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Ser. Math. Inform. Vol. 34, No 5 (2019), 889–902

https://doi.org/10.22190/FUMI1905889Y

EMBEDDING FINITE FIELDS INTO ELLIPTIC CURVES ∗

Amirmehdi Yazdani Kashani and Hassan Daghigh
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Abstract. Many elliptic curve cryptosystems require an encoding function from a finite
field Fq into Fq-rational points of an elliptic curve. We propose a uniform encoding to
general elliptic curves over Fq. We also discuss about an injective case of SWU encoing
for hyperelliptic curves of genus 2. Moreover we discuss about an injective encoding for
elliptic curves with a point of order two over a finite field and present a description for
these elliptic curves.
Keywords: elliptic curve; cryptosystem; encoding function; finite field.

1. Introduction

Throughout this article p is a prime number and q = pn for some n ∈ N.

Since 1987, when the elliptic curves cryptography was introduced by Koblitz [12],
encoding efficiently and deterministically a message by a point on an elliptic curve E
has been, and still is, an important question. Several methods have been proposed
to solve this problem. Perhaps before 2006 the most common method was the
try and increment method . The method consists in taking x ∈ Fq and checking
whether this value can be abscissa of a point on E. If not, we increment x by 1 until
the new value is abscissa of a point on E. The main problem with this algorithm is
that the number of steps depends on the input x. The twisted curves method was
to apply curve and its twist as suggested in [5]. If E is defined by y2=x3+ax+b
over Fq, the twist of E is a curve Ed defined by

dy2=x3+ax+b,

where d is a quadratic non-residue in Fq. Then for every x there exists y such that
the point (x, y) belongs to E or Ed. The method received little attention, since
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it requires calculation on two curves and this doubles the running time. When
q≡2 (mod 3) the map x→x3 is a bijection from F

∗
q to itself. If E is defined by the

equation y2 = x3 + b, the map

f : u −→ ((u2 − b)
1
3 , u)

is a bijection from Fq to affine points on the curve E. Therefore these curves are
supersingular for every b. The MOV attack gives an efficient computable method
which enables to reduce the DLP on a supersingular elliptic curve to DLP on a
finite field [13]. Therefore in order to avoid this attack, much larger parameters
must be used.
In 2006 the first algorithm for encoding to elliptic curves in deterministic polynomial
time was proposed by Shallue and Woestijne [14]. The algorithm is based on the
Skalba equality which says that there exist four mapsX1(t), X2(t), X3(t), X4(t) such
that

f(X1(t))f(X2(t))f(X3(t)) = (X4(t))
2,

where f (x) = X3 + aX + b. Then in a finite field for a fixed parameter t, there
exists 1 6 j 6 3 such that f(Xj (t)) is a quadratic residue. This implies that

(Xj(t),
√

f(Xj(t))) is a point on E : y2 = f (x) . For q ≡ 3(mod 4) computing

the square root
√

f(Xj(t)) is simply an exponentiation but for q ≡ 1(mod 4), no
deterministic algorithm has been found for computing the square root. If we have
a non quadratic residue in Fq we can apply Tonelli Shanks algorithm to compute
the square root. Using Skalba equality the authors of [14] show that a modifica-
tion of Tonelli-Shanks algorithm can compute square roots deterministicaly in time
O(log4q). Shallue-Woestijne method runs in time O(log4q) for any field size q = pn

and in time O(log3q) when q ≡ 3 (mod 4).Ulas reduced and generalized maps to
hyperelliptic curves in 2007 [16].

In 2009 Icart proposed another method for encoding to elliptic curves [11]. If
q ≡ 2 (mod 3) the map x → x3 is a bijection in Fq and cube roots are uniquely

defined with x
1
3 = x

2q−1
3 .Icart defined an encoding as follows:

fa,b:Fpn−→Ea,b

u−→ (x, y) ,

where

x=(v2−b−u6

27
)

1
3

+
u2

3
, y=ux+v, v=

3a−u4

6u
.

He fixed fa,b (0) = O, the neutral element of the elliptic curve. Icart proved that for
all p ∈ Ea,b the set f−1(p) is computable in polynomial time and
∣

∣f−1(p)
∣

∣ 6 4, namely a point has at most 4 preimages. He also proved that his

algorithm works with complexity O
(

log3q
)

and conjectured that the image of fa,b

contains 5
8 .#E(Fq)+O(q

1
2 ). Icart’s conjecture was proved by Farashahi, Shparlinski

and Voloch[8].
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Brier et al [4] designed a further simplification of Shallue-Woestijne-Ulas algorithm
for elliptic curve over Fq with q ≡ 3(mod 4). They showed that a point has at most
8 preimages which can be efficiently computed.

For cryptographic purposes it is important to have an injective encoding into an el-
liptic curve. Recently Fouque, Jeux and Tibouchi [9] proposed an injective encoding
to elliptic curves of the form

Eδ
c : y2 = x3 − 4δx2 + δ(c+ δ/c)

2
x,

where c ∈ Fq\{−1, 0, 1}, δ = ±1. Bernstein, Hamburg, Krosnova and Lange [2]
proposed an injective encoding for elliptic curves of the form

Ea,b : y
2 = x(x2 + ax+ b)

with a, b ∈ Fq. We present a description for these elliptic curves over a finite field.
we also present a uniform encoding for general elliptic curves over Fq. Finally we
discuss about SWU encoding for genus 2 hyperelliptic curves over Fq.

2. Injective encoding

Injective encoding from finite field elements into the points of an elliptic curve is a
more challenging problem and needs to be studied more carefully. In this section
we express a method for encoding into elliptic curves of the form Ea,b over finite
fields.

Lemma 2.1. Let g(x) = x(x2 + ax + b) where a 6= 0 and u be a quadratic non
residue in Fq.

(i)If x ∈ Fq satisfies:
g(ux) = u3g(x)(2.1)

then one and only one of the two values x or ux is the abscissa of a point on the
curve y2 = g(x).

(ii)The only solution of (2.1) is

x =
−b

a
(
1 + u

u
)

Proof. Since u is a quadratic non residue, the equation (2.1) implies that one and
only one of the values g(x) or g(ux) is a square in Fq.This proves (i).

(ii) We have also

g(ux) = u3g(x) ⇔
ux(u2x2 + aux+ b) = u3x(x2 + ax+ b) ⇔

aux+ b = au2x+ u2b ⇔
x =

−b

a
(
1 + u

u
).
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Theorem 2.1. If r, λ ∈ Fq, λ is a quadratic non residue and

X1(r) =
−b

a
(
1 + λr2

λr2
), X2(r) =

−b

a
(1 + λr2)

then one and only one of the values g(X1(r)) or g(X2(r)) is a square in Fq.

Proof. Since λ is a quadratic non residue in Fq, by taking u = λr2 we haveX1(r) = x
and X2(r) = ux in previous lemma.

Note that if we want to use X1, X2 for every r ∈ Fq
∗ the values r,−r, 1

λr
,− 1

λr
give

us a same abscissa point on Ea,b. Since for r ∈ Fq we have X1 (r) = X1 (−r) and
X2 (r) = X2 (−r) and if X1 (r1)=X2(r2) for r1, r2 ∈ Fq we have:

−b

a
(
1 + λr21
λr21

) =
−b

a
(1 + λr22) ⇒ r2 = ± 1

λr1
.

In order to have an injective encoding we focus our attention to a subset of Fq such
that it has exactly one of the values x or −x.
Let {1, α, α2, . . . , αn−1} be a basis for Fq over Fp. We know that every element
of the field Fp can be expressed as a nonnegative integer smaller than p. So usual
order relation can be considered as a order relation for elements of Fp. We define
an order relation for elements of Fq as follows:
If a, b ∈ Fq and

a = a0 + a1α+ . . .+ an−1α
n−1 ai ∈ Fp,

b = b0 + b1α+ . . .+ bn−1α
n−1 bi ∈ Fp

then a > b if the last non-zero entry of the vector

(a0 − b0, a1 − b1, · · · , an−1 − bn−1)

is positive. What remains is how we choose half of elements of Fq with respect to
the mentioned order. We define:

A0 = {(a0, a1, . . . , an−1) : 0 < a0 ≤ p−1
2 , ∀1 ≤ i ≤ n− 1 ai = 0},

A1 = {(a0, a1, . . . , an−1) : 0 < a1 ≤ p−1
2 , ∀2 ≤ i ≤ n− 1 ai = 0},

...

An−1 = {(a0, a1, . . . , an−1) : 0 < an−1 ≤ p−1
2 }.

We have:

#A0 +#A1 + . . .+#An−1 =
p− 1

2
+

p(p− 1)

2
+ . . .+

pn−1(p− 1)

2
=

pn − 1

2
.
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Algorithm 1 Injective encoding

Require: Finite field Fq, r ∈ A and a quadratic non-residue λ ∈ Fq

Ensure: (x, y) ∈ Ea,b(Fq) where Ea,b : y
2 = x(x2 + ax+ b).

if r = 0 then return (0, 0)
end if

u = λr2

if 1 + u = 0 then return O
end if

X1 = −b
a

1+u
u

X2 = uX1

g1 = X1(X
2
1 + aX1 + b) g2 = X2(X

2
2 + aX2 + b)

if g1 is a square, return (X1,
√
g
1
), else return (X2,−

√
g
2
)

end if

So we have determined half of elements of Fq with respect to the mentioned order.
In fact we restrict ourselves to the set

A = A1 ∪ A2 ∪ · · · ∪ An−1

which has cardinality pn−1
2 and for each x ∈ Fq exactly one of x or −x is in A.

Theorem 2.2. The following properties hold:

(i) Algorithm 1 defines an injective encoding e from half of Fq to Ea,b(Fq).

(ii) Algorithm 1 and its inverse (that is computing the preimage of outpot of
algorithm 1) can be executed in deterministic polynomial time. More precisely with
O(log3q) running time.

(iii) Almost half of the points on the curve Ea,b(Fq) appear in the image of e.
In fact

∣

∣

∣

∣

#Im(e)

#Ea,b(Fq)
− 1

2

∣

∣

∣

∣

6
1√
q − 1

.

Proof. (i). To compute the preimages of a point P = (XP , YP ) we must solve the
equations X1(r) = XP , X2(r) = XP . Each of these equations have at most one
solution in A. The minus sign in the final step of algorithm assures us that set of
points obtained in the two cases in the last step of the algorithm are separated.

(ii). the number of multiplication steps is equal to the number of binary digits q
plus the number of ones in the binary representation of q minus 1. So, it is at most
equal to 2 [|logq |] + 1. Since one multiplication takes time O(log2q) [11] the time
of the powering algorithm is O(log3q).

The inverse algorithm is easy to implement. Let (x, y) be a point in the image
of encoding. If

√

g(x) ≡ y(mod q) we must solve X1 (r) = x and if
√

g(x) ≡
−y(mod q) we must solve X2 (r) = x to obtain r ∈ Fq. Since it is a powering
algorithm, time complexity is O(log3q).

(iii). Since encoding function is injective, the size of image of encoding function is
q−1
2 . Using Hasse theorem [15] we have:
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#Im(e)

#Ea,b(Fq)
6

q−1
2

q+1−2
√
q
= q−1

2(q−1)+4(1−
√
q) =

√
q+1

2(
√
q+1)−4

=
√
q−1+2

2(
√
q−1) =

1
2 + 1√

q−1 ⇒ |#Im(e)
#E(Fq)

− 1
2 | 6 1√

q−1 .

This completes the proof.

Remark 2.1. In the last step of algorithm 1 we need to compute a square root.

If q ≡ 3(mod 4) then
√
g
i
= g

q+1
4

i . If q ≡ 1(mod 4) since λ is a quadratic non-
residue, Tonelli-Shanks [6] algorithm can compute the square root deterministicly
in polynomial time.

Definition 2.1. A Montgomery curve over a field F is defined by the equation

EM,A,B : By2 = x3 +Ax2 + x,

where A,B ∈ F and B(A2 − 4) 6= 0.

Definition 2.2. A twisted Edwards curve over a field F with char(F) 6= 2 is
defined by the equation:

ETE,a,d : ax2 + y2 = 1 + dx2y2,

where a, d are distinct non-zero elements of F.

Remark 2.2. We know [1] that twisted Edwards curves are birationally equivalent
to Montgomery curves via the map

φ : ETE,a,d −→ E
M,

2(a+d)
a−d

, 4
a−d

φ(x, y) = (
1 + y

1− y
,

1 + y

x(1− y)
).

Morover, the Montgomery curve EM,A,B is birationally equivalent to the twisted

Edwards curve ETE,a,d where a = (A+2)
B

and d = (A−2)
B

. Therefore this encoding
also can be used for twisted Edwards curves.

2.1. Description of the target curves

In the previous section we discussed about an injective encoding to a family of
elliptic curves over Fq with the point of order 2. This family is

Ea,b = {y2 = x(x2 + ax+ b) : a, b ∈ Fq, a
2 − 4b 6= 0, b 6= 0}.

From Hasse theorem [15] we know that #Ea,b lies in interval [q+1−2
√
q, q+1+2

√
q].

If N = q + 1 − t is not equal to the number of points of an elliptic curve, then
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gcd(t, q) 6= 1 and at most 5 values of t can exist such that gcd(t, q) 6= 1 and N =
q+1− t occures as number of points of some elliptic curves over Fq [17] .Therefore
there are 2

√
q(1 − 1

p
) numbers N ≡ 0(mod 2) that occurs as the number of points

Ea,b(Fq). Since there are (q − 1)2 elliptic curves Ea,b(Fq) we can find (q−1)2

2
√
q(1− 1

p
)

values of a, b ∈ Fq such that #Ea,b (Fq) is equal to a given N .

Theorem 2.3. If a2 − 4b is a quadratic non-residue and b is a quadratic residue
then only the point (0, 0) is divisible by 2 and the rational 4-torsion subgroup of Ea,b

is Z4.

If a2 − 4b is a quadratic residue and b is a quadratic non-residue then the point
(0, 0) is not divisible by 2 and the rational 4-torsion subgroup of Ea,b is Z2 × Z2 or
Z2 × Z4.

Proof. Since in the first case, the discriminant of x2 + ax + b is a quadratic non
residue, then (0, 0) is the only point of order two over Ea,b(Fq). We show that
there is a point Q ∈ Ea,b(Fq) so that 2Q = (0, 0). If y = cx is a passing line
from the point (0, 0) the other intersection points with Ea,b(Fq) are obtained from
c2x = x2 + ax + b. If this line is tangent, the disciminant of this equation is equal
to zero. Therefore (a− c2)2 = 4b and we have c2 = a± 2

√
b. Since

(a− 2
√
b)(a+ 2

√
b) = a2 − 4b

is a quadratic non residue exactly one of the values a− 2
√
b or a+ 2

√
b is square.

Therefore the above equation has two solutions for only one of the two possible
signs. It gives two answers for Q. In the same way we can find out that the point
(0, 0) is not divisible by 2 in the second case. It is easy to see that rational 4 torsion
is Z4 in the first case or Z2 × Z2 or Z2 × Z4 in the second case. In fact it depends
to this subject that the points of order 2 except (0,0) is divisible by two.

We know that if g ∈ F[X ] and deg(g) = n, then g has a splitting field K over
F with [K : F] ≤ n!. Therefore every elliptic curve E with Weierstrass form
y2 = x3 + a1x+ b1 can be written as :

Ea,b,c : y
2 = (x− a)(x − b)(x− c)

over Fqα , where α is 1, 2, 3 or 6.

Theorem 2.4. If a, b, c ∈ Fq then

∑

a,b,c∈Fq

trace(Ea,b,c) = 0.

Proof. we know

∑

a,b,c∈Fq

#Ea,b,c(Fq) =
∑

a,b,c∈Fq

q + 1− trace(Ea,b,c).
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Therefore it is enough to show

∑

a,b,c∈Fq

#Ea,b,c(Fq) = (q + 1)

(

q
3

)

We assume S0 is the number of finite points on all elliptic curves of the form E0,b,c

and S1 is the number of finite points on all elliptic curves of the form E1,b,c. In
the same way we define S2, . . . , Sq−2. We also assume S0,1 is the number of finite
points on all elliptic curves of the form E0,1,c and S0,2 is number of finite points on
all elliptic curves of the form E0,2,c. In the same way we define S0,3, . . . , Sq−1,q−2.

We have:

S0 = S0,1 + S0,2 + . . .+ S0,q−1.

S1 = S1,0 + S1,2 + . . .+ S1,q−1.

...

Sq−1 = Sq−1,0 + Sq−1,1 + . . . Sq−1,q−2.

Let ( .
Fq
) be the legendre symbol over Fq. For example to calculate S0,1 we observe:

T0,1 = |{(x, y, c) ∈ F
3
q : y2 = x(x − 1)(x− c)}| = q2,

T0,1,0 = |{(x, y) ∈ F
2
q : y2 = x2(x− 1)}| = q − (−1

Fq
),

T0,1,1 = |{(x, y) ∈ F
2
q : y2 = x(x − 1)

2}| = q − 1.

Since in S0,1 we have c 6= 0, 1 then

S0,1 = T0,1 − T0,1,0 − T0,1,1 = q2 − 2q + (
−1

Fq

) + 1.

In the same way for calculating S0,2 we have :

T0,2 = |{(x, y, c) ∈ F
3
q : y2 = x(x − 2)(x− c)}| = q2,

T0,2,0 = |{(x, y) ∈ F
2
q : y2 = x2(x− 2)}| = q − (−2

Fq
),

T0,2,2 = |{(x, y) ∈ F
2
q : y2 = x(x − 2)

2}| = q − ( 2
Fq
).

Therefore we have:

S0,2 = T0,2 − T0,2,0 − T0,2,2 = q2 − 2q + (
−2

Fq

) + (
2

Fq

).

Following this process we have:

S0,q−1 = q2 − 2q + (
−(q − 1)

Fq

) + (
q − 1

Fq

).
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Therefore

S0 = S0,1 + S0,2 + . . .+ S0,q−1 = (q − 1)(q2 − 2q).

Similarly we can see that

S0 = S1 = S2 = . . . = Sq−1 = q(q − 1)(q − 2).

Therefore:

S0 + S1 + . . .+ Sq−2 + Sq−1 = q2(q − 1)(q − 2).

Since for every triple (a, b, c) the rearrangements will give the same elliptic curve
Ea,b,c and considering the points at infinity we have:

∑

a,b,c∈Fq

#Ea,b,c(Fq) =
q2(q − 1)(q − 2)

3!
+

(

q
3

)

= (q + 1)

(

q
3

)

.

3. Uniform encoding

As mentined in the introduction Brier et al. [4] proposed a method based on a
variant of the Shallue-Woestijne-Ulas (SWU) function where q ≡ 3(mod 4).

Algorithm 2 Simlified SWU encoding Algorithm

Require: Finite field Fq, t ∈ Fq

Ensure: (x, y) ∈ E(Fq) where E : y2 = x3 + ax+ b.
u = −t2

if u2 + u = 0 return O
end if

X1 = − b
a
(1 + 1

u2+u
) X2 = u.X1

g1 = X3
1 + aX1 + b g2 = X3

2 + aX2 + b

if g1 is a square return (X1, g
q+1
4

1 ) else return (X2, g
q+1
4

2 )
end if

Definition 3.1. Let E be an elliptic curve over a finite field Fq. Let S be a subset
of Fq and let f be an encoding f : S −→ E(Fq). Let R = f(S). The encoding f is
uniform on S if the followings hold:
1. Computable: f is computable in deterministic polynomial time;
2. ℓ-to-1: for any r ∈ R, #f−1(r) = ℓ;
3. Samplable: there exists a probabilistic polynomial time algorithm such that for
any r ∈ R returns a random element in f−1(r).
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Brier et al. [4] indicated that if f : S −→ E(Fq) is a uniform encoding, then
the construction H(m) = f(h(m)) is indifferentiable from a random oracle in the
random oracle model for h : {0, 1}∗ −→ S. In order to have a uniform encoding
we alter simplified SWU method [4] such that any point has exactly 4 preimages.
Notice that A is the set defined in section 2..

Algorithm 3 Uniform encoding

Require: Finite field Fq, t ∈ Fq and a quadratic non-residue η ∈ Fq.
Ensure: (x, y) ∈ E(Fq) where E : y2 = x3 + ax+ b.
u = ηt2

if u2 + u = 0 return O
end if

X1 = − b
a
(1 + 1

u2+u
) X2 = u.X1

g1 = X3
1 + aX1 + b g2 = X3

2 + aX2 + b
if g1 is a square

if u ∈ A return (X1,
√
g1) else return (X1,−

√
g1)

end if

else

if 1
u
∈ A return (X2,

√
g2) else return (X2,−

√
g2)

end if

end if

Theorem 3.1. Algorithm 3 defines a uniform encoding from Fq to E(Fq).

Proof. It’s easy to see that, except for the point at infinity and points of order 2,
all points appear four times in the output of the algorithm. The minus signs in
the final step of algorithm assures that set of points obtained of forms (X1,

√
g1)

and (X1,−
√
g1) are separated. In the same way the points of forms (X2,

√
g2) and

(X2,−
√
g2) are seperated. Without lose of generality let (x, y) be a point that is

generated with the form (X1,
√
g1). We notice that there is only one u such that

u ∈ A and X1(u) = x. Because if u1, u2 are such that X1(u1) = X1(u2) then we
have u1 + u2 = −1. It is easy to see that one and only one of u1 and u2 is in A.
The point (x, y) is also generated by (X2,

√
g2) for the value w = 1

u
. because

X2(w) = X2(1/u) = X1(u) = x

and 1
w
= u ∈ A. Condition 1

w
∈ A ensures that w is the only value that can generate

this point by X2. Since each of u,w comes by two values ±t therefore (x, y) has
exactly 4 preimages.

4. Encoding to hyperelliptic curves

Ulas [16] simplified and generalized the proposed method by Shallu and Woestijne
[14] to encode Fq to hyperelliptic curves of the forms y2 = xn + ax + b and y2 =
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xn + ax2 + bx. Foque and Tibouchi [10] proposed a deterministic encoding in to
hyperelliptic curves of the form

y2 = x2g+1 + a1x
2g−1 + · · ·+ agx,

where g is the genus of the curve.
In this section we recall SWU algorithm for genus 2 hyperelliptic curves of the form
Ha,b : y

2 = x5 + ax2 + bx where q ≡ 3(mod 4). We show that this algorithm is an
injective encoding for finite fields of characteristic 3.

Lemma 4.1. Let g(x) = x5 + ax2 + bx. Let u be a quadratic non-residue in Fq

such that for some x ∈ Fq we have

g(ux) = u5g(x).(4.1)

then either x or u.x is the abscissa of a point on the y2 = g(x). Moreover for each
u the value

x =
−b

a

(1− u4)

u− u4

satisfies (4.1).

Proof. Since u is not a quadratic residue, if x satisfies 4.1 then either g(u.x) or g(x)
must be a square in Fq. Therefor either x or u.x must be abscissa of a point on the
curve y2 = g(x). Moreover we have:

g(ux) = u5g(x) ⇐⇒ (ux)5 + a(ux)2 + bx = u5(x5 + ax2 + bx)

⇐⇒ aux+ b = au4x+ bu4

⇐⇒ x =
−b

a

(1− u4)

u− u4
.

Since −1 is a quadratic non residue in Fq, for every t ∈ Fq, u = −t2 is a quadratic
non-residue in Fq. So we have algorithm 4 in the next page.

Algorithm 4 new simplified SWU algorithm

Require: Finite field Fq such that q ≡ 3(mod 4), t ∈ Fq

Ensure: (x, y) ∈ Ha,b(Fq) where Ha,b : y
2 = x5 + ax2 + bx.

u = −t2

X1 = −b
a

(1−u4)
(u−u4) X2 = u.X1

g1 = X5
1 + aX2

1 + bX1 g2 = X5
2 + aX2

2 + bX2

if g1 is a square, return (X1, g
q+1
4

1 ), else return (X2,−g
q+1
4

2 )
end if
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Remark 4.1. In order to compute the pre-images of a point P = (XP , YP ) we
should solve the equations X1(t) = XP and X2(t) = XP . Since degX1(t) = 6 and
degX2(t) = 6 each equation has at most 6 solutions. The minus sign in the final

step of the algorithm makes the set of points obtained of form (X1, g
q+1
4

1 ) and set

of points obtained of form (X2,−g
q+1
4

2 ) separated. Hence a point has at most 6
pre-images.

According to the previous remark, a point in the outpot of algorithm 4 is generated
by at most 6 elements of Fq. Since u = −t2, this point is generated by at most 3
quadratic non-residues in Fq. we want to find the quadratic non-residues that for
them there is no partner in the production of a point. We notice that if X1(u1) =
X1(u2) we have:

u4
1u

4
2 − u4

1u
3
2 − u1u

4
2 + u3

2 + u1 − 1 = 0.

By dividing by 1− u1 and 1− u2 and u1 − u2 we have:

u2
1 + (u2 + 1)u1 + (u2

2 + u2 + 1) = 0.(4.2)

The discriminant of equation 4.2 is ∆1 = −3u2
2 − 2u2 − 3. This equation has no

solution whenever ∆1 is a quadratic non-residue.
Also if X2(u1) = X2(u2) we have:

u4
1 + u4

1u
3
2 + u3

2 − u4
2 + u3

1u
4
2 − u3

1 = 0.

Similarly by dividing by 1− u1 and 1− u2 and u1 − u2 we have:

(u2
2 + u2 + 1)u2

1 + (u2
2 + u2)u1 + u2

2 = 0.(4.3)

The discriminant of equation 4.3 is ∆2 = u2
2(−3u2

2 − 2u2 − 3). This equation
has no solution whenever ∆2 is a quadratic non-residue. By looking at equa-
tions ∆1 = −3u2

2 − 2u2 − 3 and ∆2 = u2
2(−3u2

2 − 2u2 − 3), we find out that
they are quadratic non-residues if for any u as quadratic non-residue the value
∆ = −3u2 − 2u− 3 is a quadratic non-residue.

Corollary 4.1. If we consider Ha,b over finite fields of characteristic 3, the ∆
value is always a quadratic non residue. Therefore if A is the set defined in section
2., algorithm 4 is an injective encoding from A into points Ha,b for these finite
fields.

Remark 4.2. We know that the set of points on Ha,b is not a group. Therefore
if for cryptographic purposes we need to be in a group, we can map Ha,b to the
jacobian J of Ha,b which is an abelian group.



Embedding Finite Fields into Elliptic Curves 901

REFERENCES

1. D. J. Bernstein, P. Birkner, M. Joye, T. Lange and C. Peters: Twisted edwards curves.
In: International Conference on Cryptology in Africa, Springer, Berlin, Heidelberg,
2008, p. 389-405.

2. D. J. Bernstein, M. Hamburg, A. Krosnova and T. Lange: Elliptic-curve points indis-
tinguishable from uniform random strings. In: Proceedings of the 2013 ACM SIGSAC
conference on Computer and communications security, ACM, 2013, p. 967-980.

3. D. Boneh, M. Franklin: Identity-based encryption from the Weil pairing. In: Annual
international cryptology conference, Springer, Berlin, Heidelberg, 2001, p. 213-229.

4. E. Brier, J. -S. Coron, T. Icart, D. Madore, H. RandriaM and M. Tibouchi: Efficient in-
differentiable hashing into ordinary elliptic curves. In: Annual Cryptology Conference,
Springer, Berlin, Heidelberg, 2010, p. 237-254.

5. O. Chevassut, P. A. Fouque, P. GaudRY and D. Pointcheval: The twist-augmented
technique for key exchange. In: International Workshop on Public Key Cryptography,
Springer, Berlin, Heidelberg, 2006, p. 410-426.

6. H. Cohen: A course in computational algebraic number theory. volume 138 of Graduate
Texts in Mathematics, Springer-Verlag, Berlin, 1993.

7. R. R. Farashahi: Hashing into Hessian curves. In: International Conference on Cryp-
tology in Africa, Springer, Berlin, Heidelberg, 2011, p. 278-289.

8. R. R. Farashahi, I. E. Shparlinski and J. F. Voloch: On hashing into elliptic curves.
Journal of Mathematical Cryptology, 2009, 3.4: 353-360.

9. P. A. Fouque, A. Joux and M. Tibouchi: Injective encodings to elliptic curves. In:
Australasian Conference on Information Security and Privacy, Springer, Berlin, Hei-
delberg, 2013, p. 203-218.

10. P.A. Fouque, M. Tibouchi: Deterministic encoding and hashing to odd hyperelliptic
curves. In: International Conference on Pairing-Based Cryptography, Springer, Berlin,
Heidelberg, 2010, p. 265-277.

11. T. Icart: How to hash into elliptic curves. In: Advances in Cryptology-CRYPTO 2009,
Springer, Berlin, Heidelberg, 2009, p. 303-316.

12. N. Koblitz : Elliptic curve cryptosystems. Mathematics of computation, 1987, 48.177:
203-209.

13. A. J. Menezes, T. Okamoto and S. A. Vanstone: Reducing elliptic curve logarithms
to logarithms in a finite field. iEEE Transactions on information Theory, 1993, 39.5:
1639-1646.

14. A. Shallue, C. E. Van De Woestijne: Construction of rational points on elliptic curves
over finite fields. In: International Algorithmic Number Theory Symposium, Springer,
Berlin, Heidelberg, 2006, p. 510-524.

15. J.H. Silverman: Advanced Topics in the Arithmetic of Elliptic Curves. Grad. Texts in
Math., vol. 151, Springer, New York, 1994.

16. M. Ulas: Rational points on certain hyperelliptic curves over finite fields. Bull. Polish
Acad. Sci. Math., 55(2), 2007: 97-104.

17. W.C. Waterhouse, Abelian Varieties over Finite Fields, Annales scientifiques de l’École
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