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ABSTRACT OF THE THESIS

Event Reconstruction in the Advanced Particle-Astrophysics Telescope

by

Emily Ramey

Master of Science in Computer Science

Washington University in St. Louis, December 2019

Research Advisor: Dr. Jeremy Buhler

The Advanced Particle-Astrophysics Telescope (APT) is a concept for a gamma-ray space

telescope operating in the keV to MeV energy range. Due to the nature of the telescope

and the physics of detection, reconstructing initial photon trajectories can be very compu-

tationally complex. This is a barrier to the real-time detection of astrophysical transient

phenomena such as Gamma Ray Bursts (GRBs), and a faster reconstruction algorithm is

needed in order to effectively study them. In this project, we develop such an algorithm

based on Boggs & Jean (2000)[2] and discuss the effects of certain algorithmic parameters

on computational performance. For testing, we create a simple model of Compton scattering

and generate data from a uniform source distribution. Though less representative of physical

phenomena, this allows for a more straightforward development process and sets up a test

framework for future iterations of the project.
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Chapter 1

Introduction

1.1 The APT

The Advanced Particle-astrophysics telescope is designed to be a successor to the Fermi

Gamma-ray Space Telescope, which has surpassed its expected mission time of 10 years.

The main science objectives of the APT include studying high-energy transient phenomena

such as supernovae and gamma-ray bursts (GRBs), continuing the search for dark matter,

and conducting broader surveys of the sky in gamma rays. The APT would improve upon

Fermi’s sensitivity while maintaining a similar budget, allowing for a more extensive search

for dark matter and an increased ability to detect transients.

1.1.1 Hardware design

The APT is designed to be used in the mid-keV to low TeV energy range, which is a significant

improvement on Fermi’s detecting range. The final telescope will consist of 20 repeated layers

of detecting material, spaced 15 cm apart, in a cube 3 meters tall and 2.5 meters on each

side. The middle section of each layer - the calorimeter - records the energy of each photon or

particle that interacts with it, and the WLS fibers on the top and bottom of each layer record

the corresponding position of each interaction. From this series of detected interactions, we

are able to reconstruct the initial direction of the photon source using software.
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Figure 1.1: One layer of the APT, shown as a computer model on the left and as a real-world
prototype on the right, with aluminum used for the support structure. The Cesium Iodide
(CsI) detects photon energy while the WLS fibers detect photon position. The scintillating
fibers detect the position of any matter particles that enter the detector. Each subsequent
layer would have the same structure as the one shown. Reprinted from [3].

1.1.2 Software design

The APT achieves such a broad energy range by using two different software methods for

reconstructing the trajectories of incoming photons, one for each of the two dominant gamma-

ray interactions in this energy range. Below approximately 30 MeV, the dominant interaction

is called Compton scattering, a process by which a photon transfers some portion of its

momentum to an electron in a detector layer, changing its wavelength and trajectory. In the

mid-MeV to GeV range, photons most commonly undergo a process called pair production

upon interacting with the detector, in which a photon splits into a positron and an electron,

which then interact further with the detector. As the goal of this project is to reconstruct

Compton scatters, a thorough discussion of pair production is outside the scope of this paper,

but a description of this phenomenon can be found in almost any particle physics textbook.

1.2 Gamma-ray bursts

Though the APT can theoretically detect many types of transients, we focus primarily on

gamma-ray bursts for this project. A gamma-ray burst (GRB) is an extremely bright burst
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of gamma-rays from a point source in the sky. These were first discovered in the 1960s

by a US satellite that had been set up to detect radiation from nuclear blasts during the

Cold War. The Compton Gamma-Ray Observatory (CGRO), launched in 1991, was used to

determine that GRBs originate mainly from outside the Milky Way, and the Fermi Gamma-

Ray Space Telescope, launched in 2008, has increased our understanding of the processes

that cause these highly energetic blasts. A GRB can last anywhere from a few milliseconds to

several hours, which is an incredibly short time window compared to most other astronomical

observations. Many astrophysicists now believe that short-duration GRBs are caused by

neutron-star mergers (collisions of extremely dense stellar remnants), while longer-duration

GRBs originate from core-collapse supernovae (explosions of high mass stars), however much

remains a mystery about how and why these events occur.

1.3 This project

1.3.1 Motivation

Though several theories exist as to their causes, the emission mechanisms of GRBs are not

yet well-understood. The energies involved indicate a very efficient conversion of matter

to energy, the process that drives this conversion is still an open question in the field of

astrophysics. To better understand the processes that produce GRBs, it would be highly

useful to observe them simultaneously with multiple different telescopes at multiple different

wavelengths (gamma-ray, optical, infrared, etc.) To do this, we must be able to search for and

detect a GRB in its initial stages and send out its location to other observatories. Achieving

this goal could lead to future discovery in the field of astrophysics as GRBs become better

understood.

One major science objective of the APT is to process gamma-ray events quickly enough to

localize a source within a few seconds of the start of the burst and signal its location in

that time. This means that we must significantly increase the detection capabilities of the

APT in the low-energy range (keV - MeV) such that the incoming photons’ directions can

be reconstructed as quickly as they are received by the detector. As Compton scattering

is the dominant interaction at these low energies, the primary focus of this research is to
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develop and test an algorithm to reconstruct Compton-scattered photons quickly and ac-

curately enough that the telescope can pinpoint their source in close to real time. Many

Compton telescopes rely on photon events with only two interactions to reconstruct their

source positions. However, a significant fraction of events in this low energy range will scat-

ter twice or more in the detector, which means that we can achieve significant performance

improvement by incorporating the reconstruction of multi-scatter events into our algorithm.

1.3.2 Scientific constraints

To eventually reach the main goal of this project, several factors be taken into account at this

stage. The telescope must be able to reconstruct the trajectories of gamma rays at or near the

speed at which they enter the detector, with low latency between the initial detection signal

and the reconstructed solution. We expect to see between 105 and 109 photons per second

during a typical gamma-ray burst[8]. Our goal for reconstruction speed is v 105 photons per

second, with > 75% accuracy and a latency of 1 second or less, as we expect this will give

us an accurate enough localisation of the source position, but more complex simulations and

source reconstructions will allow us to further constrain these target values. One of our other

concerns is power consumption - the telescope will be part of a larger scientific instrument

with a fixed amount of energy available to it daily. As such, we estimate that it cannot use

more than 50 watts of power when running the reconstruction software.

1.3.3 Process

We base our initial Compton reconstruction algorithm on Boggs & Jean (2000)[2] and,

with several performance improvements, we are able to meet our performance goals for this

project. We start with a sequential algorithm, which enumerates each possible ordering of

detector hits, and improve its performance by incorporating a tree search and pruning meth-

ods to improve the runtime. We build a simple gamma ray simulator for our development

and initial tests of reconstruction speed and accuracy. Initial tests show that, with average

parameters, the algorithm is able to reconstruct v 105 photons per second with 80-90%

accuracy, which we believe will be enough to detect and localize a gamma-ray burst once the

telescope is operational. By varying parameters in the algorithm, we also examine trends

4



in the speed and accuracy, and discuss some possible trade-offs between the two, as well as

possible improvements to the speed and accuracy for future work.

1.4 Related Work

One of the best papers available on Compton reconstruction procedures is Boggs & Jean

(2000)[2] which details the mathematical formulae and steps required to reconstruct the

initial direction of a Compton event in a layered detector. Though the paper focuses more

on the physics of reconstructing Compton scatters than the algorithmic parameters, the

equations listed served as a very helpful starting point for building and refining our code.

We developed with the purpose of creating an algorithm to be as fast and lightweight as

possible while still meeting our accuracy requirements. Many Compton telescopes must

transfer data over a network connection or save observations in order to reconstruct them

later, but our program is designed to process data in real time, before it leaves the telescope.
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Chapter 2

Compton Reconstruction

2.1 The physics of Compton scattering

Compton scattering is a process in which a photon hits a charged particle and transfers some

momentum to it in the collision. Due to conservation of momentum and energy, the photon

moves away from the collision with a different wavelength and direction than it had initially,

shown in Figure 2.1. In the APT, gamma rays from space scatter off of bound electrons in

the detector material and kick them out of the layer that they had previously occupied. The

gamma ray’s energy can then be described with the following equation:

E ′ =
E0

1 + E0

mec2
(1− cos θ)

(2.1)

Where E ′ is the energy after the collision, E0 is the energy before the collision, θ is the

scattering angle of the photon, and me is the mass of the electron. Note that the scattering

angle, the initial energy, and the final energy are the only free parameters in this equation, so

determining any two of these values also determines the third. In reconstruction, we use the

total energy deposited in the detector as the initial energy and are able to infer the energy

and angle of each scatter from there.

Equation 2.1 is based on the assumption that the electron is at rest in the detector material

prior to the collision. The effects of the electron’s initial momentum lead to a phenomenon

called Doppler Broadening in the resulting Compton spectrum, which causes some error in

our calculations. However, this effect is relatively small (v0.01% of initial wavelength) and
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Figure 2.1: Diagram of the Compton scattering process. Reprinted from [11].

randomly distributed, so we do not take it into account in our initial calculations, though it

may be useful to do so in future work.

2.2 Reconstructing photon direction

Photons are measured in the APT as a series of energy deposits, or hits, in the detector

material, as shown in Figure 2.2. The final hit is assumed to be a photo-absorption, in which

the photon is absorbed into the detector material instead of scattered off an electron. Each

time the photon scatters, it deposits some energy in the detector, which is recorded through

the scattered electron. It will then either scatter again or undergo photo-absorption, with

the relative probability of each process depending on the remaining energy. From Equation

2.1, if we know the scattering energy and positions of the first two hits, we can use these

to calculate the initial scattering angle of the photon. However, this does not give us the

exact trajectory of the incident photon, but rather the ”cone of possibility”, defined by the

scattering angle and the direction we record for the scattered photon. When taken for many

photon events, these values can be used to extrapolate the position of the initial gamma-ray

source.

If we already knew which hits came first in each sequence, or event, we could get the initial

scattering angle of the photons with a simple calculation. However, the biggest challenge in

7



Figure 2.2: An example event showing a gamma-ray’s trajectory through detector layers.
Each * symbol is one hit. The dotted line shows the center of the cone of possibility while
the wavy line represents the true path of the gamma-ray. Reprinted from [11].

reconstructing photon trajectory is the fact that the detector cannot give us the chronologi-

cal ordering of hits. Each gamma-ray moves at the speed of light, and the distance between

detector layers is small enough that we would need a much higher time resolution to deter-

mine the first two hits chronologically. However, Equation 2.1 allows us to infer the correct

ordering in a different way, by comparing the spatial angles between the recorded hits to the

scattering angles implied by their respective energy deposits. If there were no other factors

involved, each correct spatial angle would have an exact match in energy angle, but detector

noise and electronic effects mean that we must take a probabilistic approach to finding the

correct sequence.

2.3 Methodology

To make things simpler in our code, we break each photon’s series of hits into triples, one

for each possible sequence of three hits. Each triple has a spatial angle - such as φ2 in Figure

2.2 - and an energy angle, which is calculated by Equation 2.1 using the summed energy

deposits of the sequence. One obstacle to our calculations is that the implied scattering

angle does not depend on the energy deposited at the vertex of a given triple, but on the
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total energy of the photon both before and after the hit at the vertex. This means that we

cannot calculate the energy angles individually, but only as part of a sequence. If we change

the hits in the sequence before a given triple, it changes the energy calculations for the triple

itself. To describe these constraints mathematically, we use equations adapted from Boggs

& Jean (2000)[2]:

Wi =
1

mec2

N∑
j=i+1

Ej Unitless energy (2.2)

η′i = cos θ′ = 1 +
1

Wi

− 1

Wi+1

Energy angle (2.3)

ηi = cos θ = r̂i · r̂i+1 Spatial angle (2.4)

r̂i =
~xi − ~xi−1
|~xi − ~xi−1|

Direction before hit i (2.5)

Where N is the event’s total number of hits in the detector and Wi is the unitless energy of

the photon after hit i (i.e. W0 is the initial energy of the photon and Wi>0 < W0). Equation

2.3 is just a reformulation of the original Compton equation (2.1) with θ′ representing the

energy scattering angle at hit i. θ is the spatial angle of hit i, and is calculated using a dot

product, where ~xi refers to the position of hit i and ~ri is the vector between hit i − 1 and

hit i. Therefore r̂i is the direction of the photon immediately before hit i, and r̂i+1 is its

direction immediately after. As finding the inverse cosines of Equations 2.3 and 2.4 can cost

us valuable computation time, we leave them in their cosine form, η and η′, and compare

these values rather than the values of the angles themselves. The cosine function is uniquely

determined for θ, θ′ ∈ [02π), so the two operations are mathematically equivalent.

The χ2 metric

To compare the spatial and energy angles of a given sequence of hits, we use a χ2 test:

χ2 =
1

N − 2

N−1∑
i=2

(ηi − η′i)2

δη2i + δη′2i
(2.6)
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Where ηi and η′i again represent the spatial and energy angles and δηi and δη′i represent the

error in the spatial and energy angles. An example graph of this distribution can be found

in Figure 3.2.

The χ2 distribution is a sum of squared Gaussian distributions, so if we assume our noise/error,

(ηi − η′i), has an approximately Gaussian distribution, we can use the χ2 metric with N − 1

degrees of freedom (the total number of hits) to determine the likelihood of a given ordering

of hits. We can see by the equation that if the spatial and energy angles of any given triple

match more closely, the value of χ2 will be lower, whereas if they are farther apart it will

be higher. Therefore, in the absence of other factors, the sequence of hits that matches our

data best will be the one with the lowest χ2 value. As the factors that affect our noise and

error levels result from complicated physical processes, the true noise distribution may not

be perfectly Gaussian. However, based on the Central Limit Theorem[7] and a reasonable

assumption of the number of independent variables that can affect our angle calculations,

we can say that a Gaussian distribution is likely a reasonable approximation for our overall

error.
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Chapter 3

The Reconstruction Algorithm

3.1 Basis

Our reconstruction uses the χ2 metric to determine which ordering of hits is best. Each

triple represents one term in the sum of Equation 2.6. Since we assume that the ordering

with the lowest χ2 value is the correct one, we must try each possible ordering of hits in

order to find it, which is very computationally complex. Our initial pseudocode for this

calculation is shown in Algorithm 3.1. If there are N hits in a photon event, there are N !

possible orderings of those hits, and we must recalculate the η value for each hit in each

ordering, adding an additional factor of N , to give us a total run-time of O(N ∗N !) for each

photon. There are several heuristic improvements we can make to shorten the average-case

run-time, but we start with a basic iterative and sequential approach for simplicity’s sake.

3.1.1 Data types

Data for each hit of each event is saved in a Hit data type, containing an x, y, z position and

the energy deposit in MeV. Each photon which interacts with the detector is represented

as an Event data type, which contains an array of Hit values and the number of hits total

for that photon. Each reconstructed solution is contained in a Result data type, which

contains the first two hits of the event, the scattering angle, and the error in the scattering

angle (calculated from the detector noise). We save an array of Events and true Result
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values in our simulations, then pass them to our reconstruction algorithm to get our overall

accuracy.

3.2 Performance improvement

Though it is difficult to improve the theoretical time complexity of our algorithm, it is

possible to make several changes that decrease the average computation time per photon. To

do so, we switch from an iterative approach to a tree search and use pruning and parallelism

to further decrease the run-time.

3.2.1 Tree search

The first and perhaps most important performance improvement we make is to change the

structure of our program from an iterative approach - testing each sequence individually, one

after another - to a recursive tree search, shown in Algorithms 3.2 and 3.3. Each photon has

its own search tree containing nodes which correspond to its Hit values. An example search

tree is shown in Figure 3.1. Each parent node has a series of child nodes corresponding to

the next hit in the sequence, and to search the tree we simply have to choose a path through

it, keeping track of the χ2 value as we go. Once we have searched each path, we assume

the path with the lowest χ2 value is the correct one and use the first two hits to predict the

value of η′0 - the initial scattering angle. This is an improvement on our sequential algorithm,

as we do not have to re-compute χ2 for each node with the same parent sequence, instead

simply adding onto it each time we process a new node.

Recursive algorithm

In our program, we keep track of the χ2 value for each Hit we add to the sequence. As we

cannot start calculating the χ2 value without at least one triple, we first take each possible

pair of hits and run them through our recursive search algorithm (line 12, Algorithm 3.2),

keeping a running tally of the χ2 value and updating it for each child node we process (line 15,
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Algorithm 3.1 Sequential reconstruction algorithm for one photon

Input: x - a 1D array of Hit values for one event, n - the number of hits in the event

1: minχ2 ←∞ . Running minimum χ2

2: r ← NULL . Result variable
3:

4: for j in 1...n! do . N! permutations total
5: xj ← permute(x, j) . Returns unique permutation of hits
6:

7: χ2 ← 0
8: for k ∈ 1...n− 1 do . Loop over hit sequence
9: // Calculate spatial angle:
10: ~xk−1, ~xk, ~xk+1 ← xj[k-1], xj[k], xj[k+1] . Consecutive hit positions
11: r̂k, r̂k+1 ← |~xk − ~xk−1|, |~xk+1 − ~xk| . Unit vectors along photon direction
12: ηk = cosφk = r̂k · r̂k−1 . Spatial angle from inner product
13:

14: // Calculate energy angle:
15: Wk = 1

mec2

∑n
i=k+1Ei . Unitless energy; energy before hit k

16: η′k = cosφ′k = 1 + 1
Wk−1

− 1
Wk

. Energy angle from Compton equation
17:

18: // Calculate Errors:
19: δη2k = δφ2

k,r sin2(φk) . δφk,r depends on δx, δy, δz

20: δη′2k =
δW 2

k−1

W 4
k−1

+ δW 2
k

[
( 1
W 2

k
− 1

W 2
k−1

)2 − 1
W 4

k−1

]
. δWk from energy and noise level

21:

22: // Add to χ2:

23: χ2 ← χ2 + 1
n−2

(ηk−η′k)
2

δη2k+δη
′2
k

24: end for
25:

26: if χ2 < minχ2 then . Check against minimum
27: minχ2 ← χ2

28: η′0 = 1 + 1
W0
− 1

W1
± δη′0 . New η value

29: r ← xj[0], xj[1], η′0 . Update Result value
30: end if
31:

32: end for
33:

Output: r - Result with predicted η and first two hit indices
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Figure 3.1: Visual representation of a tree search for one initial hit.

Algorithm 3.3). Theoretically, we could still have to process every possible sequence before

reaching the minimum χ2 value, but, as will be discussed in the following sections, there

are ways to prune the tree in order to decrease the average runtime. The real performance

improvement of the tree, however, comes from the recursive approach itself. In our iterative

approach, we recalculated χ2 for each node, including those which had the same parent

sequence (giving them the same χ2 value). In the recursive approach, we cut down on these

repeat calculations by carrying the χ2 value through each sequence and only adding onto it

when we process a new node.

3.2.2 Pre-calculation of η values

Another performance improvement comes from pre-calculating the spatial angles for each

triple, shown in Algorithm 3.2 line 2. In the sequential/iterative algorithm (3.1), we calculate

η for each triple in each sequence, but, unlike η′, the spatial angle does not change our

calculations based on the sequence it is in. As it is only based on the hits in its given triple,

we can calculate η only once for each possible triple before we start the tree search and fetch

the values when they are needed. This reduces the computation time at each step in photon

reconstruction, which greatly increases our reconstruction speed.
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Algorithm 3.2 Tree search reconstruction algorithm for one photon

Input: x - a 1D array of Hit values for one event, n - the number of hits in the event

1: // Pre-compute spatial angles, η:
2: for i,j,k in permutations(n, 3) do . Loop over all triples
3: // Calculate spatial angle:
4: ~xi, ~xj, ~xk ← x[i], x[j], x[k] . Consecutive hit positions
5: r̂i, r̂j ← |~xj − ~xi|, |~xk − ~xj| . Unit vectors along photon direction
6: triples[i][j][k] = r̂i · r̂j . Save spatial angle
7: end for
8:

9: minχ2 ←∞
10: r ← NULL . Result value
11:

12: for i,j in permutations(n, 2) do . Loop over all possible pairs of Hit indices
13: χ2 ← findOptRecursive(i, j, n, 0) . Pass first two hits to tree search
14:

15: if χ2 < minχ2 then . Check for most likely permutation
16: minχ2 ← χ2

17: η′0 = 1 + 1
W0
− 1

W1
± δη′0 . New η value

18: r ← x[i], x[j], η′0 . Update Result with first two hits and η′0
19: end if
20: end for

Output: r - Result with predicted η and first two hit indices
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Algorithm 3.3 Recursive function in tree search

Input: i, j - current and next hit indices, respectively, n - number of hits left, χ2 -
current χ2 value for the sequence

1: function findOptRecursive(i, j, n, χ2)
2: // Base case:
3: if n == 0 then
4: return χ2

5: end if
6:

7: for each unused Hit, index k do
8: // Calculate the new energy angle:
9: W ← W − 1

mec2
E2 . Calculate change in energy

10: δW 2 ← δW 2 − 1
mec2

δE2
2

11:

12: // Calculate η′ and δη′ . See Equation 2.3
13: η ← triples[i][j][k] . δη is constant spatial noise
14:

15: Calculate new χ2 value from η, η′, δη, δη′ . See Equation 2.6
16:

17: Prune the sub-tree, if possible . See Section 3.2.3
18:

19: findOptRecursive(j, k, n− 1, new χ2) . Move on to next two hits
20: end for
21: end function
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3.2.3 Computational cutoffs

During our tree search, we can prune some sub-trees by filtering out certain sequences before

we reach the final recursion depth. Depending on the input ordering of hits, we could still

end up having to search the whole tree for the correct path, but generally these methods

will improve our runtime on average. We can prune a sub-tree if:

1. The χ2 value is already greater than the running minimum.

Since we always assume the sequence with the minimum χ2 is best, there is no need

to check orderings which have already exceeded our best value.

2. The cosine of the energetically reconstructed angle, η′, is greater than 1 by

some amount, the η′ cutoff.

Our algorithm might return an η′-value greater than 1 if we either have the wrong

ordering of hits or if there is significant noise in the measurement, so we only prune

the tree for values significantly above 1, to be safe.

3. The χ2 value of a sequence exceeds what we would expect for the length of

the sequence.

The p-value is related to the probability that the χ2 we calculate (based on a Gaussian

assumption of noise) will naturally exceed a given χ2 value with the same degrees of

freedom. In other words, it is the probability that a good ordering would have a χ2

value higher than the expected one. We use a look-up table such as the one shown in

Figure 3.2 to find the maximum allowed χ2 value at each step in our calculation and

cut off any sequence which exceeds it. The degrees of freedom we use in the χ2 table is

the number of hits in the sequence so far. For example, if we choose a p-value of 0.01,

it means we will not accept any orderings that have less than a 1% chance of being

correct. Using this with Figure 3.2, this means we will prune the tree for any χ2 value

greater than 6.635 after one hit, greater than 9.210 after two hits, greater than 11.345

after three hits, and so on.
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Figure 3.2: An example χ2 look-up table. [5]

4. We have reached some maximum defined recursion depth, which we refer

to as the reconstructed hits

Though this is not shown directly in the pseudocode, it is implemented by changing

the base case in Line 3 of our program to stop the program after a certain number

of hits have been processed. We then assume that the sequence with the minimum

χ2 at the cutoff point has the minimum overall χ2, though there is some chance that

this is not the case (the exact probability depends on the cutoff point). This serves to

decrease our computation time, but it also means that we do not take all of our data

into account, which we expect will decrease our accuracy.

3.3 Parallelism

Our final performance improvement comes from parallelism. Each photon’s computation is

independent of the others’, so each can be run in a parallel thread to improve the runtime

of our algorithm. This also means that if any given photon’s computation took longer
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than expected, there would not be a backlog of events to process which could delay the

localization of a gamma-ray burst or other transient. As our current level of parallelism was

able to adequately meet our time constraints, we do not seek to increase the reconstruction

speed further. However, depending on future time constraints, there are alternate strategies

of parallelism and source localization that we could employ to do so.
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Chapter 4

Experiments

4.1 Toy model simulator

Our toy model is a very basic simulator that traces the paths of virtual gamma-ray photons

through our detector. This allows us to test code in a controlled environment, which is

very useful in the development of our reconstruction algorithm and enables us to ensure our

code is performing as we expect without the additional errors caused by outside factors.

However, due to this simplicity, there will be physical effects present in the real world that

we fail to account for in our simulator, such as background radiation, photon scatters in

the detector support material, and various electronic effects, that will increase our overall

error. We do not take the detector material into account, nor do we allow for any types of

interactions other than a series of Compton scatters followed by a photoabsorption. We set

up a test framework on this model simulator that will allow us to adapt our testing to more

complicated gamma-ray simulators in the future.

4.1.1 Photon simulation

The simulator function, with pseudo-code shown in Algorithm 3.2, takes as its parameters

the number of photons to generate and the number of hits each photon should have (including

the final absorption). We pick the initial energy of each photon from a uniform distribution

between 100 keV and 20 MeV (Line 12).
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Algorithm 4.1 Toy Model Simulator

Constants: minE, maxE = 100 keV, 20 MeV - limits on initial photon energy Inputs:
numEvents - the number of photons to simulate, numHits - hits per event, events and
results - empty arrays for storage

1: function simulate(numEvents, numHits, events[], results[])
2: init alphas[], W[], k[], x[] . Arrays for the angles, energies, directions,
3: . and hit positions, respectively
4: for i in numEvents do
5: // Initialize variables:
6: Result & r ← results[i] . Set up result and event references
7: Event & e ← events[i]
8: e.hits ← empty Hit array . Initialize Event hits
9: e.numHits ← numHits
10:

11: // Generate initial energy at random:
12: r.energy ← uniform random(minE, maxE) . E ∈ [minE maxE]
13:

14: // Generate n-1 random angles:
15: alphas ← uniform random(−π

2
, π

2
, n-1) . Angle array of length n-1

16: r.eta ← cos(alphas[0]) . Save initial angle
17:

18: // Calculate Hit positions, directions, and energies from angles (see §4.1.1)
19: calcW(numHits, r.energy, alphas[], W[]) . Stores energy deposits in W[]
20: calcK(numHits, alphas[], k[]) . Stores photon directions in k[]
21: calcX(numHits, k[], x[]) . Stores Hit positions in x[]
22:

23: perm ← random permutation of x[] indices . Randomly shuffle hits
24: r.p0, r.p1 ← perm[0], perm[1] . First two hit indices
25:

26: // Record each Hit’s position and energy deposit
27: for j in numHits do
28: E dep ← (W[j] - W[j+1])*mc2 . Calculate energy deposit
29: e.hits[perm[j]] ← (x[j], E dep) . Save Hit

30: end for
31:

32: addNoise(e) . Add measurement noise to each hit in the Event

33:

34: end for
35: end function
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Once we have initialized our photon, we simulate its interaction with the detector by gener-

ating a random set of scattering angles according to the input number of hits (Line 15). The

scattering angles are taken from a uniform distribution from -90 to +90 degrees. We do not

simulate back-scatters (≥ 90 degrees), since these are relatively unlikely in the real world.

We then use formula 2.1 to calculate the energy deposited for each generated scattering angle

and store these values in an array (Line 19, calcW).

After calculating the angles and energy deposits, we then must calculate the position of each

hit in the detector. To do this, we need to first determine which layers of the detector the

photons will scatter in and the vector directions between each pair of hits. This takes place

in our function calcK on line 20 of our algorithm: for each scatter, we determine the layer of

each hit based on an exponential probability distribution, calculate the scattering direction

vector by adding the scattering angle (with a random φ angle) to the photon’s previous

direction, and save the direction vectors in array k. We can then use simple vector addition

to determine the Hit positions and save them in array x (Line 21, calcX). We randomly

shuffle the hits (Line 23) in order to simulate the unknown ordering of hits in the detector.

If we saved the hits in sequential order for each photon it might cause our program runtime

to be shorter than is realistic. Our last step, on Line 32 of our pseudocode, is to simulate

some random detector noise and add it to each position and energy measurement. The

distributions and parameters we use to generate this noise are discussed in the next section.

4.1.2 Errors and noise

We simulate noise in our detector using a Gaussian distribution with variable standard

deviation, σS. For the position measurements, the user inputs the standard deviation in

millimeters, and for the energy measurements, the standard deviation is input as a constant

factor of the energy, a:
σE
E

= a ∗ 1

E (keV )
(4.1)

We expect based on previous tests of the detector material that σS will be about 1 mm and

a will be about 0.22.
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Though the uniform distribution we generate our scattering angles from does not reflect

the correct Compton cross-section, our use of Formula 2.1 ensures that no interaction we

generate would be impossible in nature. As our reconstruction algorithm only compares the

inferred angles to the true angles and does not take the scattering cross-section into account

either, this simulator still provides a fairly good test of our performance in the absence of

systematic measurement error. The true distribution of scattering angles is determined by

the Klein-Nishina formula and the interaction probability by the Thomson cross-section [1],

so in later iterations of this project it may be useful to incorporate these into our toy model,

particularly if we choose to integrate some component of the true scattering probabilities in

our reconstruction algorithm.

4.2 Hardware

The hardware we use to test our algorithm is the Raspberry Pi 3, Model B+. It uses a 4-core

ARM processor with a 1.4 GHz processing speed, and has 1 GB of RAM. Due to its low

number of cores and static execution, it is a slower processor than found in most laptops,

but it is perfect for testing our software as it is low-power enough to be used as part of a

space telescope. We use the WITRN U2 USB Power Monitor[10] for testing power usage

on the Raspberry Pi. The ARM processor is commonly used for scientific applications, and

because NASA has recently commissioned a space processor based on the same architecture,

this platform could be the closest hardware available to what our program will actually be

running on in space. We tested our parallelism on Cassini, a more advanced machine at

Washington University, to get a more accurate measure of our core speedup in Section 5.3.

4.3 Performance measures

We use two main performance measures to evaluate our algorithm - the number of photons

processed per second, and the accuracy. We consider a reconstruction accurate if the first

two hits of the reconstruction match the first two hits in the correct sequence, and refer to

this measure as the ”two-hit accuracy”, or simply the accuracy. We report this statistic as

23



the number of accurate reconstructions over the number of total reconstructions. We also

consider power consumption to be a measure of performance, but any trends in power are

not studied in-depth as we are well below our expected limit.

4.4 Parameters tested

There are many variables that have the potential to affect the algorithm’s performance, and

we want to specifically examine the trade-offs in reconstruction speed vs. accuracy for several

key parameters. The tests we run are as follows:

1. Power - We use the WITRN U2 USB Power Monitor[10] to test the power used by the

Raspberry Pi both when it is idle and when it is running our program.

2. Single vs. double precision - As our program is written in C++, we have a choice of

whether to use float values (single precision) or double (double-precision) values in

our calculations. Single precision values use fewer bytes than double values, making

them faster to use in calculations but sometimes less accurate due to rounding error.

3. Simulated hits - The number of hits we simulate for each event.

4. Reconstructed hits - The number of hits we use to reconstruct a photon’s trajectory.

We cut off computation once the specified number of hits is reached, after which the

sequence with the lowest χ2 value so far is presumed to be the correct one. (i.e. we set

a lower-depth base case in Line 3 of Algorithm 3.3).

5. χ2 cutoff - The p-value we use for our cutoff χ2 values. Ex: a p-value of .1 would give

us a 10% probability of cutting off each good triple, whereas a p-value of .01 would

give us a 1% probability of doing so.

6. η′-tolerance - The amount above 1 or below -1 that we will allow for a calculated

cos(energy angle). For example, if the η′-tolerance is 0.2, any sequences containing an

η′ > 1.2 or < −1.2 would be cut.

7. Predicted spatial and energy noise levels - Our χ2 calculations rely on the predicted

errors of our η and η values, so changing the predicted level of error will change the
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behavior of our algorithm. We vary the σE and a values found in Section 4.1.2 and

investigate the results.

8. Simulated spatial and energy noise - We investigate the interplay between the predicted

noise and the simulated noise in both the spatial and energy regimes. Though we have

no control over the noise levels we will encounter in operation, it is useful to simulate

a range of noise levels and adjust our predicted noise parameters accordingly. This

is also useful as a proof-of-concept, as we can check to make sure our algorithm is

behaving as expected under increased noise thresholds.
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Chapter 5

Results

We test each of the variables specified in Section 4.4 over a range of values to examine trends

in the reconstruction speed and overall accuracy. Each simulation uses the values listed in

Table 5.1 unless otherwise noted, and each individual measurement comes from an average

of five test runs. Refer to Section 4.4 for more detailed parameter descriptions. Our error

bars represent one standard deviation away from the mean and are calculated under the

assumption of Gaussian noise, which we again assume to be a reasonable approximation of

the true noise based on the Central Limit Theorem[7].

Variable: Precision
Simulated

hits
Reconstructed

hits
p-value η′-tolerance σsp a

Value: single 5 5 0.01 1.0 1 mm 0.22

Table 5.1: Default values used in Compton simulations.

5.1 Power

To measure the power our hardware uses when running, we use the WITRN U2 USP Power

Monitor[10]. Based on past experience, our original estimate for how much power usage

would be acceptable aboard a telescope array was v50 W. In testing the Raspberry Pi’s

power usage, we found values ranging from about 2.52 W when idle to 2.74 W on average

after running the reconstruction algorithm for a few hours. The differential power usage,

found by subtracting the idle power from the power while in use, was 0.23 W on average.

26



Though our USB monitor did not allow us to calculate the standard deviation of our power

usage, our maximum total and differential powers were 4.82 W and 2.30 W, respectively,

which are both an order of magnitude less than our estimated power budget. We expect

that the hardware used in final the telescope design will be similar to the Raspberry Pi, so

it is likely that the power drawn by our program in practice will be similar to these values.

5.2 Precision

The precision of floating point values refers to the size in computer memory of the numbers

we use in our calculations. We test both single-precision (32-bit) float values and double-

precision (64-bit) double values, and display the results in Table 5.2. Our program is slightly

less accurate when using float values rather than double values, but there is a large overlap

in the two margins of error, so this is not very statistically significant. We also see a large

decrease in reconstruction speed when using double values compared to floats. This is an

expected result, as each basic operation takes slightly longer for 64-bit values than for 32-bit

values regardless of the hardware. This effect would be less pronounced on Cassini as it

has an out-of-order processor which can use its idle clock cycles to perform instructions for

future use, decreasing the overall runtime, however the Raspberry Pi is an in-order processor

and does not have such capabilities. Therefore, it is best that we use single-precision values

in our final version of the program to increase the reconstruction speed.

Precision Single Double
Accuracy (%) 86.12 ± .12 86.15 ± .10

Throughput (γ/sec) 5.08(70)× 105 3.85(51)× 105

Table 5.2: Speed and accuracy results for single and double precision values.

5.3 Parallelism

We test the parallelism of our program on Cassini, as the Raspberry Pi does not have

enough cores to see trends. The speedup of our algorithm, which is the execution time of

our program when run on x cores divided by the execution time when run on one core, is
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Figure 5.1: Core speedup of reconstruction algorithm, fit with a linear trendline (red).

shown in Figure 5.1. We can see that we have close to linear speedup when the number

of cores is small and a linear trend on average over the whole range, despite seeing some

nonlinear effects at higher numbers of cores. This indicates that our program scales well

with increased execution capacity.

5.4 Total hits used

To ensure that our program is behaving correctly, we investigate its behavior using events

with increasing numbers of hits. We can see from the left plot of Figure 5.2 that our

throughput decreases exponentially with increasing numbers of simulated hits. While not

ideal, this is an improvement on our original estimate, which predicted a factorial increase in

computation time for increasing hits. Though, theoretically, the worst-case time complexity

of our program remains the same as in the iterative version, tree search improves the average-

case complexity of our search algorithm and displays significantly improved performance

when used with large numbers of simulated photons.
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Figure 5.2: Reconstruction speed (left) and accuracy (right) with increasing numbers of
simulated hits.

Figure 5.3: Reconstruction speed (left) and accuracy (right) with increasing numbers of
reconstructed hits

In plotting the accuracy of our program for increasing numbers of hits (Figure 5.2, right)

we find some interesting results in that the accuracy peaks at 5 simulated hits. It is unclear

from the algorithm exactly why this is, but it is possible that increasing the number of hits

past a certain point introduces more error to our calculation instead of less. If a similar

trend holds for testing on more accurate simulators, we can consider weighting our angle

reconstructions based on these probabilities in future work.
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5.5 Reconstructed hits

We next investigate our program’s performance varying both the total number of hits for

each event and the number of hits we use in our reconstruction. When we stop computation

at a certain number of hits, the ordering with the lowest χ2-value we have found so far

becomes our chosen reconstruction. While this would in theory decrease the computation

time for each event, it also has the potential to also decrease the overall accuracy due to

the fact that we are not using all the information available to us in our reconstruction. To

determine how big the trade-off is in accuracy and reconstruction speed, we simulate each

possible combination of total hits versus reconstructed hits and plot one line for each type of

event. So, each set of events with N hits is its own line, and each point in the line indicates

a different number of hits used in its reconstruction. The results in speed and accuracy are

displayed in Figure 5.3.

As expected, our throughput decreases with increasing hits used in reconstruction while

accuracy increases. For throughput, this trend is especially pronounced for events with more

hits, and seems to drop sharply around 10-12 hits. The opposite is true of our accuracy, with

gains tailing off at around 6-8 hits. Beyond this number, using more hits in reconstruction

only gives us marginal gains in accuracy while significantly decreasing our speed. It would

be reasonable, therefore, to set a maximum number of reconstructed hits for all events,

increasing our reconstruction speed by sacrificing a small amount of accuracy. It is not

immediately clear from our data what the optimal cutoff value should be, as we would need

the correct energy distribution of our source to predict any losses in our overall accuracy.

In a real-world test setting, events with high numbers of hits are much less probable than

events with low numbers of hits, so our losses in overall accuracy would likely be less severe

than those predicted for a certain event type.

Despite these considerations, we can perform some preliminary calculations assuming a flat

source distribution (i.e. all event types are equally probable), shown in Figure 5.4. For each

possible cutoff value in reconstructed hits, we calculate the residual accuracy, or the accuracy

lost by ignoring higher orders of hits. This way, we can decide how much accuracy we are

willing to trade for an increase in speed and set the maximum cutoff accordingly. Similar

calculations can be done for residuals in speed.
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Figure 5.4: Residual accuracy for an increasing max cutoff in reconstructed hits

5.6 Cutoff values

χ2 cutoff

Changing the p-value of our calculation changes the level of certainty we have in our results.

If we use a smaller p-value, we can be more certain that any orderings we exclude are truly

bad ones, but we also cannot exclude as many orderings, so we expect that our speed will

decrease and our accuracy will increase as our p-values get smaller. Our results confirm this

expectation, as shown in Figure 5.5. There is a rather large uncertainty on the last p-value

(0.1), but as we have an overall linear trend prior to that value we expect that this is simply

due to noise. Over the tested range of p-values, our accuracy has a range of about 5%, while

our reconstruction speed only changes by about 1-2%. Based on these tests, it would be

most efficient to choose one of the smaller p-values tested for our final calculations, as it

would not significantly affect our overall runtime.

η′ cutoff

There is no clear trend in our results for η′ tolerance, shown in Figure 5.6. Though there

are sharp drops in reconstruction speed for certain η′ values, this could very easily be due to

noise, and the large uncertainties make it difficult to draw any conclusions about an overall
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Figure 5.5: Reconstruction speed (left) and accuracy (right) with increasing p-value.

Figure 5.6: Reconstruction speed (left) and accuracy (right) with an increasing η′-cutoff.

trend. In accuracy, there is similarly no clear trend, and the range is so small as to be

insignificant for our purposes.

5.7 Noise

Predicted Noise

We simulate different levels of predicted noise by changing the a parameter in our energy

calculations and the σsp parameter in our spatial calculations, and our results are shown

in Figures 5.7 and 5.8. There are no significant trends in reconstruction speed when the
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Figure 5.7: Reconstruction speed with increasing levels of predicted noise.

Figure 5.8: Reconstruction accuracy with increasing levels of predicted noise.

simulated noise is changed, which stands to reason as our calculation is the same either way.

The same goes for the accuracy of our predicted spatial noise, which has too small a range to

be considered an effective parameter. However, the accuracy of our predicted energy noise

does show a clear trend which flattens out as the predicted energy noise approaches the true

energy noise. If we overestimate the noise, we see the same or very similar accuracy to a

correct noise estimate, but if we underestimate the noise we see a severe decrease in accuracy.

If this trend holds for more robust simulator data, it could be a good way to probe the true

background noise when the telescope is in operation.
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Figure 5.9: Reconstruction speed with increasing simulated noise level.

Figure 5.10: Reconstruction accuracy with increasing simulated noise level.

Simulated Noise

We also test our program’s speed and accuracy with differing levels of simulated noise, shown

in Figures 5.9 and 5.10. We see fairly expected results, that there are no clear trends in

reconstruction speed but that the accuracy goes down with increasing noise in our detected

events. This is useful as a check on our toy model simulator, as less clear trends in the

accuracy might prompt us to evaluate whether our simulator works as we expect it to.
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Chapter 6

Conclusion

6.1 Discussion

As part of this project, we developed and tested a model simulator for gamma-ray trajec-

tories, wrote a Compton reconstruction algorithm, and set up a framework for testing and

investigating trends in our data. We have met our constraints for power and better con-

strained our accuracy and reconstruction speeds based on possible input parameters and

simulated environmental factors.

Our overall goal was to be able to reconstruct at least 50,000 photons per second with greater

than 75% accuracy, and, based on our findings in sections 5.4 and 5.5, we will be able to

achieve this goal by implementing a maximum cutoff in the number of reconstructed hits

for each event. Based on our data in Figure 5.2, we have also been able to improve the

average-case time complexity of our program from factorial to exponential with our tree

search algorithm. Our program has, on average, a linear trend in speedup, indicating that

it scales well, though we will likely have a maximum of only four cores to work with if the

telescope uses a standard ARM processor in its hardware.

Though we saw mostly expected behavior when testing the various parameters, there are a

few interesting features which may prove useful to future work on this project. In varying

the number of hits for each event, we find an unexpected trend in accuracy that may help us

to better reconstruct the position of a gamma-ray source in future iterations of the project,

as events with a higher predicted accuracy can be given greater weight in the final source

localization. Investigating the reconstructed hits, we find that only using a certain number
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of hits per event can save us computation time without significant loss of accuracy. Finally,

in varying our predicted noise levels, we find that the point at which the accuracy flattens

out is a fairly good predictor of the simulated energy noise in our system. This could help us

better determine the true noise level when performing tests with real telescope equipment.

6.2 Future work

Though this project laid the groundwork for the simulation and reconstruction of Comp-

ton scatters for our detector, there is much left to do before the telescope becomes fully

operational. One of the primary goals of future projects will be to repeat the test cases we

have performed on more accurate data from CERN’s Geant 4 simulator to make sure that

we see the same behavior from both. An alternative approach could be to make our toy

model simulator more robust by simulating events from a given gamma-ray source profile

and by including the correct probability distributions for Compton scattering angles. Once

this is finished, the next logical step would be to include the Klein-Nishina formula as a

prior on our reconstruction algorithm, which would prioritize triples of hits more likely to

be Compton scatters based on the angle itself, rather than just comparing the energy and

spatial angles to see if they match. Compton scatters are much more likely to happen at

small angles for our energy range, so including this in our calculations could further improve

our reconstruction accuracy.

Testing on a better simulator would also allow us to examine the overall accuracy of our

program for different source distributions rather than just the accuracy for events with a

given number of hits. In our current tests, all events have equal weight, whereas Compton

scatters in nature are much more likely to have 2-3 hits than any larger number. This means

that the overall accuracy would be a weighted mean of those we found in section 5.4, with

the overall shape of the distribution depending on the emission distribution of the source.

With these probabilities taken into account, we would potentially be able to optimize our

program for the expected source distribution. Correct figures for the accuracy distribution

would also be very useful as a prior on the source reconstruction algorithm.

The use of parallelism in our algorithm also requires some further investigation. The current

program runs each photon in parallel, but theoretically each branch of our tree search could
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also be done simultaneously. There would be a small amount of overhead associated with

the creation of each parallel thread, so at some point the extra parallelism would cease to

be worth the decreased speed. Though we are meeting our speed goals currently, it would

be interesting to investigate the optimal level of parallelism for a program such as this, in

case it is needed in the future.
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