
HAL Id: hal-02422437
https://hal.inria.fr/hal-02422437

Submitted on 22 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Leveraging metamorphic testing to automatically detect
inconsistencies in code generator families

Mohamed Boussaa, Olivier Barais, Gerson Sunyé, Benoit Baudry

To cite this version:
Mohamed Boussaa, Olivier Barais, Gerson Sunyé, Benoit Baudry. Leveraging metamorphic testing
to automatically detect inconsistencies in code generator families. Journal of : Software Testing,
Verification and Reliability, Wiley, 2019, �10.1002/stvr.1721�. �hal-02422437�

https://hal.inria.fr/hal-02422437
https://hal.archives-ouvertes.fr

SOFTWARE TESTING, VERIFICATION AND RELIABILITY
Softw. Test. Verif. Reliab. 2019;e1721.
Published online in Wiley Online Library (wileyonlinelibrary.com). https://doi.org/10.1002/stvr.1721

SPECIAL ISSUE PAPER

Leveraging metamorphic testing to automatically detect
inconsistencies in code generator families

Mohamed Boussaa1,*,† , Olivier Barais2, Gerson Sunyé3 and Benoit Baudry4

1School of Computer Science, McGill University, Montréal, Canada
2IRISA-INRIA, University of Rennes 1, Rennes, France

3LS2N, University of Nantes, Nantes, France
4CASTOR, KTH Royal Institute of Technology, Stockholm, Sweden

SUMMARY

Generative software development has paved the way for the creation of multiple code generators that serve
as a basis for automatically generating code to different software and hardware platforms. In this context, the
software quality becomes highly correlated to the quality of code generators used during software develop-
ment. Eventual failures may result in a loss of confidence for the developers, who will unlikely continue to
use these generators. It is then crucial to verify the correct behaviour of code generators in order to preserve
software quality and reliability.

In this paper, we leverage the metamorphic testing approach to automatically detect inconsistencies in
code generators via so-called “metamorphic relations”. We define the metamorphic relation (i.e., test ora-
cle) as a comparison between the variations of performance and resource usage of test suites running on
different versions of generated code. We rely on statistical methods to find the threshold value from which
an unexpected variation is detected. We evaluate our approach by testing a family of code generators with
respect to resource usage and performance metrics for five different target software platforms. The experi-
mental results show that our approach is able to detect, among 95 executed test suites, 11 performance and
15 memory usage inconsistencies. © 2019 John Wiley & Sons, Ltd.

Received 30 November 2018; Revised 23 August 2019; Accepted 8 October 2019

KEY WORDS: code generators; metamorphic testing; non-functional properties; software quality; test
automation; test oracle

1. INTRODUCTION

The intensive use of generative programming techniques has become a common practice in soft-
ware development to deal with the heterogeneity of platforms and technological stacks that exist
in several domains such as mobile or Internet of Things [1]. Generative programming [2] offers a
software abstraction layer that software developers can use to specify the desired system behaviour
(e.g., using domain-specific languages, models, etc.) and to automatically generate software arti-
facts to different platforms. As a consequence, multiple code generators are used to transform the
specifications/models represented in a graphical/textual languages to general-purpose programming
languages such as C, Java, C++, etc.

Code generators have to respect different requirements that preserve not only the functional prop-
erties but also the reliability and quality of delivered software. As long as the quality of generators
is maintained and improved, the quality of generated software artifacts also improves. Any issue

*Correspondence to: Mohamed Boussaa, School of Computer Science, McGill University, Montréal, Canada.
†E-mail: mohamed.boussaa@mail.mcgill.ca

© 2019 John Wiley & Sons, Ltd.

2 of 26 M. BOUSSAA ET AL.

with the generated code leads to a loss of confidence in generators, and users will unlikely continue
to use them during software development. Defective (or “nonmature”) code generators can generate
defective software artifacts that range from uncompilable or semantically dysfunctional code that
causes serious damage to the generated software to non-functional issues that lead to poor quality
code that can affect system reliability and performance (e.g., high resource usage, low execution
speed, etc.). As a consequence, checking the correctness and the quality of generated code has to be
done with almost the same expensive effort as it is needed for the manually written code in order to
ensure the correct behaviour of delivered software.

Nevertheless, code generators are known to be difficult to understand because they involve a set
of complex and heterogeneous technologies that make the activities of design, implementation and
testing very hard and complex [3, 4]. In addition, the non-functional testing of code generators
remains a challenging and time-consuming task because developers have to analyse and verify the
non-functional behaviour of generated code for different target platforms using platform-specific
tools (e.g., debuggers, profilers, monitoring tools, etc.) [5, 6]. The problem becomes more critical
when automating the non-functional tests. Particularly, test automation raises the oracle problem
because there is no clear definition of how the oracle might be defined when evaluating the non-
functional properties (e.g., execution speed, utilization of resources, etc.). Proving that the generated
code respects one of these non-functional requirements is difficult because there is no reference
implementation.

To alleviate the oracle problem, numerous approaches have been proposed [7, 8] to automatically
verify the functional outcome of generated code by applying techniques such as back-to-back or
differential testing [9, 10]. However, there is a lack of solutions that pay attention to automatically
evaluate the properties related to the performance and resource usage of generated code.

In this paper, we leverage the metamorphic testing approach to alleviate the oracle problem in
the context of non-functional testing of code generators. We define the metamorphic relation (i.e.,
test oracle) as a comparison between the variations of performance and resource usage of test suites
running on different versions of generated code. We rely on statistical methods to find the threshold
value from which an unexpected variation is detected. Compared with the original work by Bous-
saa et al. [11], published in the International Conference on Generative Programming: Concepts &
Experiences (GPCE 2016), where they manually identify code generator issues, this paper presents
a fully automatic approach based on metamorphic testing to detect unexpected behaviours (or incon-
sistencies). We evaluate our approach by analysing the performance of Haxe, a popular high-level
programming language that involves a family of code generators. We evaluate the properties related
to the resource usage and performance for five different target software platforms. The experimen-
tal results show that our approach is able to detect, among 95 executed test suites, 11 performance
and 15 memory usage inconsistencies, violating the metamorphic relation. This work is based on
the results of the first author’s PhD thesis [12].

The contributions of this paper are the following:

� We describe our adaptation of the metamorphic approach to the problem of automatic non-
functional testing of code generators. We also describe two statistical techniques that are
applied to define the metamorphic relation. This contribution addresses mainly the oracle
problem when automating the non-functional tests.
� We propose an elastic and reproducible testing environment, based on a virtualized infrastruc-

ture, to ensure the deployment, execution and monitoring of generated code. This contribution
addresses the problem of resource usage monitoring in heterogeneous environments.
� We also report the results of an empirical study by evaluating the non-functional properties

of Haxe code generators. The obtained results provide evidence to support the claim that our
proposed approach is able to automatically detect real issues in code generator families.

The paper is organized as follows. Section 2 presents the context and motivations behind this
work. In particular, we discuss three motivation examples and the challenges we are facing. Section 3
presents an overview of our approach. In particular, we present our metamorphic testing approach
and the infrastructure used to ensure the automatic non-functional testing of code generators.

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1721.
DOI: 10.1002/stvr

LEVERAGING METAMORPHIC TESTING TO DETECT INCONSISTENCIES IN GENERATORS 3 of 26

The evaluation and results of our experiments are discussed in Section 4. Finally, related work,
concluding remarks and future work are provided in Sections 5 and 6.

2. CONTEXT AND MOTIVATIONS

2.1. Code generator families

Today, many customizable code generators are used to easily and efficiently generate code for dif-
ferent software platforms, programming languages, operating systems, etc. This work is based on
the intuition that a code generator is often a member of a family of code generators [13].

Definition 1 (Code generator family)
We define a code generator family as a set of code generators that takes as input the same
language/model and generate code for different target software platforms.

For example, this concept is widely used in industry when applying the “write once, run every-
where” paradigm. Users can benefit from a family of code generators (e.g., cross-platform code
generators [14]) to generate from the manually written (high-level) code, different implementations
of the same program in different languages. This technique is very useful to address diverse software
platforms and programming languages. As motivating examples for this research study, we can cite
three approaches that intensively develop and use code generator families:

2.1.1 Haxe. Haxe‡ [15] is an open source toolkit for cross-platform development, which compiles
to a number of different programming platforms, including JavaScript, Flash, PHP, C++, C# and
Java. Haxe involves many features: the Haxe language, multiplatform compilers and different native
libraries. The Haxe language is a high-level programming language that is strictly typed. This lan-
guage supports both functional and object-oriented programming paradigms. It has a common type
hierarchy, making certain API available on every target platform. Moreover, Haxe comes with a set
of code generators that translate the manually written code (in Haxe language) to different target
languages and platforms. This project is popular (more than 1940 stars on GitHub).

2.1.2. ThingML. ThingML§ is a modelling language for embedded and distributed systems [16].
The idea of ThingML is to develop a practical model-driven software engineering tool-chain that tar-
gets resource-constrained embedded systems such as low-power sensors and microcontroller-based
devices. ThingML is developed as a domain-specific modelling language that includes concepts to
describe both software components and communication protocols. The formalism used is a com-
bination of architecture models, state machines and an imperative action language. The ThingML
tool-set provides a code generator family that translates ThingML-based programs to C, Java and
JavaScript. It includes as well a set of variants for the C and JavaScript code generators to support
specific embedded systems with resource constraints.

2.1.3. TypeScript. TypeScript¶is a typed superset of JavaScript that compiles to plain JavaScript
[17]. In fact, it does not compile to only one version of JavaScript. It can transform TypeScript
to EcmaScript 3, 5 or 6. It can generate JavaScript that uses different system modules (“none”,
“commonjs”, “amd”, “system”, “umd”, “es6” or “es2015”)||. This project is popular (more than
23 750 stars on GitHub).

Functional testing of a code generator family is straightforward. Because the produced programs
are generated form the same input program, the oracle can be defined as a comparison between
their functional outputs, which should be the same. This is commonly known as differential or
back-to-back testing [9, 10]. In fact, based on the three sample projects presented above, we remark

‡http://haxe.org/
§http://thingml.org/
¶https://www.typescriptlang.org/
||Each of this variation point can target different code generators (e.g., function emitES6Module vs. emitUMDModule in
emitter.ts).

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1721.
DOI: 10.1002/stvr

http://haxe.org/
http://thingml.org/
https://www.typescriptlang.org/

4 of 26 M. BOUSSAA ET AL.

that all GitHub code repositories of the corresponding projects use pass/fail unit tests to check the
correctness of the generated code for the target software platform.

In terms of non-functional tests, we observe that ThingML and TypeScript do not provide any
specific tests to check the consistency of code generators in terms of non-functional properties. Haxe
provides two test cases** to benchmark the resulting generated code. One serves to benchmark an
example in which object allocations are deliberately (over) used to measure how memory access/GC
mixes with numeric processing in different target languages. The second test evaluates the network
speed across different target platforms.

2.2. Challenges when testing the non-functional properties

The automatic non-functional testing of code generators raises different challenges. In the following,
we discuss some of them.

2.2.1. The oracle problem. To automate the testing process, test oracles are required to assess
whether a test passes or fails. However, test oracles are not always available and may be hard to
define or too difficult to apply [18]. When it comes to testing the non-functional properties such as
the resource usage or execution speed, this problem becomes more critical. In fact, there is no clear
definition about how the oracle should be defined except the few research efforts [19, 20], where the
generated code performance is compared with the handwritten code as a reference. The main diffi-
culty when testing the generated code is that we cannot just observe the execution of produced code,
but we have to observe and compare the execution of generated programs with equivalent (or ref-
erence) implementations (e.g., in other languages). In the absence of any specification or reference
implementation, the automatic detection of non-functional issues becomes impossible.

2.2.2. Software platforms diversity. Automating the testing process of code generators requires
many system configurations (i.e., execution environments, libraries, compilers, etc.) to efficiently
generate and test the code. For example, the generated software artifacts, for example, written in
different languages such as Java, C#, C++, etc., have to be compiled, deployed and executed across
different target platforms, for example, Android, ARM/Linux, JVM, x86/Linux, etc. Setting up the
testing environment and running tests across multiple software platforms and machines become then
very tedious and time-consuming. In the meantime, to evaluate the memory or CPU usage for exam-
ple, developers have to collect and visualize the resource usage data of running tests across different
platforms. This requires several platform-specific profilers, trackers, instrumenting and monitoring
tools in order to find some inconsistencies or bugs during code execution [5, 6]. Finding inconsisten-
cies within code generators involve analysing and inspecting the code for each execution platform.
For example, one way to handle that is to analyse the memory footprint of software execution and
find memory leaks [21]. Developers can then inspect manually the generated code and find some
fragments of the codebase that have triggered this issue. In short, evaluating the quality of generated
code (e.g., in terms of resource usage and performance) is a manual and hard task. It requires many
technologies and system configurations to handle the diversity of software and hardware platforms.

3. APPROACH OVERVIEW

The key objective of our approach is to address the challenges discussed in Section 2.2. Our
contribution in this work is twofold:

� We first describe our testing infrastructure based on a virtualized environment to provide
effective support to conduct the non-functional testing of code generators. This contribution
addresses the problem of software diversity and resource monitoring.
� Second, we present a methodology, based on metamorphic testing, to automatically detect

inconsistencies in code generator families. This approach addresses the oracle problem when
testing the non-functional properties.

**https://github.com/HaxeFoundation/haxe/tree/development/tests/benchs

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1721.
DOI: 10.1002/stvr

https://github.com/HaxeFoundation/haxe/tree/development/tests/benchs

LEVERAGING METAMORPHIC TESTING TO DETECT INCONSISTENCIES IN GENERATORS 5 of 26

Figure 1. An overview of the virtualized infrastructure used to ensure the automatic code generation and
resource usage monitoring of produced code.

3.1. A virtualized infrastructure for code generators testing and monitoring

As discussed earlier, evaluating the resource usage of automatically generated code is complex
because of the software platforms diversity that exist in the market. One way to overcome this prob-
lem is to use the virtualization technology. We aim to benefit from the recent advances in lightweight
system virtualization, in particular container-based virtualization [22], in order to offer effective
support for automatically deploying, executing and monitoring the generated code in heterogeneous
environment. This technology enables to mimic the execution environment settings and reproduce
the tests in isolated and highly configurable system containers. When it comes to evaluating the
resource consumptions of automatically generated code, this technology becomes very valuable
because it allows a fine-grained resource management and isolation. Moreover, it facilitates resource
usage extraction and limitation of programs running inside containers.

3.1.1. System containers as a lightweight execution environment. Instead of running tests on multi-
ple machines and environment settings, we rely on system containers as a dynamic and configurable
execution environment for running and evaluating the generated programs in terms of resource
usage. System containers are operating system-level virtualization method that allows running
multiple isolated Linux systems on a control host using a single Linux kernel. Container-based vir-
tualization reduces the overhead associated with having each guest running a new installed operating
system such the case for virtual machines [23]. For instance, Docker†† is a popular container-based
technology that automates the deployment of any application as a lightweight, portable and self-
sufficient container, running virtually on a host machine [24, 25]. Using Docker, it is possible to
define preconfigured applications and servers to host as virtual images. It also defines the way the
service should be deployed in the host machine using configuration files called Dockerfiles. We use
then this technology to: (i) configure code generators inside different containers, where we install
all the libraries, compilers and dependencies needed to ensure the code generation and compila-
tion for the target platform (see code generation in Figure 1) and (ii) run tests in different container
instances dedicated to specific software platforms (see code execution in Figure 1). We resume the
main advantages of this approach as follows:

� The use of containers induces little to near zero performance overhead compared with the full
stack virtualization solution [23]. Indeed, instrumentation and monitoring tools for memory
profiling like Valgrind [21] can induce too much overhead.
� Thanks to the use of Dockerfiles, it is possible to easily configure the execution environment

in order to build and customize applications using numerous settings (e.g., generator ver-
sion, dependencies, host IP and OS, optimization options, etc.). Thus, we can use the same

††https://www.docker.com

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1721.
DOI: 10.1002/stvr

https://www.docker.com

6 of 26 M. BOUSSAA ET AL.

configured Docker image to execute different instances of the same application. For hardware
architecture, containers share the same platform architecture as the host machine (e.g., x86,
x64, ARM, etc.).
� Although containers run in isolation, they can share data with the host machine and other

running containers. Thus, non-functional data relative to resource consumption can be gathered
and managed by other containers (i.e., for storage purpose, visualization)

3.1.2. Runtime monitoring engine. In order to monitor the applications (i.e., tests) running within
containers, we provide a monitoring engine that collects at runtime the resource usage metrics (see
runtime monitoring engine in Figure 1). Docker containers rely on Control groups (Cgroups) file
systems provided by the Linux kernel to group processes running within containers and expose a lot
of metrics about the accumulated CPU cycles, memory, block I/O usage, etc. Our monitoring engine
automates then the extraction of these runtime resource usage metrics stored in the Cgroups files.
For example, we access to live resource consumption of each container available at the Cgroups
file system via stats found in “/sys/fs/cgroup/cpu/docker/(longid)/” (for CPU consumption) and
“/sys/fs/cgroup/memory/docker/(longid)/” (for stats related to memory consumption). So we extract
automatically the runtime resource usage statistics relative to the running container (i.e., the gener-
ated code that is running within a container). Then, because we are collecting time series data that
correspond to the resource utilization profiles of programs execution, we save these resource usage
metrics within a time series database. Hence, we can run queries and define non-functional metrics
from historical data (see resource usage extraction in Figure 1). For example, the following query
reports the maximum memory usage of container generated_code_v1 since its creation:

s e l e c t max (memory_usage) from s t a t s where c o n t a i n e r _ n a m e = ‘ ‘ g e n e r a t e d _ c o d e _ v 1 ’ ’

For now, we presented the technical solution adopted in this work to ensure the automatic
code generation and resource usage extraction. We describe in the following our contribution for
automatic inconsistencies detection in code generator families.

3.2. A metamorphic testing approach for automatic inconsistencies detection in code generator
families

One of the most important aspects we are interesting in while testing code generators is the test ora-
cle. The testing community has proposed several approaches [18, 26] to alleviate the oracle problem
(e.g., specified, implicit and derived oracles). Among the attractive solutions that can be applied to
test code generators, we distinguish the metamorphic testing approach to derive oracles from proper-
ties of the system under test. In the following, we describe the basic concept of metamorphic testing
and our adaptation of this method to the problem of non-functional testing of code generators.

3.2.1. Basic concept of metamorphic testing. In this section, we shall introduce the basic concept
of metamorphic testing (MT), proposed by Chen et al. [27]. The idea of MT is to derive test oracles
from the relation between test cases’ outputs instead of reasoning about the relation between test
inputs and outputs.

Metamorphic testing recommends that, given one or more test cases (called “source test cases”,
“original test cases” or “successful test cases”) and their expected outcomes (obtained through multi-
ple executions of the target program under test), one or more follow-up test cases can be constructed
to verify the necessary properties (called Metamorphic Relations [MRs]) of the system or function
to be implemented. In this case, the generation of the follow-up test cases and verification of the test
results requires the respect of the MR.

The classical example of MT is that of a program that computes the sin function. A useful meta-
morphic relation for sin functions is sin(x) = sin(� - x). Thus, even though the expected value for
the source test case sin(50), for example, is not known, a follow-up test case can be constructed to
verify the MR defined earlier. In this case, the follow-up test case is sin(� - 50) that must produce
an output value that is equal to the one produced by the original test case sin(50). If this prop-
erty is violated, then a failure is immediately raised. MT generates follow-up test cases as long as

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1721.
DOI: 10.1002/stvr

LEVERAGING METAMORPHIC TESTING TO DETECT INCONSISTENCIES IN GENERATORS 7 of 26

the metamorphic relations are respected. This is an example of a metamorphic relation: an input
transformation that can be used to generate new test cases from existing test data and an output
relation MR that compares the outputs produced by a pair of test cases. MR can be any properties
involving the inputs and outputs of two or more executions of the target program such as equalities,
inequalities, convergence constraints and many others.

Because MT checks the relation among several executions rather than the correctness of individ-
ual outputs, it can be used to fully automate the testing process without any manual intervention. We
describe in the next section our adaptation of MT to the problem of non-functional testing of code
generator families.

3.2.2. Adaptation of the MT approach to detect code generator inconsistencies. In general, MT can
be applied to any problem in which a necessary property involving multiple executions of the target
function can be formulated. Some examples of successful applications are presented by Zhou et al.
[28]. We note that MT is recently applied to compilers testing [29–31].

To apply MT, there are four basic steps to follow:

1. Find the properties of the system under test: The system should be investigated manually in
order to find intended MRs defining the relation between inputs and outputs. This is based on
the source test cases.

2. Generate/select test inputs that satisfy the MR: This means that new follow-up test cases must
be generated or selected in order to verify their outputs using the MR.

3. Execute the system with the inputs and get the outputs: Original and follow-up test cases are
executed in order to gather their outputs.

4. Check whether these outputs satisfy the MR, and if not, report failures.

We develop now these four points in details to show how we can adapt the MT approach to the
code generator testing problem.

3.2.3. Metamorphic relation. Step 1 consists of identifying the necessary properties of the program
under test and represents them as metamorphic relations. Our MT adaptation is based on the MR
definition presented by Chan et al. [31, 32]. In fact, a code generator family can be seen as a function:
C W I ! P , where I is the domain of valid high-level source programs, and P is the domain
of target programs that are automatically generated by the different code generators of the same
family. The property of a code generator family implies that the generated programs P share the
same behaviour as it is specified in I .

The availability of multiple generators with comparable functionality (i.e., code generator family)
allows us to adapt the MT in order to detect non-functional inconsistencies. In fact, if we can find
out our proper relations R1 and R2 (see Equation 1) between the inputs and outputs, we can get
the metamorphic relation and conduct MT to evaluate the behaviour of our code generators. Let
f .P.ti // be a function that calculates the non-functional output (such as execution time or memory
usage) of the input test suite (ti), running on a generated program (P). Because we have different
program versions generated in the same family, we denote by .P1.ti /, P2.ti /,. . . , Pn.ti // the set of
generated programs. The corresponding outputs would be .f .P1/, f .P2/,. . . , f .Pn//. Thus, our
MR looks like this:

R1.P1.ti /; P2.ti /; : : : ; Pn.ti //)

R2.f .P1.ti //; f .P2.ti //; : : : ; f .Pn.ti /// (1)

To define the R1 relation, we use the following equation P1.ti / � P2.ti / to denote the functional
equivalence relation between two generated programs P1 and P2 from the same family. This means
that the generated programs P1 and P2 have the same behavioural design, and for any test suite
ti , they have the same functional output. If this relation is not satisfied, then there is at least one
faulty code generator that produced incorrect code. In this this work, we focus on the non-functional
properties, so we ensure that this relation is satisfied by excluding all tests that do not exhibit the
same behaviour.

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1721.
DOI: 10.1002/stvr

8 of 26 M. BOUSSAA ET AL.

Figure 2. The metamorphic testing approach for automatic detection of code generator inconsistencies.

To define theR2 relation, because we are comparing equivalent implementations of the same pro-
gram written in different languages, we assume that the variation of memory usage and execution
time of test suites execution across the different versions is more or less the same. Obviously, we are
expecting to get a variation between different executions because we are comparing the execution
time and memory usage of test suites that are written in different languages and executed using dif-
ferent technologies (e.g., interpreters for PHP, JVM for Java, etc.). This observation is also based on
initial experiments, where we evaluate the resource usage/execution time of several test suites across
a set of equivalent versions generated from the same code generator family (presented in details in
Section 4). As a consequence, we use the notation �ff .P1.ti //; f .P2.ti //g to designate the varia-
tion of memory usage or execution time of test suite execution ti across two versions of generated
code P1 and P2 written in different languages. We suppose that this variation should not exceed a
certain threshold value T , otherwise, we raise a code generator inconsistency. As a consequence, we
define a code generator inconsistency as a generated code that exhibits an unexpected behaviour in
terms of performance or resource usage compared with all equivalent implementations in the same
code generator family.

Based on this intuition, the MR can be represented as

P1.ti / � P2.ti / � : : : � Pn.ti /)

�ff .P1.ti //; f .P2.ti //; : : : ; f .Pn.ti //g < T .n > 2/: (2)

This MR is equivalent to say that if a set of functionally equivalent programs are generated using
the same code generator family ..P1.ti /, P2.ti /; : : : ; Pn.ti //, and with the same input test suite ti ,
then the comparison of their non-functional outputs .f .P1.ti //, f .P2.ti //,. . . , f .Pn.ti /// defined
by the variation � should not exceed a specific threshold value T .

The generated code that violates this metamorphic property represents an inconsistency, and its
corresponding code generator is considered as defective.

3.2.4. Metamorphic testing. So far, we have defined the MR necessary for inconsistencies detec-
tion. We describe now our automatic metamorphic testing approach based on this relation (Steps 2, 3
and 4). Figure 2 shows the approach overview. The code generator family takes the same input pro-
gram I and generate a set of equivalent test programs .P1, P2; : : : ; Pn/. This corresponds to Step 2.
In our MT adaptation, follow-up test cases represent the equivalent test programs that are automati-
cally generated using a code generator family. Test suites are also generated automatically because
we suppose that they are already defined at design time. In fact, the same test suite (test cases + input
data values) is passed to all generated programs. Then, generated programs and their corresponding
test suites are executed (Step 3). Afterwards, we measure the memory usage or execution time of
these generated programs .f .P1.ti //, f .P2.ti //,. . . , f .Pn.ti ///. Finally, the execution results are
compared and verified using the MR defined earlier (Step 4). In this process, inconsistencies are
reported when one of the follow-up equivalent test programs exhibits an unexpected behaviour (i.e.,
high variation), violating the MR.

3.2.5. Variation threshold. One of the questions that may be raised when applying our MT
approach is how we can find the right variation threshold T from which an inconsistency is detected?
Answering this question is very important to prove the effectiveness of our MT approach. To do so,

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1721.
DOI: 10.1002/stvr

LEVERAGING METAMORPHIC TESTING TO DETECT INCONSISTENCIES IN GENERATORS 9 of 26

we conduct a statistical analysis in order to find an accurate threshold value T . Before that, the non-
functional outputs need to be scaled to make them suitable for the statistical methods employed by
our methodology. Thus, we describe first our process for data preparation.

Data preparation As depicted in Table I, each program comes with a set of test suites .t1, t2,. . . , tm/.
Evaluating a test suite requires the calculation of the memory usage or execution time f .P1.ti //,
f .P2.ti //,. . . , f .Pn.ti //; where .1 � i � m/ for all target software platforms. Thus, the obtained
results represent a matrix where columns indicate the non-functional value (raw data) for each target
software platform and rows indicate the corresponding test suite.

The non-functional data should be converted into a format that can be understood by our statistical
methods. One way to compare these non-functional outputs is to study the factor differences. In
other words, we would evaluate for each target platform the number of times (the factor) that a test
suite takes to run compared with a reference execution. The reference execution corresponds to the
minimum obtained non-functional value of ti execution across the n target platforms. The resulting
factor is the ratio between the actual non-functional value and the minimum value obtained among
the n versions. The following equation is applied for each cell in order to transform our data:

F.f .Pj .ti /// D
f .Pj .ti //

Min.f .P1.ti //; : : : ; f .Pn.ti ///
: (3)

The reference execution will automatically get a score value F D 1. The maximum value is
the one leading to the maximum deviation from the reference execution. For example, let P1 be
the generated program in Java. If the execution time needed to run t1 yields to the minimum value
f .P1.t1// compared with other versions, then f .P1.t1// will get a factor value F equal to 1 and the
other versions will be divided by f .P1.t1// to get the corresponding factor values compared with
Java.

Statistical analysis. In our MT approach, an inconsistency is a resource usage/performance varia-
tion that exceeds a specific threshold value T . We propose the use of two popular variation analysis
methods [33]: PCA and range charts (R-Chart). Table II gives an overview of these two statisti-
cal methods. The key objective of these methods is to evaluate the memory usage and performance
variation and consequently defining an appropriate T value for our MR.

R-Chart. In this approach, the variation evaluation between the different versions is determined
by comparing the non-functional measurements based on a statistical quality control technique
called R-Chart or range chart [33]. R-Chart is used to analyse the variation within processes. It is
designed to detect changes in variation over time and to evaluate the consistency of process varia-
tion. R-Chart uses control limits (LCL and UCL) to represent the limits of variation that should be
expected from a process. LCL denotes the lower control limit and UCL denotes the upper control
limit.

Table I. Results of test suites execution.

Target Platform 1 Target Platform 2 . . . Target platform n

t1 f .P1.t1// f .P2.t1// . . . f .Pn.t1//
t2 f .P1.t2// f .P2.t2// . . . f .Pn.t2//
.
tm f .P1.tm// f .P2.tm// . . . f .Pn.tm//

Table II. Variation analysis approaches.

Technique Method

R-Chart Define T as a variation between an upper and lower control limit
PCA A cutoff value of the PC score distances defines the T

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1721.
DOI: 10.1002/stvr

10 of 26 M. BOUSSAA ET AL.

Figure 3. The R-Chart process.

By definition, when a process is within the control limits, any variation is considered as normal. It
is said that the process is in control. Outside limit variations, however, it is considered as deviation,
and the R-Chart is considered as out of control that means the process variation is not stable. Thus,
it tells that there is an inconsistency leading to this high variation deviation (see Figure 3).

In our case, a process represents the n non-functional outputs obtained after the execution of a test
suite ti . As we defined the MR, the variation within a single process has to be lower than a threshold
T . According to R-Charts, this variation must be between the LCL and UCL.

Therefore, for each test suite, we calculate the range R corresponding to the difference between
the maximum and minimum non-functional outputs across all target platforms as

R.ti / DMax.f .P1.ti //; : : : ; f .Pn.ti ///

�Min.f .P1.ti //; : : : ; f .Pn.ti ///: (4)

R quantifies the variation results when running the same test suite ti across different program ver-
sions. To determine whether the variation is in control or not, we need to determine the control limit
values. UCL and LCL reflect the actual amount of variation that is observed. Both metrics are a
function of R-bar (NR). NR is the average of R for all test suites. The UCL and LCL are calculated
as follows:

UCL D D4 NR;

LCL D D3 NR;
(5)

where D4, D3, are control chart constants that depend on the number of variables inside each
process (see constants values‡‡).

For example, for a family composed of less than seven code generators, the D3 value is equal to
0, and as a consequence, LCL = 0. In this case, the UCL represents the threshold value T from
which we detect a high deviation from NR, leading to an inconsistency. As we stated earlier, the UCL
is a function of NR, and NR is a function of range differences. So the UCL value (or T) is sensitive
to new test suites. So when a new test suite is executed, the T value is updated, and the variation is
evaluated with the new threshold value.

We present in the following an alternative statistical approach to analyse the variation of all our
data.

Principal component analysis. With a large number of program versions, the matrix of non-
functional data (Table I) may be too large to study and interpret the variation properly. There would
be too many pairwise correlations between the different versions to consider and the variation is
impossible to display (graphically) when test suites are executed in more than three target software
platforms. With 12 variables, for example, there will be more than 200 three-dimensional scatter
plots to be designed to study the variation and correlations. To interpret the data in a more mean-
ingful form, it is therefore necessary to reduce the number of variables composing our variability
model.

‡‡http://www.bessegato.com.br/UFJF/resources/table_of_control_chart_constants_old.pdf

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1721.
DOI: 10.1002/stvr

http://www.bessegato.com.br/UFJF/resources/table_of_control_chart_constants_old.pdf

LEVERAGING METAMORPHIC TESTING TO DETECT INCONSISTENCIES IN GENERATORS 11 of 26

Principal component analysis§§ is a multivariate statistical approach that uses an orthogonal trans-
formation to convert a set of observations of possibly correlated variables into a set of values of
linearly uncorrelated variables called principal components (PCs). It can be applied when data
are collected on a large number of variables from a single observation. Thus, we apply the PCA
approach to our case study because our dimension space, as it is presented in Table I, is composed of
a set of processes (test suites) where n variables (e.g., target programming languages) are compos-
ing each observation. The variability within our model is correlated to these n variables representing
the test suites running on n target platforms.

The main objective of applying PCA is to reduce the dimensionality of the original data and
explain the maximum amount of variance with the fewest number of principal components. To do
so, PCA is concerned with summarizing the variance–covariance matrix. It involves computing the
eigenvectors and eigenvalues of the variance–covariance matrix. The eigenvectors are used to project
the data from n dimensions down to a lower dimensional representation. The eigenvalues give the
variance of the data in the direction of the eigenvector. The first principal component is calculated
such that it accounts for the greatest possible variance in the data set. The second principal compo-
nent is calculated in the same way, with the condition that it is uncorrelated with (i.e., perpendicular
to) the first principal component and that it accounts for the next highest variance. PCA uses many
data transformations and statistical concepts. We are not interested in studying all the mathematical
aspects of PCA. Thus, we use an existing R package¶¶ to transform and reduce our data into two
PCs in order to visualize the variation of all our data points in a two-dimensional space.

Our intuition behind the PCA approach is to conduct a general and complete analysis of variation
in order to find extreme variation points at the boundaries of the multivariate data. These extreme
points represent, from a statistical perspective, outliers. Following our MT approach, these points
correspond to the inconsistencies (or deviations) we would detect. Outliers have an important influ-
ence over the PCs. An outlier is defined as an observation which does not follow the model followed
by the majority of data. One way to detect outliers is to use a metric called score distance (SD).
SD measures the dispersion of the observations within the PCA space. It thus measures how far an
observation lies from the rest of the data within the PCA subspace. SD measures the statistical dis-
tance from a PC score to the centre of scores. For an observation xi , the score distance is defined
as

SDi D

vuut
aX
jD1

t2ij

�j
; (6)

where a is the number of PCs forming the PCA space, tij are the elements of the score matrix
obtained after running PCA, and �j is the variance of the j th PC that corresponds to the j th eigen-
value. In order to find the outliers, we compute the 97.5% quantile Q of the chi-square distribution

as a cutoff value of the SD (
q
�2a;0:975). It corresponds to a confidence ellipse that covers 97.5%

of the data points. According to the table of the chi-square distribution||||, this value is equal top
7:38 D 2:71. Any sample whose SD is larger than the cutoff value is identified as an outlier (or

inconsistency). This cutoff value represents the variation threshold T we would define for our MR
using the PCA approach.

In short, PCA and R-Chart represent two statistical methods that help us to evaluate the variation
of our output data and to define the threshold value from which an inconsistency is detected. On
the one hand, the R-Chart method evaluates the variation using the range difference between the
data and defines the T as a control limit. PCA represents an alternative that enables us to reduce the
variability space and then analyse the variation of all data graphically in a two-dimensional space.
The T is based on an outlier detection method that is applied on a multivariate data matrix. The
two methods are complementary, and the main objective of applying both of them is to evaluate the
accuracy of our approach, verifying if we can detect the same inconsistencies.

§§https://en.wikipedia.org/wiki/Principal_component_analysis
¶¶http://factominer.free.fr/
||||https://store.fmi.uni-sofia.bg/fmi/statist/education/Virtual_Labs/tables/tables3.html

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1721.
DOI: 10.1002/stvr

https://en.wikipedia.org/wiki/Principal_component_analysis
http://factominer.free.fr/
https://store.fmi.uni-sofia.bg/fmi/statist/education/Virtual_Labs/tables/tables3.html

12 of 26 M. BOUSSAA ET AL.

We move now to present the evaluation of our approach.

4. EVALUATION

So far, we have presented an automatic approach for detecting inconsistencies within code generator
families. So we shape our goal as this research question:

RQ: How effective is our metamorphic testing approach to automatically detect inconsistencies
in code generator families?

To answer this question, we evaluate the implementation of our approach by explaining the design
of our empirical study and the different methods we used to assess the effectiveness of our approach.
The experimental material is available for replication purposes***.

4.1. Experimental setup

4.1.1. Code generators under test: Haxe compilers. In order to test the applicability of our
approach, we conduct experiments on a popular high-level programming language called Haxe†††

[15] and its code generators.
Haxe comes with a set of compilers that translate the manually written code (in Haxe language)

to different target languages and platforms.
The process of code transformation and generation can be described as follows: Haxe compil-

ers analyse the source code written in Haxe language. Then, the code is checked and parsed into a
typed structure, resulting in a typed abstract syntax tree (AST). This AST is optimized and trans-
formed afterwards to produce source code for the target platform/language. Haxe offers the option of
choosing which platform to target for each program using command-line options. Moreover, some
optimizations and debugging information can be enabled through command-line interface, but in
our experiments, we did not turn on any further options.

The Haxe code generators constitute the code generator family we would evaluate in this work.

4.1.2. Cross-platform benchmark. One way to prove the effectiveness of our approach is to create
benchmarks. Thus, we use the Haxe language and its code generators to build a cross-platform
benchmark. The proposed benchmark is composed of a collection of cross-platform libraries that
can be compiled to different targets. In these experiments, we consider a code generator family
composed of five target Haxe compilers: Java, JS, C++, CS and PHP. To select the cross-platform
libraries, we explore github and we use the Haxe library repository‡‡‡. So we select seven libraries
that provide a set of test suites with high code coverage scores.

In fact, each Haxe library comes with an API and a set of test suites. These tests, written in Haxe,
represent a set of unit tests that cover the different functions of the API. The main task of these tests
is to check the correct functional behaviour of generated programs. To prepare our benchmark, we
remove all tests that fail to compile to the five targets (i.e., errors, crashes and failures), and we keep
only those who are functionally correct in order to focus on the non-functional properties. Moreover,
we add manually new test cases to some libraries in order to extend the number of test suites. The
number of test suites depends on the library size.

We use then these test suites to transform the functional tests into stress tests. We run each test
suite 1 K times to get comparable values in terms of performance and resource usage. Table III
describes the Haxe libraries that we have selected in this benchmark to evaluate our approach and
the number of test suites used per benchmark. In total, we depict 95 test suites to run across the five
target software platforms.

4.1.3. Evaluation metrics used. We evaluate the efficiency of generated code using the following
non-functional metrics:

***https://testingcodegenerators.wordpress.com/
†††http://haxe.org/
‡‡‡https://lib.haxe.org/all/

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1721.
DOI: 10.1002/stvr

https://testingcodegenerators.wordpress.com/
http://haxe.org/
https://lib.haxe.org/all/

LEVERAGING METAMORPHIC TESTING TO DETECT INCONSISTENCIES IN GENERATORS 13 of 26

Table III. Description of selected benchmark libraries.

Library #TestSuites Description

Colour 19 Colour conversion from/to any colour space
Core 51 Provides extensions to many types
Hxmath 6 A 2D/3D math library
Format 4 Format library such as dates, number formats
Promise 5 Library for lightweight promises and futures
Culture 5 Localization library for Haxe
Math 5 Generation of random values
Total 95

Figure 4. Infrastructure settings for running experiments.

� Memory usage: It corresponds to the maximum memory consumption of the running test suite.
Memory usage is measured in MB.
� Execution time: The execution time of test suites is measured in seconds.

We recall that our testing infrastructure is able to evaluate other non-functional properties such as
code generation time, compilation time, code size and CPU usage. We choose to focus, in this exper-
iment, on the performance (i.e., execution time) and resource usage (i.e., memory usage). Collecting
resource usage metrics is ensured by our monitoring infrastructure, presented in Section 3.1.

4.1.4. Setting up infrastructure. To assess our approach, we configure our previously proposed
container-based infrastructure in order to run experiments on the Haxe case study. Figure 4 shows a
big picture of the testing infrastructure considered in these experiments.

First, a first component is created in where we install the Haxe code generators and compilers. It
takes as an input the Haxe library we would evaluate and the list of test suites (Step 1). It produces
as an output the source code files relative to the target software platform. Afterwards, generated
files are compiled (if needed) and automatically executed within the execution container (Step 2).
This component is a preconfigured container instance where we install the required execution envi-
ronments such as interpreters (for PHP), node (for JS), mono (for C#), etc. In the meantime, while
running test suites inside the container, we collect the runtime resource usage data (Step 3). To do so,

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1721.
DOI: 10.1002/stvr

14 of 26 M. BOUSSAA ET AL.

we integrate cAdvisor, a Container Advisor§§§ widely used in different projects such as Heapster¶¶¶

and Google Cloud Platform||||||. cAdvisor monitors the running containers at runtime and collects
resource usage information stored in Cgroups files. To save this data, we use InfluxDB****, an open
source distributed time series database available for Docker as a back-end (Step 4). InfluxDB allows
us to execute SQL-like queries on the database or to directly run HTTP requests to extract data. We
also provide a dashboard to run queries and view different resource consumption profiles of running
containers, through a Web UI. As a visualization container, we use Grafana††††, a time series visual-
ization tool available for Docker that displays live results over time in much pretty looking graphs.
This component is not used during these experiments. Instead, we directly extract the resource usage
information from InfluxDB. Finally, in Step 5, we apply our metamorphic approach to analyse the
non-functional data and detect code generator inconsistencies.

We use the same hardware across all experiments: an AMD A10-7700 K APU Radeon(TM) R7
Graphics processor with 4 CPU cores (2.0 GHz), running Linux with a 64-bit kernel and 16 GB of
system memory. We run the experiments on top of a private data centre that provides a bare-metal
installation of Docker. On a single machine, containers are running sequentially, and we pin p cores
and n Gbytes of memory for each container‡‡‡‡. Once the execution is done, resources reserved
for the container are automatically released to enable spawning next containers. Therefore, the host
machine will not suffer too much from performance trade-offs.

4.2. Experimental methodology and results

In the following paragraphs, we report the methodology we used to answer RQ and the results of
our experiments.

4.2.1. Method. We now conduct experiments based on the new created benchmark libraries. The
goal of running these experiments is to observe and compare the behaviour of generated code using
the defined MR in order to detect code generator inconsistencies.

Therefore, we set up, first, our container-based infrastructure as it is presented in Section 3.1 in
order to generate, execute and collect the memory usage of our test suites. Afterwards, we prepare
and normalize the gathered data to make it valuable for statistical analysis. Then, we conduct the
R-Chart and PCA analysis as described in Section 3.2.5 in order to analyse the performance and
resource usage variations. This will lead us to define an appropriate formula of the MR, used to
automatically detect inconsistencies within Haxe code generators (Section 3.2.4). Finally, we report
the inconsistencies we have detected.

4.2.2. Results.

R-Chart results The results of R-Charts for the seven benchmark programs relative to the perfor-
mance and resource usage variations are reported in Figures 5 and 6. In Figure 5, we report the
performance variation corresponding to the range differenceR between the maximum and minimum
execution time of each test suite across the five targets (Java, JS, C++, C# and PHP).

The LCL in our experiments is always equal to 0 because the D3 constant value as defined in
Equation (5), is equal to zero according to the R-Chart constants table. In fact, the D3 constant
changes depending on the number of subgroups. In our experiments, our data record is composed of
five subgroups corresponding to the five target programming languages. The central line (in green)
corresponds to NR. This value changes from one benchmark to another depending on the average of
R for all test suites in the benchmark. As a consequence, UCL, which is a function of NR, changes

§§§https://github.com/google/cadvisor
¶¶¶https://github.com/kubernetes/heapster
||||||https://cloud.google.com/
****https://github.com/influxdata/influxdb
††††https://github.com/grafana/grafana
‡‡‡‡p and n can be configured
http://www.bessegato.com.br/UFJF/resources/table_of_control_chart_constants_old.pdf

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1721.
DOI: 10.1002/stvr

https://github.com/google/cadvisor
https://github.com/kubernetes/heapster
https://cloud.google.com/
https://github.com/influxdata/influxdb
https://github.com/grafana/grafana
http://www.bessegato.com.br/UFJF/resources/table_of_control_chart_constants_old.pdf

LEVERAGING METAMORPHIC TESTING TO DETECT INCONSISTENCIES IN GENERATORS 15 of 26

(A)

(E) (F) (G)

(C) (D)

Figure 5. Performance variation of test suites across the different Haxe benchmarks. (a) R-Chart of the Core
benchmark program. (b) R-Chart of the Colour benchmark program. (c) R-Chart of the Hxmath benchmark
program. (d) R-Chart of the Format benchmark program. (e) R-Chart of the Promise benchmark program.

(f) R-Chart of the Culture benchmark program. (g) R-Chart of the Math benchmark program.

dynamically as long as we add new test suites to the experiments. UCL is equal to D4 � NR, where
D4 D 2:114 according to the R-Chart constants table. We note that the LCL parameter value is
appropriate to each benchmark program. We made the threshold values specific to each benchmark
because we believe that the variation is highly dependent on the application domain and on the
program under test. The R-Charts used for visualizing the memory usage variation follow the same
concept as we have just been describing for performance variation.

Results in Figure 5, show that most of the performance variations are in the interval Œ0; UCL�,
which corresponds to the in-control variation zone as it is described in Section 3.2.5. However, we
remark for several test suites that the performance variation becomes relatively high (higher than
the UCL value of the corresponding benchmark program). We detect 11 among the 95 performance
variations lying in the out of control variation zone. For the other test suites, the variation is even less
than the total average variations NR. There are only seven test suites among the remaining 84 ones,
where the variation lies in the interval Œ NR;UCL�. This variation is high, but we are not detecting it
as a performance deviation because according to the R-Chart, variation in this zone is still in control.
The 11 performance deviations we have detected can be explained by the fact that the execution
time of one or more test suites varies considerably from one language to another. This argues the
idea that the code generator has produced suspect code behaviour, which led to a high performance
variation. We provide later further explanation of the source of such variation.

Similarly, Figure 6 resumes the comparison results of test suites execution regarding the memory
usage. The variations in this experiment are more important than previous results. This can be argued
by the fact that the memory utilization and allocation patterns are different from one language to
another. Nevertheless, we can recognize some points, where the variation is extremely high. Thus,
we detect 15 among 95 test suites that exceed the corresponding UCL value. When the variation is
below UCL, we detect 14 among the 80 remaining test suites where the variation lies in the interval

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1721.
DOI: 10.1002/stvr

16 of 26 M. BOUSSAA ET AL.

Figure 6. Memory usage variation of test suites across the different Haxe benchmarks. (a) R-Chart of the
Core benchmark program. (b) R-Chart of the Colour benchmark program. (c) R-Chart of the Hxmath bench-
mark program. (d) R-Chart of the Format benchmark program. (e) R-Chart of the Promise benchmark

program. (f) R-Chart of the Culture benchmark program. (g) R-Chart of the Math benchmark program.

Œ NR;UCL�, which is relatively high. One of the reasons that caused this variation may occur when
the test suite executes some parts of the code (in a specific language) that strangely consume a lot
of resources. This may not be the case when the variation is lower than NR for example.

To resume, we have detected 11 extreme performance variations and 15 extreme memory usage
variations among the 95 executed test suites. We assume then that defective code generators, in iden-
tified points, represent a threat for software quality since the generated code has shown symptoms
of poor quality design.

PCA results We apply the PCA approach as an alternative to the R-Chart approach. Figure 7 shows
the dispersion of our data points in the PC subspace. PC1 and PC2 represent the directions of our
two first principal components, having the highest orthogonal variations. Our data points represent
the performance variation (Figure 7a) and the memory usage variation (Figure 7b) of the 95 test
suites we have executed. Variation points are coloured according to the benchmark program they
belong to (displayed in the figure legend). At the first glance, we can clearly see that the variation
points are situated in the same area except some points that lie far from this data cluster. In Figure 7a,
the pink points corresponding to the Math benchmark show visually the largest variation. The three
Core test suites (in red), which are identified as performance deviations in R-Chart, show also a
deviation in the PCA scatter plot. Point 91 relative to the Math benchmark is deviating from the
cloud point. However, in the R-Chart diagram, it is not detected as a performance deviation (see the
test suite 3 of Figure 5g). In fact, this test suite takes more than 80 times to run. Compared with
other test suites, the performance variation does not exceed 80. In effect, PCA performs a complete
analysis of the whole data we have collected in all benchmarks. Thus, variations are displayed with
respect to all test suites variations in all benchmarks. The variation evaluation is not limited within

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1721.
DOI: 10.1002/stvr

LEVERAGING METAMORPHIC TESTING TO DETECT INCONSISTENCIES IN GENERATORS 17 of 26

Figure 7. PCAs showing the dispersion of our data over the PC subspace. (a) Test suites relative to the
execution times. (b) Test suites relative to the memory consumptions.

(A) (B)

Figure 8. Diagnostic plots using score distance SD. The horizontal line indicates the critical value separating
regular observations from outliers (97.5%). (a) Performance deviations. (b) Memory usage deviations.

the benchmark program as we used to do using R-Charts. We report the same results in Figure 7b
about the memory usage variation in the PCA.

To confirm this observation, we present in Figure 8 the results of our outliers detection approach.
We identify four inconsistencies (or outliers) in each diagnostic plot. Inconsistencies in Figure 8a
are relative to the performance deviations. Points 30 and 31 correspond to the test suites 12 and
11 in benchmark Core of Figure 5a. Points 91 and 95 correspond to the test suites 3 and 1 in
benchmark Math of Figure 5g. For memory usage variation, we detect points 25, 29, 82 and 92 that
corresponds relatively to the test suites 21 and 6 of benchmark Core, 2 of benchmark Promise, and 3
of benchmark Math. We can clearly see that this technique helps to identify extreme-value outliers,
which are mostly covered by the R-Chart approach. We used 97.5% quantile of the chi-square
distribution to define the cutoff value that is commonly used in the literature [34, 35].

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1721.
DOI: 10.1002/stvr

18 of 26 M. BOUSSAA ET AL.

Table IV. Raw data values of test suites that led to the highest variation in terms of execution
time.

Benchmark Test Suite Java JS CPP CS PHP UCL(R) Defective CG

Colour TS19 1.90 1 2.37 3.31 61.84 13.08 PHP
TS4 1 1.59 1.67 2.78 148.20 PHP
TS11 1.14 2.71 1 3.63 258.94 PHP
TS12 1.28 2.94 1 3.36 261.36 PHPCore

TS13 1 1.05 1.86 2.39 50.30

43.62

PHP
TS1 2.38 1.43 1 2.82 51.72 PHPHxmath TS3 2.14 1.10 1 2.25 50.56 42.97 PHP

Format TS2 1.16 1.27 1 3.35 81.85 70.66 PHP
Promise TS2 1.52 1.85 1 1.51 27.67 21.76 PHP
Culture TS5 1.62 1 1.27 2.02 27.29 14.47 PHP
Math TS1 4.15 1 5.41 4.70 481.68 273.24 PHP

Table V. Raw data values of test suites that led to the highest variation in terms of memory usage.

Benchmark Test suite Java JS CPP CS PHP UCL Defective CG

TS4 1 2.29 1.47 3.59 82.46 PHP
TS5 1 3.08 1.83 4.53 109.69 PHPColour
TS14 1 1.32 1.00 2.03 64.45

43.53
PHP

TS6 250.77 71.71 1 69.90 454.15 PHP & Java
TS20 2.31 1.34 1 3.27 296.10 PHP
TS21 11.90 1 14.63 36.18 620.22 PHP
TS22 1 2.70 1.74 4.69 247.32 PHP
TS32 270.78 2.27 1 5.61 153.37 Java
TS33 1.82 1.12 1 54.19 250.35 PHP
TS34 1 1.17 1.48 3.90 236.97 PHP

Core

TS40 160.84 1.10 1 49.43 259.20

190.03

PHP
Hxmath TS2 1 1.16 1.91 2.82 296.16 181.11 PHP
Promise TS2 214.53 92.45 1 57.68 224.41 106.82 PHP & Java
Culture TS4 2.75 1.01 2.52 1 52.47 34.63 PHP
Math TS3 1.29 1 1.72 3.60 675.00 464.80 PHP

Detected inconsistencies Now that we have observed the performance and memory usage variations
of test suites execution, we can analyse the extreme points we have previously detected in order to
understand the source of such deviation. For that reason, we present in Tables IV and V the raw data
values of these test suites leading to an extreme variation in terms of execution time and memory
usage. We report the inconsistencies gathered from the first approach, R-Chart.

Table IV shows the execution time factor of each test suite execution in a specific target language.
This factor is scaled with respect to the the lowest execution time among the five targets. We also
report the defined UCL value per benchmark. In the last column, we report the code generator that
caused such large deviation. To do so, we designate by defective CG, the code generator that led
to a performance variation higher than the UCL value. We can clearly see that the PHP code has
a singular behaviour regarding the performance with a factor ranging from x27.29 for test suite 5
in benchmark Culture (Culture_TS5) to x481.7 for Math_TS1. For example, if Math_TS1 takes 1
minute to run in JS, the same test suite in PHP will take around 8 h to run, which is a very large
gap. The highest detected factor for other languages is x5.41 that is not negligible, but it represents
a small deviation compared with PHP deviations. While it is true that we are comparing different
versions of generated code, it was expected to get some variations while running test suites in terms
of execution time. However, in the case of PHP code generator, it is far to be a simple variation, but
it is a code generator inconsistency that led to such performance regression.

Meanwhile, we gather information about the points that led to the highest variation in terms of
memory usage. Table V shows these results. Again, we can identify a singular behaviour of the
PHP code regarding the memory usage with a factor ranging from x52.47 to x675. For other test
suite versions, the factor varies from x1 to x160.84. We observe as well a singular behaviour of

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1721.
DOI: 10.1002/stvr

LEVERAGING METAMORPHIC TESTING TO DETECT INCONSISTENCIES IN GENERATORS 19 of 26

the Java code for Core_TS6, Core_TS32 and Promise_TS2, yielding to a variation higher than the
UCL. These results prove that the PHP and Java code generators are not always efficient and they
constitute a threat for the generated software in terms of memory usage.

To give more insights about the source of this issue, we provide in the following further analysis
of these inconsistencies.

4.2.3. Analysis. These inconsistencies need to be fixed by code generator experts in order to
enhance the quality of generated code (e.g., PHP code). Because we are proposing a black-box
testing approach, our solution is not able to provide more accurate and detailed information about
the part of code causing these performance issues, which is one of the limitations of our testing
approach.

Therefore, to understand this unexpected behaviour of the PHP code when applying the test suite
Core_TS4, for example, we looked (manually) into the PHP code corresponding to this test suite.
We observe the intensive use of “arrays” in most of the functions executed by the test suite. In fact,
native arrays in PHP are allocated dynamically that leads to a slower write time because the memory
locations needed to hold the new data is not already allocated. Thus, slow writing speed damages
the performance of PHP code and impacts consequently the memory usage. As an alternative, PHP
library has introduced much more advanced functions such as array_fill and specialized abstract
types such as “SplFixedArray”§§§§ to overcome this limitation. For example, “SplFixedArray” pre-
allocates the necessary memory and allows a faster array implementation, thereby solving the issue
of slower write times. To follow our intuition, we change these two parts in the generated code, and
we measure again the execution time and memory usage of the corresponding test suite. As a results,
we improve the PHP code speed with a factor x5 that is very valuable. We also reduce the memory
usage by a factor of x2.

Following these interesting results, we reported the test suites triggering inconsistencies and
their corresponding benchmarks to the Haxe community in order to investigate the issue and make
updates to the PHP code generator. Consequently, they have recently released a new version of the
PHP code generator¶¶¶¶ with many performance improvements, especially for arrays. Following our
suggested improvements, they introduced advanced functions (array_fill||||||||) for arrays initialization
in the PHP code generator in order to improve its performance.

In short, the lack of use of specific types, in native PHP standard library, by the PHP code gen-
erator such as SplFixedArray, shows a real impact on the non-functional behaviour of generated
code. Obviously, the types used during code generation are not the best ones. In contrast, selecting
carefully the adequate types and functions to generate code can lead to performance improvement.

4.3. Application of our approach to other case studies

To evaluate the effectiveness of our approach, we apply the same methodology to another case
study (i.e., another code generator family), ThingML. As discussed in the motivation Section 2.1,
ThingML is a popular domain-specific language designed to generate code to different target soft-
ware platforms (e.g., resource-constrained devices). Similarly to Haxe, ThingML experts use a set
of test cases, written in ThingML, to verify the correct functional behaviour of their code genera-
tors. They run these tests when a new complier is made available or updated. We count 120 available
functional tests, that compile to at least 4 targets. The list of test cases they use to run is avail-
able here*****. We benefit then from existing ThingML sample projects and test cases to reproduce
our metamorphic testing approach to this case study. We select three target compilers C, JAVA and
JavaScript. We run the 120 test cases 1 K times, and we gather the memory usage relative to each
test case execution for the target platform. The statistical method applied in this experiment is the
PCA. Our outlier-based method is also applied to identify test cases triggering inconsistencies.

§§§§http://php.net/manual/fr/class.splfixedarray.php
¶¶¶¶https://github.com/HaxeFoundation/haxe/releases/tag/3.4.0
||||||||https://github.com/HaxeFoundation/haxe/blob/f375ec955b41550546e494e9f79a5deefa1b96ac/std/php7/Global.hx#

L226
*****https://github.com/TelluIoT/ThingML/tree/master/testJar

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1721.
DOI: 10.1002/stvr

http://php.net/manual/fr/class.splfixedarray.php
https://github.com/HaxeFoundation/haxe/releases/tag/3.4.0
https://github.com/HaxeFoundation/haxe/blob/f375ec955b41550546e494e9f79a5deefa1b96ac/std/php7/Global.hx#L226
https://github.com/HaxeFoundation/haxe/blob/f375ec955b41550546e494e9f79a5deefa1b96ac/std/php7/Global.hx#L226
https://github.com/TelluIoT/ThingML/tree/master/testJar

20 of 26 M. BOUSSAA ET AL.

Figure 9. PCA showing the dispersion of ThingML test cases relative to the memory usage over the PC
subspace: We identify two detected inconsistencies TestInternalPort_0_Cfg and TestSession3_0_Cfg.

The results of running this experiment is depicted in Figure 9. It shows the dispersion of
120 ThingML test cases relative to the memory usage over the PC subspace. The detected
inconsistencies are also shown in the same figure relative to tests: TestInternalPort_0_Cfg and Test-
Session3_0_Cfg. These two test cases indicate an abnormal variation of memory usage compared
with other points in the cluster. This result shows the effectiveness of our approach to identify
inconsistencies in other case studies, involving a family of code generators. As we did with Haxe
community, we reported this two inconsistencies to ThingML experts in order to investigate the
cause of such high variation in memory usage for those two test cases.

Key findings for RQ

� Our approach is able to automatically detect, among 95 executed test suites, 11 performance and
15 memory usage inconsistencies, violating the metamorphic relation for Haxe code generators.
� The analysis of test suites triggering the inconsistencies shows that there exist potential issues in

some code generators, affecting the quality of delivered software.
� Our approach can be easily applied to other case studies, involving a family of code generators

such as ThingML.

4.4. Threats to validity

We resume, in the following paragraphs, external and internal threats that can be raised.
External validity refers to the generalizability of our findings. In this study, we perform experi-

ments on Haxe and on a set of test suite selected from Github and from the Haxe community. For
instance, we have no guarantee that these libraries cover all Haxe language features. Consequently,
we cannot guarantee that our approach is able to find all code generator issues unless we develop a

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1721.
DOI: 10.1002/stvr

LEVERAGING METAMORPHIC TESTING TO DETECT INCONSISTENCIES IN GENERATORS 21 of 26

more comprehensive test suite (e.g., based on code or model coverage). Moreover, in case all code
generators are defective or “nonmature”, the variation of performance or resource usage for each
test suite can be very unstable. We cannot confirm in this case the source of such high variation.

Internal validity is concerned with the use of a container-based approach. The proposed virtual-
ized infrastructure requires the Linux kernel to run. Even if it exists, emulators such as Qemu†††††

that allow to reflect the behaviour of heterogeneous hardware, the chosen infrastructure has not been
evaluated to test that generated code that target heterogeneous hardware machines. In addition, even
though system containers are known to be lightweight and less resource-intensive compared with
full stack virtualization, we would validate the reliability of our approach by comparing the results
with a nonvirtualized approach in order to see the impact of using containers on the accuracy of
results.

5. RELATED WORK

5.1. Automatic code generators testing approaches

Most of the previous work on code generator testing focuses on checking the correct functional
behaviour of generated code [7, 36–41].Most of these research efforts rely on the comparison of the
model execution to the generated code execution. This is known in the software testing community
as equivalence, comparative or back-to-back testing approach [9, 10].

For instance, Stuermer et al. [7] present a systematic test approach for model-based code gen-
erators. They investigate the impact of optimization rules for model-based code generation by
comparing the output of the code execution with the output of the model execution. If these outputs
are equivalent, it is assumed that the code generator works as expected. They evaluate the effective-
ness of their approach by means of optimizations performed by the TargetLink code generator. They
use Simulink as a simulation environment of models. In the work of Jorges et al. [39], authors present
a testing approach of the Genesys code generator framework that tests the translation performed by
a code generator from a semantic perspective rather than just checking for syntactic correctness of
the generation result. Basically, Genesys realizes back-to-back testing by executing both the source
model as well as the generated code on top of different target platforms. Both executions produce
traces and execution footprints that are then compared. The limitation of these testing approaches is
that they are applicable only when the input model/source code is executable. Compared with our
proposal, we rather propose an approach that test generators at the source code level regardless of
the input model/source code execution.

Previous work on non-functional testing of code generators focuses on comparing, as oracle, the
non-functional properties of handwritten code to automatically generated code [19, 20]. As an exam-
ple, Strekelj et al. [42] implemented a simple 2D game in both, the Haxe programming language
and the target programming language, and evaluated the difference in performance between the two
versions of code. They showed that the generated code through Haxe has better performance than
the handwritten one.

In the work of Ajwad et al. [43], authors compare some non-functional properties of two code
generators, the TargetLink code generator and the Real-Time Workshop Embedded Coder. They also
compare theses properties to manually written code. The metrics used for comparison are ROM and
RAM memory usage, execution speed, readability and traceability. Many test cases are executed to
see if the controller behaves as expected. The comparison results show that the generated code by
TargetLink is more efficient than the manually written code and the other generated code in terms of
memory and execution time. They also show that the generated code can be easily traced and edited.

Cross-platform mobile development has been also part of the non-functional testing goals because
many code generators are increasingly used in industry for automatic cross-platform development.
For instance, Pazirandeh et al. [44] and Hartmann et al. [45] compare the performance of a set of
cross-platform code generators to present the most efficient tools.

†††††https://goo.gl/SxKG1e

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1721.
DOI: 10.1002/stvr

https://goo.gl/SxKG1e

22 of 26 M. BOUSSAA ET AL.

5.2. Applications of metamorphic testing

The metamorphic testing method has been proposed by Chen et al. [46] to alleviate the oracle
problem. In a similar case as for code generators, MT was recently applied to compiler testing. Le
et al. [30] present an approach called equivalence modulo inputs (EMI) testing. The idea of this
approach is to pass different program versions (with same behaviour) to the compiler in order to
inspect the output similarity after code compilation and execution. The authors propose to create
equivalent versions of a program by profiling its execution and pruning unexecuted code. Once a
program and its equivalent variant are constructed, both are used as input to the compiler under test
and then, inconsistencies in their results are checked. The metamorphic relation represents, in this
case, the comparison between the functional output of the program and its variants. This method has
detected 147 confirmed bugs in two open source C compilers, GCC and LLVM. A closely related
idea was presented by Tao et al. [31] to test the semantic-soundness property of compilers. They use
three different techniques in generating equivalent source code programs and then test the mutants
with the original programs, such as replacing an expression with an equivalent one. Empirical results
show that their approach is able to detect real issues in GCC and ICC compilers. A metamorphic
approach has also been used to test GLSL compilers via opaque value injection [29].

In general, the application of the metamorphic approach to the compiler testing problem is similar
to our approach. Instead of deriving program variants (follow-up programs) from original programs
under test, we benefit from the existence of code generator families to generate equivalent imple-
mentations of the same program (instead of applying program transformations) and then, we define
a metamorphic relation relative to the non-functional properties instead of a simple comparison of
the functional outputs.

Metamorphic testing has been applied to numerous other problems presented by Segura et al. [47]
such as detection of inconsistencies in online web search applications, solving complex numerical
problems, testing image processing programs, etc.

For performance assessment, MT was also used by Segura et al. [48, 49] to reveal performance
failures. MRs are used as fitness functions to guide the search-based algorithms in the context of the
automated analysis of feature models.

5.3. Container-based testing approaches

The container technology is widely used in order to create a portable, consistent operating envi-
ronment for development, deployment and testing in the cloud [25, 50]. For example, Marinescu et
al. [51] have used Docker as technological basis in their repository analysis framework Covrig to
conduct a large-scale and safe inspection of the revision history from six selected Git code reposito-
ries. For their analysis, they run each version of a system in isolation and collect static and dynamic
software metrics, using a lightweight container environment that can be deployed on a cluster of
local or cloud machines. According to the authors, the use of Docker as a solution to automati-
cally deploy and execute the different program reversions has clearly facilitated the testing process.
Another Docker-based approach is presented in the BenchFlow2 project that focuses on bench-
marking BPMN 2.0 engines [52]. This project is dedicated to the performance testing of workflow
engines. In this work, Ferme et al. present a framework for automatic and reliable calculation of
performance metrics for BPMN 2.0 Workflow Management Systems (WfMSs). BenchFlow exploits
Docker as a containerization technology, to enable the automatic deployment and configuration of
the WfMSs. Thanks to Docker, BenchFlow automatically collects all the data needed to compute the
performance metrics and to check the correct execution of the tests (metrics related the RAM/CPU
usage and execution time). Hamdy et al. [53] propose Pons, a web based tool for the distribution of
pre-release mobile applications for the purpose of manual testing. Pons facilitates building, running
and manually testing of Android applications directly in the browser. Based on Docker technology,
this tool gets the developers and end users engaged in testing the applications in one place, alleviat-
ing the tester’s burden of installing and maintaining testing environments and providing a platform
for developers to rapidly iterate on the software and integrate changes over time.

Resource usage monitoring of containers has been also applied to solve several research prob-
lems. As an example, Kookarinrat et al. [54] have investigated the problem of auto-sharding in

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1721.
DOI: 10.1002/stvr

LEVERAGING METAMORPHIC TESTING TO DETECT INCONSISTENCIES IN GENERATORS 23 of 26

NoSQL databases using a container-based infrastructure for runtime monitoring. Therefore, authors
analysed and evaluated the variation of a shard key’s choices on the DB performance. They simu-
lated an environment using Docker containers and measured the read/write performance of variety
of keys. Inside each container, they executed write/read queries into the MongoDB database and
used Docker stats to automatically retrieve information about the memory and CPU usage. Sun et al.
[55] present a tool to test, optimize and automate cloud resource allocation decisions to meet QoS
goals for web applications. Their infrastructure relies on Docker to gather information about the
resource usage of deployed web servers. Containers’ monitoring has been applied in other research
efforts related especially to cloud computing and virtualization [25, 56].

6. CONCLUSION

In this paper, we have described a metamorphic testing approach for automatic detection of code
generator inconsistencies in terms of non-functional properties (i.e., resource usage and perfor-
mance). We detect inconsistencies when the variation of performance or resource usage of test
suites across the different targets exceeds a specific threshold value. We apply two statistical meth-
ods (i.e., principal component analysis and range charts) in order to evaluate the data variation. We
also described a container-based testing environment for deploying, executing and monitoring the
resource usage of generated code in multiple target software platforms. The experimental results
show that our approach is able to detect, among 95 executed test suites, 11 performance and 15
memory usage inconsistencies, violating the metamorphic relation for Haxe code generators. We
also applied our approach to the ThingML case study, showing the effectiveness of the proposed
solution to automatically detect real issues in code generator families.

As a current work, we are discussing with the Haxe and ThingML communities in order to expand
our testing approach, introducing new target software platforms to test and create new benchmark
programs with high-quality test suites. As a future work, we aim to provide, in addition to our black-
box approach, a traceability method that can be applied to track the inconsistency, at the source code
level. Thus, test suites triggering inconsistencies can be investigated in-depth in order to identify
the source of the inconsistency (e.g., parts of the code that affect software performance) and to fix
the issues (e.g., transformation rules, templates, etc). We intend also to deploy tests on many nodes
in the cloud using multiple containers in order to speed up the time required to run experiments.
Finally, we may evaluate the impact of the new code generator improvements (i.e., running the same
experiments with new code generator versions) and check if the fixes have eliminated the previously
identified inconsistencies.

REFERENCES

1. Betz T, Cabac L, Güttler M. Improving the development tool chain in the context of petri net-based software
development. PNSE: Newcastle, UK, 2011; 167–178.

2. Czarnecki K, Eisenecker UW. Generative programming, 2000. Edited by G. Goos, J. Hartmanis, and J. van Leeuwen,
15.

3. France R, Rumpe B. Model-driven development of complex software: a research roadmap. In 2007 future of software
engineering. IEEE Computer Society: Minneapolis, MN, USA, 2007; 37–54.

4. Guana V, Stroulia E. How do developers solve software-engineering tasks on model-based code generators? An
empirical study design. First International Workshop on Human Factors in Modeling (HUFAMO 2015). CEUR-WS:
Ottawa, Canada, 2015; 33–38.

5. Delgado N, Gates AQ, Roach S. A taxonomy and catalog of runtime software-fault monitoring tools. IEEE
Transactions on Software Engineering 2004; 30(12):859–872.

6. Guana V, Stroulia E. Chaintracker, a model-transformation trace analysis tool for code-generation environments. 7th
International Conference on Model Transformation (ICMT14): Springer: York, UK, 2014; 146–153.

7. Stuermer I, Conrad M, Doerr H, Pepper P. Systematic testing of model-based code generators. IEEE Transactions
on Software Engineering 2007; 33(9):622.

8. Yang X, Chen Y, Eide E, Regehr J. Finding and understanding bugs in c compilers. ACM SIGPLAN Notices, Vol. 46:
ACM: San Jose, CA, USA, 2011; 283–294.

9. McKeeman WM. Differential testing for software. Digital Technical Journal 1998; 10(1):100–107.
10. Vouk MA. Back-to-back testing. Information and software technology 1990; 32(1):34–45.

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1721.
DOI: 10.1002/stvr

24 of 26 M. BOUSSAA ET AL.

11. Boussaa M, Barais O, Baudry B, Sunyé G. Automatic non-functional testing of code generators families. Proceed-
ings of the 2016 ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences:
ACM: Amsterdam, Netherlands, 2016; 202–212.

12. Boussaa M. Automatic non-functional testing and tuning of configurable generators. Ph.D. Thesis, Université Rennes
1, 2017.

13. Chae W, Blume M. Building a family of compilers. Software Product Line Conference, 2008. SPLC’08. 12th
International, IEEE: Limerick, Ireland, 2008; 307–316.

14. Fumero JJ, Remmelg T, Steuwer M, Dubach C. Runtime code generation and data management for heteroge-
neous computing in java. Proceedings of the principles and practices of programming on the java platform: ACM:
Melbourne, FL, USA, 2015; 16–26.

15. Dasnois B. Haxe 2 Beginner’s Guide. Packt Publishing Ltd, 2011.
16. Fleurey F, Morin B, Solberg A, Barais O. Mde to manage communications with and between resource-constrained

systems. International conference on model driven engineering languages and systems: Springer: Wellington, New
Zealand, 2011; 349–363.

17. Rastogi A, Swamy N, Fournet C, Bierman G, Vekris P. Safe & efficient gradual typing for typescript. ACM SIGPLAN
Notices, Vol. 50: ACM: Mumbai, India, 2015; 167–180.

18. Barr ET, Harman M, McMinn P, Shahbaz M, Yoo S. The oracle problem in software testing: a survey. IEEE
Transactions on Software Engineering 2015; 41(5):507–525.

19. Richard-Foy J, Barais O, Jézéquel J-M. Efficient high-level abstractions for web programming. ACM SIGPLAN
Notices, Vol. 49: ACM: Indianapolis, IN, USA, 2013; 53–60.

20. Stepasyuk S, Paunov Y. Evaluating the haxe programming language-performance comparison between haxe and
platform-specific languages, 2015.

21. Nethercote N, Seward J. Valgrind: A framework for heavyweight dynamic binary instrumentation. ACM SIGPLAN
Notices, Vol. 42: ACM: San Diego, California, USA, 2007; 89–100.

22. Soltesz S, Pötzl H, Fiuczynski ME, Bavier A, Peterson L. Container-based operating system virtualization: a scal-
able, high-performance alternative to hypervisors. ACM SIGOPS Operating Systems Review, Vol. 41: ACM: Lisbon,
Portugal, 2007; 275–287.

23. Spoiala CC, Calinciuc A, Turcu CO, Filote C. Performance comparison of a webrtc server on docker versus virtual
machine. 2016 International Conference on Development and Application Systems (DAS): IEEE: Suceava, Romania,
2016; 295–298.

24. Merkel D. Docker: lightweight linux containers for consistent development and deployment. Linux Journal 2014;
2014(239):2.

25. Peinl R, Holzschuher F, Pfitzer F. Docker cluster management for the cloud-survey results and own solution. Journal
of Grid Computing 2016; 14(2):265–282.

26. Harman M, McMinn P, Shahbaz M, Yoo S. A comprehensive survey of trends in oracles for software testing.
Technical Report Tech. Rep. CS-13-01, University of Sheffield, Department of Computer Science: Sheffield, UK,
2013.

27. Chen TY, Cheung SC, Yiu SM. Metamorphic testing: a new approach for generating next test cases. Technical
Report Technical Report HKUST-CS98-01, Department of Computer Science, Hong Kong University of Science and
Technology: Hong Kong, 1998.

28. Zhou ZQ, Huang D, Tse T, Yang Z, Huang H, Chen T. Metamorphic testing and its applications. Proceedings of the
8th International Symposium on Future Software Technology (ISFST 2004): Xian, China, 2004; 346–351.

29. Donaldson AF, Lascu A. Metamorphic testing for (graphics) compilers. Proceedings of the 1st international
workshop on metamorphic testing: ACM: Austin, TX, USA, 2016; 44–47.

30. Le V, Afshari M, Su Z. Compiler validation via equivalence modulo inputs. ACM SIGPLAN Notices, Vol. 49: ACM:
Edinburgh, UK, 2014; 216–226.

31. Tao Q, Wu W, Zhao C, Shen W. An automatic testing approach for compiler based on metamorphic testing technique.
2010 17th Asia Pacific Software Engineering Conference (APSEC): IEEE: Sydney, NSW, Australia, 2010; 270–279.

32. Chan W, Chen TY, Lu H, Tse T, Yau SS. Integration testing of context-sensitive middleware-based applica-
tions: a metamorphic approach. International Journal of Software Engineering and Knowledge Engineering 2006;
16(5):677–703.

33. Malik H, Hemmati H, Hassan AE. Automatic detection of performance deviations in the load testing of large scale
systems. Proceedings of the 2013 International Conference on Software Engineering: IEEE Press: San Francisco,
CA, USA, 2013; 1012–1021.

34. Enot DP, Lin W, Beckmann M, Parker D, Overy DP, Draper J. Preprocessing, classification modeling and feature
selection using flow injection electrospray mass spectrometry metabolite fingerprint data. Nature Protocols 2008;
3(3):446–470.

35. Hubert M, Rousseeuw P, Verdonck T. Robust PCA for skewed data and its outlier map. Computational Statistics &
Data Analysis 2009; 53(6):2264–2274.

36. Burnard A, Rover L. Verifying and validating automatically generated code. Proc. of International Automotive
Conference (IAC): Citeseer: Stuttgart, Germany, 2004; 71–78.

37. Conrad M. Testing-based translation validation of generated code in the context of IEC 61508. Formal Methods in
System Design 2009; 35(3):389–401.

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1721.
DOI: 10.1002/stvr

LEVERAGING METAMORPHIC TESTING TO DETECT INCONSISTENCIES IN GENERATORS 25 of 26

38. Conrad TE, Maier-Komor T, Sandmann G, Pomeroy M. Code generation verification–assessing numerical equiv-
alence between simulink models and generated code. 4th Conference Simulation and Testing in Algorithm and
Software Development for Automobile Electronics: Berlin, Germany, 2010.

39. Jörges S, Steffen B. Back-to-back testing of model-based code generators. International Symposium on Leveraging
Applications of Formal Methods, Verification and Validation, Springer: Corfu, Greece, 2014; 425–444.

40. Sturmer I, Conrad M. Test suite design for code generation tools. 18th IEEE International Conference on Automated
Software Engineering, 2003. Proceedings: IEEE: Montreal, Que., Canada, Canada, 2003; 286–290.

41. Zelenov SV, Silakov DV, Petrenko AK, Conrad M, Fey I. Automatic test generation for model-based code generators.
Second International Symposium on Leveraging Applications of Formal Methods, Verification and Validation (isola
2006): Paphos, Cyprus, 2006; 75–81.

42. Štrekelj D, Leventić H, Galić I. Performance overhead of haxe programming language for cross-platform game
development. International Journal of Electrical and Computer Engineering Systems 2015; 6(1):9–13.

43. Ajwad N. Evaluation of automatic code generation tools. MSc Theses, Department of Automatic Control, 2007.
44. Pazirandeh A, Vorobyeva E. Evaluation of cross-platform tools for mobile development, 2015.
45. Hartmann G, Stead G, DeGani A. Cross-platform mobile development. Mobile Learning Environment, Cambridge

2011; 16(9):158–171.
46. Chen TY, Huang D, Tse T, Zhou ZQ. Case studies on the selection of useful relations in metamorphic testing.

Proceedings of the 4th Ibero-American Symposium on Software Engineering and Knowledge Engineering (JIISIC
2004): Polytechnic University of Madrid: Madrid, Spain, 2004; 569–583.

47. Segura S, Fraser G, Sanchez AB, Ruiz-Cortés A. A survey on metamorphic testing. IEEE Transactions on software
engineering 2016; 42(9):805–824.

48. Segura S, Troya J, Durán A, Ruiz-Cortés A. Performance metamorphic testing: motivation and challenges. Proceed-
ings of the 39th International Conference on Software Engineering: New Ideas and Emerging Results Track: IEEE
Press: Buenos Aires, Argentina, 2017; 7–10.

49. Segura S, Troya J, Durán A, Ruiz-Cortés A. Performance metamorphic testing: a proof of concept. Information and
Software Technology 2018; 98:1–4.

50. Li L, Tang T, Chou W. A rest service framework for fine-grained resource management in container-based cloud.
2015 IEEE 8th international conference on cloud computing: IEEE: New York, NY, USA, 2015; 645–652.

51. Marinescu P, Hosek P, Cadar C. Covrig: A framework for the analysis of code, test, and coverage evolution in real
software. Proceedings of the 2014 international symposium on software testing and analysis: ACM: San Jose, CA,
USA, 2014; 93–104.

52. Ferme V, Ivanchikj A, Pautasso C. A framework for benchmarking bpmn 2.0 workflow management systems.
International conference on business process management: Springer, 2015; 251–259.

53. Hamdy A, Ibrahim O, Hazem A. A web based framework for pre-release testing of mobile applications. MATEC Web
of Conferences, Vol. 76: EDP Sciences: Corfu, Greece, 2016; 4041.

54. Kookarinrat P, Temtanapat Y. Analysis of range-based key properties for sharded cluster of mongodb. 2015 2nd
International Conference on Information Science and Security (ICISS): IEEE: Seoul, South Korea, 2015; 1–4.

55. Sun Y, White J, Eade S, Schmidt DC. Roar: a qos-oriented modeling framework for automated cloud resource
allocation and optimization. Journal of Systems and Software 2016; 116:146–161.

56. Medel V, Rana O, Arronategui U, Bañares JÁ. Modelling performance & resource management in kubernetes. Pro-
ceedings of the 9th International Conference on Utility and Cloud Computing: ACM: Shanghai, China, 2016; 257–
262.

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1721.
DOI: 10.1002/stvr

	Leveraging metamorphic testing to automatically detect inconsistencies in code generator families
	Summary
	Introduction
	Context and motivations
	Code generator families
	Challenges when testing the non-functional properties
	The oracle problem
	Software platforms diversity

	Approach overview
	A virtualized infrastructure for code generators testing and monitoring
	System containers as a lightweight execution environment
	Runtime monitoring engine

	A metamorphic testing approach for automatic inconsistencies detection in code generator families
	Basic concept of metamorphic testing
	Adaptation of the MT approach to detect code generator inconsistencies
	(Step 1)
	(Steps 2, 3, and 4)
	Variation threshold

	Evaluation
	Experimental setup
	Code generators under test: Haxe compilers
	Cross-platform benchmark
	Evaluation metrics used
	Setting up infrastructure

	Experimental methodology and results
	Method
	Results
	Analysis

	Application of our approach to other case studies
	Threats to validity

	Related Work
	Automatic code generators testing approaches
	Applications of metamorphic testing
	Container-based testing approaches

	Conclusion
	REFERENCES

