
HAL Id: hal-02424413
https://hal.inria.fr/hal-02424413

Submitted on 27 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving the key recovery in Linear Cryptanalysis: An
application to PRESENT

Antonio Florez Gutierrez

To cite this version:
Antonio Florez Gutierrez. Improving the key recovery in Linear Cryptanalysis: An application to
PRESENT. Cryptography and Security [cs.CR]. 2019. �hal-02424413�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/275910444?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-02424413
https://hal.archives-ouvertes.fr

Improving the key recovery

in Linear Cryptanalysis:

An application to PRESENT

M2 Internship report by

Antonio Flórez Gutiérrez

Supervised by

Maŕıa Naya-Plasencia (Inria Paris)

Abstract

Linear cryptanalysis is widely known as one of the fundamental tools for the crypanalysis
of block ciphers. Over the decades following its first introduction by Matsui in [Ma94a], many
different extensions and improvements have been proposed. One of them is [CSQ07], where Collard
et al. use the Fast Fourier Transform (FFT) to accelerate the parity computations which are
required to perform a linear key recovery attack. Modified versions of this technique have been
introduced in order to adapt it to the requirements of several dedicated linear attacks. This work
provides a model which extends and improves these different contributions and allows for a general
expression of the time and memory complexities that are achieved. The potential of this general
approach will then be illustrated with new linear attacks on reduced-round PRESENT, which is
a very popular and widely studied lightweight cryptography standard. In particular, we show
an attack on 26 or 27-round PRESENT-80 which has better time and data complexity than any
previously known attacks, as well as the first attack on 28-round PRESENT-128.

Contents

1 Introduction 1

1.1 Some generalities on block ciphers . 2

2 An introduction to linear cryptanalysis 3

2.1 Matsui’s linear cryptanalysis . 3

2.1.1 Matsui’s Algorithm 1 . 4

2.1.2 Matsui’s Algorithm 2 . 5

2.2 Linear trails and linear hulls . 6

2.2.1 Computing the ELP with orrelation matrices . 7

2.3 Multiple linear cryptanalysis . 7

2.4 Estimating the probability of success . 8

3 Matsui’s Algorithm 2 using FFT 10

3.1 The original algorithm . 10

3.2 The extended algorithm . 13

3.3 Exploiting the key schedule . 16

3.3.1 Top-down strategy . 17

3.3.2 Bottom-up strategy: multiple linear cryptanalysis 17

4 Application to the block cipher PRESENT 19

4.1 Description of PRESENT . 19

4.2 The 1-bit linear distinguisher for up to 23 rounds . 21

4.3 Attacks on 26 and 27-round PRESENT-80 . 23

4.4 The 2-bit linear distinguisher for up to 24 rounds . 26

4.5 Attack on 28-round PRESENT-128 . 27

4.6 Experimental verification . 28

5 Conclusion 30

6 References 31

A Mathematical background and notation 34

B Linear cryptanalysis revisited 38

B.1 Proofs of the results of subsections 2.1 and 2.2 . 38

B.2 Multidimensional linear cryptanalysis . 40

B.3 The statistical model of subsection 2.4 . 41

B.3.1 Statistical attacks as a hypothesis testing problem 41

B.3.2 Distribution of the multiple linear cryptanalysis statistic 42

1

1 Introduction

Background and motivation. The constant cryptanalysis effort on symmetric primitives is one
of the fundamental arguments which support the security of secret key cryptography: an algorithm
is considered secure if a long-enough analysis by the community has not led to the discovery of any
significant flaws. For this reason, a toolbox of known cryptanalysis techniques must exist, as this allows
the security of new cryptographic candidates to be tested against previous attacks. Furthermore, a
good understanding of the nature of the flaws in the design of broken primitives can help designers
create new ciphers whose resistance to these attacks is optimal.

The effect that the introduction of quantum computers might have on this system is unknown: there
are many questions about quantum symmetric cryptanalysis which either remain unresolved or have
not even been studied in detail. It is known that in order to keep the same level of security in a
post-quantum setting, the length of the private key must be doubled to deal with the speedup of
the brute-force attack due to Grover’s algorithm. However, little is known about non-generic attacks
in a quantum setting. One potential avenue for development in this area is studying how quantum
computing can improve the performance of classical attacks, such as differential or linear cryptanalysis.
This was already studied in [KLLN15], though several open problems are still unresolved.

Research problem. Linear cryptanalysis was first introduced by Matsui in 1994 ([Ma94a]), and
soon joined differential cryptanalysis as one of the two essential tools in the cryptanalysis of symmet-
ric primitives. In 2008, Collard et al. ([CSQ07]) introduced a new algorithmic technique which uses
the Fast Fourier Transform to greatly reduce the time complexity of some linear attacks based on
Matsui’s Algorithm 2. The aim of this internship, which took place in the context of the ERC project
QUASYModo at Inria Paris, was to attempt to answer two questions. In the first place, we wanted
to know whether the approach of Collard et al. could be improved and/or generalized in the classi-
cal setting. The second question asks whether these FFT-based linear attacks could have improved
performance in the quantum setting, and, if so, to which extent.

Contribution. Due to the limited duration of the internship and the amount of findings about
the classical setting, almost all of the duration was spent researching the first question. During my
internship the approach of [CSQ07] could be transformed into a more general version for multiple
rounds of key recovery. Despite several publications ([NWW11],[ZZ15],[BTV18]) mentioning extended
versions of the algorithm, it seems that a generalised algorithm has never been fully described in the
literature. I have also started to work on an analysis of how the structure of the individual cipher
might be exploited (such as the key dependencies induced by the key schedule, for example). These
theoretical findings led to some new attacks on the popular ISO-standard lightweight construction
PRESENT which are only possible due to the new algorithm. These include the first cryptanalysis of
the 28-round, 128-bit key variant of the cipher.

Future directions in research. In the short term, we would like to complete some parts of our
generalised algorithm: in particular, we feel that there is a lot of room for improvement in our analysis
of the use of dependencies between the key bits. It is also possible that we attempt to improve our time
complexity estimates for the attacks on PRESENT by using Bogdanov et al.’s multivariate profiling
technique ([BTV18]), which would lighten the theoretical assumptions.

Another obvious avenue for continuing the research is attempting to answer question 2. We are also
interested on the possible quantum speedup of Fast Correlation Attacks on stream ciphers, as they
share similarities with linear cryptanalysis of block ciphers and can also be accelerated using the FFT.

Structure of this document. The present report is organised as follows: Section 2 offers a con-
densed overview of the development of the theory of linear cryptanalysis, with an emphasis on some of
the prerequisites for our attacks on PRESENT. This section is complemented by appendix B, which
contains further detail on some topics, as well as the proofs of the results.

Section 3 deals with the FFT version of Matsui’s Algortithm 2. Subsection 3.1 describes the original

2 1 INTRODUCTION

improved attack that was described in [CSQ07]. Subsection 3.2 is our first contribution, and provides
a description of a generalised version of the algorithm which can be applied to the key recovery over
multiple rounds. Subsection 3.3 discusses the possibility of using the key schedule of the attacked
cipher to reduce the time complexity of key-recovery linear attacks using the FFT.

Section 4 is devoted to PRESENT and our attacks on reduced-round variants. It includes a brief
description of the cipher, a thorough rundown of the design of our two attacks (from the choice of
the linear distinguisher to the key recovery algorithm) and a short discussion about the experimental
verification of our time complexity claims.

Appendix A contains the notations that are used throughout the report, some of which are non-
standard. It also includes some short introductions to a few mathematical concepts, such as the
correlation of boolean functions and the Walsh-Hadamard Transform.

Observations and acknowledgements. This report is presented in English due to my limited
command of the French language, and would like to apologise for any inconvenience to the reader.

I would wish to thank the Fondation Mathématique Jacques Hadamard and its staff, whose Sophie
Germain scholarship allowed me to study the M2 Algèbre Appliquée at the UVSQ, as well as Ana
José Reguera López and Olivier Piltant for helping me find and apply for this scholarship. I also want
to acknowledge all the professors at the University of Valladolid and UVSQ who have allowed me to
reach this point with their unconditional support. My utmost gratitude is with Maŕıa Naya-Plasencia
for her constant assistance while supervising this internship, and the whole SECRET team at Inria
Paris for making me feel right at home.

1.1 Some generalities on block ciphers

Throughout the report, we will use some general concepts about symmetric cryptology.

Definition 1.1. A block cipher of length n and key length κ is a map E : Fn2 × Fκ2 −→ Fn2 for which
EK = E(·,K) is bijective for any fixed secret key K ∈ Fκ2 . Given a plaintext x and a key K, we will
say y = EK(x) is the associated ciphertext. For any fixed key K, the map EK is called the encryption
map. Meanwhile, given a fixed key K there exists an inverse map E−1K , which is called the decryption
map. We also write E−1(y,K) = E−1K (y) as a slight abuse of notation.

Definition 1.2. A block cipher E is said to be a key-alternating cipher if there exists a decomposition

EK = GKr ◦ F ◦GKr−1 ◦ . . . ◦ F ◦GK1 ◦ F ◦GK0 (1.1)

where F is a fixed bijective map called internal permutation and GKi (x) = x⊕Ki is called the round
subkey addition. The maps F ◦GKi are rounds. There is usually another subkey addition at the end.

Each subkey Ki ∈ Fn2 , i = 0, ..., r is obtained from the master key K by means of an extension map

Fκ2 −→ Fn(r+1)
2 which is called the key schedule.

Given a plaintext x and a key K, the key schedule is used to compute all the subkeys, and then the
round function is applied on the plaintext r times. The intermediate results are usually called states.

A key recovery attack is an algorithm which allows a potential adversary to obtain the secret key K
(or part of it) from a selection of pairs (x, y = EK(x)) (the data) with high probability. There are
several kinds of attacks depending on how these pairs are generated: if any set of pairs can be used,
the attack is said to be a known-plaintext attack. If the attack demands a set of pairs with a specific
structure, then the attack is said to be a chosen-plaintext attack (if the adversary chooses the values
of x) or even a chosen-ciphertext attack (if the adversary chooses the values of y).

A known plaintext key recovery attack using one known plaintext-ciphertext pair is always possible:
it suffices to test all possible values of K until one is found for which y = EK(x). This is called
the generic attack, brute-force attack, or simply exhaustive search. This attack has a time complexity
equivalent to 2κ encryptions. The aim of cryptanalysts is finding attacks with lower time complexities.

3

2 An introduction to linear cryptanalysis

This section consists of an overview of the fundamental aspects of linear cryptanalysis and has the
purpose of aiding the understanding of the rest of this report. It begins with an introduction to linear
cryptanalysis which follows the approach introduced by Matsui in [Ma94a], and then proceeds to more
advanced techniques like linear hulls ([Ny95]) and the use of multiple linear approximations ([BCQ04]).
Subsection 2.2.1 contains an introduction to correlation matrices and how to use them to estimate the
linear potential of a linear hull as shown in [AES02]. Subsection 2.4 describes a statistical model
([Se08],[BN15]) which will allow us to estimate the time complexities of our attacks. These topics are
developed in more detail in appendix B, which also includes proofs.

2.1 Matsui’s linear cryptanalysis

Matsui and Yamaguchi introduced an early version of linear cryptanalysis in [MaY93] for building
an attack on the block cipher FEAL. The two fundamental algorithms used in linear cryptanalysis,
Algorithms 1 and 2, were described in [Ma94a]. Algorithm 2 permitted the first experimental attack on
the widely-used Data Encryption Standard (DES) in [Ma94b]. This subsection contains the essential
results of these papers, as they constitute the foundation of linear cryptanalysis.

Matsui’s linear cryptanalysis is a known plaintext attack which exploits a statistical correlation between
some bits of the plaintext, the ciphertext and the secret key of a block cipher. The first step of any
linear attack is finding linear approximations of (part of) the cipher.

Definition 2.1. A linear approximation of the block cipher E is an expression of the form

ν : α · x⊕ β · y ⊕ γ(K) (2.1)

The vectors α, β ∈ Fn2 are called input and output masks, while the map γ : Fκ2 −→ F2 is often
called the key mask. Matsui’s attacks use a biased linear approximation, which means that, if the
approximation is regarded as a random variable over the key and the plaintext, then the probability that
it is equal to 0 is significantly different from 1/2.

ε = Prx,K(α · x⊕ β · EK(x)⊕ γ(K) = 0)− 1/2 6= 0 (2.2)

The quantity ε is called bias or imbalance. A related magnitude is the correlation

c = Prx,K(α · x⊕ β · EK(x)⊕ γ(K) = 0)− Prx,K(α · x⊕ β · EK(x)⊕ γ(K) = 1) 6= 0 (2.3)

These two values are linked by the relationship c = 2ε.

The attacker wants approximations with high bias/correlation (in absolute value), since they lead to
a better data complexity. High-bias approximations can be found for each round of a key-alternating
cipher by looking at the internal permutation F , which is usually a composition of other simpler
maps. These one-round approximations can be combined to construct a composite approximation of
the whole cipher whose correlation is given by the following result:

Corollary 2.2 (Piling-up lemma, lemma 3 in [Ma94a]). Let us consider r linear approximations of
the internal permutation F of a key-alternating cipher E,

αi · x⊕ βi · F (x), i = 0, . . . , r − 1 (2.4)

with bias εi and correlation ci = 2εi. We can deduce approximations of each round with the same bias:

αi · x⊕ βi · F (x⊕Ki)⊕ αi ·Ki

If we suppose that αi+1 = βi, then by addition, we obtain an approximation of E:

α0 · x⊕ βr−1 · EK(x)⊕ α0 ·K0 ⊕ . . .⊕ αr−1 ·Kr−1 ⊕ βr−1 ·Kr (2.5)

4 2 AN INTRODUCTION TO LINEAR CRYPTANALYSIS

If we assume the statistical independence of the binary variables, then its bias and correlation are

ε = 2r−1
r−1∏
i=0

εi, c =

r−1∏
i=0

ci (2.6)

Matsui proposed two different key recovery attack algorithms which make use of a linear approximation.
Algorithm 1 uses an approximation of the whole cipher to recover one bit of information about the
key, while Algorithm 2 uses an approximation of r − 1 rounds of the cipher to recover multiple bits.

2.1.1 Matsui’s Algorithm 1

Suppose that the attacker has access to a collection D = {(x, y = EK(x))} ⊂ Fn2 × Fn2 of N known
plaintexts which have been encrypted with a fixed secret key K, and knows a linear approximation
α · x ⊕ β · y ⊕ γ(K) with bias ε. If N is large enough to detect the bias ε (we will detail how large
later), then the following algorithm recovers the value of γ(K):

Algorithm 1: Matsui’s Algorithm 1

Input: A collection D = {(x, y = EK(x))} of N plaintext-ciphertext pairs (possibly on-the-fly).
Output: A probable value for γ(K).
T ← 0;
forall (x, y) ∈ D do // Compute the counter T

if α · x⊕ β · y = 0 then T ← T + 1;
end
switch (T, ε) do // Compare T and N/2

case T > N/2, ε > 0 do return 0 ;
case T > N/2, ε < 0 do return 1 ;
case T < N/2, ε > 0 do return 1 ;
case T < N/2, ε < 0 do return 0 ;

end

In other words, the attacker first computes the counter

T = # {(x, y) ∈ D : α · x⊕ β · y = 0} (2.7)

which is expected to be approximately N/2 ± Nε, with the sign depending on the value of γ(K).
By comparing this number to N/2, this bit of information about the key can be obtained with high
probability. The effectiveness of this algorithm depends on the following assumption:

Assumption 2.3. (Right-key equivalence hypothesis) The key K has no influence on the value of the
probability p(K) = Prx (α · x⊕ β · EK(x)⊕ γ(K) = 0 | K), where Prx (A | K) denotes the probability
of the event A assuming that the plaintexts x are uniformly distributed and the key is fixed to K.

Under the right-key equivalence hypothesis, we can estimate the success probability (that is, the
probability that the guess for γ(K) is correct) as a function of the number of known plaintexts N .

Proposition 2.4 (Lemma 2 in [Ma94a]). The probability of success of Algorithm 1 is

PS ' Φ
(

2
√
N |ε|

)
= Φ

(√
Nc2

)
=

∫ √Nc2
−∞

1√
2π
e−

x2

2 dx (2.8)

This means that around N ∼ 1/4ε2 = 1/c2 known plaintexts are needed for the attack to succeed
with reasonable probability. The attacker can recover more information about the key by using other
approximations or by finding the rest of the key by exhaustive search.

2.1 Matsui’s linear cryptanalysis 5

2.1.2 Matsui’s Algorithm 2

Matsui also proposed an improved attack which recovers a larger section of the key. The idea is to
use a partial approximation of the cipher. If EK(x) = (F ◦ E′K)(x) ⊕Kr, then we suppose that the
attacker knows an approximation α · x⊕ β · ŷ ⊕ γ(K) with bias ε of the first r − 1 rounds.

We suppose that computing β · F−1(y ⊕Kr) from y only requires using a few bits k of Kr, which can
be extracted with the mask χ. For any vector x ∈ Fn2 , x|χ denotes the vector of length HW (χ) whose
components are the coordinates of x which correspond to the non-zero entries of χ, so that k = Kr|χ.

We can substitute the term associated to the decryption of the last round for a map f : F|k|2 −→ F2:

f (y|χ⊕Kr|χ) = β · F−1(y ⊕Kr) for all y ∈ Fn2 ,Kr ∈ Fn2 (2.9)

Given N plaintext-ciphertext pairs, the partial subkey k can be retrieved as follows:

Algorithm 2: Matsui’s Algorithm 2

Input: A collection D = {(x, y = EK(x))} of N plaintext-ciphertext pairs (possibly on-the-fly).
Output: A probable guess for k.
T← 0;
forall (x, y) ∈ D do // Compute the counters Tk

for k ← 0 to 2|k| − 1 do
if α · x⊕ f(y|χ⊕k) = 0 then Tk ← Tk + 1;

end

end
return argmaxk(|Tk −N/2|); // Find the Tk that’s most different to N/2

The attacker guesses all the possible values of k and computes the counter

Tk = # {(x, y) ∈ D : α · x⊕ f(y|χ⊕k) = 0} (2.10)

and then keeps the guess whose counter is farthest from N/2. This is based on the assumption

Assumption 2.5. (Wrong-key randomisation hypothesis) For all the wrong guesses of k, the corre-
lation of the linear approximation is approximately zero. That is, if k̃ 6= k is a wrong guess,

Prx

(
α · x⊕ f(y|χ⊕k̃) = 0

)
' 1/2 (2.11)

We also assume that α · x⊕ f(y|χ⊕k̃) are independent variables for all the wrong key guesses.

This assumption seems reasonable, since decrypting the last round of the cipher with the wrong key
should have a similar effect to adding an additional round of encryption when it comes to the correlation
of the approximation. This leads to the result

Corollary 2.6 (Lemma 4 in [Ma94a]). The probability of success of Matsui’s Algorithm 2 depends
solely on the quantities |k| and 4Nε2 = Nc2.

It takes N2|k| one-round decryptions and 2|k| memory registers of up to logN bits to compute the
counters Tk. The search phase of a full key-recovery attack is faster than in Algorithm 1, as we already
know |k| bits of the key K. The time complexity of Matsui’s Algorithm 2 is O

(
N2|k|

)
+O

(
2κ−|k|

)
.

In [Ma94b], Matsui noted that since the only information about each (x, y) pair that is required is the
values of α · x and y|χ, it is possible to first count the number of occurrences of each (α · x ‖ y|χ) in
the data and then compute Tk using these. With this technique the attack takes N parity evaluations
and 22|k| one-round decryptions, which reduces the complexity if 2|k| < N , which happens very often.

6 2 AN INTRODUCTION TO LINEAR CRYPTANALYSIS

Algorithm 3: Matsui’s Algorithm 2, modified

Input: A collection D = {(x, y = EK(x))} of N plaintext-ciphertext pairs (possibly on-the-fly).
Output: A probable guess for k.
a0 ← 0; a1 ← 0; T← 0;
forall (x, y) ∈ D do aα·xy|χ ← aα·xy|χ + 1; // Extract the information from the data

for k ← 0 to 2|k| − 1, j ← 0 to 2|k| − 1 do // Compute the counters Tk
if f(j ⊕ k) = 0 then Tk ← Tk + a0j else Tk ← Tk + a1j ;

end
return argmaxk(|Tk −N/2|); // Find the Tk that’s most different to N/2

Algorithm 2 can also be used with an approximation over even less rounds of the cipher by skipping
several rounds at the beginning and/or the end. The limitation is that the number |k| of involved
subkey bits increases with the number of “outer” rounds.

When compared with Algorithm 1, Algorithm 2 has several advantages. Since it uses an approximation
over a smaller number of rounds of the cipher, its correlation should be larger, and the data complexity
is smaller than for Algorithm 1. Furthermore, recovering more bits of information about the key
reduces the time cost of the final exhaustive search. Finally, we will be show in the next subsection
that Algorithm 2 can still be used when the right-key equivalence hypothesis is not satisfied. For these
reasons, nearly all linear attacks in the literature are variations of Algorithm 2.

2.2 Linear trails and linear hulls

The right-key equivalence hypothesis (assumption 2.3) is reasonable as long as all linear approximations
which share the same input and output masks α, β but differ in the key mask γ have a much smaller
correlation. This is not true in the case of many modern ciphers.

This possibility was first considered by Nyberg in [Ny95]. If the right-key equivalence hypothesis is not
satisfied, then the value of α · x ⊕ β · EK(x) is influenced by several different γ(K), and Algorithm 1
cannot distinguish between them. In the case of Algorithm 2, however, the probability of success can
increase if there are multiple biased linear approximations sharing the same input and output masks.

This is substantiated by the following theorem, which applies to ciphers with a simplified key schedule.

Theorem 2.7 (Theorem 1 in [Ny95]). Let ν : α ·x⊕β ·y be a linear approximation of a key-alternating
block cipher E for which all the subkeys are independent from each other (so κ = n(r + 1)). Then

1

2n(r+1)

∑
K∈Fκ2

(
Prx (α · x⊕ β · EK(x) = 0|K)− 1

2

)2

=
∑

γ0,...,γr∈Fn2

(
Prx,K (α · x⊕ β · EK(x)⊕ γ0 ·K0 ⊕ . . .⊕ γr ·Kr = 0)− 1

2

)2
(2.12)

Let us now consider what this means for the probability of success of Matsui’s Algorithm 2. The value
of p(K) = Prx (α · x⊕ β · EK(x) = 0|K) varies over the keyspace, so the attack will succeed with a
higher probability for some keys (which we’ll call weak keys), and with a lower probability for others.
We know that the probability of success for the key K depends on 4N(p(K)− 1/2)2, and the previous
theorem gives us the expected value of this magnitude over the keyspace. This result usually provides
reasonable predictions even when the hypothesis about the key schedule is not satisfied.

Definition 2.8. Let ν : α · x⊕ β · y be a linear approximation of a key-alternating block cipher E. A
linear trail is any linear approximation of the cipher of the form

νγγγ : α · x⊕ β · y ⊕ γ0 ·K0 ⊕ . . .⊕ γr ·Kr, γγγ = (γ0 = α, . . . , γr = β) ∈ (Fn2)(r+1) (2.13)

The set of all the linear trails of the approximation is called the approximate linear hull, ALH(α, β).
The probability of success of an Algorithm 2 attack using the approximation ν depends on the value

2.3 Multiple linear cryptanalysis 7

N · ELP (α, β), where ELP (α, β) is the estimated linear potential of the linear hull

ELP (α, β) =
∑

γγγ∈Fn(r+1)
2

γ0=α,γr=β

(Prx,K0,...,Kr (νγγγ = 0)− Prx,K0,...,Kr (νγγγ = 1))
2

(2.14)

2.2.1 Computing the ELP with orrelation matrices

The aim of this subsection is to illustrate an efficient way of estimating the ELP of linear approxima-
tions whose input and output masks have low Hamming weight by using correlation matrices. This is
the technique that will be used to compute the capacity of our linear distinguishers for the PRESENT
block cipher in section 4. We begin by defining the correlation matrix of a boolean function:

Definition 2.9. Let f : Fn2 −→ Fn2 be a boolean function. Its correlation matrix C(f) ∈ R2n×2n is
defined as the matrix whose entries are the correlations of all possible linear approximations of f :

C
(f)
ij =

1

2n
(# {x ∈ Fn2 : i · x⊕ j · f(x) = 0} −# {x ∈ Fn2 : i · x⊕ j · f(x) = 1}) , 0 ≤ i, j < 2n (2.15)

Another common way of expressing the correlation of all the linear approximations of a boolean function
is the linear approximation table or LAT, whose entries are # {x ∈ Fn2 : i · x⊕ j · f(x) = 0} − 2n−1.

In many block ciphers the inner permutation is the composition of a linear map and the parallel
application of several smaller non-linear maps called S-boxes on parts of the state. In this case the
linear approximation tables or the correlation matrices of the S-boxes can be used to construct the
correlation matrix of the whole round function using a variant of the piling-up lemma. Given an
approximation of the round function, it decomposes into a sum of approximations of some S-boxes.
These are often called active S-boxes of the approximation. This notion extends to linear trails, as all
linear trails have a unique decomposition as approximations of each round.

The following result is deduced from the piling-up lemma and the definition of the ELP :

Theorem 2.10. Let E be a key-alternating cipher of r rounds with internal permutation F , and let
Ĉ(F) be the element-wise square of the correlation matrix of the round function. Then the ELP of a
linear approximation of E with input mask α and output mask β is

ELP (α, β) =
((
Ĉ(F)

)r)
αβ

(2.16)

In most practical ciphers n is too large to construct the correlation matrix of the round function in
full, but in many cases a good estimation of the ELP can still be obtained by considering a submatrix
of C(F) containing a carefully picked selection of masks, such as those with a bound Hamming weight
or those which lead to a limited amount of active S-boxes in the previous and the next rounds. This
limits the amount of linear trails which are considered to those whose intermediate masks belong to the
selected family. If all other linear trails have a very small correlation (in other words, if the submatrix
of C(F) is chosen well enough), then the obtained estimation of the ELP can be very accurate.

2.3 Multiple linear cryptanalysis

Linear cryptanalysis can also be extended by using more than one linear approximation. This pos-
sibility was first discussed by Kaliski and Robshaw in [KR94], where the information obtained from
several linear approximations using a single key mask γ but different input and output masks αi, βi
was combined by the attacker to achieve a better success probability.

An approach allowing for the use of any set of linear approximations was introduced by Biryukov et
al. in [BCQ04], and is commonly referred to as multiple linear cryptanalysis. However, the analysis
of the probability of success relies on the assumption that all the approximations are statistically
independent, and this is not always the case.

8 2 AN INTRODUCTION TO LINEAR CRYPTANALYSIS

For this reason, Hermelin et al. proposed multidimensional linear cryptanalysis in [HCN08] and
[HCN09]. Multidimensional linear cryptanalysis uses linear approximations whose input and out-
put masks constitute a linear subspace of Fn2 ×Fn2 , which means that the estimation of the probability
of success takes into account the joint distribution of all these approximations and doesn’t require the
assumption of statistical independence. Multidimensional attacks are covered in appendix B.

We will now describe a simple multiple version of Matsui’s Algorithm 2. Let νi be M linear approxi-
mations of the r − 1 first rounds of the cipher,

νi : αi · x⊕ βi · ŷ, i = 1, . . . ,M (2.17)

We suppose that βi · F−1(y ⊕ Kr) can be replaced by fi(y|χ⊕k) for each approximation as in the
simple version of Algorithm 2. Then an attack using N known plaintext-ciphertext pairs (x, y) can be
performed as follows:

Algorithm 4: Multiple version of Matsui’s Algorithm 2

Input: A collection D = {(x, y = EK(x))} of N plaintext-ciphertext pairs (possibly on-the-fly).
Output: A probable guess for k.
for i← 1 to M do qi ← 0;
forall (x, y) ∈ D do // Compute the counters qik for all keys and approximations

for i← 1 to M, k ← 0 to 2|k| − 1 do
if αi · x⊕ fi(y|χ⊕k) = 0 then qik ← qik + 1 else qik ← qik − 1;

end

end

for k ← 0 to 2|k| − 1 do Qk ← 1
N

∑M
i=1(qik)2; // Aggregate the information

return argmaxk(Qk); // Find the largest value of Qk

For each guess of k, the attacker computes the empirical correlation for all the approximations:

qik = # {(x, y) ∈ D : αi · x⊕ fi(y|χ⊕k) = 0} −# {(x, y) ∈ D : αi · x⊕ fi(y|χ⊕k) = 1} (2.18)

which are then aggregated into the multiple linear cryptanalysis statistic

Qk =
1

N

M∑
i=1

(
qik
)2

(2.19)

The guess with the largest associated value of Qk is probably correct. Under the assumption that all
the linear approximations are statistically independent, the probability of success of the attack can be
estimated using the notion of capacity of the set of approximations:

Proposition 2.11. The probability of success of a multiple linear attack using M statistically inde-
pendent linear approximations depends on the number of available plaintexts N , the number of approx-
imations M and the capacity of the set of linear approximations. If ci(K) is the correlation of the i-th
approximation for the key K, then the capacity for the key K and the overall capacity are defined as

C(K) =

M∑
i=1

(ci(K))
2
, C = ExpK (C(K)) =

M∑
i=1

(ELP (αi, βi))
2

(2.20)

2.4 Estimating the probability of success

Another “branch” in the theory of linear cryptanalysis which has been developed in the last few decades
deals with the analysis of the probabilistic behaviour of linear approximations and how it can be used
to better estimate the probability of success of a linear attack.

In an attack based on Matsui’s Algorithm 2, it is possible to keep more than one key candidate: for
example, we can keep a fixed number of the highest ranked key candidates, or all candidates which

2.4 Estimating the probability of success 9

surpass a certain correlation threshold. This increases the probability of success of the attack. Selçuk
introduced the notion of advantage ([Se08]) in order to measure the effectiveness of this type of attack:

Definition 2.12. An attack that ranks the partial key guesses k according to a statistic Xk achieves
an advantage of a bits if the right key ranks among the best 2|k|−a key candidates. Given a desired
advantage, the probability of success is the probability that the actual advantage surpasses the desired
value. If an advantage of a bits is achieved, then the time complexity of the exhaustive search phase of
the attack is 2κ−a full encryptions.

The probability of success given a target advantage can be computed using the following result:

Theorem 2.13 ([Se08]). Supposing that the key-ranking statistic Xk has the cumulative distribution
function FR for the right key guess and FW for any wrong guess, then the success probability of the
associated statistical attack for a given desired advantage a is

PS = 1− FR
(
F−1W (1− 2−a)

)
(2.21)

If the right-key distribution can be approximated by a normal distribution N (µR, σ
2
R), then

PS ' Φ

(
µR − F−1W (1− 2−a)

σR

)
(2.22)

For multiple linear cryptanalysis, the distributions of the test statistics which are required for the
previous result can be approximated by the widely-accepted theorem from [BN17]:

Theorem 2.14 (Theorem 6 in [BN17]). In a multiple linear attack using M linear approximations
and N available plaintexts, the right-key statistic Qk approximately follows a normal distribution:

Qk ∼ N (µR, σR), where{
µR = ExpD,K(Qk) = BM +NExpK (C(K))
σ2
R = V arD,K(Qk) = 2B2M + 4BNExpK (C(K)) +N2V arK (C(K))

B =

{
1 if repeated plaintexts are allowed
2n−N
2n−1 if the plaintexts are all different (distinct known plaintext)

(2.23)

ExpK (C(K)) and V arK (C(K)) can be estimated using a subset S of significant linear trails,

ExpK (C(K)) '
M∑
i=1

∑
γ∈S

(
Prx,K̂(νi ⊕ γ · K̂ = 0)− Prx,K̂(νi ⊕ γ · K̂ = 1)

)2
+M2−n (2.24)

V arK (C(K)) ' 2

M∑
i=1

∑
γ∈S

(
Prx,K̂(νi ⊕ γ · K̂ = 0)− Prx,K̂(νi ⊕ γ · K̂ = 1)

)2
+ 2−n

2

(2.25)

Meanwhile, if the key guess k̃ 6= k is different from the right one, a multiple of the wrong key statistic
follows a χ2 distribution with M degrees of freedom:

1

B +N2−n
Qk̃ ∼ χ

2
M , so

{
µW = ExpD,K(Qk̃) = BM +NM2−n

σ2
W = V arD,K(Qk̃) = 2M(B +N2−n)2

(2.26)

10 3 MATSUI’S ALGORITHM 2 USING FFT

3 Matsui’s Algorithm 2 using FFT

As was shown in the previous section, the näıve implementation of Matsui’s Algorithm 2 requires N2|k|

one-round decryptions in order to compute the test statistic for all possible guesses of the subkey. This
number can be reduced to O(N) + 22|k| if the attacker divides the statistical analysis into two phases
and 2|k| < N . Since we are only interested in some bits of information about each plaintext-ciphertext
pair, we begin by counting the number of appearances of each possibility for these relevant bits. Then
the calculations are only performed once for each one of these possibilities, and then the result is
multiplied by the number of appearances that was stored in the first table. This is a recurring strategy
in statistical attacks, which can often be divided into the following phases:

1. Distillation phase: The relevant information for the attack is extracted from the data by
partitioning the space of plaintexts and ciphertexts and counting the number of occurrences of
each category. This can be done on-the-fly, which means that each plaintext-ciphertext pair can
be processed separately as it is received by the attacker without storing the whole collection.

2. Analysis phase: The information that was extracted during the analysis phase is manipulated
in order to obtain one or more candidates for a part of the key K.

3. Search phase: The rest of the key is found by testing all the possibilities for the remainder of
the key exhaustively until the correct key is found.

Collard, Standaert and Quisquater showed in [CSQ07] that the Generalised Fast Fourier Transform
(and, in particular, the Fast Walsh-Hadamard Transform) can speed up the time complexity of the
analysis phase of the modified Algorithm 2 from O

(
22|k|

)
to O

(
|k|2|k|

)
in last-round attacks (the

original paper also briefly discusses first and last-round attacks, as well as attacks on ciphers in which
the round subkey is added modulo 2n instead of being XORed). During this internship we described
an extended version of the algorithm which can be used for any number of rounds at the beginning
and/or the end of the cipher, and is inspired by several applications of the technique in subsequent
papers ([NWW11],[ZZ15],[BTV18]). This section contains both the original approach of [CSQ07] as
well as our new generalised algorithm, and provides more accurate expressions of the time complexity.
We also discuss how the key schedule might be exploited in generalised FFT-accelerated linear attacks.

3.1 The original algorithm

In [CSQ07] it was shown that the parity calculations for Matsui’s Algorithm 2 can be performed more
efficiently by using the FFT. This improved algorithm can be used when the cipher is of the form
EK(x) = (F ◦E′K)(x)⊕Kr and the attacker uses one approximation of the form α ·x⊕β · ŷ. As usual,
we will suppose that the last round of the cipher can be truncated so that the partial decryption which
obtains β · F−1(y ⊕Kr) from y only requires using a few bits of Kr.

yŷ FE′x

K0, ...,Kr−1 Kr

Key ScheduleK

Figure 1: Attack on last round of a cipher.

3.1 The original algorithm 11

The partial subkey guess will be denoted by k, and there are 2|k| possibilities for this segment of the key.
Let χ be the mask which extracts these relevant bits, so that k = Kr|χ. Let f(y|χ⊕k) = β ·F−1(y⊕Kr)
denote the term of the approximation associated to the partial last round decryption. The attacker
wants to compute the vector of experimental correlations whose entries are

qk = # {(x, y) ∈ D : α · x⊕ f(y|χ⊕k) = 0} −# {(x, y) ∈ D : α · x⊕ f(y|χ⊕k) = 1} (3.1)

with the aim of extracting the key candidate(s) with the largest value(s) of |qk|. The experimental
correlation can be rewritten as a sum in the following manner:

qk =
∑

(x,y)∈D

(−1)α·x⊕f(y|χ⊕k) =

2|k|−1∑
j=0

(−1)f(j⊕k)
∑

(x,y)∈D
y|χ=j

(−1)α·x, 0 ≤ k ≤ 2|k| − 1 (3.2)

so that j represents the relevant |k| bits of the ciphertext. This suggests that the attack should begin

by computing the integer vector a ∈ Z2|k| with coordinates

aj =
∑

(x,y)∈D
y|χ=j

(−1)α·x, 0 ≤ j ≤ 2|k| − 1 (3.3)

This constitutes the distillation phase of the algorithm of [CSQ07]. We can also define the matrix

C ∈ Z2|k|×2|k| with entries

cjk = (−1)f(j⊕k), 0 ≤ j, k ≤ 2|k| − 1 (3.4)

The vector q = (q0, . . . , q2|k|−1) can thus be calculated as the matrix-vector product

qT = aTC (3.5)

However, the time complexity of constructing C and computing the matrix-vector product is still
O
(
22|k|

)
. The product can be computed in a much more efficient manner by making use of the

following result on spectral analysis:

Proposition 3.1. Let f : Fm2 −→ F2 be a boolean function. We consider a matrix of 1s and -1s
C ∈ Z2m×2m whose entries are of the form

cij = (−1)f(i⊕j), 0 ≤ i, j ≤ 2m − 1 (3.6)

This matrix diagonalizes as

2mC = H2m∆H2m (3.7)

where H2m is the Walsh-Hadamard matrix of size 2m whose entries are hij = (−1)i·j, and ∆ =
diag(λλλ), λλλ ∈ Z2m is a diagonal matrix.

The eigenvalue vector λλλ is the matrix-vector product H2mC·1, where C·1 denotes the first column of C.

Proof. We will show that the columns of the Walsh-Hadamard matrix (often called Walsh functions)
are eigenvectors of C. In the process we will also obtain an expression for the associated eigenvalues.

Let h·j denote the j-th column of H2l . Its coordinates are therefore (h·j)i = hij = (−1)i·j . The i-th
component of the matrix-vector product Ch·j is equal to:

2m−1∑
k=0

cikhkj =

2m−1∑
k=0

(−1)f(i⊕k)(−1)k·j =

2m−1∑
k=0

(−1)f(i⊕k)⊕k·j

12 3 MATSUI’S ALGORITHM 2 USING FFT

Since the sum is taken over all the possible values of k, we can change the indices k⊕ i for k to obtain

2m−1∑
k=0

(−1)f(k)⊕(k⊕i)·j =

2m−1∑
k=0

(−1)f(k)⊕k·j⊕i·j =

(
2m−1∑
k=0

(−1)f(k)⊕k·j

)
(−1)i·j ,

which is a multiple of the i-th component of h·j . The associated eigenvalue is

λj =

2m−1∑
k=0

(−1)k·j(−1)f(k),

which is indeed the j-th component of the product of H2m and the first column of C.

The matrix-vector product aTC can then be further decomposed into:

2|k|qT = aTH2|k|diag(H2|k|C·1)H2|k| (3.8)

The cost of computing q is now three products of the form H2|k|v, which can in turn be evaluated effi-
ciently with the Fast Walsh-Hadamard transform (see appendix A) with |k|2|k| additions/substractions.

The decomposition of C justifies the following algorithm:

1. Distillation phase: Construct a list of zeros a of length 2|k|. For each plaintext-ciphertext pair
(x, y), calculate α · x. If it is equal to zero (resp. one), then increment (resp. decrement) the
entry of a corresponding to the |k| relevant bits of y|χ by one.

The time complexity of this phase is ρDN ,where ρD is the cost (in binary operations) of evaluating
α · x and y|χ and incrementing one of the counters.

2. Analysis phase: Compute the vector q of experimental correlations:

(a) Compute the first column of C, and apply the Fast Walsh-Hadamard Transform to obtain
λλλ, the vector containing the eigenvalues of C.

(b) Apply the Fast Walsh-Hadamard transform to a.

(c) Multiply the previous vector by λλλ elementwise.

(d) Apply the Fast Walsh-Hadamard transform to the resulting vector to find 2|k|q.

Select the subkey guesses k with the largest values for |qk|.
The time complexity of this phase is ρf2|k| + 3ρA|k|2|k| + ρM2|k| + ρC2|k|. The constant ρf
denotes the cost in binary operations of evaluating f(j), and ρA, ρM , ρC denote the cost of
adding, multiplying and comparing two integers whose length is bound by n.

3. Search phase: For each of the remaining candidate guesses, try all the possibilities for the
remainder of the key until either the complete key K is found or all the candidates have been
tested without success.

The time complexity of this phase is ρE2κ−a, where ρE is the cost of one encryption with E and
a is the achieved advantage of the attack.

Proposition 3.2. The previous algorithm for a key recovery linear attack using a linear approximation
between the first and penultimate rounds of a block cipher has a time complexity

ρDN︸ ︷︷ ︸
distillation

phase

+ 3ρA|k|2|k| + (ρf + ρM + ρC)2|k|︸ ︷︷ ︸
analysis phase

+ ρE2κ−a︸ ︷︷ ︸
search
phase

(3.9)

The memory requirement is 2 · 2|k|n bits.

3.2 The extended algorithm 13

Algorithm 5: The algorithm of [CSQ07] (without the final phase)

Input: A collection D = {(x, y = EK(x))} of N plaintext-ciphertext pairs (possibly on-the-fly).
Output: The experimental correlations qk (multiplied by a constant factor).
// DISTILLATION PHASE

a← 0;
forall (x, y) ∈ D do

if α · x = 0 then ay|χ ← ay|χ + 1 else ay|χ ← ay|χ − 1;

end
// ANALYSIS PHASE

for j ← 0 to 2|k| − 1 do λj ← f(j); // Compute the first column of C
λλλ← FWHT(λλλ); // Compute the eigenvalues of C
a← FWHT(a); // Apply the FWHT to a

for j ← 0 to 2|k| − 1 do aj ← aj · λj ; // Multiply a by λλλ elementwise

q← FWHT(a); // Apply the FWHT to a

return q;

3.2 The extended algorithm

After the publication of [CSQ07], several linear attacks have made use of this FFT technique. Although
it was originally only described for the case in which the adversary only wants to guess bits of the last
round subkey, it is possible to apply the same approach in broader scenarios, as showcased in [CSQ07],
[NWW11], [ZZ15], and [BTV18]. The main original result of this internship is the description of an
algorithm which allows for an efficient partial key recovery on an arbitrary number of rounds at both
the beginning and the end of the cipher, as well as a generic analysis of the time complexity.

Consider a block cipher E of block size n and key size κ which can be decomposed as in figure 2. The
outer ciphers E1 and E2 represent the first and last few rounds of E. These ciphers take some inner
keys K1 ∈ Fκ1

2 and K2 ∈ Fκ2
2 as input. In a key-alternating cipher, these inner keys correspond to the

round subkeys involved in the key recovery attack, excluding the first and the last. The first and last
round subkeys correspond to the outer keys K0 and K3, and will be treated separately.

We will suppose that the inner cipher EM has a linear linear approximation of the form

ν : α · x̂⊕ β · ŷ (3.10)

As with the previous algorithms, we assume that the values of α · E1(x⊕K0,K1) (resp. β · E−12 (y ⊕
K3,K2)) can be obtained from a part of x (resp. y) by guessing some bits of the keys K0 and K1

(resp. K3 and K2). We will denote the necessary part of the plaintext by i (resp. ciphertext, j),
while the guessed parts of the subkeys will be denoted by k0, k1 (resp. k3, k2). We can consider masks

yE2ŷEMx̂E1x

K0 K1 KM K2 K3

Key ScheduleK

Figure 2: The general description of the cipher.

14 3 MATSUI’S ALGORITHM 2 USING FFT

χ0, χ1, χ2, χ3, so that

i = x|χ0 , k0 = K0|χ0 , k1 = K1|χ1 , k2 = K2|χ2 , y = y|χ3 , k3 = K3|χ3 (3.11)

Let f1 : F2|k0|

2 × F2|k1|

2 −→ F2 and f2 : F2|k3|

2 × F2|k2|

2 −→ F2 denote the maps verifying

f1 (x|χ0
⊕K0|χ0

,K1|χ1
) = α · E1 (x⊕K0,K1) for all possible x,K0,K1 (3.12)

f2 (y|χ3⊕K3|χ3 ,K2|χ2) = β · E−12 (y ⊕K3,K2) for all possible y,K3,K2 (3.13)

The attacker is given a set D of N plaintext-ciphertext pairs (x, y = EK(x)) which have been encrypted
with a fixed key K. In order to perform a linear key recovery attack, the adversary needs to compute
the experimental correlation for each possible guess of the subkeys:

q(k0, k1, k2, k3) = # {(x, y) ∈ D : f1(i⊕ k0, k1)⊕ f2(j ⊕ k3, k2) = 0}
−# {(x, y) ∈ D : f1(i⊕ k0, k1)⊕ f2(j ⊕ k3, k2) = 1} ,

(k0, k1, k2, k3) ∈ F|k0|2 × F|k1|2 × F|k2|2 × F|k3|2

(3.14)

The attack begins with a modified distillation phase which is inspired by the work of Nguyen et al. in

[NWW11]. A matrix A ∈ Z2|k0|×2|k3| , whose entries aij are the number of plaintext-ciphertext pairs
for which the relevant bits are i and j, respectively, is constructed.

aij = # {(x, y) ∈ D : x|χ0
= i, y|χ3

= j} , 0 ≤ i ≤ 2|k0| − 1, 0 ≤ j ≤ 2|k3| − 1 (3.15)

We can thus rewrite the experimental correlation for any key guess as the following sum:

q(k0, k1, k2, k3) =

2|k0|−1∑
i=0

2|k3|−1∑
j=0

aij(−1)f1(i⊕k0,k1)(−1)f2(j⊕k3,k2) (3.16)

Let us now consider that the values of 0 ≤ k1 ≤ 2|k1| − 1 and 0 ≤ k2 ≤ 2|k2| − 1 are fixed. All the
associated experimental correlations (which now only depend on the choice of k0 and k3) form a matrix

Qk1,k2 ∈ Z2|k0|×2|k3| with entries

qk1,k2k0,k3
= q(kP , k1, k2, kC), 0 ≤ k0 ≤ 2|k0| − 1, 0 ≤ k3 ≤ 2|k3| − 1 (3.17)

We can see that Qk1,k2 = Bk1ACk2 , where Bk1 ∈ Z2|k0|×2|k0| and Ck2 ∈ Z2|k3|×2|k3| , and the elements
of these matrices are defined as

bk1k0,i = (−1)f1(i⊕k0,k1), 0 ≤ k0, i ≤ 2|k0| − 1 (3.18)

ck2j,k3 = (−1)f2(j⊕k3,k2), 0 ≤ j, k3 ≤ 2|k3| − 1 (3.19)

All the matrices Bk1 , Ck2 adhere to the structure described in Proposition 3.1 and thus the product
of a vector by one of these matrices can be computed by using tree Fast Walsh-Hadamard Transforms
(FWHT). More precisely, these matrices decompose as

2|k0|Bk1 = H2|k0|diag
(
λλλk11

)
H2|k0| , where λλλk11 = H2|k0|B

k1
·1 (3.20)

2|k3|Ck2 = H2|k3|diag
(
λλλk22

)
H2|k3| , where λλλk22 = H2|k3|C

k2
·1 (3.21)

The matrices Qk1k2 can therefore be calculated as

2|k0|+|k3|Qk1k2 = H2|k0|diag
(
H2|k0|B

k1
·1

)
H2|k0|AH2|k3|diag

(
H2|k3|C

k2
·1

)
H2|k3| (3.22)

The end result is that the attack can be performed efficiently as follows:

3.2 The extended algorithm 15

1. Distillation phase: Construct the matrix A by looking at each plaintext-ciphertext pair (x, y),
finding the associated values of i and j and incrementing the corresponding aij by one.

The time complexity of the distillation phase is ρDN binary operations, where ρD is the cost of
checking one pair. The distilled data needs 2|k0|+|k3| memory registers of up to n bits.

2. Analysis phase: Compute all the experimental correlations q(k0, k1, k2, k3):

(a) Apply the FWHT on all rows and columns of A to obtain a matrix Â.

The cost of applying the transform on all the rows is ρA·2|k0|·|k3|2|k3| and the cost of applying
it on all the columns is ρA · 2|k3| · |k0|2|k0|, so the total cost is ρA (|k0|+|k3|) 2|k0|+|k3|. No
additional memory is required.

(b) Construct all the eigenvalue vectors λλλk11 and λλλk22 . This is done by calculating the first column
of Bk1 or Ck2 and then applying the FWHT on this vector.

This step can be precomputed before the distillation phase, and requires ρf12|k0|+|k1| +

ρA|k0|2|k0|+|k1| operations to compute all the vectors λλλk11 (where ρf1 is the cost of evaluating

f1) and ρf22|k2|+|k3| + ρA|k3|2|k2|+|k3| time to compute the λλλk22 . The memory requirement
is 2|k0|+|k1| + 2|k2|+|k3| registers of n bits.

(c) Compute Qk1,k2 for all the values of k1 and k2:

i. Multiply each column of a copy of Â by λλλk11 and each row by λλλk22 elementwise.

ii. Apply the FWHT on all the rows and columns of this matrix to obtain Qk1,k2 .

Since these calculations need to be done for each one of the 2|k1|+|k2| guesses for the inner
keys, the overall time cost is 2ρM2|k0|+|k1|+|k2|+|k3|+ ρA (|k0|+|k3|) 2|k0|+|k1|+|k2|+|k3|, while
2|k0|+|k1|+|k2|+|k3| memory registers of n bits are required.

(d) Select the subkey guesses with the largest values for |q(kP , k1, k2, kC)|.
The cost is ρC2|k0|+|k1|+|k2|+|k3|.

3. Search phase: The selected candidate subkeys are tested by searching for the rest of the key
exhaustively. The cost is ρE2κ−a.

Algorithm 6: General key recovery algorithm using FFT (without the final phase)

Input: A collection D = {(x, y = EK(x))} of N plaintext-ciphertext pairs (possibly on-the-fly).

Output: The experimental correlations Qk1,k2k0,k3
.

// DISTILLATION PHASE

A← 0;
forall (x, y) ∈ D do ax|χ0

,y|χ3
← ax|χ0

,y|χ3
+ 1;

// ANALYSIS PHASE

for i← 0 to 2|k0| − 1 do Ai· ← FWHT(Ai·); // Apply the FWHT to the rows of A

for j ← 0 to 2|k3| − 1 do A·j ← FWHT(A·j); // Apply the FWHT to the columns of A

for k1 ← 0 to 2|k1| − 1; i← 0 to 2|k0| − 1 do (λk11)i ← f1(i, k1); // First column of Bk1

for k2 ← 0 to 2|k2| − 1; j ← 0 to 2|k3| − 1 do (λk22)j ← f2(j, k2); // First column of Ck2

for k1 ← 0 to 2|k1| − 1 do λλλk11 ← FWHT(λλλk11); // Compute λλλk11
for k2 ← 0 to 2|k2| − 1 do λλλk22 ← FWHT(λλλk22); // Compute λλλk22
for k1 ← 0 to 2|k1| − 1; k2 ← 0 to 2|k2| − 1 do // Compute Qk1,k2k0,k3

for k0 ← 0 to 2|k0| − 1; k3 ← 0 to 2|k3| − 1 do Qk1,k2k0k3
← Ak0k3 · (λ

k1
1)k0 · (λ

k2
2)k3 ;

for k0 ← 0 to 2|k0| − 1 do Qk1,k2k0· ← FWHT(Qk1,k2k0·);

for k3 ← 0 to 2|k3| − 1 do Qk1,k2·k3 ← FWHT(Qk1,k2·k3);

end

return
{
Qk1,k2

}
k1,k2

;

16 3 MATSUI’S ALGORITHM 2 USING FFT

Result 3.1. The time complexity of the general algorithm is (ignoring the significantly smaller terms)

ρDN︸ ︷︷ ︸
distillation

phase

+ 2ρM2|k0|+|k1|+|k2|+|k3| + ρA (|k0|+|k3|) 2|k0|+|k1|+|k2|+|k3|︸ ︷︷ ︸
analysis phase

+ ρE2κ−a︸ ︷︷ ︸
search phase

(3.23)

The memory use is 2|k0|+|k1|+|k2|+|k3| + o
(
2|k0|+|k1|+|k2|+|k3|

)
memory registers of n bits.

A look at the structure of the analysis phase shows that a time-memory tradeoff in the lower order
terms can be achieved if some of the steps are mixed: for example, slightly less memory is required if
the eigenvalue vectors are only computed as needed (this has a small additional time cost, however).
Furthermore, if the attacker doesn’t need to store all the experimental correlations, it is possible to
compute the matrices Qk1,k2 one by one without storing them, so that only 2 · 2|k0|+|k3| memory
registers of n bits are used.

This algorithm also generalises the case in which no part of the key is guessed at the beginning of
the cipher (for example, the original attack of [CSQ07]): it suffices to only compute the experimental
correlations corresponding to the case k0 = 0. This means that instead of applying the FWHT on all
the rows of A, it suffices to right-multiply A by the first column of C to obtain a. This is different
from the original algorithm that was shown in [CSQ07], as the calculation of the vector a, which was
originally done in one step, is now separated into two different computations. This is slightly more
costly in memory, but has the advantage that, in the case of multiple linear cryptanalysis, only one
distillation phase needs to be performed, instead of one distillation for each possibility for the input
mask α.

We also compared the computational costs ρD, ρf1 , ρf2 , ρC , ρA, ρM and ρE . In general, ρD, ρf1 and ρf2
should be negligible when compared to the others, as they are much simpler operations. For most cases
ρC ' ρA and ρM should be comparable to or smaller than ρE (this depends on the implementations
of the cipher and the operations).

The adaptability of this algorithm to multiple and multidimensional linear attacks was also considered
in [NWW11], [ZZ15] and [BTV18]. For the general algorithm, since the distillation phase only needs
to be performed once, we arrive at the following complexity:

Result 3.2. A multiple/multidimensional Algorithm 2 attack using M approximations with the ex-
tended FFT algorithm has complexity (ignoring the significantly smaller terms)

ρDN︸ ︷︷ ︸
distillation

phase

+ 2MρM2|k0|+|k1|+|k2|+|k3| +MρA(|k0|+|k3|)2|k0|+|k1|+|k2|+|k3|︸ ︷︷ ︸
analysis phase

+ ρE2κ−a︸ ︷︷ ︸
search phase

(3.24)

If there are several approximations which share the same input mask α but differ in their output masks
(or the other way around), then it is possible to reuse some partial results such as Bk1Â, which only
need to be computed once. This can lead to a further reduction of the time complexity.

3.3 Exploiting the key schedule

In the algorithm of the previous subsection, the attacker has no prior knowledge of the relationship
between the different round subkeys: they guess |k0|+|k1|+|k2|+|k3| bits of subkey independently.
However, real ciphers have a key schedule, which means that relationships between the different subkeys
will exist. In a “classical” implementation of Matsui’s Algorithm 2 over multiple rounds (that is,
without using the FWHT), these relationships are easily exploited: if k0, k1, k2 and k3 can all be
deduced from |kT | bits of information about the subkey, then the time complexity of the attack can
be reduced to N2|kT | or O(N) + 22|kT |, depending on the chosen variant of the algorithm.

This subsection deals with how the known dependencies between subkey bits which are induced by
the key schedule can be used to improve the time complexity of our algorithm, especially in the

3.3 Exploiting the key schedule 17

case of multiple linear cryptanalysis. Two different but compatible strategies will be introduced:
the first exploits bit dependencies when computing the experimental correlations for each one of the
approximations. The second computes the experimental correlations for each approximation using
only the subkey bits which are strictly necessary, and then combines all the information to obtain the
Qk statistics.

3.3.1 Top-down strategy

The first approach consists of directly trying to use the dependency relationships between the subkey
bits in order to reduce the time complexity of the general algorithm, so it can be used for simple,
multiple and multidimensional linear cryptanalysis. We have so far been unable to provide an efficient
general algorithm which takes account of all dependency relationships between k0, k1, k2, k3. However,
we have considered several possible instances in which the attacker can obtain a time complexity gain
by using their knowledge of the subkeys that’s derived from the key schedule:

• Dependency within k1 or within k2: This case is already covered by the general algorithm, as it
is sufficient to redefine k1 and k2 with a smaller number of bits.

• Dependency between k1 and k2: If k1 and k2 can be deduced from |kT |< |k1|+|k2| bits of informa-
tion about the master key, then it is possible to only consider the matrices Qk1,k2 corresponding
to all possible values of kT while running the algorithm. The time complexity of the analysis
phase is thus reduced to

2ρM2|k0|+|kT |+|k3| + ρA(|k0|+|k3|)2|k0|+|kT |+|k3| (3.25)

• Dependency within k0 or within k3: If the key schedule means that k0 (or k3) can’t take all
the 2|k0| possible values (one particular case is when the round subkey is only XORed with a
part of the state, that is, when some bits of k0 are always zero), then the attacker doesn’t need
to compute q(k0, k1, k2, k3) for the impossible values of k0. This can be done by ignoring these
output positions when computing the FWHTs of step 2c of the algorithm (this is often called
a “pruned” transform, see [JSD01],[HW04]). This can lead to a gain in time complexity which
depends on the set of required outputs.

• Dependency between k0 and k3: If some bits of k3 can be deduced from k0, then the last set of
FWHTs can be pruned according to the possible values of k0 which are associated to the row of
Qk1k2 currently being calculated.

• Dependency between k0 and (k1‖k2) (or (k1‖k2) and k3): If some bits of k0 (or k3) can be deduced
from k1 and k2, then the attacker can use the same strategy of pruning the FWHT as in the
previous cases. This time, however, the set of possible values of k0 and k3 changes according to
the value of k1 and k2 currently under consideration.

3.3.2 Bottom-up strategy: multiple linear cryptanalysis

Another approach which is specific to multiple attacks is to use the FWHT algorithm to compute the
experimental correlation for each approximation but considering only the subkey bits which are strictly
necessary, and then combining the information from all the approximations to obtain Qk more quickly.
This is similar to the approach of [ZZ15] and [BTV18] and seems to allow for a greater flexibility than
the top-down strategy. Let νi : αi · x̂⊕βi · ŷ, i = 1, . . . ,M be linear approximations of the inner cipher
EM . Multiple linear cryptanalysis requires the attacker to compute

Q(k0, k1, k2, k3) =
1

N

m∑
i=1

(
qi(k0, k1, k2, k3)

)2
In order to calculate one particular qi(k0, k1, k2, k3) some subkey bits might be unnecessary: some part
of the subkey might be necessary for one approximation but not for a different one. Let us suppose

18 3 MATSUI’S ALGORITHM 2 USING FFT

that qi(k0, k1, k2, k3) can be calculated as q̂i(ki0, k
i
1, k

i
2, k

i
3) (where ki0 = k0|χi0 is a part of k0, and so

on), and that all the ki0, k
i
1, k

i
2 and ki3 (for all values of i) can be extracted from a part kT of the

master key K, so Q(k0, k1, k2, k3) = Q̂(kT). We will also suppose that the sets of masks (χi0, χ
i
3) and

(χi0, χ
i
1, χ

i
2, χ

i
3) take l1 and l2 different values over the set of M approximations, respectively. In this

situation, the attacker can perform a modified algorithm:

1. Perform a modified distillation phase in which l1 tables instead of one are constructed: one for
each plaintext-ciphertext mask pair (χi0, χ

i
3).

2. For each approximation νi, compute a table of length 2|k
i
0|+|k

i
1|+|k

i
2|+|k

i
3| containing all the possible

values of qi(ki0, k
i
1, k

i
2, k

i
3) by using the algorithm from the previous subsection and the appropiate

table from the distillation phase.

3. The M tables from the previous step are combined into l2 “condensed” tables by adding the
square correlations of approximations corresponding to the same choice of subkey bits, that is,
one table for each possible value of (χi0, χ

i
1, χ

i
2, χ

i
3). In other words, given a fixed set of masks

(X0, X1, X2, X3), the associated condensed table contains the coefficients:∑
(χi0,χ

i
1,χ

i
2,χ

i
3)

=(X0,X1,X2,X3)

(
qi(ki0, k

i
1, k

i
2, k

i
3)
)2

for all (ki0, k
i
1, k

i
2, k

i
3) (3.26)

4. For each possible guess of the partial master key kT , use the key schedule to compute the
associated values of ki0, k

i
1, k

i
2, k

i
3. Use the tables from the previous step to compute Q(kT). Keep

the key candidates with a large enough value of the statistic for the search phase.

Result 3.3. The improved linear attack algorithm using the bottom-up strategy has the following time
complexity (ignoring significantly smaller terms):

l1ρDN︸ ︷︷ ︸
distillation

phase

+

M∑
i=1

(
3ρM + (|ki0|+|ki3|)ρA

)
2|k

i
0|+|k

i
1|+|k

i
2|+|k

i
3|

︸ ︷︷ ︸
analysis phase I

+ l2ρA2|kT |︸ ︷︷ ︸
analysis
phase II

+ ρE2κ−a︸ ︷︷ ︸
search phase

(3.27)

and requires
∑M
i=1 2|k

i
0|+|k

i
1|+|k

i
2|+|k

i
3| memory registers.

This algorithm can produce large gains in the case of multiple linear cryptanalysis, but its success
is more limited in multidimensional attacks, as there is always a linear approximation of maximum
Hamming weight masks for which |ki0|= |k0|, . . . , |ki3|= |k3|.

19

4 Application to the block cipher PRESENT

In order to showcase the potential of our key recovery techniques, we will describe some new attacks on
reduced-round variants of the block cipher PRESENT, which surpass any previously known attacks,
linear or otherwise. Our new results on PRESENT are of independent interest by themselves: in
particular, we will describe our attacks on the 26 and 27-round variants of PRESENT-80 with lower
data and time complexities than those of previous attacks, and what, to the best of our knowledge, is
the first attack on 28-round PRESENT-128.

PRESENT is a lightweight block cipher which was proposed by Bogdanov et al. in CHES 2007 (see
[PRS07]) and was made an ISO standard in 2012. It is a very popular and thoroughly analysed
cipher, and is also the inspiration of several recent lightweight ciphers such as GIFT ([GFT17]) and
TRIFLE-BC ([TRF19]). It has a block size of 64 bits, and there are two variants with 80 and 128
bit key lenghs (which we’ll refer to as PRESENT-80 and PRESENT-128, respectively). Ever since its
proposal, PRESENT has been subject to substantial cryptanalisis efforts, which have slowly eroded its
security margin. The best known attacks on the PRESENT construction are linear ([ZZ15],[BTV18]),
and are effective on up to 27 rounds (out of 31).

We will describe two new linear attacks on reduced-round variants of PRESENT which make use of
different sets of linear approximations (or linear distinguishers). The first one only uses approximations
with input and output masks of Hamming weight one, which makes the key recovery part of the attack
light enough to allow attacks on up to 27-rounds of PRESENT-80. Later we will describe a more
effective (in the sense that it has a larger capacity for the same number of rounds) linear distinguisher
using masks of Hamming weight 2: this allows to reach 28 rounds, but also means that the key recovery
is more expensive and the attack only applies to PRESENT-128.

This section is structured as follows: the first subsection contains a description of the PRESENT block
cipher specifications for both key sizes. The next subsections explain the development of our linear
attacks: from the selection of sets of suitable linear approximations to the key recovery algorithm.
Finally, we provide some experimental verification of our claims on the data and time complexity of
our attacks by implementing computer simulations on 10-round PRESENT.

4.1 Description of PRESENT

PRESENT is a key-alternating block cipher which takes a 64-bit plaintext x = x63 . . . x0 and an 80-bit
(or 128-bit) key K = κ79 . . . κ0 (or K = κ127 . . . κ0) and returns a 64-bit ciphertext y = y63 . . . y0. The
encryption is performed by iteratively applying a round transformation to the state b = b63 . . . b0 =
w15‖. . . ‖w0, where each of the wi represents a 4-bit nibble, wi = b4i+3b4i+2b4i+1b4i.

Both variants of PRESENT consist of 31 rounds, plus the addition of a final whitening key at the
output. Each round is the composition of the following three transformations:

• addRoundKey: Given the round key Ki = κi63 . . . κ
i
0, 0 ≤ i ≤ 31 and the state b, the round

key is XORed bitwise to the state.

• sBoxLayer: A fixed 4-bit to 4-bit S-box S : F4
2 −→ F4

2 is applied to each 4-bit nibble of the
state wi. The S-box S is given as a lookup table (here in hexadecimal notation):

xxx 0 1 2 3 4 5 6 7 8 9 A B C D E F
SSS(xxx) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

• pLayer: A fixed bitwise permutation P is applied to the state b. The permutation P is

P : {0, . . . 63} −→ {0, . . . , 63}
j 6= 63 7 −→ 16j mod 63

63 7 −→ 63
(4.1)

Alternatively, P can be given in the form of a lookup table:

20 4 APPLICATION TO THE BLOCK CIPHER PRESENT

iii 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
PPP (iii) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

iii 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
PPP (iii) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

iii 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
PPP (iii) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

iii 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
PPP (iii) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

All the components of a PRESENT round are invertible, so it is easy to invert each round and therefore
the whole cipher. The following algorithm summarises the structure of PRESENT:

Algorithm 7: The PRESENT block cipher

Input: A 64-bit plaintext x, an 80 or 128-bit key K.
Output: A 64-bit ciphertext y.
b← x;
K← KeySchedule(K,31); // Compute all the round subkeys

for i← 0 to 30 do
b63, . . . , b0 ←− b63 ⊕ κi63, . . . , b0 ⊕ κi0; // addRoundKey

w15‖. . . ‖w0 ←− S(w15)‖. . . ‖S(w0); // sBoxLayer

b63, . . . , b0 ←− bP−1(63), . . . , bP−1(0); // pLayer

end
b63, . . . , b0 ←− b63 ⊕ κ3163, . . . , b0 ⊕ κ310 ; // Whitening key

return b

The only element left to describe is the key schedule, which is the only difference between both variants:

Algorithm 8: Key schedule of PRESENT-80

Input: A master key K of 80 bits, a number of rounds r.
Output: r + 1 round subkeys Ki of 64 bits.
κ063 . . . κ

0
0 ←− κ79 . . . κ16; // Extract the first round subkey

for i← 1 to r do
κ79 . . . κ0 ←− κ18 . . . κ19; // Rotate key register 19 bits to the right

κ79κ78κ77κ76 ←− S(κ79κ78κ77κ76); // Apply S-box on leftmost nibble

κ19κ18κ17κ16κ15 ←− κ19κ18κ17κ16κ15 ⊕ i; // Add 5-bit round counter

κi63 . . . κ
i
0 ←− κ79 . . . κ16; // Extract round subkey

end
return {Ki}ri=0;

Algorithm 9: Key schedule of PRESENT-128

Input: A master key K of 128 bits, a number of rounds r.
Output: r + 1 round subkeys Ki of 64 bits.
κ063 . . . κ

0
0 ←− κ127 . . . κ64; // Extract the first round subkey

for i← 1 to r do
κ127 . . . κ0 ←− κ66 . . . κ67; // Rotate key register 61 bits to the left

κ127κ126κ125κ124 ←− S(κ127κ126κ125κ124);
κ123κ122κ121κ120 ←− S(κ123κ122κ121κ120); // Apply S-box on 2 leftmost nibbles

κ66κ65κ64κ63κ62 ←− κ66κ65κ64κ63κ62 ⊕ i; // Add 5-bit round counter

κi63 . . . κ
i
0 ←− κ127 . . . κ64; // Extract i-th round subkey

end
return {Ki}ri=0;

4.2 The 1-bit linear distinguisher for up to 23 rounds 21

addRoundKey

SSSSSSSSSSSSSSSS sBoxLayer

pLayer

Figure 3: Graphic representation of one round of PRESENT.

4.2 The 1-bit linear distinguisher for up to 23 rounds

This subsection provides a multiple linear distinguisher which can be used on up to 23 rounds of
PRESENT (thus allowing for an Algorithm 2 attack on up to 27 rounds by adding two rounds at
the beginning and two at the end), and only uses approximations with input and output masks of
Hamming weight 1 (which will be called 1-bit approximations). We begin our analysis by looking at
the Linear Approximation Table of the PRESENT S-box (table 1).

This table shows that the S-box has eight (out of the total sixteen) biased linear approximations for
which both the input and output masks have Hamming weight 1. These approximations can be used
to construct linear trails which only have one active S-box on each round and involve one bit of each
round subkey. These trails lead to the presence of approximations for multiple rounds with one-bit
input and output masks and a large ELP. This phenomenon is exploited by all the linear attacks on
PRESENT that we are aware of, such as [Oh09], [NSZ09], [Ch10], [ZZ15] and [BTV18].

We will now select a few high-bias one-bit approximations of 22/23 rounds of PRESENT which we
will use on the 26/27-round attack of the next subsection. Since there are only 64× 64 = 212 possible
one-bit approximations, we can just estimate the ELP of all of them and keep the ones with the
largest values. To this end we used the correlation matrix method considering all linear trails with up
to two active S-boxes on each intermediate round (this means that the correlation submatrix is of size
2800× 2800). The results of this computation have been condensed into table 2.

Output mask βββ
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

In
p
u
t
m

a
sk

αα α

0 8 - - - - - - - - - - - - - - -
1 - - - - - -4 - -4 - - - - - -4 - 4
2 - - 2 2 -2 -2 - - 2 -2 - 4 - 4 -2 2
3 - - 2 2 2 -2 -4 - -2 2 -4 - - - -2 -2
4 - - -2 2 -2 -2 - 4 -2 -2 - -4 - - -2 2
5 - - -2 2 -2 2 - - 2 2 -4 - 4 - 2 2
6 - - - -4 - - -4 - - -4 - - 4 - - -
7 - - - 4 4 - - - - -4 - - - - 4 -
8 - - 2 -2 - - -2 2 -2 2 - - -2 2 4 4
9 - 4 -2 -2 - - 2 -2 -2 -2 -4 - -2 2 - -

10 - - 4 - 2 2 2 -2 - - - -4 2 2 -2 2
11 - -4 - - -2 -2 2 -2 -4 - - - 2 2 2 -2
12 - - - - -2 -2 -2 -2 4 - - -4 -2 2 2 -2
13 - 4 4 - -2 -2 2 2 - - - - 2 -2 2 -2
14 - - 2 2 -4 4 -2 -2 -2 -2 - - -2 -2 - -
15 - 4 -2 2 - - -2 -2 -2 2 4 - 2 2 - -

Table 1: Linear Approximation Table (LAT) for the S-box of PRESENT. The entries with value 0
have been indicated with a - to facilitate reading. Furthermore, the entries corresponding to input and
output masks of Hamming weight 1 have been highlighted.

22 4 APPLICATION TO THE BLOCK CIPHER PRESENT

Class Input bits Output bits Qty. ELP 22 ELP 23

A 21,22,25,26,37,38,41,42 21,23,29,31,53,55,61,63 64 2−61.5 2−63.4

B1 21,22,25,26,37,38,41,42 22,25,27,30,37,39,45,47,54,57,59,62 96
2−62.2 2−64.1

B2 23,27,29,30,39,43,45,46,53,54,57,58 21,23,29,31,53,55,61,63 96

C1 21,22,25,26,37,38,41,42 26,38,41,43,46,58 48
2−62.9 2−64.8C2 23,27,29,30,39,43,45,46,53,54,57,58 22,25,27,30,37,39,45,47,54,57,59,62 144

C3 31,47,55,59,61,62 21,23,29,31,53,55,61,63 48

D1 21,22,25,26,37,38,41,42 42 8

2−63.6 2−65.5D2 23,27,29,30,39,43,45,46,53,54,57,58 26,38,41,43,46,58 72
D3 31,47,55,59,61,62 22,25,27,30,37,39,45,47,54,57,59,62 72
D4 63 21,23,29,31,53,55,61,63 8

E1 23,27,29,30,39,43,45,46,53,54,57,58 42 12
2−64.3 2−66.2E2 31,47,55,59,61,62 26,38,41,43,46,58 36

E2 63 22,25,27,30,37,39,45,47,54,57,59,62 12

F1 31,47,55,59,61,62 42 6
2−64.3 2−66.9

F2 63 26,38,41,43,46,58 6

G 63 42 1 2−65.0 2−67.6

Table 2: Classification of the most correlated 1-bit approximations for 22 and 23 rounds of PRESENT.
For each row of the table, an approximation can be constructed by masking one of the possible input
bits and one of the possible output bits. The bits in bold represent the approximations which are used
in our linear distinguisher.

There seems to be a structure in these approximations: the values of the ELP cluster around a few
discrete values which differ from each other by a factor of 2−0.7, and the input and output bits can
be classified in groups according to the correlation of their associated approximations. This might be
caused by the interaction between the Linear Approximation Table of the PRESENT S-box and the
permutation P , and it would be interesting to find a thorough explanation of this phenomenon.

For our attack we have chosen 128 linear approximations with high correlation: we use all 64 approxi-
mations from group A, 32 from group B1 (those corresponding to output bits 22,30,54,62) and 32 from
group B2 (with input bits 53,54,57,58). If the reader looks at the figures in the next subsection, the
choice of the approximations from groups B1 and B2 should become clearer: they involve the same
subkey bits as the approximations in group A, thus minimizing the time cost of the key recovery. This
set of linear approximations has a total capacity of 2−54.81 (for 22 rounds) and 2−56.71 (for 23 rounds).

It should be noted that these approximations are not statistically independent: they are not even
linearly independent. One possible solution would be the application of multidimensional linear crypt-
analysis, which would make the key recovery too costly as it would be necessary to consider all the
linear combinations of our set of approximations, so the benefits of using approximations of Hamming
weight 1 would be lost. Instead, the multiple linear cryptanalysis statistic will be used for these at-
tacks, and we will estimate the probability of success under the assumption that the approximations
are independent. In order to justify the validity of the resulting estimation, we will provide experi-
mental results which conform to the theoretical predictions for a reduced number of rounds at the end
of this section.

We have used the statistical model of [BN17] to compute the achievable advantage depending on the
amount of data when the 22 and 23-round distinguishers are used to mount attacks on 26 and 27-
round PRESENT, as well as comparing it to other previously known attacks. The results can be
found on figure 4. For all the attacks, the probability of success has been fixed to 0.95, while a distinct
known plaintext scenario is supposed (in other words, N is the number of strictly different available
plaintexts). In both cases, our new linear distinguisher can either permit a lower data complexity or
a larger advantage when using the same data when compared to previous attacks.

4.3 Attacks on 26 and 27-round PRESENT-80 23

Figure 4: Comparison of the expected advantage (with 0.95 probability) of some known linear attack-
sattacks on 26 and 27-round PRESENT for a given amount of data (in a DKP scenario).

4.3 Attacks on 26 and 27-round PRESENT-80

We will now proceed to use the linear distinguisher from the previous subsection to construct linear
attacks on 26 and 27-round PRESENT-80. This is done by utilising Matsui’s Algorithm 2 on the first
two and the last two rounds of the cipher.

We begin by studying the first and last two rounds of PRESENT.

Proposition 4.1. (Key recovery on the first two rounds) Let x̂ be the state at the beginning of the
second round of PRESENT. Given two fixed values of i, j between 0 and 3, the value of the four bits
x̂48+4i+j , x̂32+4i+j , x̂16+4i+j , x̂4i+j can be obtained from the 16 bits of the plaintext x16j+15 . . . x16j, as
well as the 16 bits of the first round subkey κ016j+15 . . . κ

0
16j and the 4 bits of the second round subkey

κ116i+4j+3κ
1
16i+4j+2κ

1
16i+4j+1κ

1
16i+4j.

In particular, for a fixed j the 16 bits of the state x̂60+j , x̂56+j , . . . , x̂4+j , x̂j can be obtained from the
16 bits of the plaintext x16j+15 . . . x16j, the 16 bits of the first round subkey κ016j+15 . . . κ

0
16j, and the

16 bits of the second round subkey

κ148+4j+3 . . . κ
1
48+4j , κ

1
32+4j+3 . . . κ

1
32+4j , κ

1
16+4j+3 . . . κ

1
16+4j , κ

1
4j+3κ

1
4j+2κ

1
4j+1κ

1
4j

Proof. The reader is invited to convince themselves by looking at figure 5. We can also prove this
formally by noting that the inverse permutation P−1 is of the form

P−1(j) = 4j mod 63 if j 6= 63, P−1(63) = 63

This means that x̂16l+4i+j is equal to the bit of position P−1(16l+ 4i+ j) = 64l+ 16i+ 4j mod 63 =
16i+ 4j + l before the second application of pLayer. If we then undo sBoxLayer, we find that we need
bits κ116i+4j+3 . . . κ

1
16i+4j of the second round subkey K1. If we continue by undoing the first round, we

find that we need bits P−1(16i+4j+3) = 16j+12+i, P−1(16i+4j+2) = 16j+8+i, P−1(16i+4j+1) =
16j + 4 + i, P−1(16i + 4j) = 16j + i of the state before the first application of pLayer. Finally, by
undoing the first sBoxLayer, we find that we require bits x16j+15 . . . x16j of the plaintext x and bits
κ16j+15 . . . κ16j of the first round subkey K0.

Proposition 4.2. (Key recovery on the last two rounds) Let ŷ be the state after the application
of addRoundKey in the second to last round of PRESENT. Given two fixed values of i, j between
0 and 3, the value of all the four bits ŷ16i+4j+3, ŷ16i+4j+2, ŷ16i+4j+1, ŷ16i+4j can be obtained from

24 4 APPLICATION TO THE BLOCK CIPHER PRESENT

K0
xxx

S S S S S S S S S S S S S S S S

K1
S S S SS S S SS S S SS S S S

x̂̂x̂xK2

ŷ̂ŷyKr−2
S S S S S S S S S S S S S S S S

Kr−1
S S S SS S S SS S S SS S S S

yyyKr

Figure 5: The four groups of bits for the key recovery on last two rounds.

the 16 bits of the ciphertext y60+i, y56+i, . . . , y4+i, yi, as well as the 16 bits of the last round subkey
κr60+i, κ

r
56+i, . . . , κ

r
4+i, κ

r
i and 4 bits of the second-to-last round subkey κr−148+4i+jκ

r−1
32+4i+jκ

r−1
16+4i+jκ

r−1
4i+j.

In particular, for a fixed i the 16 bits of the state ŷ16i+15 . . . ŷ16i can be obtained from the 16 bits of
the ciphertext y60+i . . . y4+i, yi, the 16 bits of the last round subkey κr60+i . . . κ

r
4+i, κ

r
i , and the 16 bits

of the second-to-last round subkey

κr−148+4i+3 . . . κ
r−1
48+4i, κ

r−1
32+4i+3 . . . κ

r−1
32+4i, κ

r−1
16+4i+3 . . . κ

r−1
16+4i, κ

r−1
4i+3κ

r−1
4i+2κ

r−1
4i+1κ

1
4i

Proof. The proof is analogous to that of the previous result. Figure 5 also illustrates this.

With these observations and the bottom-up strategy from the previous section, we can describe an
attack on 26-round PRESENT which uses the 22-round one-bit linear distinguisher between the third
and the 24th rounds. If x̂ denotes the state after the second round and ŷ denotes the state before the
25th round, in order to evaluate the experimental correlation for all the approximations it is necessary
to compute

x̂58, x̂57, x̂54, x̂53, x̂42, x̂41, x̂38, x̂37, x̂26, x̂25, x̂22, x̂21

∈ {x̂16r+4·2+2, x̂16r+4·2+1, x̂16r+4·1+2, x̂16r+4·1+1, r = 0, . . . , 3}
(4.2)

ŷ63, ŷ62, ŷ61, ŷ55, ŷ54, ŷ53, ŷ31, ŷ30, ŷ29, ŷ23, ŷ22, ŷ21

∈ {ŷ16·3+4·3+s, ŷ16·3+4·1+s, ŷ16·1+4·3+s, ŷ16·1+4·1+s, s = 0, . . . , 3}
(4.3)

For any individual one-bit to one-bit approximation, because of the previous results, we need to guess
16 bits of K0, 4 bits of K1, 4 bits of K25 and 16 bits of K26. That means that for all approximations
|ki0|= |ki3|= 16 and |ki1|= |ki2|= 4. We also know that the total number of subkey bits which require
guessing (without taking the key schedule into account) in the key recovery is |k0|= |k3|= 32 and
|k1|= |k2|= 16.

We will now consider the set of approximations as a whole in order to compute l1 (the number of
different plaintext-ciphertext masks) and l2 (the number of different sets of subkey bits). Since all the
input mask bits are of the form x̂4r+1 or x̂4r+2, there are two groups of bits of the plaintext which
are relevant (x31 . . . x16 and x47 . . . x32). Analogously, since all the output bits are of the form ŷ16+s
or ŷ48+s, we conclude that only the groups of ciphertext bits y61, . . . , y5, y1 and y63, . . . , y7, y3 are
necessary. This means that l1 ≤ 2 · 2 = 4. A look at the approximations confirms that indeed l1 = 4.
In a similar manner, we can show that l2 = 4 · 4 = 16.

We also need to compute the number of master key bits which are actually involved in the key recovery,
|kT |. In order to do this, we must consider the key schedule in detail. We found that guessing the

4.3 Attacks on 26 and 27-round PRESENT-80 25

K26

pLayer

S S S S S S S S S S S S S S S S

K25

pLayer

S S S S S S S S S S S S S S S S

22 rounds

pLayer

S S S S S S S S S S S S S S S S

K1

pLayer

S S S S S S S S S S S S S S S S

K0

Figure 6: Our attack on 26-round PRESENT using 128 approximations with the analysis of the key
schedule. In total there are 96 bits of the subkeys which need to be guessed, which have been indicated
by a cross in the figure. However, they can all be deduced from the |kT |= 61 bits of key which have
been highlighted in (dark) red. From these bits of key, all the bits in (light) green can be deduced,
which includes all the necessary bits for the attack. The 16 bits to the right represent the fraction of
the key register which is not used for the current round subkey.

32 necessary bits of K0 and 8 bits of K1 already allows us to deduce 6 necessary bits of K25 and 16
necessary bits of K26. Furthermore, by guessing two additional bits of K0 and three additional bits
of K1, it is possible to compute 10 additional bits of K25 and K26. This means that there are only 6
bits of K25 and 10 bits of K26 which need to be guessed separately. This makes for a total of |kT |= 61
total information bits of the master key. The reader can study these considerations in further detail
by looking at figure 6.

Finally, we must compare ρM and ρA to ρE . We can find a lower bound for ρE by noticing that in
a PRESENT encryption 64 bit additions are required for the addition of each round subkey, while at
least 64 bit operations are required for the application of sBoxLayer (at the very least, every bit of the
new state must be computed). This means that we can assume that ρE ≥ 64 · (27 + 26) = 3392. On
the other hand, we only expect to multipl and add integers of up to 64 bits. This means that ρA ' 64
and ρM ' 3 · 641.58 ' 2142 (using Karatsuba’s algorithm). We conclude that the complexity of the
attack (in 26-round encryptions) is N + 265 + 280−a.

The fact that the time complexity of the analysis phase is “only” 265 (when compared to the 80 bits of
key) allows for a trade-off between the data complexity and the time complexity of the linear attack.
As an extreme example, we can consider an attack with N = 261.9 (distinct) data complexity. This
provides an advantage of 17 bits with probability 0.95, so that the search phase has a significantly
smaller time complexity than the analysis phase and the whole time complexity of the attack is thus
265. On the other hand, a smaller (distinct) data complexity of N = 260.8 provides an advantage of
8 bits, thus increasing the time complexity to 272 full round encryptions. The attack requires storing
244 integers in memory.

In a similar fashion, we can design an attack on 27 rounds by using the same approximations between
rounds 3 and 25. All the parameters for the key recovery algorithm are the same as on the 26-round
attack, except for |kT |, which in this case is 68 (see figure 7 for details). This means that an attack can
be mounted with time complexity 272+280−a. Since the time complexity of the analysis phase is larger
in this attack because of the larger value of |kT |, it is not possible to obtain better time complexities
by incrementing the amount of data. When N = 263.4 distinct known plaintexts are available, the
advantage is 8 bits with probability 0.95, and the overall time complexity of the attack is 272 full round

26 4 APPLICATION TO THE BLOCK CIPHER PRESENT

K27

pLayer

S S S S S S S S S S S S S S S S

K26

pLayer

S S S S S S S S S S S S S S S S

23 rounds

pLayer

S S S S S S S S S S S S S S S S

K1

pLayer

S S S S S S S S S S S S S S S S

K0

Figure 7: Our attack on 27-round PRESENT using 128 approximations and taking account of the
key schedule. All the necessary subkey bits can be deduced from the |kT |= 68 bits which have been
highlighted in (dark) red.

encryptions. The memory requirement to perform this attack is again 244 memory positions.

These attacks can be extended to the 128-bit key variant, since there is no need to exploit the key
schedule because |k0|+|k1|+|k2|+|k3|= 96 < 128. The data complexities and the time complexities of
the distillation and analysis phases of these attacks are the same, while the cost of the search phase
increases with the key size.

4.4 The 2-bit linear distinguisher for up to 24 rounds

The capacity of our linear distinguisher using only approximations with masks of Hamming weight one
diminishes as the number of rounds increases, so that the achievable advantage becomes too small when
the number of rounds reaches 24 for the internal cipher (that is, when we attempt to attack 28-round
PRESENT with the key recovery algorithm from the previous subsection). We will now construct a
linear distinguisher for 24 rounds which uses approximations with masks of Hamming weight 1 or 2:
this leads to a larger capacity because of the larger amount of available approximations, but it also
means that the key recovery becomes more computationally expensive, so that the resulting attack
will only compare favorably with a brute-force attack in the case of PRESENT-128.

In order to construct the new distinguisher, we start by looking for highly biased approximations
over a larger search space than before. In particular, we considered approximations with up to two
active S-boxes in their first and last rounds, and with input and output masks so that prolonging the
approximation for an additional round at the beginning or the end would only require two additional
active S-boxes (this is in fact equivalent to imposing that the mask for each of the active S-boxes in
either the input or the output rounds has Hamming weight 1 or 2). Approximations with two active
S-boxes in the first and last round but with a larger amount of active S-boxes when they are extended
lead to a too expensive key recovery, so it makes sense to ignore them.

There are 2800 input masks and 2800 output masks which verify this property. A correlation matrix
was constructed for one round of PRESENT, and by elevating the element-wise square of this matrix
to the 24th power we obtained estimations of the ELPs of all the approximations with these input
and output masks for up to 24 rounds. The results showed that no candidate approximations with
two active S-boxes in either the first or the last round exhibit large biases (at least when compared
to approximations where the first and last round only have one active S-box). We decided to classify
the best approximations according to the active S-box in the first and the last round, as well as the
input/output mask of that S-box (note that the final output mask is obtained after applying pLayer

4.5 Attack on 28-round PRESENT-128 27

Group
Input
mask

Input
S-box

Output
mask

Output
S-box

Qty.
Quantity (in
distinguisher)

ELP (24)

A A 5,6,9,10 2,8,3,9 5,7,13,15 64 64 2−65.1

B C 5,6,9,10 2,8,3,9 5,7,13,15 64 64 2−65.6

C1 A 5,6,9,10 2,8,3,9 6,9,11,14 64 32
2−65.8C2 A 5,6,9,10 4,5 5,7,13,15 32 -

C3 A 7,11,13,14 2,8,3,9 5,7,13,15 64 64

D 2,4,3,5 5,6,9,10 2,8,3,9 5,7,13,15 256 128 2−66.0

E1 C 5,6,9,10 2,8,3,9 6,9,11,14 64 32
2−66.3E2 C 5,6,9,10 4,5 5,7,13,15 32 -

E3 C 7,11,13,14 2,8,3,9 5,7,13,15 64 64

F1 A 5,6,9,10 2,8,3,9 10 16 -

2−66.5

F2 A 5,6,9,10 4,5 6,9,11,14 32 -
F3 A 5,6,9,10 6,C 5,7,13,15 32 -
F4 A 7,11,13,14 2,8,3,9 6,9,11,14 64 -
F5 A 7,11,13,14 4,5 5,7,13,15 32 -
F6 A 15 2,8,3,9 5,7,13,15 16 -

G1 2,4,3,5 5,6,9,10 2,8,3,9 6,9,11,14 256 -

2−66.7G2 2,4,3,5 5,6,9,10 4,5 5,7,13,15 128 -
G3 8,9 5,6,9,10 2,8,3,9 5,7,13,15 64 -
G4 2,4,3,5 7,11,13,14 2,8,3,9 5,7,13,15 256 -

Table 3: Linear approximations for 24 rounds of PRESENT with input and output masks of Hamming
weight 1 or 2 and an ELP larger than 2−67. Note that the approximations from the one-bit distinguisher
are all in groups D,G1 and G4. The approximations which have been chosen for the two-bit linear
distinguisher are highlighted in a bold typeface.

on the mask of the S-box). The results are condensed in table 3. From these candidates, we have
selected 448 approximations which lead to a total capacity of 2−56.98, and have been indicated on the
table. As before, the choice of the approximations obeys both their ELP and their suitability for a
reasonably expensive key recovery.

Once again, these approximations are not linearly independent, and we will justify our predictions
about the advantage by providing experimental results. As before, we have estimated the advantage
that would be provided by these approximations by using the model of [BN17]. If the attacker has
access to the full codebook (that is, N = 264 distinct known plaintext-ciphertext pairs), then the
advantage will be of 6 bits or more with probability 0.95.

4.5 Attack on 28-round PRESENT-128

The linear distinguisher from the previous subsection will now be used to construct a multiple linear
attack on 28-round PRESENT-128, which to the best of our knowledge is the first to reach this number
of rounds. We begin by slightly updating proposition 5 to account for the mask on the S-box of the
last round instead of the output mask:

Proposition 4.3. (Key recovery on the last two rounds, revisited) Let ỹ be the state after the appli-
cation of sBoxLayer in the (r− 2)-th round of PRESENT. Given two fixed values of i, j between 0 and
3, the value of all the four bits

ỹ16j+12+i⊕κr−2P (16j+12+i), ỹ16j+8+i⊕κr−2P (16j+8+i), ỹ16j+4+i⊕κr−2P (16j+4+i), ỹ16j+i⊕κ
r−2
P (16j+i) (4.4)

can be obtained from the 16 bits of the ciphertext y60+i, y56+i, . . . , y4+i, yi, as well as the 16 bits
of the last round subkey κr60+i, κ

r
56+i, . . . , κ

r
4+i, κ

r
i and the 4 bits of the second-to-last round subkey

κr−148+4i+jκ
r−1
32+4i+jκ

r−1
16+4i+jκ

r−1
4i+j.

28 4 APPLICATION TO THE BLOCK CIPHER PRESENT

K28

pLayer

S S S S S S S S S S S S S S S S

K27

pLayer

S S S S S S S S S S S S S S S S

24 rounds

pLayer

S S S S S S S S S S S S S S S S

K1

pLayer

S S S S S S S S S S S S S S S S

K0

Figure 8: Our attack on 28-round PRESENT-128. In total there are 156 bits of the subkeys which
need to be guessed, which have been indicated by a cross. However, if the |kT |= 114 bits of key which
have been highlighted in (dark) red are known, then all the bits in (light) green can be deduced, which
include all the necessary bits for the attack. The 64 bits to the right represent the half of the key
register which is not used for the current round subkey.

We can mount an attack using the bottom-up algorithm from the previous section, we just need to
compute the parameters using the previous result as well as proposition 4.1. Since there are 4 different
possibilities for the input mask in the active S-box for the first round and 4 possibilities for the output
mask of the active S-box of the last round, we conclude that l2 = 4 · 4 = 16. With a similar argument
but also taking the choice of the active S-box into account, we deduce that l1 = 12 · 8 = 96. It can
also be shown that |ki0|≤ 32, |ki1|≤ 8, |ki2|≤ 8 and |ki3|≤ 32 for all approximations, and |k0|= 48, |k1|=
36, |k2|= 36, |k3|= 48. Figure 8 illustrates how |kT |= 114. As discussed in the previous subsection, the
advantage of the linear distinguisher is at least 6 bits with probability 0.95 when the full codebook
of N = 264 plaintext-ciphertext pairs is available. The time complexity of the attack in number of
28-round PRESENT encryptions is thus bounded (with probability 0.95) by 2122 full encryptions. The
attack requires 448 · 280 = 289 memory positions, which is the bottleneck of the attack as it is, and
more than is required to just store the 264 plaintext-ciphertext pairs. We will try to reduce the memory
requirements of this attack in the future.

4.6 Experimental verification

As was previously stated, our analysis of the achievable advantage of these attacks made some as-
sumptions which do not completely hold. Apart from the linear dependence of the approximations
conforming the linear distinguisher, there are other possible sources of problems: such as PRESENT
not being a long-key cipher (which means that the ELP might not correspond to the real correlation
of the approximations) and the fact that the wrong-key randomisation hypothesis doesn’t hold for all
approximations and all wrong keys (as not all bits of key influence the value of all approximations). For
this reason it is necessary to provide some additional justification that these theoretical simplifications
of the analysis still lead to reasonably accurate predictions.

Since it’s practically impossible to simulate our attacks because of the high time complexity, we
performed computer simulations of the same attacks on 10 rounds of PRESENT instead of 26/27/28,
using the linear distinguishers between rounds 3 and 8. These distinguishers have a much higher
capacity than those over a larger number of rounds, which means that a manageable number of
plaintext-ciphertext pairs needs to be generated. Since it is also unfeasible to perform the full key
recovery algorithm on a real computer, we decided to estimate the advantage instead by comparing
the right key against a large number of random wrong keys. More specifically, for each randomly chosen

4.6 Experimental verification 29

Figure 9: The results of our experiments testing the 1-bit and 2-bit distinguishers on 10-round
PRESENT. The correlation for the right key was compared with 212 other random keys, thus ob-
taining an estimation of the advantage for up to 12 bits. The experiment was repeated with 20
different master keys and 20 data samples for each key and value of N .

key and each randomly drawn sample of plaintexts, the right-key χ2 statistic was computed. Then, 212

random keys were drawn, and these keys were used to perform partial encryption and decryption of
the first and last two rounds, in order to create a sample of 212 wrong-key χ2 statistics. The position
of the right-key statistic among these provides an estimation of the advantage of up to 12 bits. This
process was repeated for 20 different random right keys and 20 different random data samples, which
provides a sample of 400 values of the advantage for a given value of N . The 5th percentile of these
was used as an estimation of the advantage that’s achieved with probability 0.95.

Figure 9 compares the observed results to the theoretical predictions for these attacks. Given the
proximity of these results, we are confident that our predictions for attacks on a larger number of
rounds will also be accurate, especially in the case of the 1-bit distinguisher for the attacks on 26 and
27 rounds.

30 5 CONCLUSION

5 Conclusion

Our analysis of the FFT/FWHT technique for linear cryptanalysis which was introduced in [CSQ07]
has shown that the acceleration applies to most Algorithm 2 attacks over any number of rounds of
key recovery. This algorithm also introduces a new distillation phase algorithm which extends the
ideas of [NWW11] and allows the reuse of the distilled data in multiple and multidimensional linear
cryptanalysis. We have also commenced the study of the compatibility of these accelerated attacks
with the exploitation of the key schedule of the cipher. In particular, we have found that this can
lead to effective results in the case of some multiple (but not multidimensional) attacks. However, we
believe that there are many possible improvements on this area.

We have been able to showcase the real use of these theoretical developments by designing new attacks
on reduced-round variants of PRESENT, which surpass any previously known attacks in terms of data
and time complexity, and we have provided the first (bar biclique cryptanalysis) shortcut attack on
28-round PRESENT, albeit only for the 128-bit key variant, and with a high memory requirement.
We hope to refine this attack in the future to make it compatible with the 80-bit variant, as well as
reducing the memory requirement. Table 4 compares our attacks on PRESENT with other attacks
found in the literature.

Our hope is that further developments in the algorithmic theory of linear cryptanalysis can make it
more comparable with differential cryptanalysis, in the sense that some differential attacks showcase
very intricate key recovery algorithms, which is fairly uncommon in linear attacks. We also believe
that some block ciphers intended for lightweight cryptography with limited diffusion properties and
simple key schedules might find their security eroded because of the possibility of linear attacks using
multiple approximations: during this internship, I found a linear attack on the full-round primitive
of the NIST Lightweight candidate TRIFLE ([TRF19])1, which did not pass to the second round of
the contest. Our intention is to publish a refined version of this attack with smaller data and time
complexity in the near future.

Rounds Appr. Capacity Data
Time

(κ = 80)
Time

(κ = 128)
Memory PSPSPS Source

26

2995† 2−55.58 263.8 270 2118 234 0.95 [Ch10]
135 2−55.47 262 272 2120 248 0.95 [BTV18]
128 2−54.81 261.9 265 2113 244 0.95 This
128 2−54.81 260.8 272 2120 244 0.95 This

27
405† 2−55.33 263.8‡ 277 2125 270 0.95 [ZZ15]
135 2−58.06 263.8 277.5 2125.5 248 0.95 [BTV18]
128 2−56.71 263.4 272 2120 244 0.95 This

28 448 2−56.98 264 - 2122 289 0.95 This

†: Multidimensional linear cryptanalysis is used.

‡: Only one fourth of the known plaintexts is effectively used for each key guess.

Table 4: Comparison of linear attacks on PRESENT. All the time complexities have been evaluated
using the same model assuming in a distinct known plaintext scenario.

1 Our attack can be found on https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/ as an
official comment on the TRIFLE candidate or through this link.

https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/official-comments/TRIFLE-official-comment.pdf

31

6 References

[AABL12] Abdelraheem M.A., Ågren M., Beelen P., Leander G. (2012) On the Distribution of Lin-
ear Biases: Three Instructive Examples. In: Advances in Cryptology – CRYPTO 2012.
CRYPTO 2012. Lecture Notes in Computer Science, vol 7417, pp 50-67. Springer.

[AM05] Åhlander K., Munthe-Kaas H. (2005) Applications of the Generalized Fourier Transform on
Numerical Linear Algebra. In: Bit Numerical Mathematics, vol 45, pp 819-850. Springer.

[AR16] Ashur T., Rijmen V. (2016) On Linear Hulls and Trails. In: Progress in Cryptology -
INDOCRYPT 2016. INDOCRYPT 2016. Lecture Notes in Computer Science, vol 10095,
pp 269-286. Springer.

[GFT17] Banik S., Pandey S.K., Peyrin T, Sasaki Y., Sim S.M., Todo Y. (2017) GIFT: A Small
Present - Towards Reaching the Limit of Lightweight Encryption. In: Cryptographic Hard-
ware and Embedded Systems – CHES 2017. CHES 2017. Lecture Notes in Computer Sci-
ence, vol 10529, pp 321-345. Springer.

[BCQ04] Biryukov A., De Cannière C., Quisquater M. (2004) On Multiple Linear Approximations.
In: Advances in Cryptology – CRYPTO 2004. CRYPTO 2004. Lecture Notes in Computer
Science, vol 3152, pp 1-22. Springer.

[BN15] Blondeau C., Nyberg K. (2015) Joint Data and Key Distribution of the Linear Cryptanalysis
Test Statistic and its Impact to Data Complexity Estimates of Multiple/Multidimensional
Linear and Truncated Differential Attacks. In: IACR Cryptology ePrint Archive 2015, 935.
International Association for Cryptologic Research.

[BN17] Blondeau C., Nyberg K. (2017) Improved Parameter Estimates for Correlation and Capacity
Deviates in Linear Cryptanalysis. In: IACR Transactions on Symmetric Cryptology, 2016
(2), pp 162-191. International Association for Cryptologic Research.

[PRS07] Bogdanov A., Knudsen L.R., Leander G., Paar C., Poschmann A., Robshaw M.J.B., Seurin
Y., Vikkelsoe C. (2007) PRESENT: An Ultra-Lightweight Block Cipher. In: Cryptographic
Hardware and Embedded Systems - CHES 2007. CHES 2007. Lecture Notes in Computer
Science, vol 4727, pp 450-466. Springer.

[BW12] Bogdanov A., Wang M. (2012) Zero Correlation Linear Cryptanalysis with Reduced Data
Complexity. In: Fast Software Encryption. FSE 2012. Lecture Notes in Computer Science,
vol 7549, pp 29-48. Springer.

[BGW14] Bogdanov A., Geng H., Wang M., Wen L., Collard B. (2014) Zero-Correlation Linear
Cryptanalysis with FFT and Improved Attacks on ISO Standards Camellia and CLEFIA.
In: Selected Areas in Cryptography - SAC 2013. SAC 2013. Lecture Notes on Computer
Science, vol 8282, pp 306-323. Springer, Berlin, Heidelberg.

[BTV18] Bogdanov A., Tischhauser E., Vejre P. (2018) Multivariate Profiling of Hulls for Linear
Cryptanalysis. In: IACR Transactions on Symmetric Cryptology, 2018 (1), pp 101-125.
International Association for Cryptologic Research.

[Ca10] Carlet C. (2010) Vectorial Boolean Functions for Cryptography. In: Boolean Models and
Methods in Mathematics, Computer Science, and Engineering (Encyclopedia of Mathemat-
ics and its Applications), pp. 398-470. Cambridge University Press.

[Ch10] Cho J.Y. (2010) Linear Cryptanalysis of Reduced-Round PRESENT. In: Topics in Cryp-
tology - CT-RSA 2010. CT-RSA 2010. Lecture Notes in Computer Science, vol 5985, pp
302-317. Springer.

[CT65] Cooley J.W., Tukey, J.W. (1965) An Algorithm for the Machine Calculation of Complex
Fourier Series. In: Mathematics of Computation, vol 19, pp 297-301. American Mathemat-
ical Society.

32 6 REFERENCES

[CJM02] Chose P., Joux A., Mitton M. (2002) Fast Correlation Attacks: An Algorithmic Point of
View. In: Advances in Cryptology — EUROCRYPT 2002. EUROCRYPT 2002. Lecture
Notes in Computer Science, vol 2332, pp 209-221. Springer.

[CSQ07] Collard B., Standaert F.X., Quisquater JJ. (2007) Improving the Time Complexity of Mat-
sui’s Linear Cryptanalysis. In: Information Security and Cryptology - ICISC 2007. ICISC
2007. Lecture Notes in Computer Science, vol 4817, pp 77-88. Springer.

[CS09] Collard B., Standaert F.X. (2009) A Statistical Saturation Attack against the Block Cipher
PRESENT. In: Topics in Cryptology – CT-RSA 2009. CT-RSA 2009. Lecture Notes in
Computer Science, vol 5473, pp 195-210. Springer.

[AES02] Daemen J., Rijmen V. (2002) The Design of Rijndael. Springer.

[DR07] Daemen J., Rijmen V. (2007) Probability distributions of correlation and differentials in
block ciphers. In: Journal of Mathematical Cryptology, vol 1, issue 3, pp 221-242. De
Gruyter.

[TRF19] Datta N., Ghoshal A., Mukhopadhyay D., Patranabis S., Picek S., Sadhukhan R. (2019)
TRIFLE. Submission to the NIST Lightweight Cryptography Competition.

[HCN08] Hermelin M., Cho J.Y., Nyberg K. (2008) Multidimensional Linear Cryptanalysis of Re-
duced Round Serpent. In: Information Security and Privacy. ACISP 2008. Lecture Notes in
Computer Science, vol 5107, pp 203-215. Springer.

[HCN09] Hermelin M., Cho J.Y., Nyberg K. (2009) Multidimensional Extension of Matsui’s Algo-
rithm 2. In: Fast Software Encryption. FSE 2009. Lecture Notes in Computer Science, vol
5665, pp 209-227. Springer.

[HCN19] Hermelin M., Cho J.Y., Nyberg K. (2019) Multidimensional Linear Cryptanalysis. In: Jour-
nal of Cryptology, vol 32, pp 1-34. Springer.

[HW04] Hu Z., Wan H. (2004) A novel generic Fast Fourier Transform pruning technique and
complexity analysis. In: IEEE Transactions on Signal Processing, vol 53, issue 1, pp 274-
282. Institute of Electrical and Electronics Engineers.

[JSD01] Jankovic D., Stankovic R.S., Drechsler R. (2001) Decision Diagram Method for Calculation
of Pruned Walsh Transform. In: IEEE Transactions on Computers, vol 50, issue 2, pp
147-157. Institute of Electrical and Electronics Engineers.

[KR94] Kaliski B.S., Robshaw M.J.B. (1994) Linear Cryptanalysis Using Multiple Approximations.
In: Advances in Cryptology — CRYPTO 1994. CRYPTO 1994. Lecture Notes in Computer
Science, vol 839, pp 26-39. Springer.

[KLLN15] Kaplan M., Laurent G., Leverrier A., Naya-Plasencia M. (2015) Quantum differential and
linear cryptanalysis. In: IACR Transactions on Symmetric Cryptology 2016 (1), pp 71-94.
International Association for Cryptologic Research.

[MaY93] Matsui M., Yamagishi A. (1993) A New Method for Known Plaintext Attack of FEAL
Cipher. In: Advances in Cryptology — EUROCRYPT 1992. EUROCRYPT 1992. Lecture
Notes in Computer Science, vol 658, pp 81-91. Springer.

[Ma94a] Matsui M. (1994) Linear Cryptanalysis Method for DES Cipher. In: Advances in Cryptology
- EUROCRYPT 1993. EUROCRYPT 1993. Lecture Notes in Computer Science, vol 765,
pp 386-397. Springer.

[Ma94b] Matsui M. (1994) The First Experimental Cryptanalysis of the Data Encryption Standard.
In: Advances in Cryptology — CRYPTO 1994. CRYPTO 1994. Lecture Notes in Computer
Science, vol 839, pp 1-11. Springer.

[Ma95] Matsui M. (1995) On Correlation between the Order of S-boxes and the Strength of DES.
In: Advances in Cryptology — EUROCRYPT 1994. EUROCRYPT 1994. Lecture Notes in
Computer Science, vol 950, pp 366-375. Springer.

33

[NWW11] Nguyen P.H., Wu H., Wang H. (2011) Improving the Algorithm 2 in Multidimensional
Linear Cryptanalysis. In: Information Security and Privacy. ACISP 2011. Lecture Notes in
Computer Science, vol 6812, pp 61-74. Springer.

[Ny95] Nyberg K. (1995) Linear Approximation of Block Ciphers. In: Advances in Cryptology —
EUROCRYPT 1994. EUROCRYPT 1994. Lecture Notes in Computer Science, vol 950, pp
439-444. Springer.

[Ny18] Nyberg K. (2018) Statistical and Linear Independence of Binary Random Variables. In:
IACR Cryptology ePrint Archive 2017, 432. International Association for Cryptologic Re-
search.

[NSZ09] Nakahara J., Sepehrdad P., Zhang B., Wang M. (2009) Linear (Hull) and Algebraic Crypt-
analysis of the Block Cipher PRESENT. In: Cryptology and Network Security. CANS 2009.
Lecture Notes in Computer Science, vol 5888, pp 58-75. Springer.

[Oh09] Ohkuma K. (2009) Weak Keys of Reduced-Round PRESENT for Linear Cryptanalysis. In:
Selected Areas in Cryptography. SAC 2009. Lecture Notes in Computer Science, vol 5867,
pp 249-265. Springer.

[Le11] Leander G. (2011) On Linear Hulls, Statistical Saturation Attacks, PRESENT and a Crypt-
analysis of PUFFIN. In: Advances in Cryptology – EUROCRYPT 2011. EUROCRYPT
2011. Lecture Notes in Computer Science, vol 6632, pp 303-322. Springer.

[Se08] Selçuk A.A. (2008) On Probability of Success in Linear and Differential Cryptanalysis. In:
Journal of Cryptology, vol 21, pp 131-147. Springer.

[ZZ15] Zheng L., Zhang S. (2015) FFT-based Multidimensional Linear Attack on PRESENT using
the 2-bit-Fixed Characteristic. In: Security and Communication Networks, vol 8, pp 3535-
3545. John Wiley and Sons.

34 A MATHEMATICAL BACKGROUND AND NOTATION

A Mathematical background and notation

The purpose of this appendix is to provide an overview of some mathematical concepts which are used
in the report, as well as establishing some notations, some of which are non-standard.

Binary vector spaces. We will begin by describing some properties of boolean vector spaces.

Definition A.1. Let Fn2 be the vector space of dimension n over the finite field F2 = {0, 1}.
There is an identification between the elements of this vector space and the natural numbers between 0
and 2n − 1, which takes the form of the following bijective map:

Fn2 ←→ {0, . . . , 2n − 1}
(xn−1, . . . , x0) 7 −→ xn−1 · 2n−1 + . . .+ x1 · 2 + x0

(A.1)

These two descriptions of Fn2 are used without distinction in this report. We will always consider that
the rightmost bit of a binary vector is the least significant one. Additionally, sometimes binary vectors
will be represented without parentheses as is common in Computer Science literature. All real vectors
and matrices in this report are considered with coordinates starting at 0 (instead of the usual 1).

We can define several operations on and between elements of Fn2 :

Definition A.2. Given x ∈ Fn2 , its Hamming Weight HW (x) is its number of non-zero coordinates.

Given a binary vector x of any length, we will denote its length by |x|, that is, |x|= n if x ∈ Fn2 .

We say that two vectors x, y ∈ Fn2 are disjoint if they don’t share any non-zero coordinates.

Given x, y ∈ Fn2 , then x⊕y ∈ Fn2 denotes the addition of x and y as vectors over F2. We use the symbol
⊕ instead of + to distinguish this operation from addition modulo 2n when describing the elements of
Fn2 as integers, as well as to keep consistency with the previous literature on linear cryptanalysis.

Given x, y ∈ Fn2 , then x ·y ∈ F2 denotes the inner product of both vectors (which should not be confused
with their product as integers), that is:

x · y =< x, y >= xn−1 · yn−1 ⊕ . . .⊕ x0 · y0 ∈ F2 (A.2)

Given x ∈ Fn2 , y ∈ Fm2 , we can construct the concatenation

(x‖y) = (xn−1, . . . , x0, ym−1, . . . , y0) ∈ Fn+m2 (A.3)

Two maps f : Fn2 −→ Fs2, g : Fm2 −→ Fs2 can also be concatenated:

(f‖g) : Fn+m2 −→ Fr+s2

(x‖y) 7 −→ (f(x)‖f(y))
(A.4)

Given x, y ∈ Fn2 , we define the restricted vector x|y∈ FHW (y)
2 as the vector of the components of x

corresponding to the non-zero coordinates of y (this is not a standard notation).

The following is a useful result about the inner product:

Proposition A.3. For any x ∈ Fn2 , the following equality holds:∑
y∈Fn2

(−1)y·x =

{
0 if x 6= 000
2n if x = 000

(A.5)

Proof. The equality is clear when x = 000, since (−1)0 = 1. In the case x 6= 000, the equality y · x = 0
is a non-trivial linear equation over Fn2 which is satisfied by the elements of a hyperplane, which has
dimension n− 1 and therefore has 2n−1 elements. The sum is thus 2n−1 · (−1)0 + 2n−1 · (−1)1 = 0.

35

Definition A.4. A boolean function is any map f : Fn2 7 −→ F2.

The correspondence between elements of Fn2 and numbers between 0 and 2n−1 induces a correspondence
between the space of boolean functions over Fn2 and the vector space F2n

2 , as a boolean function can be
seen as a vector whose components are the images of each element of Fn2 .

This identification is compatible with the notion of the addition of maps, in the sense that the addition
of two boolean functions corresponds to the addition of their representation as vectors. Additionally,
the product of two maps is the same as the element-wise product of their vectorial representations.

The following definition mimics the definitions of bias and correlation in linear cryptanalysis, so that
the bias of a linear approximation ν is just the bias of the boolean function f(x) = α · x⊕ β · E(x).

Definition A.5. The Hamming Weight of a boolean function f is

HW (f) = # {x ∈ Fn2 : f(x) = 1} (A.6)

The bias of f is

ε(f) =
1

2n
(
{x ∈ Fn2 : f(x) = 0} − 2n−1

)
(A.7)

We also define the correlation of f as

c(f) =
1

2n
(# {x ∈ Fn2 : f(x) = 0} −# {x ∈ Fn2 : f(x) = 1}) (A.8)

If X is a uniformly distributed random vector over Fn2 (or, equivalently, a uniformly distributed random
variable over {0, . . . , 2n − 1}), then Y = f(X) is a random variable in F2, and we have the following
alternative definitions of bias and correlation:

ε(f(X)) = PrX (f(X) = 0)− 1

2
(A.9)

c(f(X)) = PrX (f(X) = 0)− PrX (f(X) = 1) (A.10)

These magnitudes are all related by

Proposition A.6. Let f : Fn2 −→ F2 be a boolean function. Then

c(f) = 2ε(f) =
1

2
− 1

2n
HW (f) (A.11)

Proof. It suffices to look at the definitions and note that

{x ∈ Fn2 : f(x) = 1} = 2n −# {x ∈ Fn2 : f(x) = 0}

The relationship follows from this equality.

The Fast Walsh-Hadamard Transform. We will now describe the Walsh-Hadamard Transform
and its efficient computation algorithm.

Definition A.7. We define the family of matrices

H1 = (1), H2 =

(
1 1
1 −1

)
, H4 = H2 ⊗H2 =

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 ,

H2m = H2 ⊗H2m−1 =

(
H2m−1 H2m−1

H2m−1 −H2m−1

)
∈ Z2m×2m

(A.12)

36 A MATHEMATICAL BACKGROUND AND NOTATION

where ⊗ denotes the Kronecker (or tensor) product of matrices. These matrices are called Hadamard-
Sylvester matrices. The entry in the i-th row and j-th column of H2m is

h2
m

ij = (−1)i·j , 0 ≤ i, j ≤ 2m − 1 (A.13)

where · denotes the inner product of binary vectors. H2m is always a symmetrical matrix of 1s and -1s
which verifies the orthogonality property:

H2mH
T
2m = 2mI2m (A.14)

Matrices of these characteristics (which are not necessarily symmetrical but must be composed of 1s
and -1s) are called Hadamard matrices.

Proof. All the properties can be proven by induction on m.

Given a real vector x ∈ R2m of length 2m, we say that its Walsh-Hadamard transform is the matrix-
vector product H2mx. This product can be computed efficiently using the following result:

Proposition A.8. The Hadamard-Sylvester matrix H2m can be obtained by multiplying the matrices
Hi
m = I2m−i ⊗H2 ⊗H2i−1 . In other words, H2m =

∏m
i=1H

i
m.

Proof. This result is deduced from the mixed-product property (A⊗B)(C ⊗D) = (AC)⊗ (BD).

m∏
i=1

Hi
m =

m∏
i=1

(I2m−i ⊗H2 ⊗H2i−1) =

m∏
i=1

m−i⊗
j=1

I2 ⊗H2 ⊗
m⊗

j=m−i+1

I2

 =

m⊗
j=1

H2 = H2m

This means that the Walsh-Hadamard Transform of a given vector of length 2m can be computed
directly on the input registers with exactly m2m additions and substractions using the following algo-
rithm, which succesively multiplies the vector by the matrices Hi

m:

Algorithm 10: The Fast Walsh-Hadamard Transform

Input: A binary vector x of length 2m.
Output: A binary vector y of length 2m.
y ← x;
for i← 1 to m do

for j ← 0 to 2m−i do
for k ← 0 to 2i−1 do

tmp← y[j2i + 2i−1 + k];
y[j2i + 2i−1 + k]← y[j2i + k]− y[j2i + 2i−1 + k];
y[j2i + k]← tmp + y[j2i + k];

end

end

end
return x

The Walsh-Hadamard Transform is a particular case of the Generalised Discrete Fourier Transform (in
particular, the one corresponding to the abelian group Zm2) and the Fast Walsh-Hadamard Transform is
a particular case of the Generalised Fast Fourier Transform. The spectral analysis of boolean functions
using the Walsh Transform is a very interesting topic in cryptography (see [AES02]) and has a very
strong relationship with linear cryptanalysis.

Probability distributions. Finally, table 5 contains a condensed description of the probability
distributions which are used in the statistical models for linear cryptanalysis and their properties, as
well as the notations that we use for them.

37

Bernoulli distribution Be(p)

A discrete distribution which takes value 1 with probability p and 0 otherwise.
Probability function: Pr(X = 1) = p, Pr(X = 0) = 1− p

Expected value: p Variance: p(p− 1)

Binomial distribution B(p, n)

The sum of n independent Bernoulli random variables Be(p).

Probability function: Pr(X = k) =

(
n
k

)
pk(1− p)n−k, k = 0, . . . , n

Expected value: np Variance: np(p− 1)
For a large enough value of n and a value of p that’s not too close to 0 or 1, this distribution can

be approximated by the normal distribution of the same expected value and variance.

Hypergeometric distribution HG(K,N, n)

The distribution of the number of successes among n ≤ N draws without replacement of a
population of size N containing K ≤ N marked elements.

Probability function: Pr(X = k) =

 N
k

 N −K
n− k

 n
k

 , k = 0, . . . , n

Expected value: nKN Variance: nKN
N−K
N

N−n
N−1

This distribution can be approximated by the normal distribution of the same expected value
and variance, although the resulting error depends on the parameters.

Normal distribution N (µ, σ2)

Probability density function: ϕµ,σ2(x) = 1√
2πσ2

e−
1
2 (x−µσ)

2

, ϕ = ϕ0,1

Cumulative distribution function: Φµ,σ2(x) =
∫ x
−∞

1√
2πσ2

e−
1
2 (x−µσ)

2

, Φ = Φ0,1

Expected value: µ Variance: σ2

Folded normal distribution FN (µ, σ2)

The distribution of the absolute value of normal random variable of the same parameters.

Probability density function: 1√
2πσ2

(
e−

1
2 (x−µσ)

2

+ e−
1
2 (x+µσ)

2)
Non-central chi-square distribution χ2

m(λ), χ2
m = χ2

m(0)

The distribution of the sum of m independent variables N (µi, 1) verifying λ =
∑m
i=1 µ

2
i . The

distribution is said to have m degrees of freedom and non-centrality parameter λ.
Cumulative distribution function: Ψm,λ(x), Ψm = Ψm,0

Expected value: m+ λ Variance: 2(m+ 2λ)
For a large enough value of m, this distribution can be approximated by the normal distribution

of the same expected value and variance because of the Central Limit Theorem.

Table 5: Definitions, notations and properties of some probability distributions.

38 B LINEAR CRYPTANALYSIS REVISITED

B Linear cryptanalysis revisited

This appendix acts as a complement to section 2.

B.1 Proofs of the results of subsections 2.1 and 2.2

We begin by proving Matsui’s piling up lemma, which is a direct consequence of the following general
result on the addition of independent binary random variables:

Proposition B.1. If X1, . . . , Xr are independent Bernoulli random variables whose value is 0 with
probability 1/2 + εi (and 1 with probability 1/2− εi), then

Pr(X1 ⊕X2 ⊕ . . .⊕Xr = 0) =
1

2
+ 2r−1

r∏
i=1

εi (B.1)

Proof. The proof will proceed by induction on r.

If r = 2, we have X1 ⊕ X2 = 0 if and only if X1 = X2 = 0, which happens with probability
(1/2 + ε1)(1/2 + ε2), or X1 = X2 = 1, which happens with probability (1/2− ε1)(1/2− ε2). The sum
of these two probabilities is 1/2 + 2ε1ε2.

For greater values of r, from the formula for r − 1 variables we deduce

Pr(X1 ⊕ . . .⊕Xr = 0) = Pr(X1 = 0, X2 ⊕ . . .⊕Xr = 0) + Pr(X1 = 1, X2 ⊕ . . .⊕Xr = 1)

=

(
1

2
+ ε1

)(
1

2
+ 2r−2

r∏
i=2

εi

)
+

(
1

2
− ε1

)(
1

2
− 2r−2

r∏
i=2

εi

)
=

1

2
+ 2r−1

r∏
i=1

εi

which is the expression we wanted to obtain.

We now proceed to the proof of proposition 2.4.

Proposition (2.4). Under the right-key equivalence hypothesis, the probability of success of Matsui’s
Algorithm 1 is approximately

PS ' Φ
(

2
√
N |ε|

)
= Φ

(√
Nc2

)
=

∫ √Nc2
−∞

1√
2π
e−

x2

2 dx (B.2)

Proof. Without loss of generality, we can suppose that γ(K) = 0 and ε > 0. The right-key equivalence
hypothesis implies that Prx(α · x⊕ β · EK(x) = 0) = 1/2 + ε.

The number T is thus a random variable which follows a binomial distribution B(1/2+ε,N) and can be
approximated by the normalN (N(1/2+ε), N/4). The probability of success is the probability that T >
N/2. We conclude by expressing T as a linear transformation of a standard normal distribution.

We can also prove the following proposition, which is an extended version of corollary 2.6:

Proposition B.2 (Lemma 5 in [Ma94a]). Under the right-key equivalence and the wrong-key ran-
domisation hypotheses, he probability of success of Matsui’s algorithm 2 is approximately

PS '
∫ ∞
−2
√
N |ε|

(∫ x+2
√
N |ε|

−x−2
√
N |ε|

1√
2π
e−

1
2y

2

dy

)2|k|−1
1√
2π
e−

1
2x

2

dx (B.3)

Proof. Without loss of generality, we can suppose that ε > 0 and γ(K) = 0. From the statistical
assumptions about the linear approximation, we deduce that the distribution of Tk can be approximated
by N (N/2 +Nε,N/4) if k is the right subkey, while for any wrong subkey Tk̃ follows the distribution

B.1 Proofs of the results of subsections 2.1 and 2.2 39

N (N/2, N/4), and they are all independent. The probability of success PS is the probability that the
counter Tk for the right key is larger than N/2 and |Tk −N/2| is larger than all the |Tk̃ −N/2|.

PS =Prx

(
Tk > N/2, |Tk −N/2|> |Tk̃ −N/2| for all k̃

)
=Prx

(
Tk −N/2 > 0, −(Tk −N/2) < Tk̃ −N/2 < Tk −N/2 for all k̃

)
=

∫ ∞
0

(∫ x

−x

√
2

πN
e−

2
N y

2

dy

)2|k|−1√
2

πN
e−

2
N (x−Nε)2dx

The desired expression is obtained after a change of variables in the previous integral.

This is Nyberg’s proof of theorem 2.7, which is a version of Parseval’s identity for the Walsh Transform:

Theorem (2.7). Let ν : α · x ⊕ β · y be a linear approximation of a key-alternating block cipher E
for which all the round subkeys are independent (this is often called a long-key cipher, and it implies
κ = n(r + 1)). Then, for any key mask γ : Fκ2 → F2:

1

2κ

∑
K∈Fκ2

(Prx (α · x⊕ β · EK(x) = 0|K)− Prx (α · x⊕ β · EK(x) = 1|K))
2

=
∑

γ0,...,γr∈Fn2

(Prx,K (α · x⊕ β · EK(x)⊕ γ0 ·K0 ⊕ . . .⊕ γr ·Kr = 0)

− Prx,K (α · x⊕ β · EK(x)⊕ γ0 ·K0 ⊕ . . .⊕ γr ·Kr = 1))
2

(B.4)

Proof. The second member of the equality can be reweitten as follows:

∑
γγγ∈Fn(r+1)

2

 1

2n+κ

∑
x∈Fn2

∑
K∈Fκ2

(−1)α·x⊕β·EK(x)⊕γ0·K0⊕...⊕γr·Kr

2

=
1

22n+2κ

∑
γγγ∈Fn(r+1)

2

∑
x,x′∈Fn2

∑
K,K′∈Fκ2

(−1)α·x⊕α·x
′⊕β·EK(x)⊕β·EK′ (x

′)⊕γ0·K0⊕...⊕γr·Kr⊕γ0·K′0⊕...⊕γr·K
′
r

=
1

22n+2κ

∑
x,x′∈Fn2

∑
K,K′∈Fκ2

(−1)α·x⊕α·x
′⊕β·EK(x)⊕β·EK′ (x

′)

 ∑
γγγ∈Fn(r+1)

2

(−1)γ0·K0⊕...⊕γr·Kr⊕γ0·K′0⊕...⊕γr·K
′
r

Because E is a long-key cipher, we have

K = K ′ ⇐⇒ (K0, . . . ,Kr) = (K ′0, . . . ,K
′
r) ⇐⇒ (K0 ⊕K ′0, ...,Kr ⊕K ′r) = 0

Therefore, by using proposition A.3, we have∑
γγγ∈Fn(r+1)

2

(−1)γ0·K0⊕...⊕γr·Kr⊕γ0·K′0⊕...⊕γr·K
′
r =

∑
γγγ∈Fn(r+1)

2

(−1)(γ0,...,γr)·(K0⊕K′0,...,Kr⊕K
′
r) =

{
0 if K 6= K ′

2κ if K = K ′

We can substitute this in the previous expression:

1

22n+κ

∑
K∈Fκ2

∑
x,x′∈Fn2

(−1)α·(x⊕x
′)⊕β·(EK(x)⊕EK(x′)) =

1

2κ

∑
K∈Fκ2

 1

2n

∑
x∈Fn2

(−1)α·x⊕β·EK(x)

2

This concludes the proof.

40 B LINEAR CRYPTANALYSIS REVISITED

In definition 2.8, we can say γ0 = α, γr = β because if, for example, we had γ0 6= α, then α ·x⊕γ0 ·K0

is 0 with probability exactly 1/2, so no matter what the rest of the linear trail is, its correlation is 0
because of the piling-up lemma. We will now prove theorem 2.10:

Theorem (2.10). Let E be a key-alternating cipher of r rounds with internal permutation F , and let
Ĉ(F) be the element-wise square of the correlation matrix of the round function. Then the ELP of a
linear approximation of E with input mask α and output mask β is

ELP (α, β) =
((
Ĉ(F)

)r)
αβ

(B.5)

Proof. The equality is deduced from the definition of the ELP and the piling-up lemma:

ELP (α, β) =
∑

γγγ∈Fn(r+1)
2

γ0=α,γr=β

(Prx,K0,...,Kr (νγγγ = 0)− Prx,K0,...,Kr (νγγγ = 1))
2

=
∑

γγγ∈Fn(r+1)
2

γ0=α,γr=β

(
r∏
i=1

(Prx(γi−1 · x⊕ γi · F (x) = 0)− Prx(γi−1 · x⊕ γi · F (x) = 1))

)2

=
∑

γγγ∈Fn(r+1)
2

γ0=α,γr=β

(
r∏
i=1

(
C(F)
γi−1γi

))2

=
∑

γγγ∈Fn(r+1)
2

γ0=α,γr=β

r∏
i=1

(
C(F)
γi−1γi

)2
=
((
Ĉ(F)

)r)
αβ

It is also true that the correlation matrix for the composition of two boolean functions is the matrix
product of their respective correlation matrices, and the proof can be found in chapter 7 of [AES02]
or deduced from the piling-up lemma.

B.2 Multidimensional linear cryptanalysis

We now provide a very short description of a multidimensional version of Algorithm 2 using the χ2

statistic as introduced in [HCN08],[HCN09],[HCN19] (multidimensional attacks using the log-likelihood
ratio as well as Algorithm 1-type attacks are also introduced in these publications).

Consider a set of M = 2m− 1 approximations whose masks form an m-dimensional vector subspace of
Fn2×Fn2 (ignoring the approximation with both masks equal to zero). There are m linearly independent
linear approximations νj given by αj , βj ∈ Fn2 , j = 0, . . . ,m − 1 which span the complete set of
approximations. These m approximations follow a joint discrete distribution in Fm2 . In other words,
for each K we have the distribution

ηηη(K) = (η0(K), . . . , η2m−1(K)), where ηi(K) = Prx ((νm−1, . . . , ν0) = i | K) (B.6)

using the identification between Fm2 and the integers from 0 to 2m − 1.

Hermelin et al. proposed a variation of Algorithm 2 based on a new wrong-key randomisation hypoth-
esis. They assumed that for any wrong guess of the partial subkey k, then ηηη(K) will be the uniform
distribution over Fm2 . Given k, this distribution can be tested for uniformity using the χ2 test of fit.

The attacker begins by computing the 2m · 2|k| statistics

ξik = # {(x, y) ∈ D : (αm−1 · x⊕ fm−1(y|χ⊕k), . . . , α0 · x⊕ f0(y|χ⊕k)) = i} (B.7)

These are then combined into the χ2 statistic for each key:

Qk =
1

N2−m

2m−1∑
i=0

(
ξik −N2−m

)2
(B.8)

The attacker then chooses the subkey guesses k corresponding to the largest values of Qk.

B.3 The statistical model of subsection 2.4 41

Algorithm 11: Multidimensional Algorithm 2 using the χ2 statistic

Input: A collection D = {(x, y = EK(x))} of N plaintext-ciphertext pairs (possibly on-the-fly).
Output: A probable guess of k.
for i← 1 to 2m − 1 do ξξξi ← 0;
forall (x, y) ∈ D do // Compute the counters

for k ← 0 to 2|k| − 1 do

ξ
(αm−1·x⊕fm−1(y|χ⊕k),...,α0·x⊕f0(y|χ⊕k))
k ← ξ

(αm−1·x⊕fm−1(y|χ⊕k),...,α0·x⊕f0(y|χ⊕k))
k + 1;

end

end

for k ← 0 to 2|k| − 1 do Qk ← 1
N2−m

∑2m−1
i=0

(
ξik −N2−m

)2
; // Compute the χ2 statistic

return argmaxk(Qk);

The probability of success depends on the capacity of the set of approximations, and in this case there
is no need to suppose statistical independence:

Proposition B.3 ([HCN09]). The probability of success of a multidimensional linear attack using
M = 2m − 1 linear approximations depends on the number of available plaintexts N , the number of
approximations and the capacity of the set of linear approximations, which is

C(K) =

2m−1∑
i=1

(ci(K))
2

=

2m−1∑
i=0

(ηi(K)− 2−m)2

2−m
, C = ExpK (C(K)) =

2m−1∑
i=1

ELP (αi, βi) (B.9)

B.3 The statistical model of subsection 2.4

B.3.1 Statistical attacks as a hypothesis testing problem

Selçuk introduced the notion of advantage that was discussed in subsection 2.4 in [Se08], and also
provided a way of estimating the probability of success of this type of attack by using a result on order
statistics. Subsequent reformulations such as the one found in [BW12] have reframed the problem as a
hypothesis testing scenario, which leads to the same estimate. Here we will discuss the latter approach.

Given a guess for the partial subkey k, we want to test whether it corresponds to the actual secret key
K (alternative hypothesis H1) or whether it is a wrong guess (null hypothesis H0). We are interested
in the significance level α and the power 1−β of the test (not to be confused with the input and output
masks of the linear approximations). The significance level α is the probability that the null hypothesis
is rejected erroneously (probability of false alarm), in this case, the probability that a wrong guess is
marked as a candidate for the search phase. Since we expect α2|k| wrong key guesses to be marked as
candidates, we deduce that α2|k| ' 2|k|−a. This means that, if we want to achieve an advantage of a,
we should use a test with α = 2−a. On the other hand, the power 1−β is the probability that the null
hypothesis is rejected when the alternative hypothesis is true (β is the probability of non-detection),
in other words, the probability that the right guess for the subkey is marked as a candidate for the
search phase. This means that the success probability of the attack is PS = 1− β.

To distinguish between both hypotheses, we use a test statistic Xk. In Matsui’s Algorithm 2, this
statistic is |Tk −N/2| while in multiple or multidimensional attacks it’s Qk. Let us suppose that, for
the right guess of k, this statistic has a cumulative distribution function FR. Analogously, we will
suppose that for any wrong guess, the distribution function is FW . We will consider a threshold Θ:

F−1W (1− α) ≤ Θ ≤ F−1R (β) (B.10)

We reject the null hypothesis (keep the subkey guess as a candidate) if Xk > Θ and accept it (discard
the subkey guess) if Xk < Θ. Usually, we will choose the significance level α = 2−a according to the
desired advantage and then take Θ = F−1W (1− α). The power of the test will then be β = FR(Θ). We
deduce the following result about the probability of success:

42 B LINEAR CRYPTANALYSIS REVISITED

Theorem (2.13). Under the previous hypothesis testing model for a statistical attack, the success
probability for a given desired advantage a is

PS = 1− β = 1− FR
(
F−1W (1− α)

)
= 1− FR

(
F−1W (1− 2−a)

)
(B.11)

If the right-key distribution can be approximated by a normal distribution N (µR, σ
2
R), then

PS ' Φ

(
µR − F−1W (1− 2−a)

σR

)
(B.12)

If the wrong-key distribution can also be approximated by a normal distribution N (µW , σ
2
W), then

PS ≈ Φ

(
µR − µW − σWΦ−1(1− 2−a)

σR

)
(B.13)

Since 1− 2−a is close to 1, the normal approximation of F−1W might induce a non-negligible error. For
this reason we only recommend using this approximation when there is no other option.

Corollary B.4. ([Se08]) The probability of success of Algorithm 2 with target advantage a is

PS ' Φ
(

2
√
N |ε|−Φ−1(1− 2−a−1)

)
(B.14)

Proof. We will suppose that ε > 0 and γ(K) = 0. From the right-key equivalence and wrong-key
randomisation hypotheses, we know that Tk −N/2 follows the normal distribution N (Nε,N/4) if k is
the right guess, and N (0, N/4) if it is a wrong guess. Therefore |Tk −N/2| follows the folded normal
distribution FN (Nε,N/4) for the right guess and FN (0, N/4) for any wrong guess. If X is a random
variable with distribution N (0, N/4), we have

FW (x) = Pr(|X|< x) = 1−Pr(X > x)−Pr(X < −x) = 1−2

(
1− Φ

(
x√
N/4

))
= 2Φ

(
2x√
N

)
−1

So F−1W (1− 2−a) =
√
N
2 Φ−1(1− 2−a−1). We finish by substituting this in equation 2.22/B.12.

B.3.2 Distribution of the multiple linear cryptanalysis statistic

We will replicate the reasoning by Blondeau and Nyberg in [BN17] to deduce the distribution of the
multiple linear cryptanalysis statistics to plug into Selçuk’s formula. We begin with updated versions
of the right-key and wrong-key hipotheses. As usual, let νi : αi · x⊕ βi · ŷ be M linear approximations
of the first r − 1 rounds of the cipher, so that βi · F−1(y ⊕Kr) can be substituted by fi(y|χ⊕k).

Assumption B.5. (Right-key randomisation) If K is uniformly distributed over Fκ2 , then

ci(K) = Prx (νi = 0|K)− Prx (νi = 1|K) (B.15)

follow the normal distribution N (0, ELP (αi, βi)) and are statistically independent.

Since the ELP is the expected value of the square of the correlation, it is clear that it must be equal
to the variance if the expected value of the correlation is zero.

Assumption B.6. (Wrong-key randomisation) The wrong-key empirical correlations (k̃ 6= k)

cWi (K, k̃) = Prx

(
αi · x⊕ fi(EK(x)|χ⊕k̃) = 0|K, k̃

)
−Prx

(
αi · x⊕ fi(EK(x)|χ⊕k̃) = 1|K, k̃

)
(B.16)

follow the normal distribution N (0, 2−n) and are statistically independent.

This assumption can be justified if we imagine that the value of αi ·x⊕fi(EK(x)|χ⊕k̃) = 0 is random.

#
{
x : αi · x⊕ fi(EK(x)|χ⊕k̃) = 0

}
= 2nPrx

(
αi · x⊕ fi(EK(x)|χ⊕k̃) = 0

)
= 2n−1(cWi (K, k̂)+1)

is a random variable which follows the binomial distribution B(1/2, 2n), and thus has expected value

2n−1 and variance 2n−2. This means that the expected value of cWi (K, k̂) is 0 and its variance is 2−n.

B.3 The statistical model of subsection 2.4 43

Distribution of the capacity. To calculate the estimated linear potentials the M linear approxi-
mations, we identify a set of “dominant” trails, as discussed in 2.2.1. In other words, we consider a set
S of key masks γ so that the approximations νi ⊕ γ · K̂ are highly biased, while the rest have a much
smaller correlation, and are modeled as random noise.

Theorem B.7 (Theorem 3 in [BN17]). For each approximation νi : αi ·x⊕βi · ŷ, we can estimate the
linear potential by choosing a set S containing the linear trails with the largest correlation contribution,
and using the formula:

V arK (ci(K)) = ELP (αi, βi) '
∑
γ∈S

(
Prx,K̂(νi ⊕ γ · K̂ = 0)− Prx,K̂(νi ⊕ γ · K̂ = 1)

)2
+2−n (B.17)

where K̂ = (K0, . . . ,Kr) ∈ Fn(r+1)
2 is uniformly distributed.

The next step towards an estimation of the success probability in the case of multiple linear crypt-
analysis is finding the distribution of the capacity C(K) for the set of approximations.

Theorem B.8 (Theorems 4,5 in [BN17]). The expected value of the capacity of a set of M linear
approximations νi : αi · x⊕ βi · ŷ over the keyspace is

ExpK (C(K)) =

M∑
i=1

ELP (αi, βi) '
M∑
i=1

∑
γ∈S

(
Prx,K̂(νi ⊕ γ · K̂ = 0)− Prx,K̂(νi ⊕ γ · K̂ = 1)

)2
+M2−n

(B.18)

Meanwhile, the variance of C(K) is

V arK(C(K)) =

M∑
i=1

2ELP (αi, βi)
2

' 2

M∑
i=1

∑
γ∈S

(
Prx,K̂(νi ⊕ γ · K̂ = 0)− Prx,K̂(νi ⊕ γ · K̂ = 1)

)2
+ 2−n

2

= 2

M∑
i=1

∑
γ∈S

(
Prx,K̂(νi ⊕ γ · K̂ = 0)− Prx,K̂(νi ⊕ γ · K̂ = 1)

)22

+ 22−n
M∑
i=1

∑
γ∈S

(
Prx,K̂(νi ⊕ γ · K̂ = 0)− Prx,K̂(νi ⊕ γ · K̂ = 1)

)2
+M21−2n

(B.19)

Proof. These formulas are deduced from the assumption of the independence of the correlations and
our previous estimation for the linear potential. In the case of the expected value, we have

ExpK (C(K)) =

M∑
i=1

ExpK

(
(ci(K))

2
)

=

M∑
i=1

V arK (ci(K)) =

M∑
i=1

ELP (αi, βi)

For the variance, we have

V arK (C(K)) = V arK

(
M∑
i=1

(ci(K))
2

)
=

M∑
i=1

V arK

(
(ci(K))

2
)

Since we assumed
√

1/ELP (αi, βi)ci(K) follows a standard normal distribution, then its square

1/ELP (αi, βi) (ci(K))
2

should follow a χ2 distribution with one degree of freedom. This distribu-

tion has a variance of 2, so we deduce that V arK

(
(ci(K))

2
)

= 2ELP (αi, βi)
2.

44 B LINEAR CRYPTANALYSIS REVISITED

Distribution of the right key and wrong key statistics. The final component of the model
is the computation of the distribution of the right and wrong key statistics over the key K and the
data D. Two different scenarios can be considered: the classical known plaintext attack (KP), where
the plaintexts x are randomly drawn from Fn2 with replacement (so there can be repeated plaintext-
ciphertext pairs in the data), or the distinct known plaintext attack (DKP), where the plaintexts are
drawn without replacement and there are no repetitions. The difference between these two scenarios
will be accounted for in the success probability estimations by changing the value of the constant

B =

{
1 for KP
2n−N
2n−1 for DKP

(B.20)

Theorem (2.14). In multiple and multidimensional linear cryptanalysis, the sttatistic Qk approxi-
mately follows a normal distribution whose mean and variance are the following:

Qk ∼ N (µR, σR), where{
µR = ExpD,K(Qk) = BM +NExpK (C(K))
σ2
R = V arD,K(Qk) = 2B2M + 4BNExpK (C(K)) +N2V arK (C(K))

(B.21)

Meanwhile, if the key guess k̃ 6= k is different from the right one, a multiple of the wrong key statistic
follows a χ2 distribution with M degrees of freedom:

1

B +N2−n
Qk̃ ∼ χ

2
M , so

{
µW = ExpD,K(Qk̃) = BM +NM2−n

σ2
W = V arD,K(Qk̃) = 2M(B +N2−n)2

(B.22)

Proof. Here we will only consider the case of multiple linear cryptanalysis, although the result is also
true for multidimensional attacks.

We will begin by deducing the distribution of the right-key statistic. We initially consider that the
key K is fixed. This means that αi · x⊕ fi(y|χ⊕k)⊕ 1 is drawn from the Bernoulli distribution with
parameter (1 + ci(K))/2. Therefore # {(x, y) ∈ D : αi · x⊕ fi(y|χ⊕k) = 0} ∼ B

(
1+ci(K)

2 , N
)

for KP

{(x, y) ∈ D : αi · x⊕ fi(y|χ⊕k) = 0} ∼ HG
(

1+ci(K)
2 2n, 2n, N

)
for DKP

From this we deduce that qik ∼ N (Nci(K), NB). We then obtain, for a fixed K,

1

B
Qk ∼ χ2

M

(
NB−1C(K)

)
,

{
ExpD (Qk) = B(M +NB−1C(K)) = BM +NC(K)
V arD (Qk) = B2(2M + 4NB−1C(K)) = 2B2M + 4BNC(K)

Therefore, assuming a normal approximation of the χ2 distribution,

ExpD,K (Qk) = ExpK (ExpD (Qk))) = BM +NExpK (C(K))

V arD,K (Qk) = ExpK (V arD (Qk))) + V arK (ExpD (Qk)))

= 2B2M + 4BNExpK (C(K)) +N2V arK (C(K))

We now proceed to the case of the wrong key statistic. For a fixed K, we now have #
{

(x, y) ∈ D : αi · x⊕ fi(y|χ⊕k̃) = 0
}
∼ B

(
1+cWi (K,k̃)

2 , N
)

for KP

#
{

(x, y) ∈ D : αi · x⊕ fi(y|χ⊕k̃) = 0
}
∼ HG

(
1+cWi (K,k̃)

2 2n, 2n, N
)

for DKP

Therefore qi
k̃
∼ N (NcWi (K, k̃), NB) for a fixed key K and qi

k̃
∼ N (0, NB + N22−n) when K and D

are uniformly distributed. We thus deduce

1

B +N2−n
Qk̃ ∼ χ

2
M ,

{
ExpD,K (Qk) = BM +NM2−n

V arD,K (Qk) = 2M(B +N2−n)2

which concludes the proof.

	Introduction
	Some generalities on block ciphers

	An introduction to linear cryptanalysis
	Matsui's linear cryptanalysis
	Matsui's Algorithm 1
	Matsui's Algorithm 2

	Linear trails and linear hulls
	Computing the ELP with orrelation matrices

	Multiple linear cryptanalysis
	Estimating the probability of success

	Matsui's Algorithm 2 using FFT
	The original algorithm
	The extended algorithm
	Exploiting the key schedule
	Top-down strategy
	Bottom-up strategy: multiple linear cryptanalysis

	Application to the block cipher PRESENT
	Description of PRESENT
	The 1-bit linear distinguisher for up to 23 rounds
	Attacks on 26 and 27-round PRESENT-80
	The 2-bit linear distinguisher for up to 24 rounds
	Attack on 28-round PRESENT-128
	Experimental verification

	Conclusion
	References
	Mathematical background and notation
	Linear cryptanalysis revisited
	Proofs of the results of subsections 2.1 and 2.2
	Multidimensional linear cryptanalysis
	The statistical model of subsection 2.4
	Statistical attacks as a hypothesis testing problem
	Distribution of the multiple linear cryptanalysis statistic

