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Abstract—Recently new models for language processing and
learning using Reservoir Computing have been popular. However,
these models are typically not grounded in sensorimotor systems
and robots. In this paper, we develop a model of Reservoir
Computing called Reservoir Parser (ResPars) for learning to
parse Natural Language from grounded data coming from
humanoid robots. Previous work showed that ResPars is able
to do syntactic generalization over different sentences (surface
structure) with the same meaning (deep structure). We argue
that such ability is key to guide linguistic generalization in a
grounded architecture. We show that ResPars is able to generalize
on grounded compositional semantics by combining it with
Incremental Recruitment Language (IRL). Additionally, we show
that ResPars is able to learn to generalize on the same sentences,
but not processed word by word, but as an unsegmented sequence
of phonemes. This ability enables the architecture to not rely only
on the words recognized by a speech recognizer, but to process
the sub-word level directly. We additionally test the model’s
robustness to word error recognition.
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INTRODUCTION

Language learning in grounded, developmental settings is
a hugely interesting but daunting task [1]. Many researchers
have tackled different parts of this topic studying phoneme ac-
quisition [2], word grounding [3] and cross-situational learning
[4]. All of these experiments and results focus on important
subtasks of the problem.

One key sub problem is how to learn not just the mean-
ing of individual words but the meaning of compositional
structures, e.g. sentences and phrases. From the beginning
of the field compositionality has been one of the key tar-
gets for research because it is one of the key features of
human language. There are two key questions related to
the problem of compositionality. One is how to represent
grounded compositional semantics. Recent proposals include
representing semantics with grounded procedural structures in
a system called Incremental Recruitment Language (IRL) [5].
These proposals argue that we best understand compositional
structure in terms of conceptualization operations that serve
different functions such as identifying a referent, describing an

event, commanding other agents. But these functions must be
grounded in processing of sensorimotor spaces and in general
cognitive abilities such as categorization, mental rotation etc.

Another key problem in language learning is how to learn
the mapping between language syntax and compositional
semantics. For this problem, we have seen the application
of various approaches, such as, grounded symbolic methods
[6] (for grounded learning with IRL), early recurrent neural
networks [7] and also recently deep learning [8]. One of
the interesting approaches that has come out of this line of
work is Reservoir Computing-based models, and in particular
Echo State Networks (ESN) [9]–[11]. Such approaches are
often more inspired by brain mechanisms involved in language
processing [10], [12]. Recently, these models have shown great
potential in syntactic generalization [12]–[14] – that is the
processing of sentences with complex structures without using
word semantics. However, especially the latter brain-inspired
models have not been applied to grounded language learning
settings yet.

In this paper, we combine earlier work on compositional
semantics using Incremental Recruitment Language (IRL)
with an Echo State Network-based parser (ResPars) in a
grounded architecture. We show that ResPars is able to learn
from developmental experiments with grounded data. We start
by describing related work, followed by the grounded setup.
We then describe the two key systems IRL and ResPars. We
conclude with experiments and results.

RELATED WORK

Grounded language learning has often focused on the
acquisition of categories and concepts [15], for example
in the spatial language [16] and color domains [17]. In
that work, centroid-based classifiers with distance (Voronoi
tessellation) or other Machine Learning algorithms (neural
networks, Bayesian models etc.) are used for representing
grounded word meanings. The work presented in this paper
differs from those approaches by focusing on grammar and
compositional semantics.

Fewer models learn syntax in grounded settings. One re-
search strand has explored how to learn symbolic grammars
in the framework of language games. Models have been
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Fig. 1. Dynamic movement setup. Left: world model extracted by the left
robot. Right: world model computed by the right robot. Estimated movement
of the block (circle) is visualized through opacity. The starting point has a
lower opacity (alpha). Regions are visualized by colored quadrangles. The blue
square shows position, orientation of the box. Arrows are robots. robot-1
is the origin of the coordinate system, robot-2 position and orientation of
the other robot. Figure adapted from [26].

developed in particular for spatial language [6], [18], temporal
language learning [19] and events [20]. A lot of this research
focuses on framing language learning as learning construc-
tions; it is often motivated by insights from Cognitive Lin-
guistics, and in particular Cognitive Semantics, Construction
Grammar and Usage-based linguistics. The usage-based ap-
proach to language learning has also led to studies examining
specific aspects of language such as ditransitive constructions
and others [21]. All these models show that some constrained
set of constructions can be fruitfully learnt using relatively
simple learning operators that manipulate symbolic structures.
Some of these models also learn directly on sensorimotor data
such as [18]. The approach presented in this paper reuses
some of this work for modeling semantics but replaces the
symbolic grammars with brain-inspired learning mechanisms
and representations.

The approach discussed in this paper is close to a field called
semantic parsing in Natural Language Processing. This field is
recently dominated by deep learning approaches [22]. For in-
stance, since Mikolov’s work on Word2Vec [23] which showed
that deep learning methods can provide useful representations
for semantic operations such as queen = king - man + woman,
much effort has been put into word embedding [24] and
sentence representation [25]. Typically these methods require
huge data sets for training and are only based on the statistics
of corpora, not on any grounded reality. Thus they are not
good candidates for grounded developmental approaches.

SYSTEM ARCHITECTURE AND SETUP

We study grounded language acquisition using robots that
interact in an office space. The basic setup is the following.
There are two or more robots drawn from a larger population:
one is the tutor, the other is the learner. Both robots try to
draw each others attention to objects in the environment using
natural language. For this paper we combine two setups: one
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Fig. 2. Systems involved in enabling tutor and learner to communicate.
(Notice that ResPars for production is future work.)

about locations of objects and one about dynamic movements
(Figure 1).

The environment consists of a number of blocks, boxes
and interlocutors. For the dynamic movement setup, we also
include colored regions on the floor. The vision system of each
robot tracks objects and establishes a model of the environment
with real-valued distances and orientations of objects with
respect to the body of the robot. The environment is open-
ended. Objects and boxes are added or removed and their
spatial configuration changed. Moreover, robots are free to
move around. Objects change positions in the dynamic setup
over time. We record these positions not just at a specific
moment in time but over the whole episode.

Traditionally in language game studies, tutor and learner
engage in scripted interactions. However, for this paper we
are focussing on parsing. Figure 2 details the overall sys-
tem architecture and subsystems involved in producing and
interpreting utterances in our system. In particular there are
two systems that are important for this paper. Incremental Re-
cruitment Language (IRL) and the Reservoir Computing based
parser (ResPars). IRL is a framework for representing and
learning categories and compositional semantics. It bridges
between real-valued, continuous sensorimotor representations
and symbolic meaning. ResPars is a construction grammar in-
spired neural network approach allowing to express mappings
between symbolic meanings and Natural language sequences
(words and grammar, as well as phonemes) and back.

GROUNDED SEMANTICS WITH IRL

We use Incremental Recruitment Language (IRL) [5] to
represent the semantics of Natural language phrases. IRL is
a procedural meaning framework that stresses the importance
of conceptualization processes over truth-values for Natural
language semantics. IRL represents the meaning of utterances
as constraint programs. For this paper we combine previous



(apply-selector ?topic ?source ?selector)

(apply-class ?source ?source-2 ?class)
(bind selector ?selector unique)

(apply-spatial-region ?source-2 ?region)

(bind object-class ?class block)

(construct-region-lateral ?region ?ctx-pp ?lm ?cat ?f-o-r)

(bind f-o-r ?f-o-r relative)
(apply-selector ?lm ?landmarks ?selector-2)

(geometric-transform ?ctx-pp ?ctx ?perspective)

(bind lateral-category ?cat left)

(bind selector ?selector-2 unique)

(apply-class ?landmarks ?ctx ?landmark-class)

(bind object-class ?landmark-class box)

(identify-discourse-participant ?perspective ?ctx ?perspective-role)

(get-context ?ctx) (bind discourse-role ?perspective-role hearer)

Fig. 3. Semantic structure for “The block left of the box from your
perspective”.

work on color word semantics [17], modeling locative spatial
semantics [27] and dynamic movement events [26].

Figure 3 shows the IRL-program (meaning) of the phrase
“The block left of the box from your perspective”. The
structure contains pointers to categories and spatial relations in
the form of bind statements, as well as a number of cognitive
operations. For example, construct-region-lateral con-
structs a spatial similarity region based on a lateral category
(such as left). Cognitive operations and bind statements are
linked using variables (which are symbols starting with ?).

We implemented different types of categories and relations:
selectors, concepts, color categories, spatial relations, dynamic
spatial relations and movement events

Object categories: Objects in our scenarios can be cate-
gorized: robots, boxes, blocks and regions.

Color Categories: We use here 3 color categories: “yel-
low, “green”, ”red”. We represent color categories using a
similarity function based on a prototypical color [17].

simc(o, c) := e−
1

2σc
|oo−cc|

where o is some object, c the category, oc the color of a
particular object o and cc the prototypical color of category c.

Selectors: In this paper we focus only on the determiner
“the”, which is modeled as requiring that the object is unique.
In practice that means that there needs to be an object with
a much higher similarity than other objects. That object then
becomes the referent of the whole (sub) IRL-program.

Spatial relations: We implemented projective categories
such as “front”, “back”, “left” and “right”. Similar to color
categories, these categories are represented using similarity
functions.

Dynamic spatial relations: More complicated dynamic
categories such as into, out-of and across are implemented
using a spatial reasoner (more detail are in [26], [28]).

Cognitive Operations: Agents can use categories and
relations and combine them with different cognitive opera-
tions into IRL-programs. For example, categorization oper-
ations take a set as input and score objects according to
some similarity functions defined by categories. Examples
are apply-class and apply-category. Mental rotations
are implemented as linear algebra operations that transform a
feature space such as angle and direction to another point of
origin, e.g. geometric-transform. These operations also
handle different frames of reference (intrinsic, relative and
absolute).

RESPARS: THE RESERVOIR PARSER MODEL

ResPars proposes to model how the human brain processes
sentences and is inspired from several studies in neuro-
science [10], [12]. A schema of the global architecture can
be seen on Figure 4. The model is an analogy to a sub-part
of Broca’s area (a region of prefrontal cortex, involved for
instance in syntax processing) and the striatum (a sub-part of
the basal ganglia). Both are generally involved in sequence
processing and learning, and in particular in sentence parsing.

The task of ResPars is to do semantic role labelling, which
is equivalent to finding all the correct roles of the content
words of a sentence. In other words, the goal of ResPars is
to learn the mapping of the semantic words of a sentence
(i.e. content words like nouns, verbs, adjectives, adverbs)
onto different slots (the semantic roles: e.g. action, location)
of a basic event structure (e.g. action(object, location)). In
this study, ResPars has been adapted (compared to previous
studies) to work jointly with IRL: (1) it processes all words
(content and function words) indifferently, and not only the
sentence structure (i.e. grammatical constructions [29]) like
previously; (2) it represents the outputs as a graph adjacency
matrix which maps content words with their roles and all their
potential links with one another. The task of ResPars is similar
to semantic parsing but with fewer roles: only relevant roles
for the robot experiment have been kept. The output of ResPars
is thus a graph matrix representation: bipartite graph linking
words to meanings and roles. For learning purposes this is
represented as a big vector which is a concatenation of the
matrix rows. The new output graph representation enables to
have a representation that is independent on the presence of
optional arguments (e.g. adjectives for nouns1).

In Figure 4 we can see that sentences are given as sequences
of words or phonemes2 depending on the experimental con-
dition. Then the dynamics of the reservoir are trained to be
associated with the output layer (i.e. the read-out layer). As we
said previously, the output layer consists of the matrix defining
the graph linking each word (by its order in the sentence) to
their roles and their link to other words. For the sentence given
as example in Figure 4 the word put has the role of predicate
and is linked to toy and left.

1If a noun has no adjective its node will have no links to other words.
2Not both (word and phonemes) at the same time.



ECHO STATE NETWORKS

ResPars is based on Echo-State-Network – in short: ESN
[9] – a particular kind of recurrent neural network (RNN)
in which inputs are projected to a random recurrent layer,
and only the output layer (called the “read-out”) is modified
by learning. The random weights of the ESN’s reservoir are
scaled to possess suitable dynamics (e.g. “edge of chaos”). The
objective is to have reservoir states that are linearly separable
and that can be mapped to the output layer using a compu-
tationally cheap linear regression. The units of the recurrent
neural network have a leak rate (α) which corresponds to the
inverse of a time constant. These equations define the update
of the ESN:

x(t+ 1) = (1− α)x(t) + αf(Winu(t+ 1) +Wx(t)) (1)

y(t) = Woutx(t) (2)

where u(t), x(t) and y(t) are the input, the reservoir (i.e.
hidden) state and the read-out (i.e. output) states respectively
at time t. α is the leak rate. Win , W and Wout are the
input, the reservoir, and the read-out matrices respectively.
f is the tanh activation function. After the collection of all
reservoir states, the following equation defines how the read-
out (i.e. output) weights are trained. In order to prevent from
overfitting, we use ridge regression (also known as regression
with Tikhonov regularization), which probably provides the
most stable solution in this context [30]:

Wout = YdXT(XXT + βI)−1 (3)

where Yd is the concatenation of the desired outputs, X is
the concatenation of the reservoir states (over all time steps
for all trained sentences), β is the regularization coefficient
(called ridge in the remaining of the paper) and MT is the
transpose of matrix M.

EXPERIMENTS

Listener: ResPars to IRL: For each utterance, the sen-
tence is first processed by ResPars. In both experimental
conditions, the words or phonemes are given one after another:
at each time step the reservoir receives a given word/phoneme.
The stream of word/phoneme inputs activates the reservoir
(i.e. the random recurrent network) and creates particular
dynamics for each sentence in high-dimensional space. The
output is then trained to represent the sentence meaning as
a graph that will be given as input to the IRL framework.
This output representation enables to transform the graph as
an IRL-program which can then interpreted and linked with
grounded world model and reasoning modules (see Figure 2).
The processing of sentences is sequential (one word/phoneme
at a time) and the final estimation of the thematic roles for each
SW (i.e. semantic word) is read-out at the end of the sentence.
A current estimation of the predicted roles is however available
at each time step.

Fig. 4. ResPars model with two different input conditions: words and
phonemes. The system processes inputs as follows: (top left) from a sentence
as input, the model outputs (middle right) the roles for each semantic word
(SW). The processing of the sentence is sequential: each phoneme or word
is given one at a time. On the figure we only represent relevant outputs for
the simple example given (and not the full graph adjacency matrix), because
several words can have empty roles. Figure adapted from [31].

Training of ResPars: To train and test the ResPars parser
we do a 10-fold cross-validation: we split the data in 10
folds and take nine folds to train the reservoir, and the last
fold to test the generalization. We do this cross-validation for
10 different ResPars networks (which have different random
weights) and average the results. We used offline ridge re-
gression: all the nine folds are used in one batch. The hyper-
parameter used for the experiment were not optimized for this
particular experiment but taken from previous work: spectra
radius = 1, input scaling = 0.6, Wstd = 0.1 and leak rate
α = 0.06. The only parameter changed is the regularization
coefficient: 2.5 ∗ 10−6.

RESULTS

Corpus

From the grounded data, we can generate a corpus of IRL-
programs that have been used or could be used by robots
to communicate in the real world. We identified 19 different
semantic IRL-program patterns representing the meaning of
simple noun-phrase type semantics up to semantics of phrases
such as “The block left of the box from your perspective” and
the “The block moves across the left red region”. Combined
with lexical material such as color categories, object classes,
dynamic spatial relations etc, we generated a corpus of 2378
IRL-programs with corresponding phrases for the ResPars to
train on. Some sentences generated had several adjectives per
noun (up to three per noun), which makes the task harder for
ResPars because it changes a lot the output structure even if
the meaning of the sentence does not change much.

ResPars generalization (words)

Figure 5 shows that ResPars model is able to learn the
corpus well. It reaches a very good performance: it is making



Fig. 5. Generalization error of ResPars depending on the size of the reservoir,
for word and phoneme conditions.

less than 3% of error on test sentences (not seen in training
data) with 1000 neurons in the reservoir. The error is express-
ing the number of sentences for which at least one role is
incorrect. Thus no error means that all the roles for sentences
are correctly retrieved. This is a hard measure of performance.

The generalization errors (best is 0, worst is 1) obtained
as a function of the number of neurons (N) in the reservoir
are the following: N33: 0.258(+/-0.0235); N100: 0.149(+/-
0.0115); N300: 0.0572(+/-0.0033); N1000: 0.0242(+/-0.0044).

The number of neurons required to learn and generalize
is also small. ResPars of sizes as small as 30 neurons could
already generalize quite well.

ResPars generalization (phonemes)

As the model is working well on parsing sentences, we
performed a more difficult experiment by replacing the words
by the sequence of phonemes (in a similar manner as [31]).
The generalization errors obtained in function of the number
of neurons (N) in the reservoir are the following: N33: 0.5616
(+/-0.0934); N100: 0.2457 (+/-0.0170); N300: 0.1227 (+/-
0.0116); N1000: 0.0151 (+/-0.0031).

Comparison of conditions

As expected the performance for phonemes condition is
lower than for word condition for small reservoirs, but the
results are still good for such a task of parsing relying on
phonemes instead of words. For instance, the performance
of phoneme-ResPars with 300 neurons is comparable (and
slightly better) than the performance of word-ResPars with
100 neurons.

A surprising result is that the performance for a reser-
voir of 1000 neurons is better for the phoneme condition

(1.51% error) than for the word condition (2.42% error).
It is unexpected, because the task is more difficult in the
phoneme condition: the stream of inputs is much longer3.
Thus the reservoir needs to keep more information in working
memory to succeed in the task: this is why we observe such
errors rates for small reservoirs: e.g. errors for phoneme-N300
condition are comparable with word-N100 condition. The
difference on word-based and phoneme-based could not be
stated significantly, both errors are near optimal performance
and more experiments would be needed to show that one
condition is better (in general) than the other: varying the
corpus, the number of neurons or hyper-parameters of the
model. In other words, the take-home message is not that
one condition (word vs. phoneme) is better than the other,
but that the ResPars model is able to perform well with
both approaches; thereby demonstrating its robustness. Such
robustness on phoneme/word levels, along side with the rela-
tive robustness to word replacement, are useful to overcome
speech-to-text recognition errors.

These good performances with phonemes means that it adds
the possibility to not rely on the word speech recognition
system while run on a robot. ResPars could directly rely on
the stream of phonemes instead of the stream of words given
by the speech recognition. This is an interesting potential for
the IRL-ResPars setup: this means that the experiments could
be performed without word knowledge prerequisite, which is
an interesting perspective for developmental experiments of
grounded language.

Robustness to noise

We made a supplementary experiment to investigate whether
ResPars was robust to noise and sensible to errors in word
recognition. Speech recognition systems have made a lot of
progress the past decade, but the best systems still have around
5% WER (Word Error Rate): this is non negligible when
considering the impact of the recognition on a full sentence.
Twiefel et al. [32], [33] previously showed that even when
using Google speech recognition API for Human-Robot Inter-
action, one has to post-processing the results by constraining to
plausible vocabulary, otherwise too few sentences are correctly
parsed to create a good interaction.

For the word condition, we performed four experiments
with varying the probability of a word being “misrecognized”:
i.e. the word was randomly replaced by another word of
the corpus. Note that such random replacement of words is
a difficult task, because a noun or an adjective could be
replaced by a function word like “of”, “in”, “my”, “into”:
which changes the grammatical structure of the sentence and
often makes it impossible to understand.

We did experiments with four different levels of noise:
1%, 5% and 10% probability of a word being randomly
replaced. The following results were obtained: 0.0900 (+/-
0.0013) for 1%, 0.1860 (+/-0.0022) for 5% 0.2676 (+/-0.0024)
for 10% and 0.3643(+/-0.0032) for 20% noise. ResPars seems

3n time longer, with n the average number of phonemes per words)



quite robust for this difficult task: for 5% of word randomly
replaced, it is still able to parse correctly 81.40% of the
sentences, which makes it a robust model for online Human-
Robot or Robot-Robot Interactions.

The corpus and code will be available on Github:
https://github.com/neuronalX/EchoRob.

DISCUSSION

Further work would extend this work to include a sentence
production version of ResPars: in order to produce a sentence
given an IRL-program. To achieve social grounding, sentence
parsing is not enough but the learner must also speak: it
enables the close the sensori-motor (parsing-production) loop.
Parsing is constrained by the world and possible interpre-
tations. Missing information in parsing can in some cases
be provided by the world, context and grounding. However,
production is less constrained and choices in production have
a big impact on whether or not a phrase can be understood.

ResPars grounds language in semantic structure (IRL-
programs). However, that presumes that the set of IRL-
programs is already known to the learner. That is of course,
a simplifying assumption and learners actually should learn
parsing (syntax to semantics) and interpretation (semantics to
pragmatics and grounding) together. There has been earlier
work achieving co-acquisition of syntax and semantics for
symbolic grammars (with IRL), but to the best of our knowl-
edge there are no other brain-inspired architecture models
doing so yet.

Another direction for extending the current work could
extend the ResPars model to Conceptors [34]: they are nat-
ural extension of reservoirs which are able to learn sequen-
tial patterns in order to easily interpolate and make logical
operations on them. Conceptors are able to generalize by
interpolation (like neural networks in general) but also to
generalize by extrapolation (outside the domain of training
examples) which is less common. This would allow to share
the compositionality of IRL to the Conceptor of ResPars, for
example in order to represent abstract actions [35] composed
of several sub-actions. In this way, ResPars could include
abstract semantics of action verbs through this important
feature of compositionality.
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