
HAL Id: hal-02424017
https://hal.inria.fr/hal-02424017

Preprint submitted on 26 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Gossiping with interference in radio chain networks
Jean-Claude Bermond, Takako Kodate, Joseph Yu

To cite this version:
Jean-Claude Bermond, Takako Kodate, Joseph Yu. Gossiping with interference in radio chain net-
works. 2019. �hal-02424017�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/275910729?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-02424017
https://hal.archives-ouvertes.fr


Gossiping with interference in radio chain networks

Jean-Claude Bermond
Université Côte d’Azur, CNRS, Inria, I3S, France,

jean-claude.bermond@inria.fr
Takako Kodate

Department of Information and Sciences,
Tokyo Woman’s Christian University, Japan,

kodate@lab.twcu.ac.jp
Joseph Yu

Department of Mathematics,
University of the Fraser Valley, B.C., Canada,

joseph.yu@ufv.ca

December 26, 2019

Abstract

In this paper, we study the problem of gossiping with neighboring interference con-
straint in radio chain networks. Gossiping (or total exchange information) is a protocol
where each node in the network has a message and is expected to distribute its own mes-
sage to every other node in the network. The gossiping problem consists in finding the
minimum running time (makespan) of a gossiping protocol and efficient algorithms that
attain this makespan.

We focus on the case where the transmission network is a chain (directed path or line)
network. We consider synchronous protocols where it takes one unit of time (step) to
transmit a unit-length message. During one step, a node receives at most one message
only through one of its two neighbors. We suppose that during one step, a node cannot
be both a sender and a receiver (half duplex model). Moreover we have neighboring
interference constraints with which a node cannot receive a message if one of its neighbors
is sending. A round consists of a set of non-interfering (or compatible) calls and uses one
step. We solve completely the gossiping problem for Pn, the chain network on n nodes,
and give an algorithm that completes the gossiping in 3n− 5 rounds (for n > 3), which is
exactly the makespan.

Keywords Gossiping, Radio Networks, Interference, chains, paths

1 Introduction and Notations

This paper answers a problem considered in [6] where we refer the readers for motivations
and more references. Our aim is to design optimal gossiping (or total exchange information)
protocols for chain networks with neighboring interferences. More precisely our transmission
network is a symmetric dipath Pn called here a chain (or line). The nodes are labeled from
0 to n − 1, and each node i has a message also denoted i. The arcs represent the possible
communications. They are of the form (i, i+ 1), 0 ≤ i ≤ n− 2 and (i, i− 1), 1 ≤ i ≤ n− 1.

1



In a gossiping protocol, each node wants to distribute its own message to every other node in
the network. The network is assumed to be synchronous and the time is slotted into steps.
During a step, a node receives at most one message only through one of its neighbors. One
important feature of our model is the assumption that a node can either transmit or receive
at most one message per step. In particular, we do not allow concatenation of messages.

We will consider only useful (valid) calls in which the sender sends a message to a receiver
only if it is unknown to the receiver. We can have two types of sendings as follows:

(a) via a (regular) call (i, i+ 1) (resp. (i, i− 1)), in which the node i sends to the right (resp.
to the left) i.e. to the node i + 1 (resp. i − 1) one message which is not known to the
node i+ 1 (resp. i− 1)

(b) via a 2-call {i : i − i, i + 1}, in which the node i sends at the same time to both nodes
i− 1 and i+ 1 one message which is not known to both nodes and so the message must
be i.

We suppose that each device is equipped with a half duplex interface, i.e. a node can
receive or send, but cannot both receive and send during a step. Furthermore we use a
primary node interference model like the one used in [1, 2, 3, 6, 7]. In this model, when one
node is transmitting, its own power prevents any other signal to be properly received in its
neighbors (near-far effect of antennas). So two calls (s, r) and (s′, r′) interfere if d(s, r′) ≤ 1
or d(s′, r) ≤ 1. For example call (i, i+1) will interfere with all the following calls (i−2, i−1),
(i−1, i), (i+1, i), (i+1, i+2), (i+2, i+1) and (i+2, i+3). Two non-interfering calls will be
called compatible. Therefore the two calls (s, r) and (s′, r′) are compatible if d(s, r′) > 1 and
d(s′, r) > 1. For example call (i, i+ 1) is compatible with calls (i− 1, i− 2) and (i+ 3, i+ 2).
Only non-interfering (or compatible) calls can be performed in the same step and we will
define a round as a set of compatible calls.

The gossiping problem consists in finding the minimum running time (makespan) of a
gossiping protocol, i.e. the minimum number R of rounds needed to complete the gossiping
and to find efficient algorithms that attain this makespan.

On problems related to information dissemination, we refer to the survey in [4]. The
gossiping problem has been studied in both full duplex and half duplex models (i.e. without
interferences) with unbounded size of messages. A survey for gossiping with the interference
model considered in this paper has been done in [5], but most of the results concern unbounded
size of messages and concatenation is allowed.

The gossiping problem with unit length messages and neighboring interference (our model)
was first studied in [6]. The authors established that the makespans of gossiping protocols in
chain (called line) and ring networks with n nodes are 3n+ Θ(1) and 2n+ Θ(1) respectively.
They gave for general graphs an upper bound of O(nlog2n). This bound was improved in [8]
to O(nlogn) with the help of probabilistic argument. In [3], we solved completely the gossiping
problem in radio ring networks with the same model (our results depend on the congruence
of n modulo 12).

Furthermore in [6], the authors proved for the chain Pn a lower bound of 3n− 6 and gave
a sophisticated protocol in 3n+ 12 rounds. Here we determine exactly the minimum number
R of rounds needed to complete the gossiping when transmission network is a chain Pn on
n nodes based on the model described above (see Theorem 1). We first prove a better lower
bound of 3n− 5 when n ≥ 4 and then give gossiping protocols which meet this lower bound.
The tools developed in [3] for rings cannot be used for chains. Surprisingly the problem for

2



chains appears to be more complicated due to the bottleneck in the middle of the chain. So
we had to develop new sophisticated tools to design an optimal protocol.

Theorem 1 The minimum number R of rounds needed to complete the gossiping in the chain
network Pn (n ≥ 3) with the neighboring interference model and unit length messages is

R =

{
3n− 5 if n ≥ 4
5 if n = 3.

Remark that for n = 3, Theorem 1 can be proved easily. We have 6 calls to perform, and a
round contains one call except for the unique round containing the 2-call {1 : 0, 2}. Therefore
at least 5 rounds are needed. The following five calls will work: {1 : 0, 2} with message 1,
(0, 1) and (1, 2) with message 0, (2, 1) and (1, 0) with message 2.
For the rest of the paper, we suppose that n ≥ 4.

2 Lower Bound for n ≥ 4

Proposition 1 The minimum number R of rounds needed to complete the gossiping in the
chain network Pn (n ≥ 4), with the neighboring interference model and unit length messages
satisfies R ≥ 3n− 5.

Proof. We first note that, for a given i, i+ 1 messages should be transmitted through the arc
(i, i + 1) (namely the messages 0 ≤ j ≤ i) and n − i − 1 messages through the arc (i + 1, i)
namely the messages i + 1 ≤ j ≤ n − 1). For n ≥ 4, we will count the number of rounds
needed to transmit the 3n messages using the calls (0, 1), (1, 0), (1, 2), (2, 1), (2, 3), and (3, 2).
In general, a round contains at most one such call except in the following four types where a
round can contain two calls.

- type 1: a round with the unique 2-call {1 : 0, 2}. Note that there is at most one such
round.

- type 2: a round with the two calls (0, 1) and (3, 2). Note that there is at most one such
round as only one message (namely that of 0) is transmitted on the arc (0, 1).

- type 3: a round with the unique 2-call {2 : 1, 3}.

- type 4: a round with the two calls (1, 0) and (2, 3).

For the rounds of type 3 and 4, we note that only three messages (messages 0, 1, 2) are
transmitted on the arc (2, 3) and so we have at most 3 rounds of the last two types (one of
type 3 and two of type 4, or three of type 4). So altogether among the rounds needed to
transmit the 3n messages, we have at most 5 rounds with two calls among (0, 1) and (1, 0),
(1, 2) and (2, 1), and (1, 3) and (3, 1). So for n ≥ 4, we need at least 3n− 5 rounds. �

3 Upper Bound for n ≥ 4

Let n = 2p or n = 2p+ 1, n ≥ 4.
We will design in this section a protocol with 3n − 5 rounds. The protocol consists in

three phases. First, in phase 1, we do 3 rounds with all the 2-calls. At the end of these three

3



rounds, each node will have received the message from its two neighbors (only one if it is an
end node). Then, in phase 2, we do p− 1 sequences Ss (1 ≤ s ≤ p− 1) and each sequence has
4 rounds. During such a sequence, a node in the middle part of the chain (a precise definition
will be given later) receives a message from each of its neighbors (namely messages of nodes
at distance s+ 1), and a node in the left (resp. right) part receives one or two messages from
its right (resp. left) neighbor. At the end of the p − 1 sequences, all messages have arrived
at least in the middle. Then we complete the protocol in the phase 3, where in each round
information progresses till the end of the chain. The reader can follow the protocol on the
examples given for n = 12, 13, 14, 15 (in Table 1, 2, 3, and 4).

Remark: In what follows we will suppose that the nodes mentioned are all in the range
[0, n− 1]. For example, if a node i− 1 is implied, implicitly we suppose 1 ≤ i ≤ n− 1.

3.1 Phase 1

In the first 3 rounds we do all the 2-calls {i : i− 1, i+ 1}. For the two end nodes 0 and n− 1,
the 2-calls are reduced to the regular calls (0, 1) and (n − 1, n − 2). More precisely, in the
rounds r = 1, 2, 3, we do the 2-calls {3j + r : 3j + r − 1, 3j + r + 1} for 0 ≤ 3j + r ≤ n− 1.

Claim 2 After the first 3 rounds each node 1 ≤ i ≤ n− 2 has received the message of its two
neighbors i − 1 and i + 1. Node 0 has received the message 1 and node n − 1 the message
n− 2.

Proof. That follows from the fact that in one of the 3 rounds, each node i, 0 ≤ i ≤ n − 1 is
the sender of a 2-call, while in another round node i, 1 ≤ i ≤ n−1 is the receiver of the 2-call
with sender i− 1 and in another round node i, 0 ≤ i ≤ n− 2 is the receiver of the 2-call with
sender i+ 1. �

3.2 Phase 2

Here, we will do sequences Ss of 4 rounds 4s, 4s+ 1, 4s+ 2, and 4s+ 3 for 1 ≤ s ≤ p− 1. The
first idea is to make the maximum number of alternating calls. More precisely, if (i, i + 1)
(resp. (i, i− 1)) is a call in a round, then, the call (i + 3, i + 2) (resp. (i + 1, i + 2)), if they
exist, will also be in the round.

We will use the following 4 rounds Ak, 0 ≤ k ≤ 3, and in Ak, node k sends to the right
via the call (k, k + 1).

- Round A0 contains all the calls (4j, 4j + 1), 0 ≤ 4j ≤ n − 2 and (4j + 3, 4j + 2),
0 ≤ 4j ≤ n− 4.

- Round A1 contains all the calls (4j + 1, 4j + 2), 0 ≤ 4j ≤ n − 3and (4j + 4, 4j + 3),
0 ≤ 4j ≤ n− 5.

- Round A2 contains all the calls (4j + 2, 4j + 3), 0 ≤ 4j ≤ n − 4 and (4j + 1, 4j),
0 ≤ 4j ≤ n− 2.

- Round A3 contains all the calls (4j + 3, 4j + 4), 0 ≤ 4j ≤ n − 5 and (4j + 2, 4j + 1),
0 ≤ 4j ≤ n− 3.

Note that rounds A0 and A2 (and also A1 and A3) are symmetric. Furthermore, during
the 4 rounds, each node different from 0, 1, n− 2, n− 1, is exactly once receiver from the left,
once receiver from the right, once sender to the left, and once sender to the right.

4



3.2.1 Sequence S1

The sequence S1 (rounds 4 to 7) will consist of the set of 4 rounds {A0, A1, A2, A3}. We can
do them in any order not necessarily (A0, A1, A2, A3).

Claim 3 During the sequence S1 (rounds 4 to 7), each node 2 ≤ i ≤ n− 3 receives messages
i − 2 and i + 2. Node 0 receives message 2, node 1 receives message 3, node n − 2 receives
message n− 4, and node n− 1 message n− 3.

Proof. That follows from the fact that each node i (except 0, 1, n−2, n−1 ) receives in one of
the 4 rounds message i− 2 and in another round, message i+ 2. For example node 3 receives
message 1 via the call (2, 3) in round A2 and message 5 via the call (4, 3) in round A1. Note
that during sequence S1 the calls (0, 1) and (n− 1, n− 2) are useless as node 0 (resp. n− 1)
has no message to send to 1 (resp. n − 2). Therefore, node 1 receives only message 3 and
node n − 2 only message n − 4. Finally, node 0 (resp. n − 1) receives only message 2 (resp.
n− 3) because it is an end node of the chain. �

3.2.2 Idea of the protocol for a general sequence Ss

A simple protocol will consist in repeating n − 3 times the sequence S1. This protocol will
complete in 4n−5 rounds, which is not optimal. That is not surprising as many calls become
useless in the process namely in the sth sequence the calls (i− 1, i) with i ≤ s and (j + 1, j)
with j ≥ n − s. For example, for s = 2, calls (0, 1), (1, 2), (n − 2, n − 3), (n − 1, n − 2) are
useless. Therefore, we will construct the sequence Ss by keeping only the middle part of the
Ak and deleting useless calls and adding some valid calls on both sides. These added calls
will be all directed to the left (resp. right) in the left (resp. right) part. However we will see
that in order that these modifications give valid rounds, we have to be careful with the order
of the modified rounds.

Let us first define the sequence S2 (rounds 8 to 11) and then S3 (rounds 12 to 15) before
defining the general sequence Ss.

3.2.3 Sequence S2

Note that call (1, 2) is now useless as node 1 has no new message to transmit to node 2. We
know that call (1, 2) appears in round A1. So we will delete the call (1, 2) in A1 and add a
call (1, 0) which will bring a message to node 0. We do the same modification for the useless
call (n − 2, n − 3). More precisely, if we let n ≡ γ (mod 4), then the call (n − 2, n − 3)
appears in the round Aγ−1.

For example, for n = 12, call (10, 9) appears in round A3, while for n = 13, call (11, 10)
appears in round A0. We will delete the call (n−2, n−3) in Aγ−1 and add a call (n−2, n−1)
which will bring a message to node n− 1.

In the rest of the paper, we will use the notation Bk(s) for the 4 rounds of the sequence
Ss where the value k is always taken modulo 4. We first construct Bk(2) by modifying the
Ak as explained above. Then we will see that the order in which we do the 4 rounds of S2 is
important and that only some orders are valid.

5



Construction of the rounds Bk(2) of S2

B0(2) is obtained from A0 by deleting call (0, 1). Furthermore, when γ = 1, we also delete
call (n− 2, n− 3) and add call (n− 2, n− 1), and when γ = 0, we delete (n− 1, n− 2).

B1(2) is obtained from A1 by deleting call (1, 2) and adding call (1, 0). Furthermore, when
γ = 2, we also delete call (n− 2, n− 3) and add call (n− 2, n− 1), and when γ = 1, we delete
(n− 1, n− 2).

B2(2) = A2, except when γ = 3, we delete call (n− 2, n− 3) and add call (n− 2, n− 1),
and when γ = 2, we delete (n− 1, n− 2).

B3(2) = A3, except when γ = 0, we delete call (n− 2, n− 3) and add call (n− 2, n− 1),
and when γ = 3, we delete (n− 1, n− 2).

Constraints on the order of the rounds Bk(2) of the sequence S2

In the sequence S2, we now have two calls (1, 0), one in round B2(2) and the other that
was added in round B1(2), and they should transmit two new messages to node 0 namely
messages 3 and 4. Node 1 knows the message 3 at the end of sequence S1, but it receives
message 4 only in round B3(2). So the order in which we will do the 4 rounds of sequence S2
is important. For example, the order (B0(2), B1(2), B2(2), B3(2)) will not be valid. In a valid
order, round B3(2) should be done before at least one of the two rounds B1(2) and B2(2).
We express this fact by noting that the order ≺ on the rounds should satisfy the following
constraint

B3(2) ≺ max{B1(2), B2(2)}.

Similarly, in the sequence S2, we now have two calls (n − 2, n − 1) in rounds Bγ−1(2) and
Bγ−2(2) (where we recall that n ≡ γ (mod 4) and the subscripts of the B are integers modulo
4). These two calls should transmit two new messages to node n− 1, namely messages n− 4
and n − 5. Node n − 2 knows the message n − 4 at the end of sequence S1, but it receives
message n − 5 only in round Bγ−3(2) and so the order ≺ on the rounds should satisfy the
following constraint

Bγ−3(2) ≺ max{Bγ−1(2), Bγ−2(2)}.

Note that if the two constraints above are satisfied, all the calls in any round are valid.
There are many orders satisfying these two constraints (see analysis for the general case). We
can choose the following orders (used in the tables for n = 12, 13, 14, 15):{

(B3(2), B1(2), B2(2), B0(2)) if n is even (γ = 0 or 2)
(B2(2), B3(2), B0(2), B1(2)) if n is odd (γ = 1 or 3)

Messages received during the sequence S2

We summarize the status of messages received in sequence S2 in the following claim.

Claim 4 There exists an order of the 4 rounds Bk(2) of sequence S2 (rounds 8 to 11) such
that, during the sequence S2, each node 3 ≤ i ≤ n− 2 has received message i− 3, each node
1 ≤ i ≤ n − 4 has received message i + 3, node 0 has received messages 3 and 4, and node
n− 1 has received messages n− 4 and n− 5.

Proof. That follows from the fact that, for node 3 ≤ i ≤ n− 4, the calls are those of the Ak
and so each node in one of the 4 rounds receives a new message from the left namely message
i−3 and in another round receives a new message from the right namely message i+3. Node
1 (resp. 2) receives only message 4 (resp. 5) from the right and node n − 3 (resp. n − 2)
receives only message n− 6 (resp. n− 5) from the left. As we have seen above, node 0 (resp.

6



n− 1) receives two messages 4 and 5 (resp. n− 4 and n− 5). But that is possible only if the
order ≺ on the rounds satisfies the two constraints given above. �

3.2.4 Sequence S3

Construction of the rounds Bk(3) of S3

We have now more useless calls like (0, 1), (1, 2), (2, 3), (n − 1, n − 2), (n − 2, n − 3), (n −
3, n− 4). We will delete them, and add some more calls as in S2. In Bk(3) we will keep only
the calls of Ak involving nodes inside [4, n− 5]. We denote these calls in the middle part by
Ak[4, n− 5].
For example, for s = 3 and n = 13:
A0[4, 8] = {(4, 5), (7, 6), (8, 9)},
A1[4, 8] = {(4, 3), (5, 6), (8, 7)},
A2[4, 8] = {(5, 4), (6, 7), (9, 8)},
A3[4, 8] = {(3, 4), (6, 5), (7, 8)}.

The rounds Bk(3) will be in the form

Bk(3) = {Lk(3), Ak[4, n− 5], Rk(n− 4)}

where the indices k are taken modulo 4.
The left part Lk(3) is defined to be a set containing the call (i, i−1) (i ≤ 3), which does not

interfere with the call of Ak[4, n− 5] involving node 4, and where, furthermore, i is chosen to
be the maximum possible. Similarly the right part Rk(n− 4) is defined to be a set containing
the call (j, j + 1) (j ≥ n− 4) which does not interfere with the call of Ak[4, n− 5] involving
node n− 5, and where, furthermore, j is chosen to be the minimum possible. Therefore,
as call (4, 5) appears in A0[4, n− 5], L0(3) = (3, 2),
as call (4, 3) appears in A1[4, n− 5], L1(3) = (1, 0),
as call (5, 4) appears in A2[4, n− 5], L2(3) = (2, 1), and
as call (3, 4) appears in A3[4, n− 5], L3(3) = (2, 1).
Similarly (recall that n ≡ γ (mod 4)),
as call (n− 5, n− 6) appears in Aγ [4, n− 5], Rγ(n− 4) = (n− 4, n− 3),
as call (n− 4, n− 5) appears in Aγ+1[4, n− 5], Rγ+1(n− 4) = (n− 3, n− 2),
as call (n− 6, n− 5) appears in Aγ+2[4, n− 5], Rγ+2(n− 4) = (n− 3, n− 2), and
as call (n− 5, n− 4) appears in Aγ−1[4, n− 5], Rγ−1(n− 4) = (n− 2, n− 1).

For example for s = 3 and n = 13 (γ = 1) we get:
B0(3) = {(3, 2), (4, 5), (7, 6), (8, 9), (11, 12)},
B1(3) = {(1, 0), (4, 3), (5, 6), (8, 7), (9, 10)},
B2(3) = {(2, 1), (5, 4), (6, 7), (9, 8), (10, 11)}, and
B3(3) = {(2, 1), (3, 4), (6, 5), (7, 8), (10, 11)}.

Constraints on the order of the rounds Bk(3) of the sequence S3

In the sequence S3, we now have two calls (2, 1) in rounds B2(3) and B3(3), which should
transmit two messages to node 1 namely messages 5 and 6. Node 2 knows the message 5 at
the end of sequence S2, but it receives message 6 only in round B0(3). So B0(3) should be
done before at least one of the two rounds B2(3) and B3(3). Therefore the following constraint
should be satisfied

B0(3) ≺ max{B2(3), B3(3)}.

7



Node 1 does not know at the end of S2 the message 5, but it should transmit it to node 0
in round B1(3). It receives this message in the first of the two rounds {B2(3), B3(3)}. So at
least one of the two rounds B2(3) and B3(3) should be done before B1(3). We express this
fact by noting that the order ≺ on the rounds should satisfy the following constraint

min{B2(3), B3(3)} ≺ B1(3).

Similarly, in the sequence S3, we now have

- two calls (n − 3, n − 2) in rounds Bγ+1(3) and Bγ+2(3) which should transmit two
messages to node n− 2 namely messages n− 6 and n− 7,

- one call (n− 4, n− 3) in round Bγ(3) which should transmit message n− 7, and

- one call (n− 2, n− 1) in round Bγ−1(3) which should transmit message n− 6.

Node n − 3 knows the message n − 6 at the end of sequence S2, but it receives message
n − 7 only in round Bγ(3). So Bγ(3) should be done before at least one of the two rounds
Bγ+1(3) and Bγ+2(3). Therefore we should have

Bγ(3) ≺ max{Bγ+1(3), Bγ+2(3)}.

Node n−2 does not know at the end of S2 the message n−6, but it should transmit in round
Bγ−1(3). It receives this message in the first of the two rounds {Bγ+1(3), Bγ+2(3)}. So at
least one of the two rounds Bγ+1(3) and Bγ+2(3) should be done before Bγ−1(3). Therefore
we should have

min{Bγ+1(3), Bγ+2(3)} ≺ Bγ−1(3).

Note that there are many orders satisfying the four constraints above (see analysis for the
general case). We can choose for example the following orders according to the values of n{

(B0(3), B2(3), B3(3), B1(3)) if n is even (γ = 0 or 2)
(B3(3), B0(3), B1(3), B2(3)) if n is odd (γ = 1 or 3)

Messages received during the sequence S3

We summarize the status of messages received in sequence S3 in the following claim.

Claim 5 There exists an order of the 4 rounds Bk(3) of sequence S3 (rounds 12 to 15) (for
example those defined above), such that, during the sequence S3, each node 4 ≤ i ≤ n− 3 has
received message i − 4, each node 2 ≤ j ≤ n − 5 message j + 4, node 0 message 5, node 1
messages 5 and 6, node n− 1 message n− 6, and node n− 2 messages n− 6 and n− 7.

Proof. That follows from the fact that for node 4 ≤ i ≤ n− 5, the calls involved are those of
Ak, and so node i receives a new message from the left namely message i − 4 in one of the
4 rounds and receives a new message from the right namely message i+ 4 in another round.
Node 2 (resp. 3) receives only message 6 (resp. 7) from the right and node n−4 (resp. n−3)
receives only message n− 8 (resp. n− 7) from the left. As we have seen above, node 1 (resp.
n − 2) receives two messages 5 and 6 (resp. n − 6 and n − 7). But that is possible only if
the order ≺ on the rounds satisfies the two ”max-constraints” given above. Node 0 (resp.
n− 1) receives message 5 (resp. n− 6) but this is possible only if the order ≺ on the rounds
satisfies the two ”min-constraints” given above. In summary, for any order satisfying the four
constraints (see example above), the claim is true. �

8



3.2.5 Sequence Ss

Like for s = 3, the rounds Bk(s) will consist of 3 parts: one left part Lk(s)with a set of calls
all directed to the left, a middle part Ak[s + 1, n − 2 − s], and a right part Rk(n − 1 − s)
with a set of calls all directed to the right. We will have similar constraints on the orders of
the rounds and we will see that there exist two canonical orders according to the parity of n.
Now we define precisely these 3 parts.

Construction of the rounds Bk(s) of Ss

For a general s, we note (see Claim 6) that at the end of the sequence Ss−1, the nodes
1 ≤ i ≤ s have received all the messages from the left (that is messages j ≤ i), while nodes
n− s− 1 ≤ i ≤ n− 2 have received all the messages from the right (that is messages j ≥ i).
Therefore, in the rounds Ak, like for s = 2, 3, there are many useless calls in particular the
calls (s − 1, s) and (n + 1 − s, n − s) which were useful in the preceding sequence. So in
Bk(s), we will keep only the set of calls of Ak with a sender or a receiver in the interval
[s+ 1, n− 2− s], denoted by Ak[s+ 1, n− 2− s].

For example for s = 11 and n = 32,
A0[12, 19] = {(12, 13), (15, 14), (16, 17), (19, 18)},
A1[12, 19] = {(12, 11), (13, 14), (16, 15), (17, 18), (20, 19)},
A2[12, 19] = {(13, 12), (14, 15), (17, 16), (18, 19)},
A3[12, 19] = {(11, 12)(14, 13), (15, 16), (18, 17), (19, 20)}.

We will do the sequence Ss till s = p − 1. For s = p − 1, when n = 2p + 1 is odd, then
s+ 1 = n− 2− s and the interval [s+ 1, n− 2− s] is reduced to the node p. For s = p− 1,
when n = 2p is even, then s+ 1 > n− 2− s and in this particular case the middle part will
be empty.

Having defined the set of calls in the middle part, we now construct the calls in the left
(resp. right) part of Bk(s) denoted by Lk(s) (resp. Rk(n− 1− s)). Bk(s) is obtained by the
concatenation of these three sets

Bk(s) = {Lk(s), Ak[s+ 1, n− 2− s], Rk(n− 1− s)}

Recall that all the indices k are taken modulo 4.
For the left part, in order to have the maximum number of calls, we will first put in

Lk(s) the call (imax, imax − 1), where imax is the greatest integer ≤ s such that the call
(imax, imax − 1) does not interfere with the call in Ak[s + 1, n − 2 − s] involving node s + 1.
Then we add in Lk(s) the calls (imax−3j, imax−3j−1) for 0 ≤ 3j ≤ imax−1. These calls are
not pairwise interfering as nodes imax − 3j − 2 do nothing (such idle nodes are indicated by
an × in the tables). In the example given before with s = 11, the call of A0[12, 19] involving
node 12 is (12, 13), so imax = 11 and we get L0(11) = {(11, 10), (8, 7), (5, 4), (2, 1)}.

Let s ≡ α (mod 4).
The call (s + 2, s + 1) appears in Aα−1[s + 1, n − 2 − s]. In that case, imax = s − 1 and we
get Lα−1(s) = {(s − 3j − 1, s − 3j − 2)} 0 ≤ 3j ≤ s − 2. The call (s, s + 1) appears in
Aα[s+ 1, n− 2− s]. In that case, we also have imax = s− 1 and so Lα(s) = Lα−1(s) and we
get Lα(s) = {(s − 3j − 1, s − 3j − 2)} 0 ≤ 3j ≤ s − 2. The call (s + 1, s + 2) appears in
Aα+1[s+ 1, n−2− s]. In that case, imax = s and we get Lα+1(s) = {(s−3j, s−3j−1)} 0 ≤
3j ≤ s − 1. The call (s + 1, s) appears in Aα+2[s + 1, n − 2 − s]. In that case, imax = s − 2
and we get Lα+2(s) = {(s− 3j − 2, s− 3j − 3)} 0 ≤ 3j ≤ s− 3.

9



In the example with s = 11 (≡ 3 (mod 4), or α = 3), we get
L2(11) = {(10, 9), (7, 6), (4, 3), (1, 0)},
L3(11) = {(10, 9), (7, 6), (4, 3), (1, 0)},
L0(11) = {(11, 10), (8, 7), (5, 4), (2, 1)}, and
L1(11) = {(9, 8), (6, 5), (3, 2)}.

For the right part, we do a similar construction obtained by symmetry (node i is re-
placed by the node n − 1 − i and the calls are in the opposite direction). More precisely,
in order to have the maximum number of calls, we will first put the call (imin, imin + 1) in
Rk(n− 1− s), where imin is the smallest integer ≥ n− 1− s such that the call (imin, imin + 1)
does not interfere with the call in Ak[s + 1, n − 2 − s] involving node n − 2 − s. Then we
add in Rk(n − 1 − s) the calls (imin + 3j, imin + 3j + 1) for 0 ≤ 3j ≤ n − 2 − imin. These
calls are not pairwise interfering as nodes imin + 3j + 2 do nothing (such idle nodes are in-
dicated by an × in the tables). In the example given before with s = 11, n = 32 and so
n − 2 − s = 19, the call of A0[12, 19] involving node 19 is (19, 18). Therefore imin = 20 and
we get R0(20) = {(20, 21), (23, 24), (26, 27), (29, 30)}.

Let n− 1 − s ≡ β (mod 4). (In the preceding subsections we use n ≡ γ (mod 4), so
for s = 2, γ = β − 1 and for s = 3, γ = β).

The call (n−s−3, n−s−2) appears in Aβ+2[s+1, n−2−s]. In that case, imin = n−s and we get
Rβ+2(n−1−s) = {(n−s+3j, n−s+3j+1)} 0 ≤ 3j ≤ s−2. The call (n−s−1, n−s−2) appears
in Aβ+1[s+ 1, n− 2− s]. Here again imin = n− s and so, Rβ+1(n− 1− s) = Rβ+2(n− 1− s)
and we get Rβ+1(n − 1 − s) = {(n − s + 3j, n − s + 3j + 1)} 0 ≤ 3j ≤ s − 2. The call
(n − s − 2, n − s − 3) appears in Aβ[s + 1, n − 2 − s]. In that case, imin = n − s − 1
and we get Rβ(n − 1 − s) = {(n − s + 3j − 1, n − s + 3j)} 0 ≤ 3j ≤ s − 1. The call
(n− s− 2, n− s− 1) appears in Aβ−1[s+ 1, n− 2− s]. In that case, imin = n− s+ 1 and we
get Rβ−1(n− 1− s) = {(n− s+ 3j + 1, n− s+ 3j + 2)} 0 ≤ 3j ≤ s− 3.

In the example with n = 32 and s = 11, n− 1− s = 20 (≡ 0 (mod 4), or β = 0) we get
R2(20) = {(21, 22), (24, 25), (27, 28), (30, 31)}
R1(20) = {(21, 22), (24, 25), (27, 28), (30, 31)},
R0(20) = {(20, 21), (23, 24), (26, 27), (29, 30)}, and
R3(20) = {(22, 23), (25, 26), (28, 29)}.

If we concatenate the values obtained for the example for Lk(11), Ak[12, 19], and Rk(20)
we get the following Bk(s).
B0(11) = {L0(11), A0[12, 19], R0(20)}
= {(11, 10), (8, 7), (5, 4), (2, 1), (12, 13), (15, 14), (16, 17), (19, 18), (20, 21), (23, 24), (26, 27), (29, 30)}.
B1(11) = {L1(11), A1[12, 19], R1(20)}
= {(9, 8), (6, 5), (3, 2), (12, 11), (13, 14), (16, 15), (17, 18), (20, 19), (21, 22), (24, 25), (27, 28), (30, 31)}.
B2(11) = {L2(11), A2[12, 19], R2(20)}
= {(10, 9), (7, 6), (4, 3), (1, 0), (13, 12), (14, 15), (17, 16), (18, 19), (21, 22), (24, 25), (27, 28), (30, 31)}.
B3(11) = {L3(11), A3[12, 19], R3(20)}
= {(10, 9), (7, 6), (4, 3), (1, 0), (11, 12), (14, 13), (15, 16), (18, 17), (19, 20), (22, 23), (25, 26), (28, 29)}.

Constraints on the order of the rounds Bk(s) of the sequence Ss

Like for the case s = 3, for s ≡ α (mod 4), the calls {(s− 3j − 1, s− 3j − 2)}, 0 ≤ 3j ≤

10



s − 2 appear twice namely in rounds Bα−1(s) and Bα(s) in which two messages should be
transmitted. But node s − 3j − 1 has only one message and receives the second one via the
call {(s − 3j, s − 3j − 1)} in round Bα+1(s), and so we have the following constraint on the
orders

Bα+1(s) ≺ max{Bα−1(s), Bα(s)}.

Furthermore, in round Bα+2(s), node s− 3j− 2 has to transmit the message received via one
of the two calls {(s− 3j − 1, s− 3j − 2)} and so we have the second constraint

min{Bα−1(s), Bα(s)} ≺ Bα+2(s).

Similarly, in the right part, for n−1−s ≡ β (mod 4), the calls {(n−s+3j, n−s+3j+1)}
(0 ≤ 3j ≤ s− 2) appear twice namely in rounds Bβ+2(s) and Bβ+1(s) in which two messages
should be transmitted. But node n− s− 3j has only one message and it receives the second
one via the call {(n − s − 3j − 1, n − s − 3j)} in round Bβ(s). So we have the following
constraint on the orders

Bβ(s) ≺ max{Bβ+1(s), Bβ+2(s)}.

Furthermore, in round Bβ−1(s), nodes n − s + 3j + 1 (0 ≤ 3j ≤ s − 2) have to transmit the
message received via one of the two calls {(n − s + 3j, n − s + 3j + 1)}, and so we have the
second constraint

min{Bβ+1(s), Bβ+2(s)}} ≺ Bβ−1(s).

Let us now determine the orders that satisfy the 4 constraints above.
Recall that s ≡ α (mod 4) and n− 1− s ≡ β (mod 4). We will see that there are two cases:
β has the same parity as α which happens when n is odd, and β has a different parity as α
which happens when n is even.

- When n is even, then β has a different parity as α.
If β ≡ α + 1 (mod 4) or β ≡ α + 3 (mod 4), we have four orders which satisfy the 4
constraints as follows:
(Bα+1(s), Bα−1(s), Bα(s), Bα+2(s)),
(Bα+1(s), Bα−1(s), Bα+2(s), Bα(s)),
(Bα−1(s), Bα+1(s), Bα(s), Bα+2(s)),
(Bα−1(s), Bα+1(s), Bα+2(s), Bα(s)).

We choose the first one for n even, then show it with the value of s (and α).
(B1(s), B3(s), B0(s), B2(s)) for s ≡ 0 (mod 4) (α = 0)
(B2(s), B0(s), B1(s), B3(s)) for s ≡ 1 (mod 4) (α = 1)
(B3(s), B1(s), B2(s), B0(s)) for s ≡ 2 (mod 4) (α = 2)
(B0(s), B2(s), B3(s), B1(s)) for s ≡ 3 (mod 4) (α = 3)

- When n is odd, then β has the same parity as α.
If β ≡ α (mod 4), we have six orders which satisfy the 4 constraints as follows:
(Bα(s), Bα+1(s), Bα+2(s), Bα−1(s)),
(Bα(s), Bα+1(s), Bα−1(s), Bα+2(s)),
(Bα+1(s), Bα(s), Bα+2(s), Bα−1(s)),
(Bα+1(s), Bα(s), Bα−1(s), Bα+2(s)),
(Bα+1(s), Bα−1(s), Bα(s), Bα+2(s)),
(Bα(s), Bα+2(s), Bα+1(s), Bα−1(s)).

11



If β ≡ α+ 2 (mod 4), we have four orders which satisfy the 4 constraints as follows:
(Bα(s), Bα+1(s), Bα+2(s), Bα−1(s)),
(Bα(s), Bα+2(s), Bα+1(s), Bα−1(s)),
(Bα−1(s), Bα+1(s), Bα+2(s), Bα(s)),
(Bα−1(s), Bα+2(s), Bα+1(s), Bα(s))

We select one of these orders that applies to both cases (the first one), and show it with
the value of s (and α).
(B0(s), B1(s), B2(s), B3(s)) for s ≡ 0 (mod 4) (α = 0)
(B1(s), B2(s), B3(s), B0(s)) for s ≡ 1 (mod 4) (α = 1)
(B2(s), B3(s), B0(s), B1(s)) for s ≡ 2 (mod 4) (α = 2)
(B3(s), B0(s), B1(s), B2(s)) for s ≡ 3 (mod 4) (α = 3)

Messages received during the sequence Ss

We summarize the status of messages received in sequence Ss in the following claim.

Claim 6 There exists an order of the 4 rounds Bk(s) of sequence Ss (rounds 4s to 4s + 3),
namely (Bα+1(s), Bα−1(s), Bα(s), Bα+2(s)) for n even, and (Bα(s), Bα+1(s), Bα+2(s), Bα−1(s))
for n odd, such that during the sequence Ss:

- each node s+1 ≤ i ≤ n−s has received message i−s−1, and each node s−1 ≤ i ≤ n−s−2
has received message i+ s+ 1,

- nodes s− 3j − 2 (resp. n− s+ 3j + 1), 0 ≤ 3j ≤ s− 2 have received two messages from
the right (resp. from the left)

- and the other nodes i ≤ s−1 (resp. i ≥ n− s) have received one message from the right
(resp. from the left).

Proof. The first part follows from the fact that for node s + 1 ≤ i ≤ n − s − 2, the calls are
those of Ak, and so in one of the 4 rounds each node receives a new message from the left,
namely message i−s−1 and in another round receives a new message from the right, namely
message i+ s+ 1 (note that by induction these messages arrived at the sender at the end of
sequence Ss−1). The orders determined in the preceding paragraph enable node s − 3j − 1
(resp. n − s + 3j) to send two messages to node s − 3j − 2 (resp. n − s + 3j + 1), and also
ensure the arrival of a message in the other nodes of the left and right. Therefore, the second
and third parts are proved. �

Messages received at the end of phase 2 (end of sequence Sp−1)
Recall that n = 2p or 2p+ 1 and in phase 2, we do p− 1 sequences Ss, 1 ≤ s ≤ p− 1.

Claim 7 Let n = 2p. At the end of phase 2 (after round 4p− 1),

- nodes p− 1− 3j, 0 ≤ 3j ≤ p− 1 have received messages 0 ≤ i ≤ 2p− 1− 2j

- nodes p− 2− 3j, 0 ≤ 3j ≤ p− 2 and p− 3− 3j, 0 ≤ 3j ≤ p− 3 have received messages
0 ≤ i ≤ 2p− 2− 2j

- nodes p+ 3j, 0 ≤ 3j ≤ p− 1 have received messages 2j ≤ i ≤ 2p− 1

- nodes p+ 1 + 3j, 0 ≤ 3j ≤ p− 2 and p+ 2 + 3j, 0 ≤ 3j ≤ p− 3have received messages
2j + 1 ≤ i ≤ 2p− 1

12



Let n = 2p+ 1. At the end of phase 2 (after round 4p− 1),

- node p has received all the messages

- nodes p− 1− 3j, 0 ≤ 3j ≤ p− 1 have received messages 0 ≤ i ≤ 2p− 1− 2j

- nodes p− 2− 3j, 0 ≤ 3j ≤ p− 2 and p− 3− 3j, 0 ≤ 3j ≤ p− 3 have received messages
0 ≤ i ≤ 2p− 2− 2j

- nodes p+ 1 + 3j, 0 ≤ 3j ≤ p− 1 have received messages 2j + 1 ≤ i ≤ 2p

- nodes p+ 2 + 3j, 0 ≤ 3j ≤ p− 2 and p+ 3 + 3j, 0 ≤ 3j ≤ p− 3 have received messages
2j + 2 ≤ i ≤ 2p

Proof. By claim 6, at the end of sequence Sp−1, any node i has received the messages of
the nodes at distance ≤ p. Therefore, node i ≤ p (resp. i ≥ n − 1 − p) has received all the
messages from the left (resp. right). In particular, node p has received all the messages and,
when n = 2p, node p − 1 has also received all the messages. Furthermore, node i ≤ p (resp.
i ≥ n− 1− p) has received more than p messages from the right (resp. left) as it has received
in some sequences two messages. For the precise analysis we distinguish two cases according
the parity of n.

Let n = 2p. As noted above, nodes p−1 and p have received all the messages. Node p−2
has received all the messages 0 ≤ i ≤ 2p−2. But node p−3 has also received all the messages
0 ≤ i ≤ 2p− 2; indeed in Sp−1 it has received two messages namely 2p− 3 and 2p− 2. More
generally, node p − 1 − 3j has received from the right two messages during the j sequences
Sp−2−3k, 0 ≤ k ≤ j − 1 and so it has received at the end of phase 2 from the right altogether
p+ j messages, i.e. all the messages between p− 3j and 2p− 1− 2j.

Node p− 2− 3j has received two messages during the j sequences Sp−3−3k, 0 ≤ k ≤ j − 1
and so has received at the end of phase 2 from the right all the messages between p− 1− 3j
and 2p − 2 − 2j. Node p − 3 − 3j has received two messages during the j + 1 sequences
Sp−1−3k, 0 ≤ k ≤ j and so has received at the end of phase 2 from the right all the messages
between p− 2− 3j and 2p− 2− 2j.

The proof for the other side is similar. Node p+1 has received the messages 1 ≤ i ≤ 2p−1
at the end of phase 2. Node p + 2 has also received the messages 1 ≤ i ≤ 2p − 1; indeed
in Sp−1 it has received 2 messages namely 2 and 1. More generally node p + 3j has re-
ceived from the left two messages during the j sequences Sp−2−3k, 0 ≤ k ≤ j − 1 and so
it has received at the end of phase 2 from the left p + j messages that is all the messages
between 2j and p+ 3j− 1. Node p+ 3j+ 1 has received two messages during the j sequences
Sp−3−3k, 0 ≤ k ≤ j − 1 and so it has received at the end of phase 2 from the left p + j
messages that is all the messages between 2j + 1 and p + 3j. Node p + 3j + 2 has received
two messages during the j + 1 sequences Sp−1−3k, 0 ≤ k ≤ j and so it has received at the end
of phase 2 from the left p+1+j messages that is all the messages between 2j+1 and p+3j+1.

For n = 2p+ 1, the proof is similar as that for the case n even. �

3.3 Phase 3

At the end of phase 2, the nodes in the left part 0 ≤ i ≤ p − 1 have still to receive some
messages of large nodes and in particular, we have to move message n − 1 till the node 0

13



while in the right part nodes p + 1 ≤ i ≤ n − 1 have still to receive some messages of small
nodes and in particular, we have to move message 0 till the node n − 1. These moves can
be done independently as there will be no interferences between the calls in the left part and
those in right part (except for the two first rounds in the case n odd). We have already done
3 + 4(p − 1) = 4p − 1 rounds in phases 1 and 2. So to complete the protocol in the optimal
time, we should do phase 3 in 3n− 4− 4p rounds that is, when n = 2p, in 2p− 4 rounds, and
when n = 2p+ 1, in 2p− 1 rounds.

Claim 8 We can construct 3n− 4− 4p rounds (phase 3) to complete the protocol in optimal
time.

Proof. The readers can again follow the proof on the tables given for n = 12, 13, 14, 15.
Let n = 2p. We first do the following two rounds. The first round contains the non-interfering
calls (p− 1− 3j, p− 2− 3j) and (p+ 3j, p+ 1 + 3j) for 0 ≤ 3j ≤ p− 2, and the second round
the calls (p − 2 − 3j, p − 3 − 3j) and (p + 1 + 3j, p + 2 + 3j) for 0 ≤ 3j ≤ p − 3. According
to claim 7, after these two rounds, nodes p− 3, p− 2, p+ 1, and p+ 2 have received all the
messages and nodes p − 4 − 3j, p − 5 − 3j, and p − 6 − 3j (resp. p + 3 + 3j, p + 4 + 3j, and
p + 5 + 3j) have received all messages 0 ≤ i ≤ 2p − 3 − 2j (resp. 2j + 2 ≤ i ≤ n − 1) for
valid j. It just remains to push the messages n − 2 and n − 1 (resp. 1 and 0) to the left
(resp. right) via p− 3 sequences Tk (0 ≤ k ≤ p− 4). Each Tk consists of two identical rounds
each containing the calls (p− 3− k − 3j, p− 4− k − 3j) and (p+ 2 + k + 3j, p+ 3 + k + 3j)
for 0 ≤ 3j ≤ p − 4 − k. At the end of these sequences,each node has received all the mes-
sages. Altogether we have completed the protocol in 2+2×(p−3) = 2p−4 rounds as required.

Let n = 2p + 1. We first do the following three rounds (the first two rounds enable us
to separate the left and right part). The first round contains the calls (p − 3j, p − 1 − 3j),
0 ≤ 3j ≤ p − 1 and (p + 1 + 3j, p + 2 + 3j) 0 ≤ 3j ≤ p − 2. The second round contains
the calls (p − 1 − 3j, p − 2 − 3j), 0 ≤ 3j ≤ p − 2, and (p + 3j, p + 1 + 3j), 0 ≤ 3j ≤ p − 1.
The third round contains the calls (p − 1 − 3j, p − 2 − 3j) and (p + 1 + 3j, p + 2 + 3j) for
0 ≤ 3j ≤ p − 2. According to claim 7 after these three rounds, nodes p − 1, p − 2, p + 1,
and p+ 2 have received all the messages. Nodes p− 3− 3j, p− 4− 3j, and p− 5− 3j (resp.
p + 3 + 3j, p + 4 + 3j, and p + 5 + 3j) have received all messages 0 ≤ i ≤ 2p − 2 − 2j
(resp. 2j + 2 ≤ i ≤ n − 1). Then we end the protocol like in the case n even with the p − 2
sequences T ′k, 0 ≤ k ≤ p − 3. T ′k consists of two identical rounds each containing the calls
(p − 2 − k − 3j, p − 3 − k − 3j) and (p + 2 + k + 3j, p + 2 + k + 3j) for 0 ≤ 3j ≤ p − 3 − k.
At the end of these sequences, each node has received all the messages. Altogether we have
completed the protocol in 3 + 2× (p− 2) = 2p− 1 rounds. �

In summary, we have given a protocol in three phases which completes the gossiping for
n > 3 in the optimal number of rounds 3n− 5 as given in Theorem 1.

4 Conclusion

In this article, we have determined the exact minimum gossiping time in the chain network
with n nodes under the hypothesis of unit length messages and neighboring interference.
One can also try to determine the exact gossiping time for other simple topologies like grids.
Perhaps one can use our tools for chains to improve the bounds for trees given in [6]. It

14



will also be interesting to consider stronger interferences (a sending node preventing nodes at
distance dI to receive messages).

References

[1] J.C. Bermond, R. Correa and M.L. Yu.: Optimal gathering protocols on paths under
interference constraints, Discrete Mathematics Vol.309: pp.5574–5587 (2009).

[2] J.-C. Bermond, J. Galtier, R. Klasing, N. Morales, and S. Pérennes. Hardness and ap-
proximation of gathering in static radio networks. Parallel Processing Letters, Vol.16(2):
pp.165–183 (2006).

[3] J.C. Bermond, T. Kodate and M.L. Yu.: Gossiping with interferences in radio ring
networks presented at JCDCG3 20th Anniversary of Japan Conference on Discrete and
Computational Geometry, Graphs, and Games,Tokyo, Japan, (August 2017).

[4] V. Bonifaci, R. Klasing, P. Korteweg, L. Stougie, and A. Marchetti-Spaccamela. Data
Gathering in Wireless Networks chapter in A. Koster and X. Munoz, editors, Graphs and
Algorithms in Communication Networks, pp.357–377. Springer Monograph (2009).

[5] L. G ↪asieniec. On efficient gossiping in radio networks. Proc. Int. Conference on Theoret-
ical Computer Science Colloquium on structural information and communication com-
plexity, SIROCCO 2009, Lectures Notes in Computer science, springer Verlag, Vol.5869:
pp.2–14 (2010).

[6] L. G ↪asieniec and I. Potapov. Gossiping with unit messages in known radio networks.
Proc. 2nd IFIP Int. Conference on Theoretical Computer Science: pp.193–205 (2002).

[7] R. Klasing, N. Morales, and S. Pérennes. On the complexity of bandwidth allocation in
radio networks. Theoretical Computer Science, Vol.406(3): pp.225–239 (2008).

[8] F. Manne and Q. Xin. Optimal gossiping with unit size in known topology radio networks.
Proc. Workshop on Combinatorial and algorithmic aspects of networking, CAAN 2006,
Lectures Notes in Computer science, Springer Verlag, Vol.4235: pp.125–134 (2006).

15



Table 1: n = 12

round s nodes

0 1 2 3 4 5 6 7 8 9 10 11

Phase1

1 1 1 4 4 7 7 10 10

2 × 2 2 5 5 8 8 11

3 0 3 3 6 6 9 9 ×
Phase2

4 1 A0 × × 4 3 8 7 × ×
5 A1 × 0 5 4 9 8 ×
6 A2 2 1 6 5 10 9

7 A3 × 3 2 7 6 11 ×
8 2 B3 × 4 1 8 5 × 8

9 B1 3 × 6 3 10 7 ×
10 B2 4 0 7 4 11 7

11 B0 × × 5 2 9 6 × ×
12 3 B0 × × 6 1 10 5 × ×
13 B2 × 5 × 8 3 × 6 ×
14 B3 × 6 0 9 4 × 6

15 B1 5 × 7 2 11 5 ×
16 4 B1 6 × 8 1 × 4 × ×
17 B3 × × 7 × 10 3 × 5

18 B0 × × 8 0 11 3 × ×
19 B2 × 7 × 9 2 × 4 ×
20 5 B2 × 8 × 10 1 × 3 ×
21 B0 7 × 9 × × 2 × 4

22 B1 8 × 10 0 × 2 × ×
23 B3 × × 9 × 11 1 × 3

Phase3

24 × 9 × 11 0 × 2 ×
25 9 × 11 × × 0 × 2

26 × × 10 × × × × 1 × ×
27 × × 11 × × × × 0 × ×
28 × 10 × × × × × × 1 ×
29 × 11 × × × × × × 0 ×
30 10 × × × × × × × × 1

31 11 × × × × × × × × 0

16



Table 2: n = 13

round s nodes

0 1 2 3 4 5 6 7 8 9 10 11 12

Phase1

1 1 1 4 4 7 7 10 10 ×
2 × 2 2 5 5 8 8 11 11

3 0 3 3 6 6 9 9 12

Phase2

4 1 A0 × × 4 3 8 7 12 ×
5 A1 × 0 5 4 9 8 × ×
6 A2 2 1 6 5 10 9 ×
7 A3 × 3 2 7 6 11 10

8 2 B2 3 0 7 4 11 8 ×
9 B3 × 4 1 8 5 12 9

10 B0 × × 5 2 9 6 × 8

11 B1 4 × 6 3 10 7 × ×
12 3 B3 × 5 0 9 4 × 7 ×
13 B0 × × 6 1 10 5 × 7

14 B1 5 × 7 2 11 6 × ×
15 B2 × 6 × 8 3 12 6 ×
16 4 B0 × × 7 0 11 4 × 6

17 B1 6 × 8 1 12 5 × ×
18 B2 × 7 × 9 2 × 4 × ×
19 B3 × × 8 × 10 3 × 5 ×
20 5 B1 7 × 9 0 × 3 × 5

21 B2 × 8 × 10 1 × 3 × ×
22 B3 × × 9 × 11 2 × 4 ×
23 B0 8 × 10 × 12 2 × 4

Phase3

24 × × 10 × 12 1 × 3 ×
25 × 9 × 11 0 × 2 × ×
26 × 10 × 12 × 0 × 2 ×
27 9 × 11 × × × 1 × 3

28 10 × 12 × × × 0 × 2

29 × × 11 × × × × × 1 × ×
30 × × 12 × × × × × 0 × ×
31 × 11 × × × × × × × 1 ×
32 × 12 × × × × × × × 0 ×
33 11 × × × × × × × × × 1

34 12 × × × × × × × × × 0

17



Table 3: n = 14

round s nodes

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Phase1

1 1 1 4 4 7 7 10 10 13

2 × 2 2 5 5 8 8 11 11 ×
3 0 3 3 6 6 9 9 12 12

Phase2

4 1 A0 × × 4 3 8 7 12 11

5 A1 × 0 5 4 9 8 13 ×
6 A2 2 1 6 5 10 9 × ×
7 A3 × 3 2 7 6 11 10 ×
8 2 B3 × 4 1 8 5 12 9 ×
9 B1 3 × 6 3 10 7 × 10

10 B2 4 0 7 4 11 8 × ×
11 B0 × × 5 2 9 6 13 9

12 3 B0 × × 6 1 10 5 × 8 ×
13 B2 × 5 × 8 3 12 7 × ×
14 B3 × 6 0 9 4 13 7 ×
15 B1 5 × 7 2 11 6 × 8

16 4 B1 6 × 8 1 12 5 × 7

17 B3 × × 7 × 10 3 × 6 × ×
18 B0 × × 8 0 11 4 × 6 ×
19 B2 × 7 × 9 2 13 5 × ×
20 5 B2 × 8 × 10 1 × 4 × 6

21 B0 7 × 9 × 12 3 × 5 ×
22 B1 8 × 10 0 13 3 × 5

23 B3 × × 9 × 11 2 × 4 × ×
24 6 B3 × × 10 × 12 1 × 3 × ×
25 B1 × 9 × 11 × × 2 × 4 ×
26 B2 × 10 × 12 0 × 2 × 4

27 B0 9 × 11 × 13 1 × 3 ×
Phase3

28 × × 11 × 13 0 × 2 × ×
29 × 11 × 13 × × 0 × 2 ×
30 10 × 12 × × × × 1 × 3

31 11 × 13 × × × × 0 × 2

32 × × 12 × × × × × × 1 × ×
33 × × 13 × × × × × × 0 × ×
34 × 12 × × × × × × × × 1 ×
35 × 13 × × × × × × × × 0 ×
36 12 × × × × × × × × × × 1

37 13 × × × × × × × × × × 0

18



Table 4: n = 15

round s nodes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Phase1

1 1 1 4 4 7 7 10 10 13 13

2 × 2 2 5 5 8 8 11 11 14

3 0 3 3 6 6 9 9 12 12 ×
Phase2

4 1 A0 × × 4 3 8 7 12 11 ×
5 A1 × 0 5 4 9 8 13 12

6 A2 2 1 6 5 10 9 14 ×
7 A3 × 3 2 7 6 11 10 × ×
8 2 B2 3 0 7 4 11 8 × 11

9 B3 × 4 1 8 5 12 9 × ×
10 B0 × × 5 2 9 6 13 10 ×
11 B1 4 × 6 3 10 7 14 10

12 3 B3 × 5 0 9 4 13 8 × ×
13 B0 × × 6 1 10 5 14 9 ×
14 B1 5 × 7 2 11 6 × 8 ×
15 B2 × 6 × 8 3 12 7 × 9

16 4 B0 × × 7 0 11 4 × 7 × ×
17 B1 6 × 8 1 12 5 × 7 ×
18 B2 × 7 × 9 2 13 6 × 8

19 B3 × × 8 × 10 3 14 6 × ×
20 5 B1 7 × 9 0 13 4 × 6 ×
21 B2 × 8 × 10 1 14 5 × 7

22 B3 × × 9 × 11 2 × 4 × 6

23 B0 8 × 10 × 12 3 × 5 × ×
24 6 B2 × 9 × 11 0 × 3 × 5 ×
25 B3 × × 10 × 12 1 × 3 × 5

26 B0 9 × 11 × 13 2 × 4 × ×
27 B1 × 10 × 12 × 14 2 × 4 ×

Phase3

28 10 × 12 × 14 1 × 3 × ×
29 × × 11 × 13 0 × 2 × 4

30 × × 12 × 14 × 0 × 2 × ×
31 × 11 × 13 × × × 1 × 3 ×
32 × 12 × 14 × × × 0 × 2 ×
33 11 × 13 × × × × × 1 × 3

34 12 × 14 × × × × × 0 × 2

35 × × 13 × × × × × × × 1 × ×
36 × × 14 × × × × × × × 0 × ×
37 × 13 × × × × × × × × × 1 ×
38 × 14 × × × × × × × × × 0 ×
39 13 × × × × × × × × × × × 1

40 14 × × × × × × × × × × × 0

19


