
HAL Id: hal-02424231
https://hal.inria.fr/hal-02424231

Preprint submitted on 26 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

About Wave Implementation and its Leakage Immunity
Thomas Debris-Alazard, Nicolas Sendrier, Jean-Pierre Tillich

To cite this version:
Thomas Debris-Alazard, Nicolas Sendrier, Jean-Pierre Tillich. About Wave Implementation and its
Leakage Immunity. 2019. �hal-02424231�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/275910583?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-02424231
https://hal.archives-ouvertes.fr

About Wave Implementation and its Leakage Immunity∗

Thomas Debris-Alazard1,2, Nicolas Sendrier2, and Jean-Pierre Tillich2

1 Sorbonne Universités, UPMC Univ Paris 06
2 Inria, Paris

{thomas.debris,nicolas.sendrier,jean-pierre.tillich}@inria.fr

May 22, 2019

Abstract

Wave is a recent digital signature scheme [3]. It is based on a family of trapdoor one-
way Preimage Sampleable Functions and is proven EUF-CMA in the random oracle model
under two code-based computational assumptions. One of its key properties is to produce
signatures uniformly distributed of fixed Hamming weight. This property implies that, if
properly implemented, Wave is immune to leakage attack. We describe here the key stages
for the implementation of the Wave trapdoor inverse function to integrate all the features
to achieve leakage-freeness. A proof of concept implementation was made in SageMath. It
allowed us to check that properly generated Wave signatures are uniformly distributed. In
particular, we show that the signatures produced by this implementation defeat the Barreto-
Persichetti attack. We show which features of the Wave specification were improperly put
aside and explain why the claim of breaking Wave is incorrect.

Preliminary Statement. We consider here the first version of Wave (v1 of [3]). This is
the version which is allegedly broken in [1]. All the features that guaranty the absence of
leakage are already there. It considers a strict (U,U + V) code (i.e. not generalized) and has
no information set gap. The description of the decoder for generalized (U,U + V) codes only
appeared in the v2. The information set gap (denoted d) appeared in third version of Wave.
The information set gap was introduced to give a provably small upper bound for the statistical
distance between the signatures distribution and uniform distribution. We conjecture that this
statistical distance is negligible even with a zero gap. Our implementation is available at the
following URL: https://project.inria.fr/wave and includes the three versions.

1 Hash-and-Sign Signatures and Leakage Attacks

A hash-and-sign digital signature scheme uses a trapdoor one-way function f(). The message is
hashed to produce a random element y in the domain of f(). The legitimate user, the signer, uses
the trapdoor to compute a preimage x of y. The signature x is verified by checking f(x) = y.

When the one-way function f() is surjective, the trapdoor inverse function will use the secret
trapdoor to select one particular preimage. It may happen that this selection is biased and leaks
information on the secret key.

∗This work was supported by the ANR CBCRYPT project, grant ANR-17-CE39-0007 of the French Agence
Nationale de la Recherche.

1

https://project.inria.fr/wave

2 Reaching a Target Distribution for Wave Signatures

The Wave signature scheme is hash-and-sign with a surjective one-way function. Moreover, as
noticed in the design of Surf1, the binary ancestor of Wave, the “native” (U,U + V) decoder is
highly biased and the signature algorithm has to be carefully designed to avoid leakage attacks.
Here the target distribution is the uniform distribution over words a constant weight w. To reach
this distribution we proceed with the following stages.

1. Select parameters, code length and dimension (n, k), signature weight w, but also the
component codes dimension kU + kV = k. This choice is made so that the two related
computational problems are hard enough and the “native” decoder produces an error of
average weight w.

2. The decoder has two successive steps.

2a. The first decoding step draws an integer ` ∈ [0, kV] according to a distribution DV ,
then draws a set of kV random positions and fills them with random values of Hamming
weight `. The word is completed into an output eV of Hamming weight t.

2b. The second decoding step depends of t. It draws an integer k6=0 ∈ [0, kU] according to
a distribution DtU , then draws a set of kU random positions, k6=0 of which are in the
support of eV . The kU positions are filled and completed as specified (Algorithm 4 and
Algorithm 5 in [3]). This is repeated until the final error vector has weight exactly w.

Note that this requires a family of distributions, one for each value the Hamming weight
t of the first step output.

3. After each decoding step we apply a rejection sampling vector. The rejection vectors are
precomputed.

3a. The result of the first decoding step is accepted with probability rV (t), t = |eV |. There
is a single rejection vector.

3b. The result of the second decoding step is accepted with probability rU (t, `), t = |eV |
and ` depends of eU and eV . There is a family of rejection vectors, one for each value
of t.

Note that there is some freedom in the choice of the distributions DV and DtU . Each
choice will lead to different rejection vectors. Note also that those distributions must be
chosen carefully else the acceptance ratio may become exponentially small. Here we chose
truncated Laplace distributions.

This framework and more details on the choice of the distributions and of the rejection vectors
are given in [3].

3 Leakage Attacks on Wave

If the three stages of §2 are correctly implemented, signatures are produced according to a
uniform distribution over Sw the set of ternary words of length n and weight w.

In the random oracle model, to perform a leakage attack, an adversary will observe any num-
ber of signatures. After some extra computation, the adversary tries to extract some information
on the secret key.

1Surf was later abandoned because one of the computational hardness assumptions was not verified

2

Full Implementation: Each signature is drawn independently and uniformly in Sw. The
sample is indistinguishable from a random set of words of weight w. Obviously no leakage attack
is possible.

Removing Stage 3: If for some reason no rejection vector is applied, the adversary will still
have a hard time. If the distributions DV and DtU have the correct mean values (see [3, §5.3])
the observed distribution will still be close to uniform.

Modifying Stage 2: If the distributions are not correctly chosen, then things can get really
bad. First, the rejection vectors can be computed but this will often lead to an exponentially
small acceptance rate. Without the rejection vectors, the first order statistics on coordinate pairs
(i, j) will reveal some information. We call first order statistic a probability P((ei, ej) = (a, b))
for some (a, b) ∈ F2

3 where ei and ej are the i-th and j-th coordinates of a signature e, here
coming from the modified algorithm. In fact, the first order statistics when (i, j) is a matched
pair (i.e. i and j are symmetric to one another in the non permuted version of the code), are
different from those of the other pairs. This fact was remarked in a previous work in the binary
case [2, §4.1].

We illustrate the various modifications and their impact on first order statistics in §6.

4 Implementing Wave

As proof a proof of concept, we implemented Wave as described in §2. This was done in SageMath
and allowed us to check that the output distribution was not distinguishable from the uniform
distribution over Sw. It is available on Wave’s web page2.

Comments and Limitations.

1. As mentioned above, the choice for the distributions in stages 2a and 2b is free but a bad
choice could lead to a low acceptance rate in stage 3.

2. If the mean values of the distributions are correct (i.e. those that stem from a final output
uniformly distributed in Sw) there is no first order bias even without rejection vectors, but
to completely avoid leakage, rejection vectors are needed in stages 3a and 3b.

3. The acceptance rate is exponentially small if distributions are not well chosen. It is the
case for instance by chosing binomial distributions, even with the correct means. What
happens is that the tails of the output distributions are too low and emulating those tails
correctly will force a low average acceptance rate. The input distribution is best chosen
such that the corresponding output tails augment above those of the target distribution.

4. An open question which we have not fully addressed yet is the precision with which the
rejection vectors must be computed to reach a given security level against leakage attacks.

5. The current program uses truncated Laplace distributions and the native floating point
arithmetic of SageMath to compute the rejection vectors. Because of the fixed precision
arithmetic, the resulting signature algorithm leaks. This leakage is small, but it certainly
needs to be quantified precisely. Nevertheless, what we present here is enough to judge of
the feasability of a leakage-free implementation.

2https://project.inria.fr/wave

3

https://project.inria.fr/wave

5 The Wrongful Approach of Barreto and Persichetti

Barreto and Persichetti claim an attack on Wave in [1]. It is a leakage attack but on a scheme
deprived of its substance. The signatures are produced with an algorithm where stage 3 and most
of stage 2 are removed. It ignores DV , picks and fills the kV information positions randomly.
It ignores DtU and picks the kU information positions randomly. Indeed, signatures produced
that way are highly biased and the secret key is easily recovered. The statistic they use is
P(ei = −ej)− P(ei = ej) (see §6).

We formally contest that this is an attack on Wave. To claim an attack on Wave one has to
produce the signatures with either a program compliant with the specification, or, if it is not the
case, one has to prove that the unimplemented features are irrelevant for the attack. Of course
we wrote to the authors. This was greeted by a new preprint version in which a few remarks were
added. But the position of the authors was unchanged and expressed by the following paragraph:

“Summarizing: our attack still holds against a fully detailed implementation of Wave;
it does not depend on the total counts of signature coefficient values being uniform,
and is not thwarted by making them so.”

The beginning of the sentence seems to imply that they are aware that a “fully detailed imple-
mentation” was specified, that they did not use those full specifications, and that they believe it
does not matter. We are are unable to comment the rest of the paragraph.

There was yet another version of [1]. After claiming in the first version that they “do not
see how the scheme can be repaired”, Barreto and Persichetti proposed a fix. This fix, called
Tsunami, consisted in changing the distribution of the total weight of the information position
values in stage 2a, in other words adjusting the distribution DV . By doing this, the difference
of the statistic P(ei = −ej) − P(ei = ej) between the matched pairs and the others vanishes.
However, as we show in the next section, Tsunami is still prone to leakage attacks using other
first order statistics, for instance P((ei, ej) = (0, 0)).

After we completed the full implementation of Wave with all the design stages, we checked
the attack, which does not work anymore. We sent them a sample of 100 000 signatures and a
public key on February 19. The paper is still online with the following claim:

“The number of legitimate signatures the attacker needs to gather is fairly small
(around 600 for the proposed 128-bit secure Wave parameters). The equivalent key
recovery runs very fast in practice (a few seconds). The most time-consuming stage
by far is the generation of the collected legitimate signatures (about one minute).”

Thanks to our implementation, this claim is verifiably false if the attack is applied to genuine
Wave signatures. The measured statistics of §6 are consistent with the theoretical results of [3]
which prove that neither the statistic used in [1], nor any other first order statistic, nor any
statistic at all, can succeed in distinguishing the matched pairs of coordinates from the others.

6 Measured Statistics

We used our implementation to produce Wave signatures. We also extracted the Magma script
from [1] to produce signatures on which the attack works. The Magma script of [1] do not follow
all specifications of Wave but the authors claim that their attack would work even on a fully
detailed implementation. We show below that it is not the case.

The tested 4 categories of signatures. First genuine Wave signatures. Next Wave signatures
in which the stage 3 is not applied. The last two were produced with the Magma script of

4

[1]. The “raw decoder” first, we refer here to the algorithm on which the attack applies. Then
signatures using the Tsunami fix.

For each of those categories, we generated a set E of signatures (all of them with the same
key) and checked the first order statistics that is, for each (a, b) ∈ F2

3 , each e = (e1, . . . , en) ∈ E,
we counted for each pair of positions (i, j) the proportion of signatures such that (ei, ej) = (a, b).

For a random e of Hamming weight w we have for all pairs of position (i, j) and all pair of
values (a, b) (of weight δ ∈ {0, 1, 2})

πδ = P((ei, ej) = (a, b)) =

(
n−2
w−δ

)(
n
w

)
2δ

When the set E is generated with a bias, it may happen that some pairs have different
values. As mentionned in [2, §4.1], the “native” (U,U + V) decoder is biased and some of the
above statistic differ from their expectation for matched pairs. A matched pair of position has
the form (`, `+ n/2) in the non permuted version of the code (the secret).

We chose the parameters n = 5172 and w = 4980 from the first version of Wave. This is
good enough to provide evidence that the Wave signatures are correctly distributed and allows
a comparison with [1]. For those parameters, we have π0 = 0.0013712, π1 = 0.017876, and
π2 = 0.231781.

All the statistics produced below can be easily reproduced from publicly available software.

6.1 Wave Signatures

Below the percentage for each value of (a, b) on average over all pairs and on average over all
matched pairs. Those values were obtained from a sample of 400 000 signatures produced by our
SageMath full implementation of Wave. Note that there are n(n − 1)/2 distinct pairs and only

Table 1: Wave
(a, b) (0, 0) (1, 0) (2, 0) (0, 1) (0, 2) (1, 1) (2, 1) (1, 2) (2, 2)

matched 0.13710 1.7876 1.7876 1.7878 1.7874 23.1780 23.1797 23.1768 23.1780
all 0.13712 1.7875 1.7875 1.7877 1.7877 23.1783 23.1782 23.1780 23.1780

theory 0.13712 1.7876 1.7876 1.7876 1.7876 23.1781 23.1781 23.1781 23.1781

n/2 − 1 are matched pairs. Thus the average percentages for the matched pairs are made with
a smaller population and may deviate (slightly) more from theory than the average for all pairs.
Here the deviation from theory is within the tolerance given the sample of size.

6.2 Wave Signatures without Rejection Vectors

Below the percentage for each value of (a, b) on average over all pairs and on average over all
matched pairs. Those values were obtained from a sample of 100 000 signatures produced by
our SageMath implementation of Wave in which all decoding results are accepted (i.e. stage 3
is completely cancelled). The statistics for the matched pair are very close to the expectation

Table 2: Wave without Stage 3
(a, b) (0, 0) (1, 0) (2, 0) (0, 1) (0, 2) (1, 1) (2, 1) (1, 2) (2, 2)

matched 0.14259 1.7847 1.7844 1.7846 1.7856 23.1730 23.1867 23.1839 23.1744
all 0.13712 1.7871 1.7871 1.7880 1.7881 23.1773 23.1784 23.1779 23.1790

theory 0.13712 1.7876 1.7876 1.7876 1.7876 23.1781 23.1781 23.1781 23.1781

for a uniform distribution. However small deviations can be observed. Note that using thoses

5

deviations to produce an attack won’t be easy, several order of magnitude harder than those
described below when the stage 2 is incorrectly implemented. Still, with the distributions we
chose here (truncated Laplace) it is unsafe to make the economy of stage 3.

6.3 Raw (U,U + V) Decoder Output

Below the percentage for each value of (a, b) on average over all pairs and on average over all
matched pairs. Those values were obtained from a sample of 1 200 signatures produced from
the Barreto Persichetti Magma script at the end of [1]. As expected, we observe a huge bias,

Table 3: Raw Decoder
(a, b) (0, 0) (1, 0) (2, 0) (0, 1) (0, 2) (1, 1) (2, 1) (1, 2) (2, 2)

matched 1.24320 1.2236 1.2286 1.2324 1.2488 16.0742 30.8580 30.8703 16.0209
all 0.13706 1.7857 1.7835 1.7887 1.7878 23.1986 23.1704 23.1907 23.1575

theory 0.13712 1.7876 1.7876 1.7876 1.7876 23.1781 23.1781 23.1781 23.1781

especially in the last 4 columns. In [1] the observed statistic is P(ei = −ej)−P(ei = ej). In other
words, one counts for a given position pair (i, j) the number of occurences of the values (1, 2) or
(2, 1) minus the number of occurences of the values (1, 1) or (2, 2). The resulting number should
be 0 on average (columns (2, 1) and (1, 2) minus columns (1, 1) and (2, 2)) for a random pair,
and almost 30% (≈ 30.85 + 30.87− 16.07− 16.02) of the sample size on average when the pair is
matched. This will reveal the matched pairs even with a small sample size. Note that this bias
is completely absent in the Wave signatures.

6.4 Tsunami Signatures

Below the percentage for each value of (a, b) on average over all pairs and on average over all
matched pairs. Those values were obtained from a sample of 1 200 Tsunami signatures produced
from the Barreto Persichetti Magma script at the end of [1]. The bias in the last columns

Table 4: Tsunami
(a, b) (0, 0) (1, 0) (2, 0) (0, 1) (0, 2) (1, 1) (2, 1) (1, 2) (2, 2)

matched 1.85141 0.9251 0.9403 0.9301 0.9239 24.0577 23.1444 23.1529 24.0741
all 0.13716 1.7884 1.7884 1.7849 1.7863 23.1684 23.1701 23.1879 23.1885

theory 0.13712 1.7876 1.7876 1.7876 1.7876 23.1781 23.1781 23.1781 23.1781

appears to be corrected in Tsunami signatures. Interestingly, the bias seems to amplify in the
first 5 columns. For instance, the position pairs (i, j) in Tsunami signatures whose values are
most frequently equal to zero simultaneously are likely to be matched.

References

[1] Paulo S. L. M. Barreto and Edoardo Persichetti. Cryptanalysis of the Wave signature scheme.
Cryptology ePrint Archive, Report 2018/1111, 2018.

[2] Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich. Surf: a new code-based
signature scheme. preprint, September 2017. arXiv:1706.08065v3.

[3] Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich. Wave: A new family of
trapdoor one-way preimage sampleable functions based on codes. Cryptology ePrint Archive,
Report 2018/996, v4, May 2019. https://project.inria.fr/wave

6

https://project.inria.fr/wave

	Hash-and-Sign Signatures and Leakage Attacks
	Reaching a Target Distribution for Wave Signatures
	Leakage Attacks on Wave
	Implementing Wave
	The Wrongful Approach of Barreto and Persichetti
	Measured Statistics
	Wave Signatures
	Wave Signatures without Rejection Vectors
	Raw (U,U+V) Decoder Output
	Tsunami Signatures

