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Abstract. This paper presents a connection between fuzzy sets, biological inheritance
and hyperstructures in which we consider the set of phenotypes of the second generation
F2 in different types of inheritance, define fuzzy subsets of it and construct a sequence
of join spaces associated to each of its types.
Keywords. Hyperstructures; fuzzy subsets; join spaces; hypergroups; automata the-
ory.

1. Introduction

The Hyperstructure theory was introduced in 1934, at the eighth Congress
of Scandinavian Mathematicians, when F. Marty [17] defined hypergroups as nat-
ural generalization of the concept of group based on the notion of hyperoperation,
analyzed their properties and applied them to groups. In the following decades
and nowadays, a number of different hyperstructures are widely studied from the
theoretical point of view and for their applications to many subjects of pure and
applied mathematics: geometry, topology, cryptography and code theory, graphs
and hypergraphs, probability theory, binary relations, theory of fuzzy and rough
sets, automata theory, economy, etc. (see [4, 6, 7]). A hypergroup is an algebraic
structure similar to a group, but the composition of two elements is a non-empty
set. One of motivations for the study of hyperstructures comes from biological in-
heritance. In [10], M. Ghadiri and B. Davvaz used the concept of Hv-semigroup
structure in the F2-genotypes with cross operation and proved that it is an Hv-
semigroup and they determined the kinds of the Hv-subsemigroups of F2-genotypes
(see also [7]). Another motivation for the study of hyperstructures comes from
physical phenomenon as the nuclear fission. This motivation and the results were
presented by S. Hošková, J. Chvalina and P. Račková (see [13], [14]). In [9], the
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authors provided, for the first time, a physical example of hyperstructures asso-
ciated with the elementary particle physics, Leptons. They have considered this
important group of the elementary particles and shown that this set along with the
interactions between its members can be described by the algebraic hyperstructures.
On the other hand, the concept of fuzzy sets has been introduced by L. A. Zadeh
in 1965 (see [29]) as an extension of the classical notion of set, when he proposed
the idea of a multi-valued logic, which extends the traditional concept of a bivalent
logic, which becomes a particular case of the new theory. The fuzzy set theory is
based on the principle called by L. A. Zadeh “the principle of incompatibility”, that
is “the closer a phenomenon is studied, the more indistinct its definition becomes”.
Fuzzy sets are sets whose elements have degrees of membership. In classical set
theory, the membership of elements in a set is assessed in binary terms according
to a bivalent condition an element either belongs or does not belong to the set.
By contrast, fuzzy set theory permits the gradual assessment of the membership of
elements in a set; this is described with the aid of a membership function valued in
the real unit interval [0, 1]. Fuzzy sets generalize classical sets, since the indicator
functions of classical sets are special cases of the membership functions of fuzzy
sets, if the latter only take values 0 or 1.

The early theories of heredity were those of Greek scientists (Hippocrates and
Aristotle); their theories were similar to Darwin’s later ideas on Pangenesis. The
latter states that the whole of parental organisms participate in heredity while
adapting to cell theory. Much of Darwin’s model was speculatively based on inher-
itance of tiny heredity particles that could be transmitted from parent to offspring
[5]. The hypothesis was eventually replaced by Mendel’s laws of inheritance where
Gregor Mendel first traced patterns of certain traits in pea plants and showed that
they obeyed certain statistical rules. Scientific studies of Mendelian inheritance be-
gan in 1866 with the experiments of Mendel, the founder of modern genetics [18].
Mendel worked out the mathematical rules for the inheritance of characteristics
in the garden pea. The significance of his discovery was not recognized until 1900,
when three botanists: Hugo de Vries, Carl Correns and Erich von Tschermak began
independently conducting similar experiments with plants and arrived at conclu-
sions similar to those of Mendel. Coming across Mendel’s paper, they interpreted
their results in accord with his principles and drew attention to his pioneering work.
And by 1915 the basic principles of Mendelian genetics had been applied to a wide
variety of organisms. Mendel discovered the principles of heredity by crossing dif-
ferent varieties of pea plants and analyzing the transmission pattern of traits in
subsequent generations. He began by studying monohybrid crosses, those between
parents that differed in a single characteristic. Mendel’s approach to the study of
heredity was effective for several reasons. The foremost was his choice of an exper-
imental subject, the pea plant, Pisum sativum, which offered obvious advantages
for genetic investigations. It is easy to cultivate, and Mendel had a monastery gar-
den and a greenhouse at his disposal. Peas grow relatively rapidly, completing an
entire generation in a single growing season. Mendel started with 34 varieties of
peas and spent two years selecting those varieties that he would use in his experi-
ments [20]. In [7, 10], Davvaz et al. studied the connection between weak algebraic
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hyperstructures and inheritance.

The aim of this paper is to investigate a new connection between fuzzy sets
and biological inheritance. More precisely, we consider the set of phenotypes of F2

under mating and define a fuzzy subset of it. Our paper is constructed as follows:
after an introduction, Section 2 presents some definitions that are used throughout
the paper. Section 3 presents fuzzy sets and join spaces associated to the set of
phenotypes of F2 for the cases of simple and incomplete inheritance. Finally, Section
4 presents fuzzy sets and join spaces associated to the set of phenotypes of F2 for
some examples of non Mendelian inheritance.

Throughout this paper, parents is denoted by P , first generation by F1 and
second generation by F2.

2. Basic definitions

In this section, we present some definitions related to hyperstructures (see [1]),
fuzzy sets (see [2, 3, 29]) and to biological inheritance (see [11, 12, 18]) that are
used throughout the paper.

Let H be a non-empty set. Then, a mapping ◦ : H ×H → P∗(H) is called a
binary hyperoperation on H , where P∗(H) is the family of all non-empty subsets of
H . The couple (H, ◦) is called a hypergroupoid. In the above definition, if A and B
are two non-empty subsets of H and x ∈ H , then we define:

A ◦B =
⋃

a∈A,b∈B a ◦ b, x ◦A = {x} ◦A and A ◦ x = A ◦ {x}.

An element e ∈ H is called an identity of (H, ◦) if x ∈ x◦e∩e◦x, for all x ∈ H ; it is
called a scalar identity of (H, ◦) if x ◦ e = e ◦ x = {x}, for all x ∈ H . If e is a scalar
identity of (H, ◦), then e is the unique identity of (H, ◦). The hypergroupoid (H, ◦)
is said to be commutative if x ◦ y = y ◦ x, for all x, y ∈ H . A hypergroupoid (H, ◦)
is called a semihypergroup if for every x, y, z ∈ H , we have x ◦ (y ◦ z) = (x ◦ y) ◦ z
and is called a quasihypergroup if for every x ∈ H , x ◦ H = H = H ◦ x. This
condition is called the reproduction axiom. The couple (H, ◦) is called a hypergroup

if it is a semihypergroup and a quasihypergroup. A canonical hypergroup [19] is a
non-empty set H endowed with a hyperoperation ◦ : H ×H → P∗(H), satisfying
the following properties: (1) for any x, y, z ∈ H,x ◦ (y ◦ z) = (x ◦ y) ◦ z, (2) for
any x, y ∈ H,x ◦ y = y ◦ x, (3) there exists ı ∈ H such that ı ◦ x = x ◦ ı = x,
for any x ∈ H ,(4) for every x ∈ H , there exists a unique element x′ (or denote
by x−1) and we call it the inverse of x), (5) z ∈ x ◦ y implies that y ∈ x′ ◦ z and
x ∈ z ◦ y′, that is (H, ◦) is reversible. Two hypergroups (H, ◦) and (K, ⋆) are said
to be isomorphic hypergroups if there exists a bijective function f : H → K such
that f(x ◦ y) = f(x) ⋆ f(y) for all x, y ∈ H .
Join spaces were introduced by W. Prenowitz [21, 22] and then applied by him
and J. Jantosciak [23] in Euclidian as well as in non Euclidian geometry. Also,
see [15, 16]. Using this notion, several branches of non Euclidian geometry were
rebuilt: descriptive geometry, projective geometry and spherical geometry. Then,



712 M. Al-Tahan and B. Davvaz

several important examples of join spaces have been constructed in connection with
binary relations, graphs, lattices, rough sets. In order to define a join space, we
need the following notation: If a, b are elements of a hypergroupoid (H, ◦), then we
denote a/b = {x ∈ H | a ∈ x ◦ b}. A commutative hypergroup (A, ⋆) is called a join

space if for all α1, α2, α3, α4 ∈ A the following implication is true

α1/α2 ∩ α3/α4 6= Ø ⇒ α1 ⋆ α4 ∩ α2 ⋆ α3 6= Ø.

The first connection between fuzzy sets and hyperstructures was established
by Corsini, when he defined a hyperoperation by means of fuzzy subsets. More
precisely, let µ : H → [0, 1] be a fuzzy subset of a nonempty set H . Define on H
the hyperoperation ⋆1, setting, for any x, y ∈ H ,

(w′) : x ⋆1 y = y ⋆1 x = {z ∈ H : min(µ(x), µ(y)) ≤ µ(z) ≤ max(µ(x), µ(y))}.

The associated hypergroupoid (1H, ⋆1) is a join space. Also, he defined fuzzy subsets
from hypergroups in the following manner: For any hypergroup (H, ⋆), he defined
a fuzzy subset µ : H → [0, 1] of H in the following way: for u ∈ H consider

(w) : µ(u) =

∑
(x,y)∈Q(u)

1
|x⋆y|

q(u)
,

where Q(u) = {(a, b) ∈ H2 : u ∈ a ⋆ b} and q(u) = |Q(u)| (see [2, 3]).
Let (1H, ⋆1) be the join space obtained by applying the fuzzy subset µ as defined

in (w′). By using (w) we get µ1 and using the same procedure as in (w′), from 1H
we can obtain a membership function µ2 and the associated join space 2H and
so on. A sequence of fuzzy sets and join spaces ((iH, ⋆i), µi)i≥1 is determined in
this way. If two consecutive hypergroups of the obtained sequence are isomorphic,
then the sequence stops. The length of the sequence of join spaces associated with
H is called the fuzzy grade of H . A hypergroupoid H has a fuzzy grade m ∈ N,
written as f.g(H) = m if for all i, 0 ≤ i < m, the join spaces iH and i+1H are
not isomorphic and for all s > m, sH and mH are isomorphic. If f.g(H) = m and
sH = mH , for all s > m, we say that the strong fuzzy grade of H ; s.f.g(H) = m.
Such construction of join spaces is important for at least two reasons: it provides
examples of hypergroup structures on a given set and it gives the possibility of
studying fuzzy sets in an algebraic approach. On the other hand, the construction
could start either from a fuzzy subset or from a hypergroup structure on a nonempty
set H .

Inheritance involves the passing of discrete units of inheritance, or genes, from
parents to offspring. Gregor Mendel [18], the first who introduced the notion of
inheritance explicitly in 1865, found that paired pea traits were either dominant
or recessive. When pure bred parent plants (P ) were cross bred, dominant traits
were always seen in the progeny, whereas recessive traits were hidden until the first
generation (F1) hybrid plants were left to self pollinate. Mendel observed that in
the second generation (F2), the traits of the P generation reappeared. He concluded
that traits were not blended but remained distinct in subsequent generations, which
was contrary to scientific opinion at that time. Mendel didn’t know about genes or
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discover genes, but he did speculate that there were two factors for each basic
trait and that one factor was inherited from each parent. We now know that
Mendel’s inheritance factors are genes, or more specifically alleles (different variants
of the same gene). In today’s genetic language, a pure-breeding pea plant line
is a homozygous (it has two identical copies of the same allele; AA) and an F1

cross-bred pea plant is a heterozygous (it has two different alleles; AB). There
are some exceptions to Mendel’s principles, which have been discovered as our
knowledge of genes and inheritance has increased. The principle of independent
assortment doesn’t apply if the genes are close together (or linked) on a chromosome.
Also, alleles do not always interact in a standard dominant/recessive way (simple
inheritance), particularly if they are codominant or have differences in expressivity
or penetrance (incomplete inheritance). In the simple inheritance, we have two
alleles (A dominant over a). The presence of the dominant allele in the genotype
of an organism (AA or Aa) leads to the presence of its corresponding phenotype
and its absence (aa) leads to the presence of the corresponding phenotype of the
recessive trait. In the case of codominance, a cross between organisms with two
different phenotypes (observed traits) produces offspring with a third phenotype
that is a blending of the parental traits. For example, the cross of white and red
flowers that results in the appearance of pink flowers (or white flowers with red
spots) in the offspring is a good example on the codominance criteria.

Inheritance is linked to statistics in a way that we may find the probability of
having a specific trait in the offspring. For example the monohybrid cross of parents
with Aa genotypes in the case of simple inheritance gives offsprings having trait
corresponding to A with a probability 2

3 and offsprings having trait corresponding
to a with a probability 1

3 .

3. Fuzzy sets associated to simple and incomplete inheritance

In this section, we consider hypothetical crosses of homozygous with independent
number of alleles in the cases: simple inheritance, incomplete inheritance, simple
and incomplete inheritance combined together. We define a fuzzy subset of the set
of phenotypes of the second generation under mating (×) and construct sequence
of join spaces for each case.

Let H be the set of phenotypes in F2 and define µ : H −→ [0, 1] by µ(x) =
probability of x for all x ∈ H . It is obvious that µ is a fuzzy subset of H .

3.1. Simple inheritance

Let Ai be the dominant allele over ai for i = 1, . . . , n and {A1, . . . , An}, {a1, . . . , an}
be two sets of independent alleles. We consider first results for the Monohybrid cross
(n = 1) that differs in a single trait; a homozygous parent (A1A1) × a homozygous
parent (a1a1). The results of this hypothetical experiment can be summarized in
the following way:
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P: A1A1 × a1a1
F1 : A1a1

and
F1 × F1 : A1a1 ×A1a1

F2 : B̂1 (of genotype A1A1 or A1a1), B̂2 (of genotype a1a1).

Let H = {B̂1, B̂2} be the set of phenotypes in F2. It is easy to see that µ(B̂1) =
2
3

and µ(B̂2) =
1
3 .

Proposition 3.1. Let H = {B̂1, B̂2} be the set of phenotypes in F2. By definitions

of (w) and (w′), we have µ1(B̂1) = µ1(B̂2) and S.F.G(H) = 2.

Proof. Using (w′), we may present (1H, ⋆1) by the following table:

1H B̂1 B̂2

B̂1 {B̂1} H

B̂2 {B̂2}

Having q(B̂1) = q(B̂2) = 3 and A(B̂1) = A(B̂2) = 1
1 + 2

2 = 2 implies that

µ1(B̂1) = µ1(B̂2) =
2
3 .

(2H, ⋆2) can be presented by the following table:

2H B̂1 B̂2

B̂1 H H

B̂2 H

It is clear that (2H, ⋆2) is the total hypergroup. Therefore, S.F.G(H) = 2.

We consider now results for the Dihybrid cross (n = 2) that differs in two traits; a
homozygous parent (A1A1A2A2) × a homozygous parent (a1a1a2a2). The results
of this hypothetical experiment can be summarized in the following way:

P: A1A1A2A2 × a1a1a2a2
F1 : A1a1A2a2

and
F1 × F1 : A1a1A2a2 ×A1a1A2a2

F2 : B̂1 (of genotype A1x1A2x2), B̂2 (of genotype A1x1a2a2), B̂3 (of genotype

a1a1A2x2) and B̂4 (of genotype a1a1a2a2).

Here, xi ∈ {Ai, ai} for i = 1, 2.

Let H = {B̂1, B̂2, B̂3, B̂4} be the set of phenotypes in F2. It is easy to see that

µ(B̂1) =
4
9 , µ(B̂2) = µ(B̂3) =

2
9 and µ(B̂4) =

1
9 .
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Proposition 3.2. Let H = {B̂1, B̂2, B̂3, B̂4}. By definitions of (w) and (w′), we

have µ1(B̂2) = µ1(B̂3) < µ1(B̂1) = µ1(B̂4).

Proof. Using (w′), we may present (1H, ⋆1) by the following table:

1H B̂1 B̂2 B̂3 B̂4

B̂1 {B̂1} {B̂1, B̂2, B̂3} {B̂1, B̂2, B̂3} H

B̂2 {B̂2, B̂3} {B̂2, B̂3} {B̂2, B̂3, B̂4}

B̂3 {B̂2, B̂3} {B̂2, B̂3, B̂4}

B̂4 {B̂4}

Having q(B̂1) = q(B̂4) = 7, A(B̂1) = A(B̂4) = 1
1 + 2

3 + 2
3 + 2

4 = 17
6 , q(B̂2) =

q(B̂3) = 14, A(B̂2) = A(B̂3) =
2
3 + 2

3 + 2
4 + 1

2 + 2
2 + 1

2 + 2
3 + 2

3 = 31
6 implies that

µ1(B̂1) = µ1(B̂4) =
17
42 and µ1(B̂2) = µ1(B̂3) =

31
84 .

Proposition 3.3. Let H = {B̂1, B̂2, B̂3, B̂4}. By definitions of (w) and (w′), we

have µ2(B̂1) = µ2(B̂2) = µ2(B̂3) = µ2(B̂4) and S.F.G(H) = 3.

Proof. We may present (2H, ⋆2) by the following table:

2H B̂1 B̂2 B̂3 B̂4

B̂1 {B̂1, B̂4} H H {B̂1, B̂4}

B̂2 {B̂2, B̂3} {B̂2, B̂3} H

B̂3 {B̂2, B̂3} H

B̂4 {B̂1, B̂4}

Simple computations shows that q(B̂1) = g(B̂2) = q(B̂3) = q(B̂4), A(B̂1) =

A(B̂2) = A(B̂3) = A(B̂4) and thus µ2(B̂1) = µ2(B̂2) = µ2(B̂3) = µ2(B̂4). The
latter implies that (3H, ⋆3) is the total hypergroup and hence, S.F.G(H) = 3.

3.2. Case of incomplete inheritance

LetBi andBi be codominant alleles for i = 1, . . . , n and {B1, . . . , Bn}, {B1, . . . , Bn}
be two sets of independent alleles. We consider first results for the Monohybrid cross
(n = 1) that differs in a single trait; a homozygous parent (B1B1) × a homozygous
parent (B1 B1). The results of this hypothetical experiment can be summarized in
the following way:
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P: B1B1 ×B1 B1

F1 : B1B1

and
F1 × F1 : B1B1 ×B1B1

F2 : B̂1 (of genotype B1B1), B̂2 (of genotype B1B1) and B̂3 (of genotype B1 B1).

Let H = {B̂1, B̂2, B̂3} be the set of phenotypes in F2. It is easy to see that µ(B̂1) =

µ(B̂2) = µ(B̂3) =
1
3 .

Proposition 3.4. Let H = {B̂1, B̂2, B̂3}. definitions of (w) and (w′), we have

µ1(B̂1) = µ1(B̂2) = µ1(B̂3) and S.F.G(H) = 1.

Proof. Using (w′), we may present (1H, ⋆1) by the following table:

1H B̂1 B̂2 B̂3

B̂1 H H H

B̂2 H H

B̂3 H

It is clear that (1H, ⋆1) is the total hypergroup and thus S.F.G(H) = 1.

We give next a generalization of Proposition 3.4 by considering the n- hybrid case of
incomplete inheritance that differs in n traits; a homozygous parent (B1B1 . . . BnBn)
× a homozygous parent (B1 B1 . . . Bn Bn). The results of this hypothetical exper-
iment can be summarized in the following way:

P: B1B1 . . . BnBn ×B1 B1 . . . B1 B1

F1 : B1B1 . . . BnBn

and
F1 × F1 : B1B1 . . . BnBn ×B1B1 . . . BnBn

F2 : B̂1 (of genotype B1B1 . . . BnBn), B̂2 (of genotype B1B1 . . . Bn−1Bn−1BnBn),

. . ., and B̂k (of genotype B1 B1 . . . Bn Bn).

The number of different phenotypes is k = 3n. Let H = {B̂1, . . . , B̂k} be the set of

phenotypes in F2. It is easy to see that µ(B̂1) = µ(B̂2) = . . . = µ(B̂k) =
1
k
.

Theorem 3.1. Let H = {B̂1, . . . , B̂k}. By definitions of (w) and (w′), we have

µ1(B̂1) = . . . = µ1(B̂k) and S.F.G(H) = 1.

Proof. Using the definition of (w′), we have B̂i ⋆1 B̂j = {z ∈ H : µ(z) = 1
k
} = H

for all i, j ∈ {1, . . . , k}. Thus, (1H, ⋆1) is the total hypergroup.
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3.3. Case of simple and incomplete inheritance combined together

Let Ai be the dominant allele over ai for i = 1, . . . ,m and Bj , Bj be the codom-
inant alleles for j = 1, . . . , n. This case can be given by considering the (m+n)- hy-
brid case that differs in (m+n) traits; a homozygous parent (A1A1 . . . AmAmB1B1 . . . BnBn)
× a homozygous parent (a1a1 . . . amamB1 B1 . . . Bn Bn).

We consider first the case m = n = 1. The results of this hypothetical experi-
ment can be summarized in the following way:

P: A1A1B1B1 × a1a1B1 B1

F1 : A1a1B1B1

and
F1 × F1 : A1a1B1B1 ×A1a1B1B1

F2 : B̂1 (of genotype A1x1B1B1), B̂2 (of genotype A1x1B1B1), B̂3 (of genotype

A1x1B1 B1), B̂4 (of genotype a1a1B1B1), B̂5 (of genotype a1a1B1B1) and B̂6 (of
genotype a1a1B1 B1).

Here. x1 ∈ {A1, a1}.

Let H = {B̂1, B̂2, B̂3, B̂4, B̂5, B̂6} be the set of phenotypes in F2. It is easy to

see that µ(B̂1) = µ(B̂3) = µ(B̂2) =
2
9 and µ(B̂4) = µ(B̂5) = µ(B̂6) =

1
9 .

Proposition 3.5. Let H = {B̂1, B̂2, B̂3, B̂4, B̂5, B̂6}. By definitions of (w) and

(w′), we have µ1(B̂1) = µ1(B̂2) = µ1(B̂3) = µ1(B̂4) = µ1(B̂5) = µ1(B̂6) and

S.F.G(H) = 2.

Proof. The table below represents (1H, ⋆1):

1H B̂1 B̂2 B̂3 B̂4 B̂5 B̂6

B̂1 {B̂1, B̂2, B̂3} {B̂1, B̂2, B̂3} {B̂1, B̂2, B̂3} H H H

B̂2 {B̂1, B̂2, B̂3} {B̂1, B̂2, B̂3} H H H

B̂3 {B̂1, B̂2, B̂3} H H H

B̂4 {B̂4, B̂5, B̂6} {B̂4, B̂5, B̂6} {B̂4, B̂5, B̂6}

B̂5 {B̂4, B̂5, B̂6} {B̂4, B̂5, B̂6}

B̂6 {B̂4, B̂5, B̂6}

It is easy to see that µ1(B̂1) = µ1(B̂2) = µ1(B̂3) = µ1(B̂4) = µ1(B̂5) = µ1(B̂6) and
that (2H, ⋆1) is a total hypergroup. Therefore, S.F.G(H) = 2.

We consider next the case m = 1 and n ≥ 1. The results of this hypothetical
experiment can be summarized in the following way:
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P: A1A1B1B1 . . . BnBn × a1a1B1 B1 . . . Bn Bn

F1 : A1a1B1B1 . . . BnBn

and
F1 × F1 : A1a1B1B1 . . . BnBn ×A1a1B1B1 . . . BnBn.

Let H = {B̂1, B̂2, . . . , B̂s} be the set of phenotypes in F2 where s = 2k is the

number of different phenotypes in F2, k = 3n, B̂1, . . . , B̂k are phenotypes whose

corresponding genotypes are given by A1x1y1y
′
1 . . . yny

′
n and B̂k+1, . . . , B̂2k are

phenotypes whose corresponding genotypes are given by a1a1y1y
′
1 . . . yny

′
n. Where

x1 ∈ {A1, a1}, {yi, y
′
i} ⊆ {Bi, Bi} for i = 1, . . . , n. It is easy to see that µ(B̂1) =

. . . = µ(B̂k) =
2

3n+1 and µ(B̂k+1) = . . . = µ(B̂2k) =
1

3n+1 .

Theorem 3.2. Let H = {B̂1, . . . , B̂s}. By definition of (w) and (w′), we have

µ1(B̂1) = µ1(B̂2) = . . . = µ1(B̂s) and S.F.G(H) = 2.

Proof. Using (w′), (1H, ⋆1) may be constructed as follows:

B̂i ⋆1 B̂j =





{B̂1, . . . , B̂k}, if i, j ∈ {1, . . . , k};

{B̂k+1, . . . , B̂2k}, if i, j ∈ {k + 1, . . . , 2k};
H, otherwise.

It is easy to see that (2H, ⋆2) is the total hypergroup. Therefore, S.F.G(H) = 2.

We consider next the case m = 2 and n = 1. The results of this hypothetical
experiment can be summarized in the following way:

P: A1A1A2A2B1B1 × a1a1a2a2B1 B1

F1 : A1a1A2a2B1B1

and
F1 × F1 : A1a1A2a2B1B1 ×A1a1A2a2B1B1.

Let H = {B̂1, B̂2, . . . , B̂12} be the set of phenotypes in F2 where B̂1, B̂2, B̂3 are
phenotypes whose corresponding genotypes are given by

A1x1A2x2y1y
′
1, B̂4, . . . , B̂9

are phenotypes whose corresponding genotypes are given by A1x1a2a2y1y
′
1 or by

a1a1A2x2y1y
′
1 and B̂10, B̂11, B̂12 are phenotypes whose corresponding genotypes are

given by a1a1a2a2y1y
′
1. Where xi ∈ {Ai, ai} for i = 1, 2 and {y1, y

′
1} ⊆ {B1, B1}.

It is easy to see that µ(B̂1) = µ(B̂2) = µ(B̂3) =
4
27 , µ(B̂4) = . . . = µ(B̂9) =

2
27 and

µ(B̂10) = µ(B̂11) = µ(B̂12) =
1
27 .

Proposition 3.6. Let H = {B̂1, . . . , B̂12}. By definition of (w), we have

µ1(B̂4) = . . . = µ1(B̂9) < µ1(B̂1) = µ1(B̂2) = µ1(B̂3) = µ1(B̂10) = µ1(B̂11) = µ1(B̂12).
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Proof. The table below represents (1H, ⋆1):

1H B̂1 B̂2 B̂3 B̂4 B̂5 B̂6 B̂7 B̂8 B̂9 B̂10 B̂11 B̂12

B̂1 M M M H \ R H \ R H \ R H \ R H \ R H \ R H H H

B̂2 M M H \ R H \ R H \ R H \ R H \ R H \ R H H H

B̂3 M H \ R H \ R H \ R H \ R H \ R H \ R H H H

B̂4 N N N N N N H \ M H \ M H \ M

B̂5 N N N N N H \ M H \ M H \ M

B̂6 N N N N H \ M H \ M H \ M

B̂7 N N N H \ M H \ M H \ M

B̂8 N N H \ M H \ M H \ M

B̂9 N H \ M H \ M H \ M

B̂10 R R R

B̂11 R R

B̂12 R

where M = {B̂1, B̂2, B̂3}, R = {B̂10, B̂11, B̂12} and N = H \ (M ∪R).

We have that q(B̂1) = 63, A(B̂1) = 9
3 + 18

12 + 36
9 , q(B̂4) = 126 and A(B̂4) =

36
6 + 72

9 + 18
12 . Simple calculations implies that

µ1(B̂1) = µ1(B̂2) = µ1(B̂3) = µ1(B̂10) = µ1(B̂11) = µ1(B̂12) =
17

126

and

µ1(B̂4) = µ1(B̂5) = µ1(B̂6) = µ1(B̂7) = µ1(B̂8) = µ1(B̂9) =
31

252
.

Proposition 3.7. Let H = {B̂1, . . . , B̂12}. By definition of (w), we have µ2(B̂1) =

. . . = µ2(B̂12) and S.F.G(H) = 3.

Proof. We may present (2H, ⋆2) by the following table:
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2H B̂1 B̂2 B̂3 B̂4 B̂5 B̂6 B̂7 B̂8 B̂9 B̂10 B̂11 B̂12

B̂1 P P P H H H H H H P P P

B̂2 P P H H H H H H P P P

B̂3 P H H H H H H P P P

B̂4 Q Q Q Q Q Q H H H

B̂5 Q Q Q Q Q H H H

B̂6 Q Q Q Q H H H

B̂7 Q Q Q H H H

B̂8 Q Q H H H

B̂9 Q H H H

B̂10 P P P

B̂11 P P

B̂12 P

where P = {B̂1, B̂2, B̂3, B̂10, B̂11, B̂12} and Q = {B̂4, B̂5, B̂6, B̂7, B̂8, B̂9}. Simple

computations implies that µ2(B̂1) = . . . = µ2(B̂12) =
1
9 . Thus, (

3H, ⋆3) is the total
hypergroup and hence S.F.G(H) = 3.

We consider next the case m = 2 and n ≥ 1. The results of this hypothetical
experiment can be summarized in the following way:

P: A1A1A2A2B1B1 . . . BnBn × a1a1a2a2B1 B1 . . . Bn Bn

F1 : A1a1A2a2B1B1 . . . BnBn

and
F1 × F1 : A1a1A2a2B1B1 . . . BnBn ×A1a1A2a2B1B1 . . . BnBn.

Let H = {B̂1, B̂2, . . . , B̂r} be the set of phenotypes in F2 where r = 4k, k = 3n,

B̂1, . . . , B̂k are phenotypes whose corresponding genotypes are given by

A1x1A2x2y1y
′
1 . . . yny

′
n, B̂k+1, . . . , B̂3k

are phenotypes whose corresponding genotypes are given by A1x1a2a2y1y
′
1 . . . yny

′
n

or by a1a1A2x2y1y
′
1 . . . yny

′
n and B̂3k+1, . . . , B̂4k are phenotypes whose correspond-

ing genotypes are given by a1a1a2a2y1y
′
1 . . . yny

′
n. Where xi ∈ {Ai, ai} for i = 1, 2

and {yj, y
′
j} ⊆ {Bj , Bj} for j = 1, . . . , n. It is easy to see that µ(B̂1) = . . . =

µ(B̂k) = 4
3n+2 , µ(B̂k+1) = . . . = µ(B̂3k) = 2

3n+2 and µ(B̂3k+1) = . . . = µ(B̂4k) =
1

3n+2 .
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Proposition 3.8. Let H = {B̂1, . . . , B̂s} be the set of phenotypes of F2. By defi-

nitions of (w) and (w′), we have

µ1(B̂k+1) = . . . = µ1(B̂3k) < µ1(B̂1) = . . . = µ1(B̂k) = µ1(B̂3k+1) = . . . = µ1(B̂4k).

Proof. The table below represents (1H, ⋆1):

1H B̂1 . . . B̂k B̂k+1 . . . B̂3k B̂3k+1 . . . B̂4k

B̂1 M1 . . . M1 M1 ∪M2 . . . M1 ∪M2 H . . . H

...
. . .

...
...

...
...

...
...

...

B̂k M1 M1 ∪M2 . . . M1 ∪M2 H . . . H

B̂k+1 M2 . . . M2 M2 ∪M3 . . . M2 ∪M3

...
. . .

...
...

...
...

B̂3k M2 M2 ∪M3 . . . M2 ∪M3

B̂3k+1 M3 . . . M3

...
. . .

...

B̂4k M3

where M1 = {B̂1, . . . , B̂k}, M2 = {B̂k+1, . . . , B̂3k} and M3 = {B̂3k+1, . . . , B̂4k}.
It is easy to see that

µ1(B̂1) = . . . = µ1(B̂k) = µ1(B̂3k+1) = . . . = µ1(B̂4k)

and
µ1(B̂k+1) = . . . = µ1(B̂4k).

We have that q(B̂1) = 7k2, q(B̂k+1) = 14k2. Simple computations shows that

A(B̂1) = k2

|M1|
+ 4k2

|M1|+|M2|
+ 2k2

|H| = 17k
6 and A(B̂k+1) = 4k2

|M2|
+ 4k2

|M1|+|M2|
+ 2k2

|H| +
4k2

|M2|+|M3|
= 31k

6 . We get now

µ1(B̂1) = . . . = µ1(B̂k) = µ1(B̂3k+1) = . . . = µ1(B̂4k) =
17

6k

and

µ1(B̂k+1) = . . . = µ1(B̂3k) =
31

84k
.

Proposition 3.9. Let H = {B̂1, . . . , B̂r}. By definition of (w), we have µ2(B̂1) =

. . . = µ2(B̂r) and S.F.G(H) = 3.
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Proof. We may present (2H, ⋆2) by the following table:

2H B̂1 . . . B̂k B̂k+1 . . . B̂3k B̂3k+1 . . . B̂4k

B̂1 M1 ∪M3 . . . M1 ∪M3 H . . . H M1 ∪M3 . . . M1 ∪M3

...
. . .

...
...

...
...

...
...

...

B̂k M1 ∪M3 H . . . H M1 ∪M3 . . . M1 ∪M3

B̂k+1 M2 . . . M2 H . . . H

...
. . .

...
...

...
...

B̂3k M2 H . . . H

B̂3k+1 M1 ∪M3 . . . M1 ∪M3

...
. . .

...

B̂4k M1 ∪M3

where M1 = {B̂1, . . . , B̂k}, M2 = {B̂k+1, . . . , B̂3k} and M3 = {B̂3k+1, . . . , B̂4k}.
We have:

q(B̂i) = 12k2 for i = 1, . . . , r,

and

A(x) =

{
4k2

|M1|+|M3|
+ 8k2

|H| = 4k, for x ∈ M1 ∪M3;
4k2

|M2|
+ 8k2

|H| = 4k, for x ∈ M2.

We get now that A(x) = 4k for all x ∈ H . The latter implies that µ(x) = 1
3k for all

x ∈ H . Therefore, (3H, ⋆3) is the total hypergroup and S.F.G(H) = 3.

4. Fuzzy sets associated to other types of inheritance

In this section, we study some examples of different types of non- Mendelian inher-
itance (Epistasis, Supplementary gene and Inhibitory gene), define fuzzy subsets of
them and construct sequence of join spaces for each type.
The fuzzy subset µ of the set of phenotypes in F2 of each type is defined by µ(x) =
probability of x for all x ∈ F2.

Example 4.1. Epistasis of dominant gene in the coat color of dogs. There are two al-
lelomorphic pairs which may be named Aa and Bb, A and B are dominant over a and b

respectively. They interact as follows: AxBy and Axbb have phenotype white, aaBy has
phenotype black and aabb has phenotype brown. Here x = A or a and y = B or b. The
results of this experiment can be summarized in the following way:

P: AABB ⊗ aabb

F1 : AaBb



Fuzzy Subsets of the Phenotypes of F2-offspring 723

and
F1 ⊗ F1 : AaBb⊗AaBb

F2 : White, Black, Brown.

White is denoted by A1, Black by A2 and Brown by A3.

Let H = {A1, A2, A3} be the set of phenotypes in F2. It is easy to see that µ(A1) =
6
9 , µ(A2) =

2
9 and µ(A3) =

1
9 .

Proposition 4.1. Let H = {A1, A2, A3}. By definitions of (w) and (w′), we have

µ1(A2) < µ1(A1) = µ1(A3).

Proof. The table below represents (1H, ⋆1):

1H A1 A2 A3

A1 {A1} {A1, A2} H

A2 {A2} {A2, A3}

A3 {A3}

We have q(A1) = q(A3) = 5, q(A2) = 7, A(A1) = A(A3) = 1
1 + 2

2 + 2
3 = 8

3 and
A(A2) =

1
1 + 2

2 + 2
2 + 2

3 = 11
3 . Thus, µ1(A1) = µ1(A3) =

8
15 and µ1(A2) =

11
21 .

Proposition 4.2. Let H = {A1, A2, A3}. By definition of (w), we have µ2(A1) =
µ2(A3) < µ2(A2).

Proof. The table below represents (2H, ⋆1):

2H A1 A2 A3

A1 {A1, A3} H {A1, A3}

A2 {A2} H

A3 {A1, A3}

We have q(A1) = q(A3) = 8, q(A2) = 5, A(A1) = A(A3) = 4
2 + 4

3 = 10
3 and

A(A2) =
1
1 + 4

3 = 7
3 . Thus, µ2(A1) = µ2(A3) =

5
12 and µ2(A2) =

7
15 .

Proposition 4.3. Let H = {A1, A2, A3} be the set of phenotypes in F2. Then

S.F.G(H) = 2.

Proof. The table below represents (3H, ⋆1):
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3H A1 A2 A3

A1 {A1, A3} H {A1, A3}

A2 {A2} H

A3 {A1, A3}

Having (3H, ⋆1) = (2H, ⋆1) implies that S.F.G(H) = 2.

Example 4.2. Supplementary gene, The anthocyanin pigmentation of flowers. The red-
type anthocyanin color of many flowers is caused by two alleles which may be termed as
Aa and Bb. In the snapdragon (Antirrhinum) flower:

AxBy is the genotype of magenta flower, Axbb is the genotype of ivory flower and
aaBy, aabb are the genotypes of white flower where x = A or a and y = B or b. The
results of this experiment can be summarized in the following way:

P: AABB ⊗ aabb

F1 : AaBb

and
F1 ⊗ F1 : AaBb⊗AaBb

F2 : Magneta, Ivory, White.

Magneta is denoted by B1, White by B2 and Ivory by B3.

Let K = {B1, B2, B3} be the set of phenotypes in F2. It is easy to see that µ(B1) =
4
9 , µ(B2) =

3
9 and µ(B3) =

2
9 .

Theorem 4.1. Let K = {B1, B2, B3} be the set of phenotypes in F2. Then

S.F.G(K) = 2.

Proof. Since µ(B3) < µ(B2) < µ(B1) then using (w′), we may present (1K, ⋆1) as
follows:

1K B1 B2 B3

B1 {B1} {B1, B2} H

B2 {B2} {B2, B3}

B3 {B3}

It is easy to see that (1H, ⋆1) (of Proposition 4.1, Example 4.1) and (1K, ⋆1) are
isomorphic. This implies that S.F.G(K) = S.F.G(H). Therefore, S.F.G(K) = 2 by
Proposition 4.3.

Example 4.3. Inhibitory gene, Rice leaf. In some rice variety the presence of the gene
P causes its leaves to be colored deep purple. But if a gene I is present then the purple
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color is inhibited and the leaf becomes normal green. The I gene may be considered as
epistatic over P . They interact as follows:

The genotypes IxPy, Ixpp, iipp correspond to green and the genotype iiPy corresponds
to purple where x = I or i and y = P or p. The results of this experiment can be summa-
rized in the following way:

P: IIPP ⊗ iipp

F1 : IiPp

and
F1 ⊗ F1 : IiPp⊗ IiPp

F2 : Green, Purple.

Green is denoted by G and Purple by P .

Let L = {G,P} be the set of phenotypes in F2. It is easy to see that µ(G) = 7
9 and

µ(P ) = 2
9 .

Proposition 4.4. Let L = {G,P} be the set of phenotypes in F2. Then S.F.G(L) =
2.

Proof. The table below represents (1L, ⋆1):

1L G P

G {G} H

P {P}

It is easy to see that (1H, ⋆1) (of Proposition 3.1) and (1L, ⋆1) are isomorphic.
Therefore S.F.G(L) = S.F.G(H) = 2.

5. Conclusion

After the introduction of hyperstructures and fuzzy sets by Marty and Zadeh
there have been many researches that study their importance in different fields where
one of these fields is biological inheritance. This paper studied a new relationship
between hyperstructures, fuzzy sets and the phenotypes of the second generation F2.
Fuzzy subsets of F2 were defined and join spaces associated to F2 were constructed.
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