
Abstract— Real-time strategy games are of such high complexity

that consideration of trying to brute force all actions and states is

not only impractical, but impossible. Approximations,

information abstractions, and models are, therefore, the necessity

when creating game bots that play this genre of games. To create

such bots, the detailed data is needed to base them on. This

article introduces a universal algorithm that creates reusable

simulation data of one attacking unit on a building and tests the

feasibility of doing such a task. This paper concludes that

capturing all relevant data in a sub-segment of real-time strategy

games is feasible. Gathered data holds valuable information and

can be reused in new research without the need of repeating the

simulations.

Keywords - real-time strategy games; simulation; game data;

game engine; Spring; game bot; AI

I. INTRODUCTION

Tic-tac-toe and chess are two examples of games widely
known to the general population as classic board games`
representatives, with a playing history of more than a thousand
years. Strategy games, which are the main point of interest in
this article, are based on classic board games. Game mechanics
(and gameplay) are very alike. Players perform in turns.
Players use different strategies to try to gain an advantage over
one or more opponents by making moves over a series of turns.
During the game, the outcome of each move is evaluated, with
the possibility of adapting the strategy to the new
circumstances.

Real-Time Strategy (RTS) games are a sub-genre of
computer strategy games. They are usually the simulations of
war games, with many aspects which must be taken into
account by players. Aspects can be of different points of view:
Hierarchy abstraction (strategy, tactics, reactive control),
gameplay behavior (resource gathering, diplomacy,
intelligence gathering, terrain analysis, etc.), game world
mechanics (uncertainty, partial information, luck, non-
deterministic behavior, etc.)... The point of view is dependent
on the covered abstraction to be taken into account. Therefore,
computer operated players (game bots or bots for short) are of
high complexity and must process huge amounts of data and
information in a very short time frame.

For a bot to be successful in playing an RTS game it can
resort to extensive processing of game world information
(before actually making a move), which includes, but is not
limited to: Executing simulations of common battle scenarios,
building models and representations of the game worlds,
creating knowledge databases, searching for patterns, etc.
Execution of simulations is an especially interesting choice for
offline (and to some extent also for online) processing and was
the method of choice for many research articles (more about it
in the Chapter on Related Work). Time and computer resource
demands can be so high (which are typically just a precise part
of the gameplay, e.g. scenario of two tanks battling two rocket
marines) that the extent of performed simulations is very
limited.

The problem of limits hinders the size of performed
simulations. Simulations are limited currently by attributes
such as: The number of units that can battle, proportions of
scenario game world size, time needed for executing low-level
game commands, etc. In this article, the feasibility of brute
forcing the specific segment of battle in advance, which will
create reusable simulation data, is studied. To reach our goal
the intelligent automatic algorithm was designed. Algorithm is
universal across different game worlds and game rules. The
core of the algorithm executes basic simulations using low-
level game commands (that can, because of their low-
complexity, be performed in reasonable time) and creates a
large volume of reusable simulation data. Data extraction and
purification can serve for tackling the problems of various
segments of RTS game worlds (abstraction of the game world
information space will lower search space).

The structure of this paper is as follows. Related work is
presented in the second Chapter. In the third Chapter, the
universal algorithm background is introduced and search space
size is discussed in more detail. The requirements for algorithm
are set and the universal design is created. In the fourth
Chapter, the experiment and algorithm assessment feasibility is
made, based on a large data acquisition. In the fifth Chapter,
possible improvements for faster data gathering and an
extrapolation are discussed, related to the current state-of-the-
art game engine StarCraft™. This paper concludes with a
positive feasibility evaluation of our universal algorithm.

Universal Algorithm for Creating A Small Scale
Reusable Simulation Data in Real-time Strategy

Games
Damijan Novak, Aleš Čep, Kristjan Košič, Domen Verber

University of Maribor

Maribor, Slovenia

DOI: 10.5176/2251-3043_5.2.364

GSTF Journal on Computing (JoC) Vol.5 No.2, January 2017

© The Author(s) 2017. This article is published with open access by the GSTF

13

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by GSTF Digital Library (GSTF-DL): Open Journal Systems (Global Science and Technology...

https://core.ac.uk/display/275908799?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II. RELATED WORK

What sets RTS games apart from other games is their
general complexity. Game complexity is best presented with
the branching factor, b, and the depth of the game, d. This
gives us a total game complexity of bd [1]. Comparing game
complexity between the game of chess (the complexity is set
to be b 35, d 80) and a very famous commercial RTS
game StarCraft™ (an estimate of b [1050, 10200], d 36000).
Games are a magnitude of complexity classes apart [2]. Chess
is not an easy game problem, yet, a computer program beat the
World Chess Champion so long ago (the year 1997) that it is
now considered history and it may not be the best comparison
anymore. The game of Go, which is the latest of the games that
attracted lots of media attention after AlphaGo beat a world-
class player, has a game complexity of b 30 – 300, d 150 –
200 [3]. This is a considerable step up in complexity, but still
far away from the complexity of RTS games, which is the
consequence of the enormous search space (more about search
space in the Chapter 3. B).

Computationally playing combat games with excelence is
hard [4] and in practice approximations are being used. The
goal of this line of research (approximations) is to handle larger
combat scenarios with more than 20 units on each side in real-
time (current real-time varies in the range of 8 vs. 8 units). The
authors also stated that new spatial and unit group abstractions
are needed to reduce the size of the state space [5].

In [6] they found appropriate solutions to their anti-group
selection problem by offline learning and employment of a
simple lookup procedure. They didn’t need to execute
simulations because the learning process was performing well
with correctly chosen and simple substitute objective function
(caution, it must be stated that only the relative strength of
units was considered, not including parameters such as the
speed of units).

Compact representation of group behaviors in a combat as a
combination of influence maps and potential fields’ parameter
had a restricted search space to 248 [7]. Authors state that
genetic algorithms always find high-quality solutions, while
faster methods (like Hill Climber) find quality solutions in 50%
to 70% of the time.

If we combine all the mentioned information in the above
articles an association thinking pattern emerges, which reads as
follows: Obviously, search space of RTS games is too big even
to start considering trying every possible game action.
Therefore, in practice, approximations are necessary.
Executing time and resources expensive simulations for every
cycle, a result of a decision in advance is not always necessary.
Usage of restricted search spaces can still produce satisfying
and quality results. Information can be captured in different
forms of knowledge and data representations.

In the following Chapter practical use of thinking pattern is
applied.

III. UNIVERSAL ALGORITHM

A. Background

During the game-play, the player (or bot) chooses some
units and commences some commands (e.g. move, shoot,

harvest, etc.). The player can combine moving and some other
commands into one directive. For example, she/he may initiate
the attack to an adjacent opponent’s unit which is out of range
for the given weapon. The game engine will initiate the
movement toward the target (using some path finding
algorithm) and commence firing when the target is in range.

The units in a game are categorized into several unit types.
Each unit type has a set of characteristics (attributes) that
determine the essential behavior and the outcome of interaction
of the units with the environment and with the other units in the
game. Initial values of those features are predetermined. When
a unit of some type is instantiated, the features are set.
However, the values may change during the game play
according to the game mechanics. For combat scenarios, the
most relevant characteristics are the number of “damage
points” that the unit may produce with its weapon, the rate of
fire, and the number of “hit points” the unit can sustain before
it is destroyed. When a unit hits the other, the value of the
damage points converts into the hit points according to some
function. Most RTS games try to simulate lifelike behavior of
the combats. In this, the game mechanic ensures that the hits
are not always 100% accurate. The calculation behind this can
be very sophisticated. Frequently, the game engine tries to
mimic the physical laws of nature and the behavior of actual
weapons. The damage can be further reduced by the unit
“shield” amount, the natural obstacles on the terrain, etc.

The interaction between the units must be evaluated to
derive the wining tactical strategy of the bot. Because of
complex interaction and the sophisticated game mechanics, this
can be time-consuming. An advance forecasted evaluation
would be very beneficial.

B. Search space

The search space for even the most general RTS game is
much larger than for any board game. A game like chess has a
discrete number of possible states. In chess, there are 64
possible places where a chess figure can be placed and only up
to 32 pieces can be placed on the board at the same time.
Furthermore, each piece has only a limited set of legal moves
and interactions between the figures are limited. On the other
hand, the RTS game is being played in continuous space. They
are usually played in the large game world with real-type
coordinates systems. Each unit can be placed almost anywhere
on the game map. Furthermore, it is not uncommon that there
are several hundred units interacting with each other at the
same time. Also, the numbers of legal actions that can be taken
with each unit are immense, and the interaction of one unit
with the others may be very sophisticated.

This paper systematically explores different aspects of
inter-unit interaction. Firstly, a set of variables that can be
influenced by the bot and a set of variables that are the result of
interactions determined by the game-engine itself must be
identified. In the end, the experiments require data mining
techniques. Therefore, we decided to use similar nomenclature
as in data warehousing. The “dimensions” represent the
independent variables that can be affected directly by the bot.
These are choosing type and the position of the unit and the
performed action. The “facts” are some intrinsic characteristic
of units, the observable results of the interactions and some

GSTF Journal on Computing (JoC) Vol.5 No.2, January 2017

© The Author(s) 2017. This article is published with open access by the GSTF

14

select threshold, maxNumberOfSimulations, timeLimit

set attackUnitsSet = getDefinitionsOfAllAttackUnits()

set buildingsSet = getDefinitionsOfAllStaticBuildings()

for each attackUnit in attackUnitsSet do

for each building in buildingsSet do

set maxDamageRange =

getMaxDamageRange(attackUnit)

set pointsSet =

getValidPoints (building, attackUnit,

maxDamageRange)

set smallSetOfPoints = getFewPoints(pointsSet)

preTestingSimulation(attackUnit, building,

smallSetOfPoints, threshold, size(pointsSet),

maxNumberOfSimulations,

out numberOfSimulationsNeeded,

out timeEstimate)

if numberOfSimulationsNeeded <=

maxNumberOfSimulations and

timeEstimate <= timeLimit

then
set data =

executeSimulation(attackUnit,

building, pointsSet,

numberOfSimulationsNeeded)

addToRepositoryOfData(uniqueKey(attackUnit,

building), map)

else

addToFailedSimulations(uniqueKey(attackUnit,

building))

end if

end for

end for

derived values important for the bot implementation. The
intrinsic characteristics of units are the value of attributes
defined by the game engine for each unit type. For example, a
combat unit would have defined attributes such as the
maximum damage per hit, maximum weapon range, maximum
rate of fire, etc. The observables are defined by the result of
interactions between the units. The most obvious one is how
much damage is taken by each hit. This depends mostly on unit
types, on relative position, velocity and alignment between the
units. The amount of damage may be stochastic and determined
with some continuous probabilistic function. In general, the
observable facts are the only values available to the
programmer. The inner working of the game engine is not
usually revealed. The derived variables are determined from
the other facts. For example, whereas the amount of damage
taken is important, more important is the time during which
one unit can completely destroy the other. In a one-to-one
combat scenario, the unit with a shorter destruction time will
almost certainly win.

This research focuses on two observables: The amount of
damage produced by the unit with each shot and the overall
time required to completely destroy the opponent. The damage
is measured in generic units imposed by the game-engine
(called damage points). The time is measured in game-frames.
Different spatial configurations of units are observed and
observable facts are recorded. To cope with the stochastic
nature of observables, experiments have to be repeated
multiple times with the same configuration. A detailed
probabilistic function of each variable is usually not needed. To
reduce the complexity, the values can be converted into the
discrete space by using binning or similar devices.

The number of configurations included in the experiment
can be reduced by knowing some intrinsic values of units, by
observing symmetry, considering the rate of change of facts,
etc. It is also possible that the relative angle between units has
no significant impact on the results. Therefore, the results
would depend only on the relative distance between the units.
Also, the small changes in distance between the units would
produce similar results. Therefore, the dimension of distance
can be transformed from a continuous variable to a discrete
one, using the intervals. The boundaries of those intervals are
set by the amount of changes of the results. For example, the
quantiles of measured probabilistic distribution function of the
damage can be used. In an extreme case the distance has no
effect on the results at all. Outside the maximum range of the
weapon no hits are possible. Inside the weapon range the hits
are equally probable regardless of the position.

C. Intelligent automatic algorithm for creating reusable

simulation data

In this Chapter the algorithm written in universal form is
presented. It can be used in any classical real-time strategy
game (the algorithm is presented in pseudocode).

For the algorithm to work we:

Presume - every game unit has a read-only attribute set
available (usually presented in the form of unit definition). The
game world can introduce variable factors (randomness) which
contribute to small deviations when constant values are used

during gameplay. Static units that fire back (e.g. a fortress with
guns on top of it) are not supported. Dynamic units must fire.
The engine must have support for the execution of independent
simulations.

Require - deviation from the relative damage value of the
unit (threshold). A maximal number of simulations executed
per point that meets the criteria on one pair of unit and
building. A time limit for execution of one simulation (one pair
of unit and building). A set of all unit definitions and a set of
all building definitions.

Define – point: The value of a point is set by the game
engine and it represents the minimal amount of distance that a
unit can travel on the map.

Word descriptions are used for methods that are called
inside the algorithm instead of the actual implementation. The
reason for this lies in the fact that the implementation of the
algorithm and its methods is dependent on the API’s, which are
different for every game engine (in our case Spring engine). A
specific implementation of the methods would only act as a
distraction. Methods are described in the order that they first
appear in the algorithm.

getDefinitionsOfAllAttackUnits: The method obtains all
unit definitions (set of read-only attributes) from the game

GSTF Journal on Computing (JoC) Vol.5 No.2, January 2017

© The Author(s) 2017. This article is published with open access by the GSTF

15

engine, sifts through them and returns only those units which
have the capability of attack.

getDefinitionsOfAllStaticBuildings: The method obtains
and returns all unit definitions which have an in-game role set
to a static building.

getMaxDamageRange: The method receives as an attribute
the unit definition set of the attacking unit. Then, a search is
made through the attribute set. If a maximal damage range (the
maximal range value from where a target can be hit) is found,
the value is returned from the method. If the value is not found,
the method executes the simulation that obtains it. Simulation =
a unit is being moved point by point in a linear way from the
center. For every point, execution of a test occurs, which
determines if a unit can still hit the center. From the last point,
from where the unit can still make the hit, and the center point,
the distance is calculated and returned from the method.

getValidPoints: The method receives three attributes: A
definition set of a static building, a definition set of an
attacking unit and the value of maximal damage range.
Simulation is then executed which determines the valid points.
All the valid points are returned from the method. Simulation =
algorithm tries to position the attacking unit on a specific point
on the battlefield. Every point in the circle is tested (with a
radius of maximal damage range) around the building. If a unit
cannot be set on a specific point the point is not valid (e.g. the
game engine does not allow positioning of a unit on a specific
point because there is an obstacle – a building is covering the
point). If a unit can be positioned on a specific point the point
is valid.

getFewPoints: The method receives the whole set of valid
points and returns a sample representative of five simulation
points (e.g. Fig. 1).

Figure 1. Five simulation points

Points that are returned must create linear (A-B and C-D) and
circular (A-D, B-C) dependencies. Point E is chosen randomly
(does not depend on points A, B, C and D).

preTestingSimulation: The purpose of the method is to get
the minimal number of simulations needed to satisfy the
threshold (maximal deviation from the relative damage value
of the unit) parameter and to get the time estimate of the whole
simulation. Input parameters into the method are: (i) a
definition set of the attacking unit, (ii) a definition set of the

building, (iii) small set of points, (iv) the maximal threshold
deviation that must be satisfied and (v) the maximal number of
simulations that can be executed on a single point. If the
maximal number of simulations is reached, but the threshold is
not yet satisfied, the output of the number of simulations
needed is set to maxNumberOfSimulations + 1.

executeSimulation: The method receives the following
parameters: (i) a definition set of the attacking unit, (ii) a
definition set of the building, (iii) a set of all the points and (iv)
the number of simulations to run on every point. The method
executes the simulation on all the points and returns/saves the
simulation data. Simulation = is a series of smaller simulations,
where the attacking unit is set systematically on every point of
the points set and is shooting at the structure until the structure
is destroyed. Every simulation is recorded and saved.

uniqueKey: Returns a unique key consisting of a pair, attack
unit and building.

addToRepositoryOfMaps: Created data is saved in a data
storage under a unique key for further use.

addToFailedSimulations: If execution of the simulations
has failed, the unique key is saved into a data structure of failed
simulations.

IV. ASSESSMENT OF ALGORITHM FEASIBILITY

A. Experiment: Game engine setup and data storing

Experiment was conducted with the real-time strategy game
engine Spring. Spring is a free and open-source 3D game
engine, which was developed originally to bring the game
Total Annihilation back to life, but has since then got support
some other games. The experiment was carried out with the
game Balanced Annihilation 7.63. Game options were left at
default except that the option “No Unit Wrecks” was enabled.
Game speed was set to 1.0 to avoid any random effects that
could be caused by the game engine with increased game speed
[8]. The map “blue fields” was used where the y coordinate
does not change (flat map). We developed two game bots
(dynamic and static unit) in the JAVA programing language.
Dynamic units were tanks (game unit name “armstump”), static
units were non-attacking buildings (game unit name “armlab”).
Simulations were run simultaneously on ten Intel Core i3-4130
CPU @3.40 GHz, 8GB RAM and GeForce GT-610 computers
using the Windows 7 operating system. RAW data from each
simulation was collected and stored in an opensource NoSql
database – MongoDB. MongoDB database was setup on a
central server. Raw data was saved asynchronously, in the
simulation cleanup phase - so there were no time/lag effects on
the game play.

Before simulation start, a set of unit definitions from the
game engine was retrieved. From the dynamic unit definitions
information about the maximum weapon range was obtained,
which gave us a circle of all valid locations. This is known as
the Gauss circle problem. An experiment was ran to confirm
that a unit cannot be set to a location where a unit from another
team is. The Spring game engine moves a second unit to the
closest available point if the point in question is not available
(making the point invalid). Based on that information, all
locations covered by the building were removed (Fig. 2). Pre-

GSTF Journal on Computing (JoC) Vol.5 No.2, January 2017

© The Author(s) 2017. This article is published with open access by the GSTF

16

testing simulation was conducted on previously selected points
(Fig. 1). The threshold was set to 0.151 (the threshold number
was set by observing the results of a few previous test runs,
where the damage difference between maximal and minimal
value stabilized at the range of 10^-3) and a maximal number
of simulations was set to 1000. Pre-testing simulations gave us
a time estimation of 30 seconds for each simulation and 182
runs needed at one location.

Figure 2. Image showing 2D view of all valid points

In simulations the static unit was always set at the same
location in the center of the circle (relative position [0, 0]) and
a dynamic unit on each location in the set of valid locations.
When both units were set to map, the dynamic unit started to
shoot at the static unit. After each shot at the static unit the
Spring engine triggered an event where damage and the current
frame were stored. When the static unit was destroyed the
current location of the dynamic unit, current time, number of
passed frames since positioning both buildings on the map and
all the damages with corresponding times were saved to the
database.

B. Assessment of large data acquisition

The whole data consisted finally of roughly 50 million
JSON objects. It took 13 days to gather this data. From the
practical point of view that is a long time and massive volume
of data for just one data gathering, but from the theoretical
viewpoint it not only shows such a thing is possible to do in the
foreseeable future but also that it can be done with relatively
cheap equipment.

This experiment was focused on the mean, minimum and
maximum of the gathered values. To evaluate the spreading of
values and the significance of measured results we also
evaluated the standard deviation. 5% of collected RAW data
was not valid, due to randomness of bot straying or halting.
This was traced back to the game engine and data was
excluded from final calculations. JSON simulation object
included data about damage (min, max, avg), time related
information (start frame, end frame, frame difference) and
location details (posX, posY).

Gathered RAW data indicated that there is no significant
difference in damage related to attack bot location (standard
deviation of average damage was 0.1%). Data mining process
identified other significant information related to time
diference (frame diference with a standard deviation of 3.6%).

Basic RAW data can be observed in Table I (frames and
damage points are presented), where unit position is ignored
and no additional information processing was performed to
preserve data integrity.

TABLE I. PRESENTATION OF RAW DATA

Min. Max. Avg. St. dev. Diff.

Time 960 1050 1013 3.62 90

Damage 85,02 89,91 86,94 0,03 4,89

For instance, a combination of bot location, damage
performed and kill speed (frame difference) could be used for
data inquiry about attack bots next move. However, more
detailed data mining has to be performed to confirm this
hypothesis.

V. DISCUSSION AND CONCLUSION

The main point of this article was to introduce an intelligent
automatic algorithm for creating reusable simulation data and
to assess the feasibility of acquiring such data. To test the
feasibility of acquiring large data an experiment that consisted
of running the algorithm for one iteration was designed. The
experiment was run at the native game speed of 1.0 which, on
ten standard office computers, took roughly two weeks to
complete. It is a long time for executing one iteration, but there
are a lot of improvements that can speed up the experiment
significantly. The most obvious one would be to run the
experiment at a game speed of 10.0. This would lower the
experimentation time to roughly one day, but the randomness
impact would also have to be assessed so that results can be
scaled back to the speed of 1.0. The pre-experimentation
showed that our computer resources allow a game speed of
10.0, without introducing a lag between frames which could
influence the experimentation and lead to unreliable data.

Another improvement would be to run the experimentation
without actually running graphical interface (rendering of game
objects uses a lot of computer resources), which would enable
even higher game speeds with no lag between frames. It would
also make possible to run parallel game engine instances on a
multi-core processors. A game engine currently only uses one
core with others being idle and it allows only one active game
instance. If virtual machines are used the problem of multiple
instances of game engine accessing graphic drivers occurs. No
graphical interface rendering could solve this problem.

Improvements on the experimentation data collection side
are also possible. For one iteration run of the algorithm all
RAW data is saved. That allow us to process and analyze the
data with different big data techniques, which could lead to
learning new knowledge in the future. For practical use, there
is no need to save all the data that simulations create. Data can
be processed and information that is needed extracted while the
experiments run (for example on a dedicated data server).

Current state-of-the-art research is focused on the game
engine of StarCraft: BroodWar™ 1.16.1 (SC: BW for short)
with an application programming interface called BWAPI,
which enables replacing the player interface with C++ code.
BWAPI for SC: BW allows running the game with different

GSTF Journal on Computing (JoC) Vol.5 No.2, January 2017

© The Author(s) 2017. This article is published with open access by the GSTF

17

speeds and without using graphical interface. If we extrapolate
the one day needed for the experiment in Spring to the SC: BW
(with full knowledge that the differences between game
engines could lead to different experiment execution times), it
means that, to make a complete universal algorithm run it
would take 144 days (race Terran - for all the combinations of
non-upgraded eight ground units to eighteen buildings). The
time needed for experiments is linearly dependent with the
computer resources available, meaning that the actual running
time would be much lower in practice.

To conclude, our experiment of a universal algorithm on
the RTS game engine Spring showed that it is feasible to gather
every data that an attacking unit does on a building on a flat
terrain in foreseeable time. This also proves that, although the
RTS games have an enormous overall game complexity,
reducing the complexity by brute forcing of specific
(sub)segments is actually feasible, and the data acquired can be
used for further use. If the scenario of “one-on-one” scales up
to “many-to-one”, or even “many-to-many”, combat scenarios,
that would be a significant improvement in the field of state
space abstraction.

REFERENCES

[1] G. Synnaeve, “Bayesian Programming and Learning for Multi-Player
Video Games,” Ph.D. dissertation, Universite de Grenoble, 2012.

[2] S. Ontanon, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill, and M.
Preuss, “A Survey of Real-Time Strategy Game AI Research and
Competition in StarCraft,” in IEEE Trans. on Comput. Intell. and AI in
Games, vol. 5, no. 4, pp. 293–311, 2013.

[3] G. Synnaeve and P. Bessiere, “Multi-scale Bayesian modeling for RTS
games: an application to StarCraft AI,” in IEEE Trans. on Comput.
Intell. and AI in Games, 2015, in press.

[4] T. M. Furtak and M. Buro, “On the complexity of two-player attrition
games played on graphs,” in Sixth Artificial Intelligence and Interactive
Digital Entertainment Conference, 2010.

[5] D. Churchill, S. Abdallah, and B. Michael, “Fast heuristic search for rts
game combat scenarios,” in AIIDE, 2012.

[6] N. Beume, T. Hein, B. Naujoks, N. Piatkowski, M. Preuss, and S.
Wessing, “Intelligent anti-grouping in real-time strategy games,” in
IEEE Symposium On Computational Intelligence and Games, pp. 63-70,
2008.

[7] S. Liu, S. J. Louis, and M. Nicolescu, “Comparing heuristic search
methods for finding effective group behaviors in RTS game,” in IEEE
Congress on Evolutionary Computation, pp. 1371-1378, 2013.

[8] S. Liu, S. J. Louis, and C. Ballinger, “Evolving effective micro
behaviors in RTS game,” in IEEE Conference on Computational
Intelligence and Games, pp. 1-8, 2014.

Damijan Novak graduated in 2011 in Computer Science at
the Faculty of Electrical Engineering and Computer
Science at the University of Maribor. He is currently a
Teaching Assistant and post-graduate student at the
Faculty where he received his academic degree. His
current research subjects are Computational intelligence and
Artificial intelligence in computer games.
[damijan.novak@um.si]

Aleš Čep graduated in 2014 in Computer Science at the

Faculty of Electrical Engineering and Computer Science at

the University of Maribor, Slovenia. He is currently a

Teaching Assistant and postgraduate student at the same

Faculty. His current research subjects are ubiquitous

computing and computer games. [ales.cep@um.si]

Kristjan Košič graduated in Computer Science at the Faculty

of Electrical Engineering and Computer Science at the

University of Maribor, Slovenia. He is currently a Teaching

Assistant and postgraduate student at the same Faculty. His

current research subjects are ubiquitous computing, human

computer interaction and big data. [kristjan.kosic@um.si]

Authors' Profile

Domen Verber is an Assistant Professor at the Faculty of
Electrical Engineering and Computer Science at the
University of Maribor. His main research subjects are
Ubiquitous computing, High performance computing and
Computer games. He has published numerous papers in
international journals, books, and conference proceedings.
[domen.verber@um.si]

GSTF Journal on Computing (JoC) Vol.5 No.2, January 2017

© The Author(s) 2017. This article is published with open access by the GSTF

18

