∗ (which drops the occurrences of�), yields s
– projection of 〈u′1, . . . , u′p〉 to T ∗ (which drops the occurrences of�), yields u

An alignment between u ∈ Runs(N) and s is optimal if it minimizes the number of
occurrences of�. This minimal number of mismatches corresponds to the edit distance
dist(u, s) between u and s.

Alignments can be represented in a two-row matrix. Next figure shows an alignment
between the second log trace (〈s, g, c〉) and the run 〈s, b, c, a〉 of the model of Fig. 2.

trace s g � c �
run s � b c a

Aligning traces to model often means searching the minimal number of moves,
i.e. the optimal alignment. Different cost functions are used but the most common one
applies the weights 0 for a synchronous move and 1 for a log move or a model move.
Next figure shows an alignment for the trace 〈s, g, c〉 and the run 〈s, g, c, τ〉 of the model
of Fig. 2. Since τ moves inccur into no cost, the alignment has cost 0, and hence it is
optimal.

trace s g c �
run s g c τ

3 SAT Encoding of the Edit Distance

We first introduce our SAT encoding of the edit distance between two words, which will
serve as a building block for alignment, multi-alignment and anti-alignment.

The Boolean satisfiability (or SAT) problem, is the problem of determining, for a
given Boolean formula, if there exists a combination of assignments to the variables
that satisfies it. In the case of alignment, a SAT formula would encode the following
question: Does it exist an alignment between the trace σ and the model N for a cost d ?
In other words, we are looking for a formulas that encodes the edit distance d between
a trace and a run of the model. Our encoding is based on the same relations that are
used by the classical dynamic programming recursive algorithm for computing the edit
distance between two words u = 〈u1, . . . , un〉 and v = 〈v1, . . . , vm〉:

dist(〈u1, . . . , ui〉, ε) = i
dist(ε, 〈v1, . . . , vj〉) = j
dist(〈u1, . . . , ui+1〉, 〈v1, . . . , vj+1〉) =dist(〈u1, . . . , ui〉, 〈v1, . . . , vj〉) if ui+1 = vj+1

1 + min(dist(〈u1, . . . , ui+1〉, 〈v1, . . . , vj〉),
dist(〈u1, . . . , ui〉, 〈v1, . . . , vj+1〉))

if ui+1 6= vj+1

We encode this computation in a SAT formula φ over variables δi,j,d, for i =
0, . . . , n, j = 0, . . . ,m and d = 0, . . . , n + m. The formula φ will have exactly one
solution, in which each variable δi,j,d is true iff dist(〈u1 . . . ui〉, 〈v1 . . . vj〉) ≥ d.

In order to test equality between the ui and vj , we use variables λi,a and λ′
j,a, for

i = 0, . . . , n, j = 0, . . . ,m and a ∈ Σ, and we set their value such that λi,a is true
iff ui = a, and λ′j,a is true iff vj = a. Hence, the test ui+1 = vj+1 becomes in
our formulas:

∨
a∈Σ(λi+1,a ∧ λ′j+1,a). For readability of the formulas, we refer to this

coding by [ui+1 = vj+1]. We also write similarly [ui+1 6= vj+1].

In the following, we describe the different clauses of the formula φ of our SAT
encoding of the edit distance.

δ0,0,0 ∧
∧
d>0 ¬δ0,0,d (1)∧

d

∧n
i=0 (δi+1,0,d+1 ⇔ δi,0,d) (2)∧

d

∧n
j=0 (δ0,j+1,d+1 ⇔ δ0,j,d) (3)∧

d

n∧
i=0

n∧
j=0

[ui+1 = vj+1]⇒ (δi+1,j+1,d ⇔ δi,j,d) (4)

∧
d

n∧
i=0

n∧
j=0

[ui+1 6= vj+1]⇒ (δi+1,j+1,d+1 ⇔ (δi+1,j,d ∧ δi,j+1,d)) (5)

Example 2. At instants i = 1 and j = 1 of words u = 〈s, g, c〉 and v = 〈s, b, c, a〉,
the letters are the same, then, by (4), the distance is only higher or equal to 0 : (u1 =
v1)⇒ (δ1,1,0 ⇔ δ0,0,0).

However at instants i = 2 and j = 2, the letters u2 and v2 are different. A step
before, δ1,2,1 and δ2,1,1 are true because of the length of the subwords. Then, by (5),
the distance at instants i = 2 and j = 2 is higher or equal to 2 : δ2,2,2. The result is
understandable because the edit distance costs the deletion of g and the addition of b to
transform u to v.

4 SAT Encoding of Conformance Checking Artefacts

The distance between log traces and a process model is not only a distance between
words, since process model describe a (possibly infinite) language. In this part, we
recall the SAT encoding of full runs of Petri nets [12] and combine the implementation
with the edit distance.

SAT implementation of process models. For a Petri netN = 〈P, T, F,m0,mf , Σ, Λ〉
and n the size of the full runs, the variablesmi,p, with i ∈ {0..n} and p ∈ P , represent
the marking at instant i. The variables τi,a encode a firing transition t ∈ T labelled by
a ∈ Σ at instant i ∈ {0..n}4. The following constraints encode the semantics of the
Petri net.

– Initial marking:
(
∧
p∈m0

m0,p) ∧ (
∧
p∈P\m0

¬m0,p) (6)

– Final marking:
(
∧
p∈mf

Mn,p) ∧ (
∧
p∈P\mf

¬mn,p) (7)

– One and only one ti for each i:∧n
i=1

∨
a∈Σ(τi,a ∧

∧
a′∈Σ\t ¬τi,a′) (8)

4 For the sake of simplicity of the encoding, we are abusing a bit the notation, i.e., assuming that
labels identify transitions. This can be generalized easily for the general case when severals
transitions exist for the same label.

– The transitions are enabled when they fire:∧n
i=1

∧
a∈Σ(τi,a =⇒

∧
p∈•tmi−1,p) (9)

– Token game (for safe Petri nets):∧n
i=1

∧
a∈Σ

∧
p∈t•,Λ(t)=a(τi,a =⇒ mi,p) (10)∧n

i=1

∧
a∈Σ

∧
p∈•t\t•,Λ(t)=a(τi,a =⇒ ¬mi,p) (11)∧n

i=1

∧
a∈Σ

∧
p∈P,p6∈•t,p 6∈t•,Λ(t)=a(τi,a =⇒ (mi,p ⇐⇒ mi−1,p)) (12)

Process models are now implemented in a CNF formula and can be combined with
log traces for alignments.

4.1 SAT Edit Distance for Alignments

Log traces are sequences of activities that can be considered as words and implemented
as presented in Section 3. SAT encoding of process models has been recalled in previous
section. All the above clauses are considered in the SAT implementation of alignments.
A last series of constraints is needed to be appended, to relate the fired transitions,
represented by the τi,a, with the actions in the corresponding model trace, represented
by variables λi,a from the encoding of Section 3:

n∧
i=1

∨
a∈Σ

(λi,a ⇐⇒ τi,a) (13)

Example 3. All the full runs of the process model of Fig. 2 contain a s at the first instant.
So the variable τ1,s is true. If the log trace is σ = 〈s, f, g〉 then, λ1,s is true which
implies δ1,1,0 by (4).

Minimization of the edit distance. The conjunction of the previous clauses for the full
runs of the model and the their edit distance to a given log trace σ, gives a formula which
has one solution per full run of the model. With each solution, the values of the δn,m,d
determine the edit distance between the corresponding model trace and σ. Our goal for
optimal alignments is to minimize this distance, which corresponds to the number of
variables assigned to true among the δn,m,d. Pseudo-Boolean solvers like MINISAT+
deal with minimization objectives under the form of a weighted sum of variables; in our
case:

∑
d 1× δn,m,d.

How to deal with runs of different length. In order to consider different sizes of traces
and different sizes of runs, we added a loop on a wait activity on the final marking of
the model. The SAT encoding of the edit distance is adjusted so that skipping a wait
activity does not increment the distance between words.

Example 4. Fig. 3 shows optimal alignments of every trace of the log of Fig. 2. The
deviating trace 〈s, a, a〉 is then highlighted by the distance to its alignment.

Trace Alignment Distance
〈s, f, b, a〉 〈s, f, b, a〉 0
〈s, g, c〉 〈s, g, c, τ〉 0
〈s, c, b, a〉 〈s, c, b, a〉 0
〈s, g, c, d, d〉 〈s, g, c, d, τ, d〉 0
〈s, a, a〉 〈s, b, c, a〉 3

Fig. 3: Alignment of each trace and the model of Fig. 2

4.2 SAT Implementation for Multi-alignments

Multi-alignments were introduced in [13] as a generalization of alignments. Multi-
alignments were used to define a model-based trace clustering method. Instead of align-
ing a trace to a run of a process model, they align a set of log traces (typically from the
same cluster) to a common run of the model.

Definition 6 (Multi-alignment). Given a finite collection C of log traces and a model
N , an (optimal) multi-alignment ofC toN is a full run u ∈ Runs(N) which minimizes
the sum

∑
σ∈C dist(σ, u).

The SAT implementation of multi-alignment requires us to duplicate the variables
λσi,a that represent actions in the log traces σ ∈ L and the variables δσi,j,d that mea-
sure the edit distance to the model trace. Similarly to Section 4.1, the optimal multi-
alignment is found by minimizing the number of variables assigned to true in the
following objective:

∑
d

∑
σ∈L 1× δσn,|σ|,d.

Example 5. We computed the multi-alignment of the model and the full log of Fig. 2.
The optimal multi-alignment is the full run 〈s, f, b, a〉 which is at distance d ≤ 3 to all
the log traces.

4.3 SAT Implementation for Anti-alignments

Anti-alignment was introduced in [12]. Contrary to multi-alignments, the aim of anti-
alignments is to get, for a given log, the run of a model which differs as much as possible
to all the traces in the log. The notion of anti-alignment is used in some quality metrics
like precision and generalization [26].

Definition 7 (Anti-alignment). Given a finite collection L of log traces and a
model N , an anti-alignment is a run u ∈ Runs(N) which maximizes its distance∑
σ∈L dist(σ, u) to the log.

The encoding is then very similar to the multi-alignment version. Instead of min-
imizing the distance to the set of log traces, we maximize it using the opposite mini-
mization objective:

∑
d

∑
σ∈L−1× δσn,|σ|,d

5.

5 Only the total sum of δ are minimized/maximized in our tool

Example 6. We computed the anti-alignment of model and the set of log traces of Fig. 2
. Limited by a maximum size of run to 8, the optimal anti-alignment found by our tool
is 〈s, b, d, f, d, d, d, τ〉. The minimal distance between each trace and this full run is 9.
We compared our result with the module Anti-Alignment of ProM 6, that computes anti-
alignment over Hamming distance. For the same size of run, the algorithm returned the
sequence 〈s, b, d, d, d, c, a, d〉 that is indeed linearly far from the log traces. However as
either letters c or a are present in every trace, the run looks more similar to the log than
the one found with edit distance.

5 Experiments

The construction of SAT formulas for alignments, multi-alignments and anti-alignments
is implemented in Ocaml in our tool DARKSIDER available on github7. The software
invokes a SAT solver, by default MINISAT+. Examples of the previous section have
been fully computed by the SAT formulas to get optimal solutions. Since the approach
is heavily influenced by the size of the formulas constructed (which is large even for
small models), in this section we focus on heuristics to simplify the formulas, at the
expense of sacrifying optimality eventually. Those are preliminary results oriented to-
wards illustrating how to instruct the current tool.

A first heuristic is to remove δi,j,d variables, for d large . Limiting the maximal
number of edits may not change the result when the traces are close to the model. A
second approximation is to get optimal prefix alignment by limiting the size of the run.

Tab. 1 (a)-(c) summarizes the experiments. Notice that while for alignments we
show average numbers over one hundred traces, for multi- and anti-alingments (where
only a run is computed for the whole log) total numbers are provided. The first two
columns (Model and |L|) describe the model and the log size, respectively. Column
”Size of run” shows the maximal size allowed for the run in the model (which will be
an alignment in (a), a multi-alignment in (b), and an anti-alignment in (c)). Sometimes
the length is limited when PRE is specified, as explained above. Then the fourth column
reports the maximal number of edits allowed, sometimes with a bound as explained
above. When LIM is indicated, the distance between the model and the trace is larger
than what was tested. The last three columns show the time to construct the formula
and the total execution time for our approach, and the time needed in ProM. Notice that
since we are providing results for edit-distance based conformance artefacts, only ProM
results for alignments are shown.

The goal of this paper was to demonstrate the interest of our approach based on a
SAT encoding of Petri net executions and edit distance between traces. For alignments,
indeed, the current SAT encoding shows bad execution times compared to the optimized
algorithms implemented in ProM. But we obtain, for the first time, an implementation
of the anti-alignment and multi-alignment artefacts defined over the edit distance. We
believe that there is a lot of space for improvement, for instance by optimizing the
encoding or by using heuristics to very efficiently find approximations of the results.

6 Anti-alignment Precision/Generalization of package AntiAlignments of ProM software ver-
sion 6.8, http://www.promtools.org/

7 https://github.com/BoltMaud/darksider

Model |L| Size of run Maximal
number of

Formula
construction

Total
execution

ProM
execution

Reference |T | |P | edits time (sec) time (sec) time (sec)

Fig. 2 8 7 100 7 5 0.239 0.349 0.002

M8 of [25] 15 17 100 PRE: 20 LIM:10 10.139 15.530 0.001

M1 of [25] 40 39 100 PRE: 7 LIM:10 4.924 7.16 0.005

Loan [10] 15 16 100 PRE: 19 LIM: 10 14.047 20.915 0.002

(a) Alignments (showing averages).

Fig. 2 8 7
10 8 7 10.101 15.362 6
100 8 7 99.602 200.569

M8 of [25] 15 17
10 18 LIM:6 252.471 414.174 6
100 PRE:15 LIM:6 516.391 741.162

M1 of [25] 40 39
10 PRE: 13 LIM:10 115.706 172.500 6
100 PRE: 13 LIM: 5 681.95 1066.94

Loan [10] 15 16
10 PRE: 19 15 252.572 373.683 6
100 PRE: 9 LIM:10 359.982 508.542

(b) Multi-alignments.

Fig. 2 8 7
10 8 LIM: 10 13.802 21.502 6
100 8 LIM: 10 137.213 243.842

M8 of [25] 15 17
10 18 LIM:10 103.812 148.271 6
100 PRE: 10 LIM: 10 343.529 496.733

M1 of [25] 40 39
10 39 LIM:10 1337.806 2069.505 6
100 PRE:13 LIM:5 680.556 995.361

Loan [10] 15 16
10 PRE: 19 LIM: 10 140.840 203.257 6
100 PRE:19 LIM: 10 1526.048 2185.785

(c) Anti-alignments.

Table 1: Experimental results for the computation of optimum and approximations of
alignments and anti-alignments with our tool DARKSIDER, obtained on a virtual ma-
chine with CPU Intel Xeon 2.67GHz and 50GB RAM.

6 Conclusion

This paper has shown a unified approach to compute important conformance artefacts
over SAT. Thanks to its high versatility, the encoding as SAT formula allows one to com-
pute exact solutions to various problems (here alignments, anti-alignments and multi-
alignments) under various optimality criteria. In particular, we show for the first time
how anti-alignments can be computed for the edit distance by formulating the problem
as a SAT instance. Although technically sound, the encodings proposed in this paper
suffer from the explosion of the SAT formulas created. As main research direction,
we are working into finding better encodings that can alleviate significantly the size
of such formulae, but also incorporating other optimizations and heuristics (possibly
inspired from optimization techniques used in automated planning) that can make the
approach more efficient in practice.

Acknowledgments. This work has been supported by Farman institute at ENS Paris-Saclay
and by MINECO and FEDER funds under grant TIN2017-86727-C2-1-R.

References

1. A. Adriansyah. Aligning observed and modeled behavior. PhD thesis, Department of Math-
ematics and Computer Science, 2014.

2. Arya Adriansyah, Jorge Munoz-Gama, Josep Carmona, Boudewijn F van Dongen, and
Wil MP van der Aalst. Alignment based precision checking. In International Conference on
Business Process Management, pages 137–149. Springer, 2012.

3. Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic
time (unless seth is false). In Proceedings of the forty-seventh annual ACM symposium on
Theory of computing, pages 51–58. ACM, 2015.

4. Joonsoo Bae, Ling Liu, James Caverlee, Liang-Jie Zhang, and Hyerim Bae. Development
of distance measures for process mining, discovery and integration. International Journal of
Web Services Research (IJWSR), 4(4):1–17, 2007.

5. Vincent Bloemen, Jaco van de Pol, and Wil M. P. van der Aalst. Symbolically aligning
observed and modelled behaviour. In 18th International Conference on Application of Con-
currency to System Design, ACSD, Bratislava, Slovakia, June 25-29, pages 50–59, 2018.

6. Mathilde Boltenhagen, Thomas Chatain, and Josep Carmona. Generalized alignment-based
trace clustering of process behavior. In Proceedings of the 40th International Conference
on Applications and Theory of Petri Nets (ICATPN’19), number 11522 in Lecture Notes in
Computer Science. Springer, 2019.

7. RP Jagadeesh Chandra Bose and Wil van der Aalst. Trace alignment in process mining: op-
portunities for process diagnostics. In International Conference on Business Process Man-
agement, pages 227–242. Springer, 2010.

8. RP Jagadeesh Chandra Bose and Wil MP Van der Aalst. Abstractions in process mining: A
taxonomy of patterns. In International Conference on Business Process Management, pages
159–175. Springer, 2009.

9. RP Jagadeesh Chandra Bose and Wil MP Van der Aalst. Context aware trace clustering:
Towards improving process mining results. In Proceedings of the 2009 SIAM International
Conference on Data Mining, pages 401–412. SIAM, 2009.

10. J.C.A.M. Buijs. Loan application example. 4TU. Centre for Research Data. Dataset.
doi.org/10.4121, 2013.

11. Josep Carmona, Boudewijn F. van Dongen, Andreas Solti, and Matthias Weidlich. Confor-
mance Checking - Relating Processes and Models. Springer, 2018.

12. Thomas Chatain and Josep Carmona. Anti-alignments in conformance checking–the dark
side of process models. In International Conference on Application and Theory of Petri Nets
and Concurrency, pages 240–258. Springer, 2016.

13. Thomas Chatain, Josep Carmona, and Boudewijn Van Dongen. Alignment-based trace clus-
tering. In International Conference on Conceptual Modeling, pages 295–308. Springer,
2017.

14. Ian Davidson, SS Ravi, and Leonid Shamis. A sat-based framework for efficient constrained
clustering. In Proceedings of the 2010 SIAM International Conference on Data Mining,
pages 94–105. SIAM, 2010.

15. Massimiliano de Leoni and Andrea Marrella. Aligning real process executions and prescrip-
tive process models through automated planning. Expert Syst. Appl., 82:162–183, 2017.

16. Massimiliano De Leoni and Wil MP van der Aalst. Data-aware process mining: discovering
decisions in processes using alignments. In Proceedings of the 28th annual ACM symposium
on applied computing, pages 1454–1461. ACM, 2013.

17. Remco Dijkman, Marlon Dumas, Luciano Garcia-Banuelos, and Reina Kaarik. Aligning
business process models. In 2009 IEEE International Enterprise Distributed Object Com-
puting Conference, pages 45–53. IEEE, 2009.

18. Alex Groce, Sagar Chaki, Daniel Kroening, and Ofer Strichman. Error explanation with
distance metrics. International Journal on Software Tools for Technology Transfer, 8(3):229–
247, 2006.

19. Sander J. J. Leemans, Dirk Fahland, and Wil M. P. van der Aalst. Scalable process discovery
and conformance checking. Software and System Modeling, 17(2):599–631, 2018.

20. Jean-Philippe Métivier, Patrice Boizumault, Bruno Crémilleux, Mehdi Khiari, and Samir
Loudni. Constrained clustering using sat. In International Symposium on Intelligent Data
Analysis, pages 207–218. Springer, 2012.

21. T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
77(4):541–574, April 1989.

22. Daniel Reißner, Raffaele Conforti, Marlon Dumas, Marcello La Rosa, and Abel Armas-
Cervantes. Scalable conformance checking of business processes. In OTM CoopIS, , Rhodes,
Greece, pages 607–627, 2017.

23. Niek Tax, Xixi Lu, Natalia Sidorova, Dirk Fahland, and Wil M. P. van der Aalst. The impre-
cisions of precision measures in process mining. Inf. Process. Lett., 135:1–8, 2018.

24. Niek Tax, Natalia Sidorova, Reinder Haakma, and Wil MP van der Aalst. Event abstraction
for process mining using supervised learning techniques. In Proceedings of SAI Intelligent
Systems Conference, pages 251–269. Springer, 2016.

25. Farbod Taymouri and Josep Carmona. Model and event log reductions to boost the com-
putation of alignments. In Proceedings of the 6th International Symposium on Data-driven
Process Discovery and Analysis (SIMPDA 2016), Graz, Austria, December 15-16, 2016.,
pages 50–62, 2016.

26. Boudewijn F. van Dongen, Josep Carmona, and Thomas Chatain. A unified approach for
measuring precision and generalization based on anti-alignments. In Business Process Man-
agement - 14th International Conference, BPM 2016, Rio de Janeiro, Brazil, September 18-
22, 2016. Proceedings, pages 39–56, 2016.

27. Boudewijn F. van Dongen, Josep Carmona, Thomas Chatain, and Farbod Taymouri. Aligning
modeled and observed behavior: A compromise between computation complexity and qual-
ity. In Advanced Information Systems Engineering - 29th International Conference, CAiSE
2017, Essen, Germany, June 12-16, 2017, Proceedings, pages 94–109, 2017.

