
Abstract— Real-time strategy games are of such high complexity 

that consideration of trying to brute force all actions and states is 

not only impractical, but impossible. Approximations, 

information abstractions, and models are, therefore, the necessity 

when creating game bots that play this genre of games. To create 

such bots, the detailed data is needed to base them on. This 

article introduces a universal algorithm that creates reusable 

simulation data of one attacking unit on a building and tests the 

feasibility of doing such a task. This paper concludes that 

capturing all relevant data in a sub-segment of real-time strategy 

games is feasible. Gathered data holds valuable information and 

can be reused in new research without the need of  repeating the 

simulations. 
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I. INTRODUCTION

Tic-tac-toe and chess are two examples of games widely 
known to the general population as classic board games` 
representatives, with a playing history of more than a thousand 
years. Strategy games, which are the main point of interest in 
this article, are based on classic board games. Game mechanics 
(and gameplay) are very alike. Players perform in turns. 
Players use different strategies to try to gain an advantage over 
one or more opponents by making moves over a series of turns. 
During the game, the outcome of each move is evaluated, with 
the possibility of adapting the strategy to the new 
circumstances. 

Real-Time Strategy (RTS) games are a sub-genre of 
computer strategy games. They are usually the simulations of 
war games, with many aspects which must be taken into 
account by players. Aspects can be of different points of view: 
Hierarchy abstraction (strategy, tactics, reactive control), 
gameplay behavior (resource gathering, diplomacy, 
intelligence gathering, terrain analysis, etc.), game world 
mechanics (uncertainty, partial information, luck, non-
deterministic behavior, etc.)... The point of view is dependent 
on the covered abstraction to be taken into account. Therefore, 
computer operated players (game bots or bots for short) are of 
high complexity and must process huge amounts of data and 
information in a very short time frame.  

For a bot to be successful in playing an RTS game it can 
resort to extensive processing of game world information 
(before actually making a move), which includes, but is not 
limited to: Executing simulations of common battle scenarios, 
building models and representations of the game worlds, 
creating knowledge databases, searching for patterns, etc. 
Execution of simulations is an especially interesting choice for 
offline (and to some extent also for online) processing and was 
the method of choice for many research articles (more about it 
in the Chapter on Related Work). Time and computer resource 
demands can be so high (which are typically just a precise part 
of the gameplay, e.g. scenario of two tanks battling two rocket 
marines) that the extent of performed simulations is very 
limited. 

The problem of limits hinders the size of performed 
simulations. Simulations are limited currently by attributes 
such as: The number of units that can battle, proportions of 
scenario game world size, time needed for executing low-level 
game commands, etc. In this article, the feasibility of brute 
forcing the specific segment of battle in advance, which will 
create reusable simulation data, is studied. To reach our goal 
the intelligent automatic algorithm was designed. Algorithm is 
universal across different game worlds and game rules. The 
core of the algorithm executes basic simulations using low-
level game commands (that can, because of their low-
complexity, be performed in reasonable time) and creates a 
large volume of reusable simulation data. Data extraction and 
purification can serve for tackling the problems of various 
segments of RTS game worlds (abstraction of the game world 
information space will lower search space). 

The structure of this paper is as follows. Related work is 
presented in the second Chapter. In the third Chapter, the 
universal algorithm background is introduced and search space 
size is discussed in more detail. The requirements for algorithm 
are set and the universal design is created. In the fourth 
Chapter, the experiment and algorithm assessment feasibility is 
made, based on a large data acquisition. In the fifth Chapter, 
possible improvements for faster data gathering and an 
extrapolation are discussed, related to the current state-of-the-
art game engine StarCraft™. This paper concludes with a 
positive feasibility evaluation of our universal algorithm. 

Universal Algorithm for Creating A Small Scale 
Reusable Simulation Data in Real-time Strategy 

Games
Damijan Novak, Aleš Čep, Kristjan Košič, Domen Verber 

University of Maribor 

Maribor, Slovenia 

DOI: 10.5176/2251-3043_5.2.364

GSTF Journal on Computing (JoC) Vol.5 No.2, January 2017

© The Author(s) 2017. This article is published with open access by the GSTF

13

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by GSTF Digital Library (GSTF-DL): Open Journal Systems (Global Science and Technology...

https://core.ac.uk/display/275908799?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


II. RELATED WORK

What sets RTS games apart from other games is their 
general complexity. Game complexity is best presented with 
the branching factor, b, and the depth of the game, d. This 
gives us a total game complexity of bd [1]. Comparing game 
complexity  between the game of chess (the complexity is set 
to be b  35, d  80) and a very famous commercial RTS 
game StarCraft™ (an estimate of b  [1050, 10200], d 36000). 
Games are a magnitude of complexity classes apart [2]. Chess 
is not an easy game problem, yet, a computer program beat the 
World Chess Champion so long ago (the year 1997) that it is 
now considered history and it may not be the best comparison 
anymore. The game of Go, which is the latest of the games that 
attracted lots of media attention after AlphaGo beat a world-
class player, has a game complexity of b  30 – 300, d 150 – 
200 [3]. This is a considerable step up in complexity, but still 
far away from the complexity of RTS games, which is the 
consequence of the enormous search space (more about search 
space in the Chapter 3. B). 

Computationally playing combat games with excelence is 
hard [4]  and in practice approximations are being used. The 
goal of this line of research (approximations) is to handle larger 
combat scenarios with more than 20 units on each side in real-
time (current real-time varies in the range of 8 vs. 8 units). The 
authors also stated that new spatial and unit group abstractions 
are needed to reduce the size of the state space [5]. 

In [6] they found appropriate solutions to their anti-group 
selection problem by offline learning and employment of a 
simple lookup procedure. They didn’t need to execute 
simulations because the learning process was performing well 
with correctly chosen and simple substitute objective function 
(caution, it must be stated that only the relative strength of 
units was considered, not including parameters such as the 
speed of units). 

Compact representation of group behaviors in a combat as a 
combination of influence maps and potential fields’ parameter 
had a restricted search space to 248 [7]. Authors state that 
genetic algorithms always find high-quality solutions, while 
faster methods (like Hill Climber) find quality solutions in 50% 
to 70% of the time. 

If we combine all the mentioned information in the above 
articles an association thinking pattern emerges, which reads as 
follows: Obviously, search space of RTS games is too big even 
to start considering trying every possible game action. 
Therefore, in practice, approximations are necessary. 
Executing time and resources expensive simulations for every 
cycle, a result of a decision in advance is not always necessary. 
Usage of restricted search spaces can still produce satisfying 
and quality results. Information can be captured in different 
forms of knowledge and data representations. 

In the following Chapter practical use of thinking pattern is 
applied. 

III. UNIVERSAL ALGORITHM

A. Background

During the game-play, the player (or bot) chooses some
units and commences some commands (e.g. move, shoot, 

harvest, etc.). The player can combine moving and some other 
commands into one directive. For example, she/he may initiate 
the attack to an adjacent opponent’s unit which is out of range 
for the given weapon. The game engine will initiate the 
movement toward the target (using some path finding 
algorithm) and commence  firing when the target is in range. 

The units in a game are categorized into several unit types. 
Each unit type has a set of characteristics (attributes) that 
determine the essential behavior and the outcome of interaction 
of the units with the environment and with the other units in the 
game. Initial values of those features are predetermined. When 
a unit of some type is instantiated, the features are set. 
However, the values may change during the game play 
according to the game mechanics. For combat scenarios, the 
most relevant characteristics are the number of “damage 
points” that the unit may produce with its weapon, the rate of 
fire, and the number of “hit points” the unit can sustain before 
it is destroyed. When a unit hits the other, the value of the 
damage points converts into the hit points according to some 
function. Most RTS games try to simulate lifelike behavior of 
the combats. In this, the game mechanic ensures that the hits 
are not always 100% accurate. The calculation behind this can 
be very sophisticated. Frequently, the game engine tries to 
mimic the physical laws of nature and the behavior of actual 
weapons. The damage can be further reduced by the unit 
“shield” amount, the natural obstacles on the terrain, etc. 

The interaction between the units must be evaluated to 
derive the wining tactical strategy of the bot. Because of 
complex interaction and the sophisticated game mechanics, this 
can be time-consuming. An advance forecasted evaluation 
would be very beneficial. 

B. Search space

The search space for even the most general RTS game is
much larger than for any board game. A game like chess has a 
discrete number of possible states. In chess, there are 64 
possible places where a chess figure can be placed and only up 
to 32 pieces can be placed on the board at the same time. 
Furthermore, each piece has only a limited set of legal moves 
and interactions between the figures are limited. On the other 
hand, the RTS game is being played in continuous space. They 
are usually played in the large game world with real-type 
coordinates systems. Each unit can be placed almost anywhere 
on the game map. Furthermore, it is not uncommon that there 
are several hundred units interacting with each other at the 
same time. Also, the numbers of legal actions that can be taken 
with each unit are immense, and the interaction of one unit 
with the others may be very sophisticated.  

This paper systematically explores different aspects of 
inter-unit interaction. Firstly, a set of variables that can be 
influenced by the bot and a set of variables that are the result of 
interactions determined by the game-engine itself must be 
identified. In the end, the experiments require data mining 
techniques. Therefore, we decided to use similar nomenclature 
as in data warehousing. The “dimensions” represent the 
independent variables that can be affected directly by the bot. 
These are choosing type and the position of the unit and the 
performed action. The “facts” are some intrinsic characteristic 
of units, the observable results of the interactions and some 
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select threshold, maxNumberOfSimulations, timeLimit 

set attackUnitsSet = getDefinitionsOfAllAttackUnits() 

set buildingsSet = getDefinitionsOfAllStaticBuildings() 

for each attackUnit in attackUnitsSet do 

for each building in buildingsSet do 

set maxDamageRange = 

getMaxDamageRange(attackUnit) 

set pointsSet =  

getValidPoints (building, attackUnit, 

maxDamageRange) 

set smallSetOfPoints = getFewPoints(pointsSet) 

preTestingSimulation(attackUnit, building, 

smallSetOfPoints, threshold, size(pointsSet), 

maxNumberOfSimulations,  

out numberOfSimulationsNeeded,  

out timeEstimate) 

if numberOfSimulationsNeeded <=  

maxNumberOfSimulations  and 

timeEstimate <= timeLimit 

then 
set data = 

executeSimulation(attackUnit, 

building, pointsSet, 

numberOfSimulationsNeeded) 

addToRepositoryOfData(uniqueKey(attackUnit, 

building), map) 

else 

addToFailedSimulations(uniqueKey(attackUnit, 

building)) 

end if 

end for 

end for 

derived values important for the bot implementation. The 
intrinsic characteristics of units are the value of attributes 
defined by the game engine for each unit type. For example, a 
combat unit would have defined attributes such as the 
maximum damage per hit, maximum weapon range, maximum 
rate of fire, etc. The observables are defined by the result of 
interactions between the units. The most obvious one is how 
much damage is taken by each hit. This depends mostly on unit 
types, on relative position, velocity and alignment between the 
units. The amount of damage may be stochastic and determined 
with some continuous probabilistic function. In general, the 
observable facts are the only values available to the 
programmer. The inner working of the game engine is not 
usually revealed. The derived variables are determined from 
the other facts. For example, whereas the amount of damage 
taken is important, more important is the time during which 
one unit can completely destroy the other. In a one-to-one 
combat scenario, the unit with a shorter destruction time will 
almost certainly win. 

This research focuses on two observables: The amount of 
damage produced by the unit with each shot and the overall 
time required to completely destroy the opponent. The damage 
is measured in generic units imposed by the game-engine 
(called damage points). The time is measured in game-frames. 
Different spatial configurations of units are observed and 
observable facts are recorded. To cope with the stochastic 
nature of observables, experiments have to be repeated 
multiple times with the same configuration. A detailed 
probabilistic function of each variable is usually not needed. To 
reduce the complexity, the values can be converted into the 
discrete space by using binning or similar devices. 

The number of configurations included in the experiment 
can be reduced by knowing some intrinsic values of units, by 
observing symmetry, considering the rate of change of facts, 
etc. It is also possible that the relative angle between units has 
no significant impact on the results. Therefore, the results 
would depend only on the relative distance between the units. 
Also, the small changes in distance between the units would 
produce similar results. Therefore, the dimension of distance 
can be transformed from a continuous variable to a discrete 
one, using the intervals. The boundaries of those intervals are 
set by the amount of changes of the results. For example, the 
quantiles of measured probabilistic distribution function of the 
damage can be used. In an extreme case the distance has no 
effect on the results at all. Outside the maximum range of the 
weapon no hits are possible. Inside the weapon range the hits 
are equally probable regardless of the position. 

C. Intelligent automatic algorithm for creating reusable

simulation data

In this Chapter the algorithm written in universal form is
presented. It can be used in any classical real-time strategy 
game (the algorithm is presented in pseudocode). 

For the algorithm to work we: 

Presume - every game unit has a read-only attribute set 
available (usually presented in the form of unit definition). The 
game world can introduce variable factors (randomness) which 
contribute to small deviations when constant values are used 

during gameplay. Static units that fire back (e.g. a fortress with 
guns on top of it) are not supported. Dynamic units must fire. 
The engine must have support for the execution of independent 
simulations. 

Require - deviation from the relative damage value of the 
unit (threshold). A maximal number of simulations executed 
per point that meets the criteria on one pair of unit and 
building. A time limit for execution of one simulation (one pair 
of unit and building). A set of all unit definitions and a set of 
all building definitions.  

Define – point: The value of a point is set by the game 
engine and it represents the minimal amount of distance that a 
unit can travel on the map. 

Word descriptions are used for methods that are called 
inside the algorithm instead of the actual implementation. The 
reason for this lies in the fact that the implementation of the 
algorithm and its methods is dependent on the API’s, which are 
different for every game engine (in our case Spring engine). A 
specific implementation of the methods would only act as a 
distraction. Methods are described in the order that they first 
appear in the algorithm. 

getDefinitionsOfAllAttackUnits: The method obtains all 
unit definitions (set of read-only attributes) from the game 
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engine, sifts through them and returns only those units which 
have the capability of attack. 

getDefinitionsOfAllStaticBuildings: The method obtains 
and returns all unit definitions which have an in-game role set 
to a static building. 

getMaxDamageRange: The method receives as an attribute 
the unit definition set of the attacking unit. Then, a search is 
made through the attribute set. If a maximal damage range (the 
maximal range value from where a target can be hit) is found, 
the value is returned from the method. If the value is not found, 
the method executes the simulation that obtains it. Simulation = 
a unit is being moved point by point in a linear way from the 
center. For every point, execution of a test occurs, which 
determines if a unit can still hit the center. From the last point, 
from where the unit can still make the hit, and the center point, 
the distance is calculated and returned from the method. 

getValidPoints: The method receives three attributes: A 
definition set of a static building, a definition set of an 
attacking unit and the value of maximal damage range. 
Simulation is then executed which determines the valid points. 
All the valid points are returned from the method. Simulation = 
algorithm tries to position the attacking unit on a specific point 
on the battlefield. Every point in the circle is tested (with a 
radius of maximal damage range) around the building. If a unit 
cannot be set on a specific point the point is not valid (e.g. the 
game engine does not allow positioning of a unit on a specific 
point because there is an obstacle – a building is covering the 
point). If a unit can be positioned on a specific point the point 
is valid.     

getFewPoints: The method receives the whole set of valid 
points and returns a sample representative of five simulation 
points (e.g. Fig. 1).  

Figure 1.  Five simulation points 

Points that are returned must create linear (A-B and C-D) and 
circular (A-D, B-C) dependencies. Point E is chosen randomly 
(does not depend on points A, B, C and D). 

preTestingSimulation: The purpose of the method is to get 
the minimal number of simulations needed to satisfy the 
threshold (maximal deviation from the relative damage value 
of the unit) parameter and to get the time estimate of the whole 
simulation. Input parameters into the method are: (i) a 
definition set of the attacking unit, (ii) a definition set of the 

building, (iii) small set of points, (iv) the maximal threshold 
deviation that must be satisfied and (v) the maximal number of 
simulations that can be executed on a single point. If the 
maximal number of simulations is reached, but the threshold is 
not yet satisfied, the output of the number of simulations 
needed is set to maxNumberOfSimulations + 1.  

executeSimulation: The method receives the following 
parameters: (i) a definition set of the attacking unit, (ii) a 
definition set of the building, (iii) a set of all the points and (iv) 
the number of simulations to run on every point. The method 
executes the simulation on all the points and returns/saves the 
simulation data. Simulation = is a series of smaller simulations, 
where the attacking unit is set systematically on every point of 
the points set and is shooting at the structure until the structure 
is destroyed. Every simulation is recorded and saved. 

uniqueKey: Returns a unique key consisting of a pair, attack 
unit and building. 

addToRepositoryOfMaps: Created data is saved in a data 
storage under a unique key for further use. 

addToFailedSimulations: If execution of the simulations 
has failed, the unique key is saved into a data structure of failed 
simulations. 

IV. ASSESSMENT OF ALGORITHM FEASIBILITY

A. Experiment: Game engine setup and data storing

Experiment was conducted with the real-time strategy game
engine Spring. Spring is a free and open-source 3D game 
engine, which was developed originally to bring the game 
Total Annihilation back to life, but has since then got support 
some other games. The experiment was carried out with the 
game Balanced Annihilation 7.63. Game options were left at 
default except that the option “No Unit Wrecks” was enabled. 
Game speed was set to 1.0 to avoid any random effects that 
could be caused by the game engine with increased game speed 
[8]. The map “blue fields” was used where the y coordinate 
does not change (flat map). We developed two game bots 
(dynamic and static unit) in the JAVA programing language. 
Dynamic units were tanks (game unit name “armstump”), static 
units were non-attacking buildings (game unit name “armlab”). 
Simulations were run simultaneously on ten Intel Core i3-4130 
CPU @3.40 GHz, 8GB RAM and GeForce GT-610 computers 
using the Windows 7 operating system. RAW data from each 
simulation was collected and stored in an opensource NoSql 
database – MongoDB. MongoDB database was setup on a 
central server. Raw data was saved asynchronously, in the 
simulation cleanup phase - so there were no time/lag effects on 
the game play. 

Before simulation start, a set of unit definitions from the 
game engine was retrieved. From the dynamic unit definitions 
information about the maximum weapon range was obtained, 
which gave us a circle of all valid locations. This is known as 
the Gauss circle problem. An experiment was ran to confirm 
that a unit cannot be set to a location where a unit from another 
team is. The Spring game engine moves a second unit to the 
closest available point if the point in question is not available 
(making the point invalid). Based on that information, all 
locations covered by the building were removed (Fig. 2). Pre-
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testing simulation was conducted on previously selected points 
(Fig. 1). The threshold was set to 0.151 (the threshold number 
was set by observing the results of a few previous test runs, 
where the damage difference between maximal and minimal 
value stabilized at the range of 10^-3) and a maximal number 
of simulations was set to 1000. Pre-testing simulations gave us 
a time estimation of 30 seconds for each simulation and 182 
runs needed at one location. 

Figure 2.    Image showing 2D view of all valid points 

In simulations the static unit was always set at the same 
location in the center of the circle (relative position [0, 0]) and 
a dynamic unit on each location in the set of valid locations. 
When both units were set to map, the dynamic unit started to 
shoot at the static unit. After each shot at the static unit the 
Spring engine triggered an event where damage and the current 
frame were stored. When the static unit was destroyed the 
current location of the dynamic unit, current time, number of 
passed frames since positioning both buildings on the map and 
all the damages with corresponding times were saved to the 
database. 

B. Assessment of large data acquisition

The whole data consisted finally of roughly 50 million
JSON objects. It took 13 days to gather this data. From the 
practical point of view that is a long time and massive volume 
of data for just one data gathering, but from the theoretical 
viewpoint it not only shows such a thing is possible to do in the 
foreseeable future but also that it can be done with relatively 
cheap equipment. 

This experiment was focused on the mean, minimum and 
maximum of the gathered values. To evaluate the spreading of 
values and the significance of measured results we also 
evaluated the standard deviation. 5% of collected RAW data 
was not valid, due to randomness of bot straying or halting. 
This was traced back to the game engine and data was 
excluded from final calculations. JSON simulation object 
included data about damage (min, max, avg), time related 
information (start frame, end frame, frame difference) and 
location details (posX, posY). 

Gathered RAW data indicated that there is no significant 
difference in damage related to attack bot location (standard 
deviation of average damage was 0.1%). Data mining process 
identified other significant information related to time 
diference (frame diference with a standard deviation of 3.6%). 

Basic RAW data can be observed in Table I (frames and 
damage points are presented), where unit position is ignored 
and no additional information processing was performed to 
preserve data integrity. 

TABLE I. PRESENTATION OF RAW DATA 

Min. Max. Avg. St. dev. Diff. 

Time 960 1050 1013 3.62 90 

Damage 85,02 89,91 86,94 0,03 4,89 

For instance, a combination of bot location, damage 
performed and kill speed (frame difference) could be used for 
data inquiry about attack bots next move. However, more 
detailed data mining has to be performed to confirm this 
hypothesis.  

V. DISCUSSION AND CONCLUSION

The main point of this article was to introduce an intelligent 
automatic algorithm for creating reusable simulation data and 
to assess the feasibility of acquiring such data. To test the 
feasibility of acquiring large data an experiment that consisted 
of running the algorithm for one iteration was designed. The 
experiment was run at the native game speed of 1.0 which, on 
ten standard office computers, took roughly two weeks to 
complete. It is a long time for executing one iteration, but there 
are a lot of improvements that can speed up the experiment 
significantly. The most obvious one would be to run the 
experiment at a game speed of 10.0. This would lower the 
experimentation time to roughly one day, but the randomness 
impact would also have to be assessed so that results can be 
scaled back to the speed of 1.0. The pre-experimentation 
showed that our computer resources allow a game speed of 
10.0, without introducing a lag between frames which could 
influence the experimentation and lead to unreliable data. 

Another improvement would be to run the experimentation 
without actually running graphical interface (rendering of game 
objects uses a lot of computer resources), which would enable 
even higher game speeds with no lag between frames. It would 
also make possible to run parallel game engine instances on a 
multi-core processors. A game engine currently only uses one 
core with others being idle and it allows only one active game 
instance. If virtual machines are used the problem of multiple 
instances of game engine accessing graphic drivers occurs. No 
graphical interface rendering could solve this problem. 

Improvements on the experimentation data collection side 
are also possible. For one iteration run of the algorithm all 
RAW data is saved. That allow us to process and analyze the 
data with different big data techniques, which could lead to 
learning new knowledge in the future. For practical use, there 
is no need to save all the data that simulations create. Data can 
be processed and information that is needed extracted while the 
experiments run (for example on a dedicated data server). 

Current state-of-the-art research is focused on the game 
engine of StarCraft: BroodWar™ 1.16.1 (SC: BW for short) 
with an application programming interface called BWAPI, 
which enables replacing the player interface with C++ code. 
BWAPI for SC: BW allows running the game with different 
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speeds and without using graphical interface. If we extrapolate 
the one day needed for the experiment in Spring to the SC: BW 
(with full knowledge that the differences between game 
engines could lead to different experiment execution times), it 
means that, to make a complete universal algorithm run it 
would take 144 days (race Terran - for all the combinations of 
non-upgraded eight ground units to eighteen buildings). The 
time needed for experiments is linearly dependent with the 
computer resources available, meaning that the actual running 
time would be much lower in practice. 

To conclude, our experiment of a universal algorithm on 
the RTS game engine Spring showed that it is feasible to gather 
every data that an attacking unit does on a building on a flat 
terrain in foreseeable time. This also proves that, although the 
RTS games have an enormous overall game complexity, 
reducing the complexity by brute forcing of specific 
(sub)segments is actually feasible, and the data acquired can be 
used for further use. If the scenario of “one-on-one” scales up 
to “many-to-one”, or even “many-to-many”, combat scenarios, 
that would be a significant improvement in the field of state 
space abstraction. 
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