
HAL Id: hal-02424410
https://hal.inria.fr/hal-02424410

Submitted on 27 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quantum impossible differential attack. Applications to
CLEFIA, AES and SKINNY

Nicolas David

To cite this version:
Nicolas David. Quantum impossible differential attack. Applications to CLEFIA, AES and SKINNY.
Cryptography and Security [cs.CR]. 2019. �hal-02424410�

https://hal.inria.fr/hal-02424410
https://hal.archives-ouvertes.fr

Quantum impossible differential attack.
Applications to CLEFIA, AES and SKINNY

Nicolas David , Maria Naya-Plasencia, INRIA Paris

September 2, 2019

The general context

Cryptography is a computer discipline that aims to protect messages through encryption
systems. In symmetric cryptography, a secret parameter, called a key, is used both to encrypt
and to decrypt messages. The security provided by a symmetric encryption system is evaluated
using cryptanalysis techniques which aim, for example, to find the secret key.

Quantum computer arrival could impact the cryptographic field. Indeed, in 1994, Shor
exhibited that quantum computers could be used to improve assymetric cryptanalysis [17].
With the recent breakthrough in quantum computer, the security of cryptographic primitives
against quantum adversary can not be taken as guaranteed. The NIST launched a competition
for new primitives that are safe even against adversaries that has access to a quantum computer.
To estimate the quantum security of a cryptographic scheme, it is necessary to perform its
quantum cryptanalysis. Quantum cryptanalysis techniques sometimes are quantum adaptation
of classical cryptanalysis techniques. This transformation is called quantizing.

Let’s note that an attack is valid if and only if it is more efficient than the naive attack. In
the classical setting, the naive attack is the generic exhaustive search, in the quantum setting,
it is the Grover search algorithm [14].

The research problem

The report aims to study impossible differential attacks introduced independantly by Knudsen
[13] and Biham et al. [4], and then derive a valid quantizing. The authors in [5], that designed
a quantum attack on AES, pointed out that impossible differential technique has not been yet
quantized and that its supposed efficiency was not clear.

Your contribution

In order to build a valid attack, we will split the classic attack into different steps. Each of
these steps will then be modified to obtain the most efficient quantizing. A study of this
effectiveness will be given through an accurate analysis of the complexity.

Arguments supporting its validity

Various examples of applications such as CLEFIA-128 [16], AES-128 and ForkSkinny-128-256
[10] will be given to understand how far the validity of quantum impossible differential attacks
extends. We will also identify the factors that break the validity of the attack.

1

Summary and future work

The applications of impossible quantum attacks have shown that some schemes are vulnerable
to quantum computer and that security with respect to impossible differential attacks is to
be studied before claiming any quantum security. However, an overhead in time complexity
induced by the quantizing is not negligible. Indeed, some primitives vulnerable to classical
impossible attacks lose this vulnerability when transposition in the quantum world. This
overhead seems to be related to the memory. Understanding how to quantify the memory
operations of the classical world will reduce this extra cost and therefore provide better attacks.

1 Preliminaries

1.1 Classical impossible differential attacks

Impossible differential attacks were independantly introduced by Knudsen [13] and Biham et
al. [4]. The goal of cryptanalysis technique is to recover the secret key k∗, belonging to some
key set K, used in the encryption scheme. This is done by discarding all the wrong keys with
the help of a pair of plaintexts that leads to an impossible pattern under its encryption with
the wrong key.

Building an impossible differential attack
of an n-bit block cipher over r rounds mainly
consists of two steps. In the first step the goal
is to find a maximal length impossible differen-
tial, i.e. we want to find a pair of differentials
∆X ,∆Y together with an integer rimp (that we
look forward to maximize) such that the proba-
bility of a difference ∆X propagates to a differ-
ence ∆Y after rimp rounds is 0. In this step, we
also want to find two integers rin, rout such that
rin + rD + rout = r. We denote by impossible
pattern the quantity (∆X ,∆Y , rimp, rin, rout).
The second step, called the seiving phase, con-
sists on finding two sets Din ⊂ {0, 1}n and
Dout ⊂ {0, 1}n. Let’s denote by E the encryp-
tion oracle and Ein (resp. Eout) the partial
encryption function between round 0 and rin
(resp rin + rimp and r).

Ein

Eout

Din

∆X

∆Y

Dout

rin

rimp

rout

If we are given a pair of plaintexts x, y with difference in Din and their corresponding
ciphertexts E(x), E(y) with difference belonging to Dout, due to the impossible pattern, we
can discard any key k that verifies:(

Ein(k)(x)⊕ Ein(k)(y) = ∆X) ∧ (E−1
out(k)(E(x))⊕ E−1

out(k)(E(y)) = ∆Y

)
The seiving phase goal is to discard as many keys as possible using many plaintexts pairs.

2

Remark. If we denote by Kin ⊂ K the key bits involved in Ein and Kout ⊂ K the key bits
involved in Eout, we can remark that the key bits involved in the impossible key distinguisher
are Kin ∪Kout. Therefore our analysis is done on the subkeyspace Kin ∪Kout.

The seiving phase that we will describe is inspired from [7]. It decompose iteself in a two
steps procedure:

• Pair Generation. In this part, we focus in solving the following problem:

Data: N ∈ N, E : {0, 1}n → {0, 1}n
Din ⊂ {0, 1}n , Dout ⊂ {0, 1}n

Question: Find N pairs (x, y) ∈ {0, 1}2n such that
x⊕ y ∈ Din and E(x)⊕ E(y) ∈ Dout

A good analysis of this problem in the classical setting is given in [6] with an efficient
algorithm for solving it. At the end of this step, we will dispose of a set of N differential
pairs. We will denote by Pairs the set obtained.

• Pair Filtering. This step follows the Pair Generation, hence we dispose of a set of
differential pairs. The goal of this step is to split the set of subkey Kin ∪Kout into two
sets : one that countains all the subkeys that have been invalidated by some pair of Pairs
and the another that countains the other subkey. A very interresting optimization in this
step is called early abort technique. It is described in [6]. For a given key k ∈ Kin ∪Kout,
the goal of this optimization is to filter these pairs only to keep the pairs that will
invalidate k.

To explain how the filtering is done, we will introduced tests functions. Let’s assume that

– There exists sets K1, · · · ,Kl that decompose Kin ∪ Kout = K1 ⊗ K2 ⊗ · · · ⊗ Kl

These sets usually reprensent some subyte of the subkeyspace.

– There exists sets P1, · · · , Pl such that Pairs ⊂ P1 ⊗ P2 ⊗ · · · ⊗ Pl
Together with this decomposition, we dispose of l test functions Ti : Ki ⊗ Pi → {0, 1}.

Example. Let’s give an example of a test
function. In this example based on CLEFIA-
128 wich specification is given in section
3.1.1. We are looking at round 11 and 12,
we note P 12

0 , P 12
1 , P 12

2 , P 12
3 the internal state

at round 12. We want no difference at round
11 on P 11

0 , P 11
1 , P 11

3 , therefore the following
equation holds:

F1(P 12
1 ⊕RK23)⊕ P 12

2 = 0

3

Then, the test function to propagate from round 12 to round 11 is T : P 12
1 , P 12

2 , RK23 7→
F1(P 12

1 ⊕RK23) = P 12
2

The early abort technique aim to recover the set of pairs that satisfy all the tests functions
that we note:

Pairs(k) = {p ∈ Pairs | ∀i Ti(ki, pi) = 1}
We will assume that the tests function are build such that the following property holds:
Pairs(k) = ∅ if and only if there exists no pairs in Pairs that invalidates k. This
assumption is legitimate since it holds in practice. Then a key will be discarded if
Pairs(k) 6= ∅.

In the end, we have described a probabilistic procedure that discards a subkey k (different
from the one used in the encryption) with some probability P . We denote by candidate key all
the keys that have not been discarded. To recover the remaining key bits, i.e K \Kin ∪Kout,
we will perform an exhaustive search on these bits and the candidate keys. Let’s remark that if
there is less key candidates than |Kin ∪Kout| then the exhaustive search on the key candidate
and the remaining key bits will be more efficient than the exhaustive search on the whole key
space. If the procedure discards a certain amount of keys, an attack will be valid if and only
if its seiving procedure is more efficient than the naive exhaustive search. In the following
section, we will discuss about the complexity analysis of this procedure.

1.2 Complexity analysis

In this section, we will provide both the data complexity and the time complexity of the
impossible attack described in the previous section.

1.2.1 Data complexity

In impossible differential attacks, the data complexity is completly determined by the cost of
building the set Pairs. Hence, it is enough to estimate the size of Pairs : N . Considering
a differential pair with input difference in Din and output difference in Dout, we denote by
cin the nuber of bit conditions for a pair to propagate to a difference of ∆X at round rin, and
cout the number of bit condition to reach a difference of ∆Y at round rin + rD. With these
notation, the probability P of discarding a bad key can be written

P = (1− 2−(cin+cout))N

This equation allows us to write

N = O(ln(1/P) · 2cin+cout)

For instance, if we want to get only one subkey in the end, it is enough to ask for arround
P = 1

|Kin∪Kout therefore N = O(2cin+cout · log(| Kin ∪Kout) |).

1.2.2 Time complexity

To study the time complexity of the attack, we need to emphasize that the search of the
impossible differential pattern is not involved here. We suppose as it is common in the

4

litterature that a good impossible differential pattern is already known. The complexity of
the attack is mainly determined by the seiving phase. We detail here the complexity of all its
steps.

• Pair Generation. To estimate the complexity of this part, it is necessary to introduce
some notation for the cardinality of ∆in and ∆out. For the following, we will note
2∆in = |Din| and 2∆out = |Dout|.
The complexity of the Pair Generation problem was studied in [11] for the special case
where N = 1. The complexity for finding one such pair with acess to encryption oracle
is given by:

C1 = max

(
min

∆∈{∆in,∆out}

√
2n+1−∆, 2n+1−(∆in+∆out)

)

Then to build N pairs, we could use the previous technique N times and get a complexity
of N · C1. However, as shown in [7], with acess to encryption oracle, it is possible to
reduce this complexity to:

CN = max

(
min

∆∈{∆in,∆out}

√
N2n+1−∆, N2n+1−(∆in+∆out)

)

• Pair Filtering.

Lemma 1. Given a set of differential pairs, checking if Pairs(k) is empty for all key
can be done in time

|K1| (|P1|+ |K2| (|P2|+ |K3|(|P3|+ · · · |Kl||Pl|))

The procedure is described in [6], it essentially consists of first guessing the key partial
key k1 ∈ K1 and then by using an exhaustive search on P1 to find all the pairs that
satisfy T1. Then we gess k2 ∈ K2 and repeat the process until we make the exhaustive
search on Pl. At this point, the remaining pairs are the elements of Pairs(k), hence it is
enough to check if there is any pair left.

Remark. This time complexity can be reduced if an efficient data structure is used. For
instance, using lookup table could help to improve the complexity.

In the end, the total complexity is the sum of the complexity of the two steps:

|K1| (|P1|+ |K2| (|P2|+ |K3|(|P3|+ · · · |Kl||Pl|)) + CN + P · 2|K|

The quantity P · 2|K| corresponds to the exhaustive search that is perform at the end to recover
all the bits of the secret key.

1.3 Quantum preliminaries

In this section, we will introduce some quantum tools and describe the most important quantum
adversary models that are usually considered. All the normalization terms are omitted for a
better readability.

5

1.3.1 Quantum computing

We will remind here some basis of quantum computing, a better introduction to the subject is
given in [9].

Qubits. In a classical computer, the unitary units of computation are bits and their
value can either be 0 or 1. In a quantum computer, bits are replaced by qubits that can be
a superposition of two states |0〉 and |1〉. Therefore, a qubit is represented by a vector of a
Hilbert space:

α |0〉+ β |1〉
where α, β ∈ C and |α|2 + |β|2 = 1. α and β are called amplitude, the quantity |α|2 and |β|2
corresponds to the probability to retrieve |0〉 or |1〉 when the qubit is measured. Hence, |0〉
and |1〉 are the basis of this Hilbert space.

Entanglement. Combining two qubits, vectors of H, creates a system belonging to H⊗2 .
Indeed, any system of two qubits can be describe by a superposition over the following states
|00〉,|10〉,|01〉 and |11〉. It is important to remark that there is a strict difference between H2

and H⊗2 . Therefore a system of two qubits can’t always be described by a pair of qubits.

Quantum algorithm. In this standard model of quantum computing, a quantum algo-
rithm is a sequence of elementary operations: quantum gates. A good example of quantum
gate is the Hadamard gate that performs the following transformation:

H⊗
n

: |x〉 7→ 1√
2n

∑
y∈{0,1}n

(−1)x·y |y〉

Each of the gate can be represented by a unitary and reversible operation, therefore each
algorithm is a unitary and reversible operation. A consequence of this property is that there
exists no algorithm that copies a qubit, since the copy operation is not unitary. Therefore, to
duplicate a qubit, it is necessary to repeat the process that creates it.

The quantum computation ends with a measurement that will make the quantum state
collapse to an element of the basis.

1.3.2 Models

There exist several models that aim at modelizing quantum adversary. With the same
terminology used in [12], we will introduce two of them that are the most often considerd.

• Q1 Model. The adversary is allowed to make quantum computations but she can only
make classical queries to the encryption and decryption oracles.

• Q2 Model. The adversary can make quantum superposition queries to the encryption
oracle. This model refers to IND-qCPA ("quantum chosen-plaintext") in [8, ?]

Our quantum version of impossible differential attack will be placed in Q2. This is necessary
if we want to give an efficient quantum optimization of the Pair Generation problem.

For the data model, we will allow the use of a quantum RAM (qRAM). The qRAM model
used in the following is called classical RAM with quantum acess. It consists of storing classical

6

information that we can query in superposition. The following quantum gate represents the
qRAM

|x〉

|0〉
qRAM

|x〉

|qRAM [x]〉

Figure 1: qRAM

1.3.3 Quantum Tools

In the following, we will introduce some usefull tools from quantum information theory.

1. Grover search. Grover search algorithm introduced in [14], is an algorithm that solves
the followig problem:

Data: N elements including t marked elements
Question: Find a marked element

A precise description of this algorithm is given in [9]. The complexity associated to this
problem is

O (

√
N

t
(S + C))

where S is the complexity of building the quantum superposition on the N elements and
C is the cost of checking if an element is marked. In the classical case the complexity is
N
t · C.
In the following, for any boolean function T : X → {0, 1}, we denote by Grover on T the
application of Grover algorithm on the set X. The marked elements corresponds to all
x ∈ X such that T (x) = 1.

2. Amplitude amplification.In [1], the following problem is introduced:

Data: A : ∅ → Y a random quantum algorithm performing no measurement
χ : Y → {0, 1} a Boolean function
p the probability that χ(A()) = 1

Question: Find a element y ∈ Y such that χ(y) = 1

In the classical version of this problem, 1/p computation of A() are recquired in average.
Quantummly, it is possible to solve this problem with only

√
1/p computations of A()

as explaind in [9].

3. Collision finding : Ambainis algorithm. The Collision finding problem was intro-
duced by Andris Ambainis in [1]. It consists of

Data: H : {0, 1}n → {0, 1}n a random function
Question: Find two elements x, y ∈ {0, 1}n such that H(x) = H(y).

7

The time complexity obtain by the quantum algorithm in [1] is O(2n/3). Due to the
birthday paradox, the complexity for solving this problem in the classical setting is
O(2n/2).

4. Quantum walk. The last problem that we will need is the quantum walk, introduced
in [1]. The problem that we’re looking to solve is

Data: A graph G of N vertices including an ε proportion of marked vertices
An oracle deciding if a vertex is marked in time C

Question: Find one marked vertice

The idea of the algorithm is to quantify the classical random walk algorithm:

Start at some specific vertex y on the graph.
Repeat the following process a given number of times: Query the oracle to check if y is
marked, if not, choose one of its neighbors at random and set y to this value.

With the approach given in [9], the classical time complexity of the procedure is

S +
1

ε
(C +

1

δ
U)

and the quantum time complexity is

S +
1√
ε

(C +
1√
δ
U)

where S is the complexity of building the quantum superposition on all the vertices of G,
ε is the fraction of marked states, C is the cost of checking if a vertex is marked, δ is the
spectral gap1, G and U is the cost of updating a vertex to its neighbor.

1if we note A the normalized adjacency matrix of G and λ1 = 1 > λ2 > · · · > λN its eigenvalue, the spectral
gap of G is the quantity 1−maxi≥2 λi

8

2 Quantum Impossible Differential

In this section, I will present the quantized version of impossible differential attack that I
developped during my internship. For this, we will provide a quantized version of the Pair
Generation, the Pair filtering phases.

2.1 Pair Generation : Quantum Limited Birthday Problem

In this section we come back to the Pair Generation problem.

Data: N ∈ N, E : {0, 1}n → {0, 1}n
Din ⊂ {0, 1}n , Dout ⊂ {0, 1}n

Question: Find N pairs (x, y) ∈ {0, 1}2n such that
x⊕ y ∈ Din and E(x)⊕ E(y) ∈ Dout

Let’s first note we consider to have acces to both the encryption and the decryption oracles.
Therefore it is possible to swap the roles of Din and Dout to optimize the final complexity.

In [12] an algorithm is given to solve this problem for N = 1. The complexity reached is

Q1 = max

(
2(n−∆out)/3, 2(n−∆out)/2−∆in/3

)

Like in the classical setting, we could pay N ·Q1 to recover N pairs but there exits procedures
that reduce this time complexity. In the following, such a procedure will be described.

Let’s first remark that solving the Collision Finding problem provides a solution to Pair
Generation. Let’s pick any y ∈ {0, 1}n, we can define Hy:

Hy : Din → { 0,1 }n−∆out

x → E(y) ⊕E(y ⊕ x) mod Dout

here mod Dout stands for the relation x = y mod Dout ⇔ x⊕ y ∈ Dout. In practice Din and
Dout are correspond to subits of the plaintext and ciphertext, then mod Dout can be checked
by a projection on the complementary set of Dout in {0, 1}n.

We remark that finding a collision for Hy corresponds exactly to finding a good differential
pair for E. We will denote by structure any function Hy that follows the pattern previously
described.

Lemma 2. Let H : {0, 1}n → {0, 1}m be a function such that H has 22c collision pairs. Let
c′ < 2c, there exists a quantum algorithm which outputs 2c

′ such collisions in time and memory
2

2
3

(n−c+c′).

Proof. We will give a quantum algorithm that achieves the complexity goal. It consists of a
quantum walk.
First, let r ∈ N be some integer such that 2r << 2n. We will walk on the graph G = <V,E >
with

1. V = {1, · · · , 2n}2r , i.e 2r-tuples of integers of {1, · · · , 2n}.

9

2. E = {(x, y) ∈ E2 | ∃!i xi 6= yi}
We define the set of marked state as follows M = {x ∈ V | ∃i, j xi 6= xj ∧H(xi) = H(xj)},
hence a vertex is marked whenever it countains at least one non trivial collision. Our procedure
splits in three parts:

1. Setup. First, we construct the initial uniform superposition of all vertices. We will build
a superposition in each of the 2r registers (this represents the quantum memory used in
this procedure).

2. Quantum walk. Then, we will perform a walk on the graph2 until we reach a super-
position of marked states. Because there is 22c collision pairs, the fraction of marked
vertices is given by

ε =
2c+r2c+r−1

2n2n−1
≈ (2c+r−n)2

Therefore the quantum walk needs to run 2n−c−r steps. Furthermore, the spectral gap is
estimate by δ = 2n

2r(2n−2r) ≈ 2−r.

3. Measurement. Once we got the quantum state |ψ〉 corresponding to the superposition
over the marked states, we compute the value of each element through H.

|ψ〉 =
∑

(x1,x2,··· ,x2r)∈M
|(x1, x2, · · · , x2r)〉

→
∑

(x1,x2,··· ,x2r)∈M
|(x1, x2, · · · , x2r)〉 |(H(x1), H(x2), · · · , H(x2r))〉

At this point, we perform a sort on the H side to put the collision in the two first register.
Then, we will measure these two registers to get the first collision. Each of the 2r − 2
registers left collapse to the uniform superposition over the 2n elements. Therefore by
adding two registers countaining the uniform superposition, we produce the same state
that we had at the beginning of step2. This way, we can repeat this process Õ(2c

′
) times

to collect the 2c
′ collisions.

This technique allow us to avoid the setup cost when we loop back to step2 2c
′ times. In the

end the complexity of this algorithm is

2r + 2c
′ · 2n−c−(r/2)

By taking r = 2
3(n− c+ c′), we obtain a complexity of 2

2
3

(n−c+c′).

Remark. The exact complexity of the procedure involves a polynomial factor in n (due to the
sort) that we will neglect.

Remark. Under the assumption that H : {0, 1}n → {0, 1}m follows the random oracle model,
there is arround 22n−m collisions.

For every structure Hy, we have described a way to collect collisions from which we can
derive pairs. Depending on the value of N , ∆in and ∆out, the number of structures that we
will need to consider in order to recover N pairs will be different. Indeed, for each structure
we expect 22∆in−(n−∆out) collisions.

2This graph is in fact in our case really close to the Johnson graph J(2r, 2n)

10

1. First, we will consider N < 22∆in

2n−∆out
.

Property 1 (One Structure). If N < 22∆in

2n−∆out
then one can recover N differential pairs

in time N2/32
n−∆out

3 .

Proof. If E is IND-CPA, we can suppose that Hy is random for any y ∈ {0, 1}n. Then we
can assume that it has 22∆in

2n−∆out
collisions (hence c = ∆in − n−∆out

2). Then, by applying
Lemma 1, we can find N collisions for H in time:

2
2
3

(∆in−(∆in−n−∆out
2

)+log2(N)) = 2
n−∆out

3
+ 2

3
log2(N)

= N
2
3 2

n−∆out
3

2. Now, let’s consider another scenario : 22∆in

2n−∆out
< 1. This part follows the ideas of [12].

This corresponds to the case in which there is less than one pair per structure on average.

Lemma 3. If 22∆in

2n−∆out
< 1, one can retrieve a differential pair in quantum time:

2
n−∆out

2
−∆in

3

and quantum memory:
2

2
3

∆in

Proof. Let’s consider y ∈ {0, 1}n. If we apply Ambainis’ algorithm to Hy, we can find a
Collision (if exists) in time and memory:

2
2
3

∆in

Then because the probability of getting a structure in which there is a differential pair
is 22∆in

2n−∆out
, by applying an amplitude amplification algorithm, one can get a differential

pair in time: √
2n−∆out−2∆in · 2 2

3
∆in = 2

n−∆out
2
−∆in

3

Property 2 (Less than one pair). If 22∆in

2n−∆out
< 1, one can retrieve N differential pairs

in quantum time:
N · 2

n−∆out
2
−∆in

3

and quantum memory:
2

2
3

∆in

Remark. In this case, the final complexity corresponds to N ·Q1.

11

3. There is one last scenario to consider: 1 < 22∆in

2n−∆out
< N . Here, we will need to consider

multiple structures that all have severals differential pairs (we expect 22∆in

2n−∆out
pairs per

structure). For the following, we will need to define ns:

ns = log2(N) + n− 2∆in −∆out

This quantity represents the number of structures that we will need to consider to recover
N differential pairs.

Property 3 (multiple structures). If 1 < 22∆in

2n−∆out
< N , one can retrieve N differential

pairs in quantum time
N2

2
3

(n−∆out−∆in)

Proof. We will apply the procedure describe in Property 1 2ns times. Each times, we are
looking to collect N ′ = 22∆in

2n−∆out
collisions. The quantum time cost for the full procedure

is

2ns ·N ′ 23 2
n−∆out

3 = 2ns · 2 4
3

∆in−n−∆out
3

= N2
2
3

(n−∆in−∆out)

Now that we have studied all the cases, we can consider the knowledge of both oracles and
conclude:

Theorem 1. Let E : {0, 1}n → {0, 1}n be a block cipher such that both E and E−1 can
efficiently handle superposition queries. The Limited Birthday Problem can be solved in
quantum time

QN = max { min
∆∈{∆in,∆out}

N2/32(n−∆)/3,min(N2
2
3

(n−∆out−∆in), min
∆∈{∆in,∆out}

N2
n
2
−∆

6
−∆in+∆out

3)}

This theorem concludes the quantum version of Pair Generation. The set Pairs will be
stored in a classical RAM with quantum access (qRAM). The qRAM will be set as a boolean
function

qRAM [p] = (p ∈ Pairs) ∈ {0, 1}

2.2 Quantum Pair Filtering

The notations of section 1.1 are used here, hence Pairs = P1 ⊗ · · · ⊗ Pl and Kin ∪Kout =
K1 ⊗ · · · ⊗Kl. If classically, the goal would be to recover the set

Pairs(k) = {(p1, p2, p3 · · · pl) ∈ Pairs | ∀i Ti(ki, pi) = 1}

Quantumly, we aim to recover the superposition of the elements of this set:∑
k

|k〉
∑

p∈Pairs(k)

|p〉

To lighten the notation, let’s define

12

• Si(ki) = {pi ∈ Pi | Ti(ki, pi) = 1}. In practice, the quantity |Si(ki)| does not depends
too much on the subkey k. In our analysis, we will assume that it is constant. We will
denote by σi = |Si(ki)|.

• Likewise, we will suppose that the cardinality of the set Pairs(k) (when nonempty) does
not depend too much on k. We will denote by ε the quantity such that 2ε = |Pairs(k)| .

Lemma 4. One can retrieve the vector
∑

k |k〉
∑

p∈Pairs(k) |p〉 in quantum time

O

∑
i

√
|Pi|
σi

√∏i σi
2ε

Proof. We will now describe our original approach for quantum Pair Filtering. Computing∑

k |k〉
∑

p∈Pairs(k) |p〉 can be done in a 2-steps procedure. For more clarity, we start by
describing the procedure for one fixed subkey. The final procedure will consider the uniform
superposition on these subkeys.

• Collecting the conditions. For each i ∈ [1, l], let’s pick ki ∈ Ki. We can perform a
Grover on the predicates Ti(ki) : Pi 7→ {0, 1} to recover the superposition of the elements

of Si. The complexity of one Grover is ci(setupi + checki) where ci = O

(√
|Pi|
σi

)
,

setupi = O(1) and checki = O(1). Because all the tests Ti are independant, the
complexity for l tests is

O

 l∑
i=1

√
|Pi|
σi

At this point we have computed for each i ∈ [1, l] the quantum vector |ki〉

∑
s∈Si(ki) |s〉

for some ki ∈ Ki. By concatenating these l vectors, we obtain

ψk = |k〉
∑

s1∈S1(k1),··· ,sl∈Sl(kl)
|s1〉 |s2〉 · · · |sl〉

• Retrieving the pairs. We have built ψk, a vector that carries the bit conditions for a
pair to belong to Pairs(k). To recover the superposition over Pairs(k), it is enough to
perform a Grover on the qRAM (seen as a boolean function) to recover the pairs that
belong to the solution space

⊗
i Si(ki). This Grover search will set ψk as initial state.

Hence, the total complexity is

O

∑
i

√
|Pi|
σi

√∏i σi
2ε

By replacing |k〉 by∑k |k〉 in the previous procedure, we will recover

∑
k |k〉

∑
p∈Pairs(k) |p〉.

Remark. Another way to proceed is to start with the superposition over the pairs and then
filter with respect to the Ti. The Grover tests in this case won’t be independant and the final

complexity will be O(

√∏
i |Pi|
2ε) = O(

√
N
2ε) which is too much.

13

Theorem 2. One can retrieve a candidate key in quantum time

O

√|Kin ∪Kout|

∑
i

√
|Pi|
σi

√∏i σi
2ε

+QN

Proof. Let’s describe the full procedure and its quantum complexity:

• Pair Generation. The complexity to store N pairs in the qRAM is QN . Its precise
value is given in section 2.1.

• Pair Filtering. It is possible to generate
∑

k |k〉
∑

p∈Pairs(k) |p〉 in timeO
((∑

i

√
|Pi|
σi

)√∏
i σi
2ε

)
as explained before. Now, for a given k, if Pairs(k) = ∅, the second register of∑

k |k〉
∑

p∈Pairs(k) |p〉 will correspond to a pair that does not invalidate k. Therefore it
is enought to check if the quantum vector

∑
p∈Pairs(k) |p〉 invalidates k to decide if k is a

key candidate. Here is the final test:

T : k, p 7→ p invalidates k

A Grover on T will retrun the superposition over the candidate keys. The complexity of
this test is

O

√|Kin ∪Kout|

∑
i

√
|Pi|
σi

√∏i σi
2ε

In the end, the total complexity is

O

√|Kin ∪Kout|

∑
i

√
|Pi|
σi

√∏i σi
2ε

+QN

If N is build such that the only candidate key corresponds to the key used during encryption,
by measuring the superposition over the candidate keys, we will recover k∗.

To retrieve the secret key, we perform a Grover search on the missing key bits. In the end,
the complexity to recover the secret key is

O

√|Kin ∪Kout|

∑
i

√
|Pi|
σi

√∏i σi
2ε

+QN +
√
|K \Kin ∪Kout|

14

3 Applications

3.1 Application : 12 rounds CLEFIA-128

CLEFIA is a popular lightweight 128-block cipher designed by Shirai et al. in 2007 [16]. It
is based on a 4-branch Feistel network. We will provide a short descrition of the encryption
function. The best classical impossible differential attack reaches 13 rounds and it is described
in [7]. The quantum attack that follows attempts to reach 12 rounds of CLEFIA-128. The last
quantum impossible differential attack that could build works on 11 rounds.

3.1.1 Description

We will now describe a R rounds CLEFIA-
128 encryption scheme. Let P = P0 | P1 |
P2 | P3 be a 128-bit plaintext with each Pi
a 32-bits vectors and C be the corresponding
cyphertext. A key schedule algorithm, whose
description is given in [16], is used to generate
2R round keys (Rki)0≤i≤2R−1 and 4 whitening
keys Wk0 · · ·Wk3 that all are 32-bits vectors.
F0 and F1 are the two round functions con-
sidered here, they are composed of an S-box
followed by a linear layer M0 for F0 and M1

for F1.

F0

P i
0 P i

1 P i
2 P i

3

F1

P i−1
0 P i−1

1 P i−1
2 P i−1

3
RK2i−2 RK2i−1

The encryption function is described in the following algorithm:

Algorithm 1 CLEFIA-128 encryption scheme
Require: P
P 0

0 | P 0
1 | P 0

2 | P 0
3 ← P0 | P1 ⊕Wk0 | P2 | P3 ⊕Wk1

for i = 1 to R do
P i0 ← F0(P i−1

0 , Rk2i−2)⊕ P i−1
1

P i1 ← P i−1
2

P i2 ← F1(P i−1
2 , Rk2i−1)⊕ P i−1

3

P i3 ← P i−1
0

end for
C ← PR0 | PR1 ⊕Wk2 | PR2 | PR3 ⊕Wk3

return C

3.1.2 Properties of CLEFIA-128

CLEFIA-128 is a 4-branch feistel network. Therefore the scheme does not diffues very well,
there is two consequences.

• It is possible to build test function that have a small domain. The filtering will then be
very effective

15

• The diffusion of the impossible pattern to Din and Dout will be small too. Hence, Din

and Dout tend to be small sets. The Pair Generation part might be significantly too
ineffective.

3.1.3 Impossible Differential attack

The complexity that follows the analysis given in appendix A are the following:

• Pair Generation: 288

• Pair Filtering: 232

Since the size of the key space is 2128, the Grover search will find the secret key in time 264.
Therefore the Pair Generation part is not effective enought.

3.2 Application to AES-128

In [7], a classical impossible differential attack on 7 rounds of AES-128 is described which ar-
guably proposes the best attack known on reduced round AES. Directly quantizying this attack
is not going to produce a valid attack since the number of pairs considered is N = 268 > 264.
One could try to consider a version of AES-128 on 6 rounds but the complexity to generate the
pairs does not decrease enough. In the end, it seems that collecting the differential pair is not
possible for this scheme. However, we could generate the superposition over all the diffential
pairs on the fly. This time, the complexity of filtering will be drastically increased since it will
not be possible to decompose the Grover search on the test function.

In the end, AES-128 seems relatively strong to quantum impossible differential attack at
first glance. In the analysis above, the impossible pattern used is borrowed from [7]. A sharper
analysis of AES-128 security against quantum impossible should definitly use other impossible
patterns.

3.3 FORKAE: SKINNY based Fork scheme

During this internship, I improved the best known classical cryptanalysis of a candidate of the
NIST lightweight competition: ForkSkinny and I proposed a quntized version of this attack. In
this section, we will describe the improved impossible diffential attack on ForkSkinny-128-256
and its quantizing. The attack described in the following is a relative tweakey attack: we will
consider difference in the tweakey to build the attack. To the best of our knoledge, this is the
best classical attack so far on this scheme, and the first quantum cryptanalysis on it.

3.3.1 Description

ForkSkinny-128-256 is a NIST candidate introduced in [10]. It is based on the block cipher
Skinny-128-256 that was introduced in [3]. The Skinny ciphers follow the tweakey3 framework,
so each instance of plaintext P and tweakey TK produce a ciphertext C. This block cipher
has an internal state of 128 bits and a tweakey of 256 bits. ForkSkinny-128-256 is a forkcipher
[2], therefore the encryption function will follow the pattern of forkciphers as represented in
the following figure.

3for tweak and key, we aim to recover the 256 bits of tweakey

16

In a forkcipher, the plaintext is first en-
crypted during rinit rounds. At this point, the
forking point is reached and three options are
available.

1. If option 1 is chosen, the encryption will
continue on branch 1 for r1 rounds end-
ing up with C1.

2. If option 0 is chosen, some branch con-
stant (known to the attacker) will be
xored to the current state and then the
encryption will continue on branch 0 for
r0 rounds ending up with C0.

3. The last option available is b (both), in
this case the encryption scheme will pro-
duce both C0 and C1.

Plaintext

C1C0

rinit

r1r0

Similar options are available when decrypting, from Cb we can recover P , C1⊕b or (P , C1⊕b).

In the case of ForkSkinny-128-256, rinit = 21 and r0 = r1 = 27. As for the AES, the
internal state is represented by a 4× 4 matrix and each cell of the matrix is a byte.

Round function. Let’s give a description of the round function of ForkSkinny. The
operations are:

• SubCells (SC): Each of the 16 cells of the matrix is modified by a 8 × 8 Sbox. The
precise description of the Sbox in given in [3].

• AddConstants(AC): A constant depending on the round number is xored to the internal
state. Since we are building a diffential attack, these constants will cancel out. Hence,
we don’t need to focus on this precise piece of the round function.

• AddRoundTweakey (ART): The tweakey material,derived from the tweakey, is xored
to the two first lines of the internal state. A tweakey schedule is used to compute the
tweakey material.

• ShiftRows (SR): This operation leaves the first line intact, rotates the second line by 1
cell, the third line by 2 cells and the fourth line by 3 cells.

• MixColumns (MC): This operation acts linearly on the columns. Its action is described
on the circuit of Figure 2.

Tweakey Schedule. We will describe now the tweakey schedule since it takes a crucial
part in the attack. The internal state is composed of two 4× 4 matrices of bytes. The tweakey
schedule follows this pattern:

• First, the two first lines of both matrices are extracted. Then the lines with the same
position are xored to build the tweakey material used in the rond function.

17

SC AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows MixColumns

Figure 2: ForkSkinny round function (image from [3])

• Then apply a cell permutation PT to both matrices. We can remark that the permutation
globally swaps the two first lines and the two last lines.

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

 PT7−→

9 15 8 13
10 14 12 11
0 1 2 3
4 5 6 7

• Finally, a LFSR is applied only to the cells of the first two collumns of the second matrix.

It is important to remark that the LFSR used here (described in [3]) is linear and that
there exists non zero elements of order 15, i.e ∃x LFSR15(x) = x.

Extracted
8s-bit subtweakey

PT

LFSR

LFSR

Figure 3: Tweakey schedule (image from [3])

The round function used in ForkSkinny differs slightly from the block cipher SKINNY:
AddConstants will now take the number of the round into account. This number of round is
determined in ForkSkinny following this pattern:

From the plaintext to the forking point,
the round number goes from 1 to rinit then
from the forking point to C1 the rounds are
numbered from rinit + 1 to rinit + r1 and fi-
nally, from the forking point to C0, it goes from
rinit + r1 + 1 to rinit + r1 + r0. The number of
the round minus 1 corresponds to the number
of iteration of the tweakey schedule applied so
far. The graph shows how the tweakey sched-
ule and the round function align one and other.

Plaintext Tweakey

C1C0

⊕

⊕

⊕

⊕

⊕

⊕

W

W

In [3], the autors remarked a property of the tweakey schedule that we will use in the
attack. It is described in the following lemma:

Lemma 5. Let δ be a byte such that LFSR15(δ) = δ. For every position i on the first two
lines of a 4× 4 matrix, if we set a difference of δ in position i for both of the tweakey matrices,
there will be a cancelation of difference in the tweakey material every 30 rounds.

18

In the following, this cancelation property is used to optimize the impossible pattern of the
impossible differential attack on ForkSkinny.

3.3.2 Classical impossible attack

In this section, we present an impossible differential attack on reduced round ForkSkinny with
rinit = 7, r1 = 27 and r0 = 19. Let’s note that we aim to recover the tweakey that is 256 bits.
Hence, our attack will be valid as long as its time complexity is smaller than 2256. This attack
is inspired by the attack on reduced round SKINNY in [15] that reached up to 23 rounds.
First, a description of the impossible pattern is given.

Impossible Pattern. Similarly to the attack in [15], a precise difference will be injected
in the tweakey material so that it cancels itself at round 6 and at round 36. Lemma 6 justifies
that a difference satisfying these conditions can be found.

The fork structure of ForkSkinny enables an important optimization of the impossible
pattern. Indeed, this new impossible pattern is three rounds bigger than the impossible pattern
presented in [15]. This new pattern is placed between round 4 and round 48 over the initial
branch and the left branch (the 0 branch). A precise image of the impossible pattern is given
in appendix B.

If in [15] one cancelation was used in the impossible pattern, two cancelations in a row
are used in the impossible pattern for ForkSkinny. By remarking that r1 = 27, the double
cancelation is a consequence of Lemma 6. Indeed, if we place a cancelation two rounds before
the forking point, another cancelation will appear two rounds after the forking point on branch
0, since 30 rounds of tweak schedule separate the two cancelations. In appendix B, a precise
description of the impossible pattern is given.

Seiving. The seiving phase is mostly the same as in [15]. The differential path Dout → ∆Y

has no changes with respect to the one in [15] and the differential path Din → ∆X undergoes
minor modifications. This similarity in the construction between the two attacks has as a
consequence that the complexities both in memory and time of both attacks are equal. Since
the attack in [15] has a better complexity than the exhaustive search, this new attack provides
a valid attack on reduced round ForkSkinny. The precise differential path is given in appendix B.

In my intership, I designed other efficient classical impossible attacks against some other
variants of ForkSkinny: Forkskinny-128-288 and Forkskinny-64-192. In this setting, the
impossible pattern is placed between the two ciphertexts.

3.3.3 Quantum impossible attack

The quantum attack will consider a reduced ForkSkinny encryption scheme with rinit = 7,
r1 = 27 and r0 = 17. The classical attack in [15] can not be quantized as memory needs
wouls be to hight, therefore we need to perform on this attack to build a classical attack and
then quantize it. Both of these transformations induce an overhead in the time complexity.
A reduction in the number of rounds seems necessary to balance this overhead. In our case,
the number of rounds is reduced by 2. We will use the same impossible pattern as previously.
With the 2 rounds reduction, the following update will be made rin = 3, rimp = 18 and rout = 3.

19

Pair Generation Let’s remark that ∆in = 32 and ∆out = 72, cin = 24 and cout = 72 ,
|Kin ∪Kout| = 2144. By using the formulae of section 3.1, we can state that N = 2104 and
QN = 2120.

Filtering First, we aim to collect the conditions in the plaintext and in the ciphertext to
propagate to the impossible pattern. By following the ideas of section 3.2, we introduce tests
functions. First, we can introduce T∆in→∆X

(resp. T∆out→∆y) that returns true whenever a
pair of plaintexts propagates to ∆X after rin rounds (resp. a pair of ciphertext propagates to
∆Y after rout rounds). Even if it is not clear how to compute the tests, we can state that since
the scheme is IND-CPA4, they are independant. The conditions in the input and the output
can be searched independantly.

Let’s now give a descrition of T∆in→∆X
. We will split the test in subtests T∆in→∆X

=
TR1→R2∧TR2→R3 where TRi→Ri+1 denotes the test that checks if the differential path is followed
from Ri ro Ri+1. These two tests are not independant therefore the complexity of the Grover
searches will multiply one and other. Finally, each round test is a product of tests that verify
byte conditions induced by MixColumns.

A similar decomposition can be done to compute T∆out→∆y . By putting all together, the
filtering phase time complexity is:

(
√

28 +
√

28 +
√

216)× (
√

28 +
√

28)×
√

216 +
√

216
√

28 = O
(
220
)

Recover the superposition of the pairs that satifies the conditions can be done in time√
248/27 =

√
241

Complexity. The final complexity to the attack is

2120 +
√

2144220
√

241 + 2
256−144

2 = O(2120) < 2128

In the end, we provided a quantum impossible differential attack on 24 rounds of ForkSkinny.

4 Conclusion

In this report we were able to provide a quantized version of impossible differential attacks.
This quantum version of impossible differential attacks is crutial for analyzing in the future
the security margin of symetric primitives. We have provided several applications that was left
in [5] as an open problem. Also during the internship, we improved the best known attack
on a NIST candidate for the lightweight competition. Both results will be submitted to well
renowed cryptography conferences.

Since the memory request is a major concern in quantum impossible attack, it is crutial to
handle efficiently the pair generation problem to describe an efficient attack. Some scheme that
are weak to classical impossible diffential attacks are loosing this weakness while transposing
to the quantum world whenever it seems not possible to collect efficently the diffential pairs.
A better understanding on the Pair Generation problem seems to be the best improvement
towards better quantum impossible differential attacks.

4computationally indistinguishable from a random oracle

20

References

[1] Andris Ambainis. Quantum walk algorithm for element distinctness. SIAM J. Comput.,
37(1):210–239, 2007.

[2] Elena Andreeva, Reza Reyhanitabar, Kerem Varici, and Damian Vizár. Forking a
blockcipher for authenticated encryption of very short messages. IACR Cryptology ePrint
Archive, 2018:916, 2018.

[3] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi, Thomas
Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY family of block
ciphers and its low-latency variant mantis. In Annual International Cryptology Conference,
pages 123–153. Springer, 2016.

[4] Eli Biham, Alex Biryukov, and Adi Shamir. Cryptanalysis of skipjack reduced to 31
rounds using impossible differentials. In International Conference on the Theory and
Applications of Cryptographic Techniques, pages 12–23. Springer, 1999.

[5] Xavier Bonnetain, María Naya-Plasencia, and André Schrottenloher. Quantum security
analysis of AES. Cryptology ePrint Archive, Report 2019/272, 2019. https://eprint.
iacr.org/2019/272.

[6] Christina Boura, Virginie Lallemand, María Naya-Plasencia, and Valentin Suder. Making
the impossible possible. Journal of Cryptology, 31(1):101–133, Jan 2018.

[7] Christina Boura, María Naya-Plasencia, and Valentin Suder. Scrutinizing and improving
impossible differential attacks: Applications to clefia, camellia, lblock and simon. In
Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology – ASIACRYPT 2014,
pages 179–199, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[8] Ran Canetti and Juan A. Garay, editors. Advances in Cryptology - CRYPTO 2013 - 33rd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings,
Part II, volume 8043 of Lecture Notes in Computer Science. Springer, 2013.

[9] Ronald De Wolf. Quantum computing: Lecture notes. University of Amsterdam, 2011.

[10] Antoon PURNAL Reza REYHANITABAR Arnab ROY Damian VIZAR Elena AN-
DREEVA, Virginie LALLEMAND. Forkae v.1. NIST, 2019.

[11] Henri Gilbert and Thomas Peyrin. Super-sbox cryptanalysis: Improved attacks for AES-
like permutations. In Seokhie Hong and Tetsu Iwata, editors, Fast Software Encryption,
pages 365–383, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[12] Marc Kaplan, Gaëtan Leurent, Anthony Leverrier, and María Naya-Plasencia. Quan-
tum differential and linear cryptanalysis. IACR Transactions on Symmetric Cryptology,
2016(1):71–94, Dec. 2016.

[13] Lars Knudsen. Deal-a 128-bit block cipher. complexity, 258(2):216, 1998.

[14] Gary L. Miller, editor. Proceedings of the Twenty-Eighth Annual ACM Symposium on the
Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996. ACM, 1996.

21

https://eprint.iacr.org/2019/272
https://eprint.iacr.org/2019/272

[15] Sadegh Sadeghi, Tahereh Mohammadi, and Nasour Bagheri. Cryptanalysis of reduced
round SKINNY block cipher. IACR Transactions on Symmetric Cryptology, pages 124–162,
2018.

[16] Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai, and Tetsu Iwata. The 128-
bit blockcipher CLEFIA (extended abstract). In Alex Biryukov, editor, Fast Software
Encryption, pages 181–195, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[17] Peter W Shor. Algorithms for quantum computation: Discrete logarithms and factoring.
In Proceedings 35th annual symposium on foundations of computer science, pages 124–134.
Ieee, 1994.

A Detail CLEFIA-128

In [7], a classical impossible attack on CLEFIA is given. We will use the same impossible
pattern, i.e ∆X = 032 | 032 | 032 | (α, 08, 08, 08), ∆Y = 032 | 032 | (08, β, 08, 08) | 032 and
rimp = 9. However this time, we will consider rin = 2 and rout = 1. Classically, we had rin = 2
and rout = 2.

Figure 4: Impossible attack on CLEFIA-128

In our case, the parameters of the attack are:

• ∆in = 48. We are considering the difference on the first byte of ∆P1. On ∆P2, the shape
of the differences allowed is M0(δ) where δ = (∗ | 024) . Finally on ∆P3, all the 32 bit
difference are allowed.

• ∆out = 16. For ∆C2, differences on the first byte are considered. On ∆C3, the shape of
the differences considered is M1(δ) where δ = (∗ | 024).

• cin = 40 and cout = 8

Our goal is to recover the keybits of RK1 and RK23[1], hence |Kin ∪Kout| = 240. By taking
a look at the formulae of section 2, we can remark that the Pair Generation considered here
is the "less than one pair" scenario. The number of structures considered is arround 261 to
recover N = 256 pairs. This 261 sieve will be performed on the input corresponding to P0 and
P3 (it is legitimate since | P0 ⊗ P3 |= 264). Therefore there exists some 32 bit vector a such

22

that for all pairs the P2 part can be written (a, a+ δ) for some vector δ.

qRAM. In this attack, we will have a qRAM function with domain ∆P1 ⊗∆P2 ⊗∆P3 ⊗
C̃1 ⊗∆C1 ⊗∆C2 where C̃1 corresponds to the second byte of C1. For every pair, we will write
a 1 in the cell of the qRAM that has the corresponding difference and ciphertext.

Let’s consider a fixed subkey k, i.e a 40-bits vector.
Collecting conditions. ∆in → ∆X . We will use the state test technique as explained in [7].
Let’s call x the 8 bits vector in the leftmost nibble before the F0 function of round 2 and δx
the associated difference. One can remark that δx = δP1 and that x = y ⊕RK2[0]. Therefore
x can take every possible value if we choose the appropiate key RK2[0]. If we now look at the
difference at position P 2

0 (that needs to be 032), we remark that x and δx define δp2, i.e. there
exists some function Fk(x, δx) = δp2. Similarly, by remarking that the difference in P 1

3 is 032,
there exists some function Gk such that Gk(δp2) (it does not depends of p2 since it is constant
equal to a).

∆out → ∆Y . With the same idea, one can find Hk such that δc2 = Hk(c1, δc1).

Retrieving the pairs. Now, we want to find the superposition on the pairs of Pairs that
satisfy:

• There exists some 8-bit vector x ∈ X such that δp2 = Fk(δp1, x)

• δp3 = Gk(Fk(δp1))

• δc2 = Hk(c1, δc1)

Since N · 2−(cin+cout) = 28, we expect 28 pairs satifying the conditions (hence with our notation
ε = 8) . Therefore retrieving the quantum superposition cost√

|X| · |∆x| · |∆C1| · |C1|
28

=

√
216 · 216

28
= 212

Now we just need to follow the procedure described in Section 2 to finish the attack. In
the end, the complexity for filtering and deciding is

212 · 2 8+32
2 = 232 < 264

However the complexity of gernerating the pairs is QN = 288 which invalidate this attack
since the final complexity exceeds 264. To obtain a complexity that does not exceed 264, we
need to consider a reduced version of CLEFIA-128 on 11 rounds. In the end, an improvement
on the quantum pair geneation part is needed. The complexity reached for the filtering and
deciding is still encouraging.

B ForkSkinny: Impossible pattern and Differential path

23

∆in

Encryption Rounds

tk0

TS

AC

ART

x0

SR

y0

MC

SC

z0

tk1

TS

AC

ART

x1

SR

y1

MC

SC

z1

tk2

TS

AC

ART

x2

SR

y2

MC

SC

z2

tk3

TS28

AC

ART

x3

SR

y3

MC

SC

z3

FORKING POINT

tk4

TS

AC

ART

x4

SR

y4

MC

SC

z4

tk5

TS

AC

ART

x5

SR

y5

MC

SC

z5

tk6

TS

AC

ART

x6

SR

y6

MC

SC

z6

tk7

TS

AC

ART

x7

SR

y7

MC

SC

z7

tk8

TS

AC

ART

x8

SR

y8

MC

SC

z8

tk9

TS

AC

ART

x9

SR

y9

MC

SC

z9

tk10

AC

ART

x10

SR

y10

MC

SC

z10

Decryption Rounds

tk17

TS

AC

ART

∆outy17

MC−1

x17

SR−1

tk16

TS

AC

ART

z16y16

MC−1

SC−1

x16

SR−1

tk15

TS

AC

ART

z15y15

MC−1

SC−1

x15

SR−1

tk14

TS

AC

ART

z14y14

MC−1

SC−1

x14

SR−1

tk13

TS

AC

ART

z13y13

MC−1

SC−1

x13

SR−1

tk12

TS

AC

ART

z12y12

MC−1

SC−1

x12

SR−1

tk11
AC

ART

z11y11

MC−1

SC−1

x11

SR−1

z10

Contradiction

Inactive tweak difference
Active difference
No difference
Unknown
Fixed difference

Figure 5: Impossible Pattern

24

Légende

Both values and differences are needed

Only differences are needed

Values are needed, no difference

Key bytes guessed

Fixed difference

No difference

P

SC

Y1

AC

ART
Z1

»1

»2

»3

ShiftRows
W1

MixColumns
X2

1

3

1

1

7

2

7

7

0

6

0

0

5

4

5

5

ETK

X2

SC

Y2

AC

ART
Z2

»1

»2

»3

ShiftRows
W2

MixColumns
X3

8

15

12

11

10

9

13

14

TK2

X3

SC

Y3

AC

ART
Z3

»1

»2

»3

ShiftRows
W3

MixColumns
X4

0

7

4

3

2

1

5

6

TK3

X4

SC

Y4

AC

ART
Z4

»1

»2

»3

ShiftRows
W4

MixColumns
X5

11 13 15 12

9 10 8 14

TK4

X21

SC

Y21

AC

ART
Z21

»1

»2

»3

ShiftRows
W21

MixColumns
X22

9 15 8 13

10 14 12 11

TK21

18 Rounds Impossible Dinstiguisher

3 Rounds before forking point

15 Rounds after forking point

X22

SC

Y22

AC

ART
Z22

»1

»2

»3

ShiftRows
W22

MixColumns
X23

2

1

6

7

4

0

3

5

TK22

X23

SC

Y23

AC

ART
Z23

»1

»2

»3

ShiftRows
W23

MixColumns
X24

8

15

12

11

10

9

13

14

TK23

X24

SC

Y24

AC

ART
Z24

»1

»2

»3

ShiftRows
W24

MixColumns
X25

0

7

4

3

2

1

5

6

TK24

X25

SC

Y25

AC

ART
Z25

»1

»2

»3

ShiftRows
W25

MixColumns
X26

9

11

10

13

8

15

14

12

TK25

X26

SC

Y26

AC

ART
Z26

»1

»2

»3

ShiftRows
W26

MixColumns
C

1

3

2

5

0

7

6

4

TK26

Figure 6: Differential path

25

	Preliminaries
	Classical impossible differential attacks
	Complexity analysis
	Data complexity
	Time complexity

	Quantum preliminaries
	Quantum computing
	Models
	Quantum Tools

	Quantum Impossible Differential
	Pair Generation : Quantum Limited Birthday Problem
	Quantum Pair Filtering

	Applications
	Application : 12 rounds CLEFIA-128
	Description
	Properties of CLEFIA-128
	Impossible Differential attack

	Application to AES-128
	FORKAE: SKINNY based Fork scheme
	Description
	Classical impossible attack
	Quantum impossible attack

	Conclusion
	Detail CLEFIA-128
	ForkSkinny: Impossible pattern and Differential path

