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Abstract—Pattern recognition is the act of taking 
in raw data and taking an action based on the 
category of the pattern. DNA pattern recognition 
has applications in almost any field. It has 
applications in forensics, genetic engineering, bio 
informatics, DNA nanotechnology, history and so 
on. The size of the DNA molecules can be very 
large that it is a tedious task to perform pattern 
recognition for the same using common 
techniques. Hence this paper describes the pattern 
recognition for DNA molecules using the concept 
of Turing Machines. It also performs a simulation 
of the standard Turing Machine that performs 
DNA pattern recognition on the Universal Turing 
Machine. 
 
Index Terms— DNA, DPRTM, delta rule, JFLAP, 
transitions, Turing Machine, UTM. 
 

I. INTRODUCTION 
 

    Pattern recognition is the act of taking in raw data 
and taking an action based on the category of the 
pattern. The patterns to be classified are usually 
groups of measurements or observations, defining 
points in an appropriate multidimensional space. 

Pattern recognition can be done for any form of 
data that follows a specific pattern. The class of data 
includes images, binary data, decimal data and so on. 
This paper aims at performing the pattern recognition 
for DNA molecules using the concept of Turing 
Machines. 

 DNA molecules follow a specific pattern as they 
are composed of four constituents, Adenine, 
Thymine, Cytosine and Guanine. DNA pattern 
recognition involves feeding a specific DNA pattern  
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and checking whether the pattern is present in the 
original DNA molecule. DNA pattern recognition has 
many applications in the fields of Genetic 
engineering, Forensics, Bioinformatics, DNA 
nanotechnology, History and anthropology and so on. 
The DNA molecules have a very long structure. It is 
very difficult to represent and manipulate it using 
common data structures. The pattern recognition 
involves input DNA pattern which can be even 
thousands of bit long and the original DNA structure 
will be much longer. A Turing Machine is a solution 
to this problem. A Turing Machine has infinite 
memory extendable in both directions. This paper 
implements the Pattern search for DNA molecules 
using the concept of automata and Turing Machines.  

An automaton is a mathematical model for a finite 
state machine (FSM). A FSM is a machine that, given 
an input of symbols and transitions, jumps through a 
series of states according to a transition function. 
Turing Machines are the most powerful 
computational machines. They possess an infinite 
memory in the form of a tape, and a head which can 
read and change the tape, and move in either 
direction along the tape. Turing machines are 
equivalent to algorithms, and are the theoretical basis 
for modern computers. A Turing machine that is able 
to simulate any other Turing machine is called a 
Universal Turing Machine (UTM, or simply a 
universal machine). 

A UTM is the abstract model for all computational 
models. A UTM TU   is an automaton that, given as 
input the description of any Turing Machine TM and a 
string w, can simulate the computation of M on w. 
JFLAP represents a Turing Machine as a directed 
graph. In JFLAP, the simulation of a Turing Machine 
TM in a UTM TU  is performed by providing as input 
the encoded string <TM ,w>, where w is an input 
string for TM.  

The encoding is performed such that the string has 
three sections: list of final states, transitions of TM 

and the tape contents of TM prior to the start of 
execution. After each transition rule is simulated, TU 
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enters the final check section to determine if TM  has 
entered a final state. 

 
II. DNA PATTERN RECOGNITION IN TURING 

MACHINES 

The DNA molecule is composed of four 
constituents, Adenine, Thymine, Cytosine and 
Guanine.  These constituents are represented with the 
letters A, T, C and G respectively. DNA pattern 
recognition involves feeding a specific DNA pattern 
and checking whether the pattern is present in the 
original DNA molecule. The four constituents of the 
structure, A, C, G and T are represented in binary 
format. The search involves providing a DNA pattern 
in the binary format and performing the operation on 
the Turing Machine which contains the original DNA 
structure in the binary format as well. This is encoded 
and given to the UTM along with the standard Turing 
Machine [1]. 

The DPRTM searches the original DNA pattern for 
the search pattern. The DPRTM algorithm works on 
the basis of an underlying linear search algorithm. 
The first symbol of the search pattern is marked and 
compared with the symbols in the original pattern. If 
the search becomes successful, the second symbol of 
the search pattern is marked and compared with the 
next symbol, where the symbol was first matched in 
the original pattern. This procedure continues till 
either the complete search pattern has been 
successfully matched in the original pattern or there 
is a mismatch in the symbols in the search pattern 
and the original pattern [4, 5]. 

The input to the UTM is encoded such that it 
contains three sections: (1) A list of the final states of 
TM , (2) The transitions of TM, (3) The tape contents 
of TM just prior to the start of execution. After each 
transition rule is simulated, TU enters the final state 
check section to determine if TM has entered a final 
state.  

A.  DNA Pattern Recognition 
The four constituents of the structure, A, C, G and 

T are represented in binary format. The binary 
representation is given in Table 1. 

 
Table 1. Binary Representation of DNA constituents 

 DNA 
Constituent 

Corresponding Binary 
Screen 

A 00 
C 01 
G 10 
T 11 
 
 

For example a sample DNA sequence 
TTAAGGACCCCATGCCCTCGAATAGGCTTGA
GCTTGCCAATTAACGCGCACGGCTGGCCG…

… 
can be represented in binary format as 
1111000010100001010101001110010101110110000
0110010100111111000100111111001010000111100
0001100110010001101001111010010110……… 

The image of the structure of the DNA is obtained. 
This image is decomposed at its lowest pixel levels. 
The pattern recognition involves obtaining the DNA 
sample that is used as the search pattern as well as the 
original DNA pattern in binary format [2, 15].  

The DNA sample as well as the original pattern is 
fed to the TM. If a match is found the sample exists 
in the pattern, otherwise it does not. The 
implementation is done using the Turing Machine. 
The underlying algorithm is the linear search 
approach.  

The TM for linear search is implemented using 
forward linear search algorithm, in a recursive 
fashion. The DNA patterns are represented in binary 
notation with a blank symbol as the separator 
between the search pattern and the original pattern.  

 
B.  Working of the DNA Pattern Recognition 

Turing Machine 
The working of the DNA pattern recognition 

Turing Machine is explained in this section. The 
working can be explained with an example. The 
original DNA pattern consists of 
TCGGTGGTCATTACTGTACCGTACGATGCAC
GTACGCTGATGTAGCTGATAGTCGG…..  
and the DNA search pattern is GGTG. The original 
pattern is represented in binary format as 
1101101011101011010011000111101100010110110
0011000111001000110110001100111100011101100
100111100011001011011010……   
and the DNA search pattern in binary form is 
10101110. 

The input is given such that the search pattern is 
followed by a blank symbol which is followed by the 
original DNA pattern. 
10101110⁪110110101110101101001100011110110
0010110110001100011100100011011000110011110
0011101100100111100011001011011010 

The Standard Turing Machine for the DNA pattern 
Recognition (DPRTM) can be represented as 
TM = (Q, ∑, Γ, δ, q0, ⁪, F)                             (1)   
  
where 
Q= {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, 
∑= {1, 0, a, x, y, z} 
Γ= {1, 0, a, x, y, z, ⁪}, 
F= {10} 
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and δ is the transition function, q0 is the initial state 
and ⁪ is the blank tape symbol [6]. This DPRTM is 
given in Fig. 1. 

 
 

Fig. 1. DPRTM in execution 
 

The input to the UTM TU is given in the encoded 
format such that it contains three sections: list of final 
states, delta rules and the initial configuration of the 
input tape [12]. This is given in Fig. 2. 

 

 
 

Fig. 2. UTM performing DNA Pattern Recognition 
 
The Universal Turing Machine TU for the DPRTM   

can be given as 

TU = ( Q, ∑, Γ, δ, q0, ⁪, F )                   (2)              
  
where 
Q= {0, 1,2,3,4, 1001}, 
∑= {a, 1, 0, x, y, z} 
Γ= {a, 1, 0, x, y, ⁪}, 
F= {443} 
and δ is the transition function, q11 is the initial state 
and ⁪ is the blank tape symbol. 

The UTM is constructed by first creating the states 
and then creating the transitions.  

 

The DPR TM is implemented in JFLAP. For the 
standard TM the input is given directly and the 
execution trace can also be viewed. The TM halts in 
accepting state when a match is found [3].  

The DPRTM can be simulated in the Universal 
Turing Machine (UTM) also. The UTM reduces 
memory usage as compared to having multiple 
Turing Machines. The UTM halts in final state if a 
matching pattern is found in the original string. The 
UTM does the same as the DPRTM. If the DPRTM 
halts in accepting state, the UTM also halts and if the 
DPRTM halts in a non final state when a matching 
pattern is not found, the UTM also does the same 
[11]. 

The DNA patterns can be easily represented and 
manipulated in Turing Machines as they provide an 
infinite memory in the form of an infinite tape 
extendable in both directions. 

 
III. EXPERIMENTAL RESULTS AND PERFORMANCE 

EVALUATION 
 
 

A. Performance Analysis 
DNA Pattern Recognition Turing Machine 

(DPRTM) works very well for patterns of any length. 
There is no limit on the size of the input pattern as 
the tape of the Turing Machine is of infinite length. 
The various performance metrics are discussed in 
detail in this section. 
 
Success Rate 

Success rate refers to the ratio of the correct 
outputs obtained to the total number of outputs 
obtained.  
Success ratio (S) =  
     Total number of correct outputs obtained          (3) 
  Total number of outputs obtained 
 

The DPRTM halts in an accepting state when it 
successfully finds the search pattern in the original 
DNA pattern. The experiment has been performed 
using 250 samples and it has been found that the 
DPRTM has a success rate of 96.4 %. 

 
Space complexity 

Space complexity refers to the amount of storage 
space required by the problem. It is computed as a 
function of the input. For Turing Machines, the space 
complexity is computed as the number of tape cells 
required for the problem. Thus, for DPRTM as well 
as UTM, the space complexity is of the order O (n) 
where n is the number of tape cells occupied. 
 
Time Complexity 

The time complexity of an algorithm quantifies the 
amount of time taken by an algorithm. Time  
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complexity is calculated as a function of the size of 
the input to the problem. For Turing Machines, the 
time complexity can be measured as the number of 
steps taken to compute the result. For DPRTM, if the 
number of steps taken for computation is n, then the 
time complexity can be expressed as O (n). 
 
False Positives 

False Positive is the condition that the output 
obtained misleads to a correct result. The result is not 
correct exactly but it gives a misunderstanding that 
the result is true. To find the false positive rate of the 
project, the experiment was conducted using 250 
samples of varying length. DPRTM has a very low 
rate of false positive of 13.4 %.  
 
False Negatives 

False Negative leads the user to believe that the 
output obtained is false. The result is true actually but 
it gives a belief that it is not true. This is a very 
important factor as it misleads the user. The 
experiment was conducted with 250 test samples of 
DNA pattern and it has been found that DPRTM does 
not have any false negative. The False negative rate 
is 0%.  

The experiment has been performed using 250 
samples and it has been found that the DPRTM has a 
very good performance. The values obtained for the 
metrics is listed in Table 2. 

Table 2. Performance Evaluation of DPRTM 

Success rate 96.4 % 

space complexity O ( n) 
 

false positive 13.4 % 
 

False Negatives 0 % 
 

Success rate refers to the ratio of the correct 
outputs obtained to the total number of outputs 
obtained 

DPRTM has been compared with many other DNA 
pattern recognition techniques and the results has 
been analyzed and discussed in this section. 

B.  Comparison between DPRTM and 
Recurrent Neural Networks using False Positive 
metric 

 
A recurrent neural network (RNN) is a class of 

neural network where connections between units 
form a directed cycle. This creates an internal state of 
the network which allows it to exhibit dynamic 

temporal behavior. A recurrent Bayesian neural 
network is used where outputs are recursively fed 
back to the input layer until a stable output pattern is 
resulted [13].  

When ran ten times for completeness varying from 
60 to 80 % and from noise 0 to 5 %, a positive 
predictive value of 80.4 % and a negative predictive 
value of 99.1 % was obtained. This results in a False 
positive rate of 19.6 % and a False negative rate of 
0.9 %. The experiment with DPRTM has been 
conducted using sets of 50 patterns to 250 patterns. 
The False positive value and the False negative value 
are very less compared to the Recurrent Neural 
Network, having a value of 13.4 % and 0% 
respectively [14]. This is given in Table 3. 

 
Table 3. Comparison between DPRTM and Recurrent Neural 

Network 

 Recurrent 
Neural 
Network 

DPRTM 

False Positive 19.6 % 
 

13.4% 

False Negative 0.9% 
 

0% 

The graph showing the false positive rate for 
different sets of patterns of variable length is given in 
Fig. 3. 

 

Fig. 3. Comparison between DPRTM and Recurrent Neural 
Networks for various DNA pattern sets 
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C.  Comparison between DPRTM and other 
DNA pattern recognition techniques 

 
DNA Pattern Recognition is a very important as 

well as a complex process. The DPRTM is compared 
with other techniques. Some of the techniques are 
listed below. The success rate has been obtained by 
performing the analysis on different sets of patterns 
of variable length. 

RFLP Analysis 
Restriction Fragment Length Polymorphism 

(RFLP) is one of the first methods for finding out 
genetics used for DNA profiling. It involves 
restriction enzyme digestion, followed by Sothern 
blot analysis. It has a success rate of 57.4 % [7].  

 
PCR Analysis 

With the invention of the polymerase chain 
reaction (PCR) technique, DNA profiling took huge 
strides forward in both discriminating power and the 
ability to recover information from very small (or 
degraded) starting samples. It has a success rate of 69 
% [8]. 

 
STR Analysis 

The method of DNA profiling used today is based 
on PCR and uses short tandem repeats (STR). This 
method uses highly polymorphic regions that have 
short repeated sequences of DNA. The success rate of 
STR analysis is very high, 92.3 % [9]. 

 
AmpFLP Analysis 

Amplified Fragment Length Polymorphism is 
faster than RFLP analysis and use PCR to amplify 
DNA samples. It relies on variable number tandem 
repeat (VNTR) polymorphisms. However the success 
rate ranges between RFLP and PCR. The success rate 
is 61.1% [10]. 

 
DPRTM 

DNA Pattern Recognition Turing Machine checks 
for the search DNA pattern in the original DNA 
pattern. The patterns are in binary format and this 
uses a Turing Machine to perform the process. Hence 
it has a very high success rate of 96.4%.  The graph 
showing the success rate of all these techniques for 
various sets of patterns is given in Fig. 4.  

It is clear that DPRTM is more beneficial than 
other DNA pattern recognition techniques as it has a 
greater value for success rate. 

 

 
 

Fig. 4. Comparison between DPRTM and other DNA pattern 
recognition techniques 

 

IV. CONCLUSION AND FUTURE WORK 

The DNA molecules have a very long structure. It 
is very difficult to represent and manipulate it using 
common data structures. Hence it is very difficult to 
perform DPR using neural networks and other 
techniques as they have to undergo learning and 
training processes as well. A Turing Machine is a 
solution to this problem. A Turing Machine has 
infinite memory extendable in both directions. A 
UTM is a Turing Machine that can simulate any other 
standard Turing Machine.  

The DPRTM developed using the JFLAP platform 
is discussed along with its working details. The 
DPRTM is beneficial than many of the techniques as 
the success rate is high.  

In this paper, DPR has been successfully 
implemented with a standard Turing Machine and the 
DPRTM has been implemented using the UTM also.         

 The proposed method is experimented using more 
than 250 samples. The method has been compared 
with Recurrent Neural Networks using false positive 
metric, and many other DNA profiling techniques 
using success rate as the metric. The DNA pattern 
recognition has been implemented using a standard 
Turing Machine and using a Universal Turing 
Machine also and a comparison of the results is also 
presented. 

The future work includes the enhancement of the 
model to support more number of states as well as to 
work for an input alphabet with more number of 
symbols.  The model can also be enhanced to work 
taking two symbols at a time and comparing with the 
original pattern to improve the performance. 
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