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Abstract. Let G be a finite group and ω(G) be the set of element orders of G. Let k ∈
ω(G) and mk be the number of elements of order k in G. Let nse(G) = {mk|k ∈ ω(G)}.
The aim of this paper is to prove that, ifG is a finite group such that nse(G)=nse(U4(2)),
then G ∼= U4(2).
Keywords. element order; number of elements of the same order; projective special
unitary group; simple Kn - group.

1. Introduction

This section contains the relevant definitions, some standard facts on nse, and a
brief exposition of nse history. Throughout this paper, G is a finite group. We
denote by π(G) the set of prime divisors of |G|, and by ω(G), we introduce the
set of order of elements from G. Set mk = mk(G) = |{g ∈ G|o(g) = k}|, and
nse(G)={mk|k ∈ ω(G)}. In fact, mk is the number of elements of order k in G and
nse(G) is the set of sizes of elements with the same order in G.

To the world’s mathematics and researchers, one of the important problems in
group theory is characterization of a group by a given property, that is, to prove
there exists only one group with a given property (up to isomorphism). Until now,
different characterizations are investigated for finite simple groups. For instance,
in [21, 22] motivated by one of the Thompson’s problem, the authors introduced a
new characterization for the finite simple group G by nse(G) and |G|. In fact, they
proved that if G is a simple Ki- group (i = 3, 4), then G is characterizable by nse(G)
and |G| (The simple group G is called simple Kn-group if |π(G)| = n). Following
this result, several groups were characterized by nse and order. For example, in
[5, 11], it is proved that Suzuki group, and sporadic groups are characterizable by
nse and order.
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We remark here that not all groups can be characterized by their group orders
and the set nse. As an illustration, letH1 = C4×C4 andH2 = C2×Q8, where C2 and
C4 are cyclic groups of order 2 and 4 respectively, and Q8 is a quaternion group of
order 8. It is easy to see that nse(H1) = nse(H2) = {1, 3, 12} and |H1| = |H2| = 16
but H1 6∼= H2.

However, it is claimed that some simple groups could be characterized by ex-
actly the set nse without considering the order of group. In fact, a finite non-
abelian simple group H is called characterizable by nse, if every finite group G
with nse(G) = nse(H) implies that G ∼= H . In [7, 8, 9, 10, 12, 13, 24] it is
proved that the alternating groups An, where n ∈ {7, 8}, the symmetric groups
Sn where n ∈ {3, 4, 5, 6, 7}, M12, L2(27), L2(q) where q ∈ {16, 17, 19, 23}, L2(q)
where q ∈ {7, 8, 11, 13}, L2(q) where q ∈ {17, 27, 29}, are uniquely determined by
nse(G). Besides, in [1, 14, 15, 16] it is proved that U3(4), L3(4), U3(5), L3(5), are
uniquely determined by nse(G). Recently, in [3, 6, 18, 19], it is proved that the
simple groups U3(3), L3(3), G2(4), L2(3

n), where |π(L2(3
n))| = 4, and L2(2

m),
where |π(L2(2

m))| = 4, are uniquely determined by nse(G). Therefore, it is natural
to ask what happens with other kinds of simple groups.

In an effort to fill some of the empty ground about the characterization of simple
groups by nse, in this paper we will prove the following main theorem.
Main Theorem. Let G be a group such that nse(G) = nse(U4(2)). Then G is
isomorphic to U4(2).

2. Notation and Preliminaries

Before we get started, let us fix some notations that will be used throughout the
paper. For a natural number n by π(n), we mean the set of all prime divisors of n,
so it is obvious that if G is a finite group, then π(G) = π(|G|). A Sylow r-subgroup
of G is denoted by Pr and by nr(G), we mean the number of Sylow r- subgroup of
G. Also the largest element order of Pr is signified by exp(Pr). Moreover, we denote
by φ the Euler function. In the following, we bring some useful lemmas which be
used in the proof of the main theorem.

Lemma 2.1. [25]. Let G be a group containing more than two elements. If the
maximal number s of elements of the same order in G is finite, then G is finite and
|G| 6 s(s2 − 1).

Lemma 2.2. [24]. Let G be a group. If 1 6= n ∈ nse(G) and 2 ∤ n, then the
following statements hold:
(1) 2||G|;
(2) m2 = n;
(3) for any 2 < t ∈ ω(G), mt 6= n.

Lemma 2.3. [2]. Let G be a finite group and m be a positive integer dividing |G|.
If Lm(G) = {g ∈ G|gm = 1}, then m||Lm(G)|.
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Lemma 2.4. [23]. Let G be a group and P be a cyclic Sylow p-group of G of order
pα. If there is a prime r such that pαr ∈ ω(G), then mpαr = mr(CG(P ))mpα . In
particular φ(r)mpα |mpαr, where φ(r) is the Eular function of r.

Lemma 2.5. [17]. Let G be a finite group and p ∈ π(G) be odd. Suppose that P
is a Sylow p-subgroup of G and n = psm, where (p,m) = 1. If P is not cyclic group
and s > 1, then the number of elements of order n is always a multiple of ps.

We say that a group G acts semi regularly on set X if G acts on X in such a
way that Gx = 1 for all x ∈ X .

Lemma 2.6. [20]. Let the finite group G acts on the finite set X. If the action is
semi regular, then |G| | |X |.

Let us mention the structure of simple K3-groups, that will be needed in Section
3.

Lemma 2.7. [4]. If G is a simple K3-group, then G is isomorphic to one of the
following groups:

A5, A6, L2(7), L2(8), L2(17), L3(3), U3(3), U4(2).

Lemma 2.8. [22]. Let G be a group and M a simple K3-group. Then G ∼= M if
and only if the following hold: (1) |G| = |M | , (2) nse(G) = nse(M).

3. Main Theorem and its Proof

Suppose G is a group such that nse(G) = nse(U4(2)). By Lemma 2.1, we can
assume that G is finite. Let mn be the number of elements of order n. We notice
that mn = kφ(n), where k is the number of cyclic subgroups of order n in G. In
addition, we notice that if n > 2, then φ(n) is even. If n ∈ ω(G), then by Lemma
2.3 and the above argument, we have

{

φ(n)|mn

n|
∑

d|nmd
(3.1)

In the proof of the main theorem, we often apply formula (3.1) and the above
comments.

Proof of the Main Theorem. Let G be a group with

nse(G) = nse(U4(2)) = {1, 315, 800, 3780, 4320, 5184, 5760}

where U4(2)) is the projective special unitary group of degree 4 over field of order
2. We have divided the proof into a sequence of lemmas.
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Remark 3.1. Let 2 6= p ∈ π(G), by formula (3.1), p|(1 + mp) and (p − 1)|mp, which
implies that p ∈ {3, 5, 7, 17, 19}.

In the following lemma, we prove some basic properties of group G:

Lemma 3.1. If p ∈ π(G) and p ∈ {2, 3, 5}, then

(1) 2 ∈ π(G) and m2 = 315;

(2) m3 = 800, m5 = 5184;

(3) {52, 36, 29}
⋂

ω(G) = Ø;

(4) |P2||2
9.

Proof. The proof is straightforward according to Lemma 2.2, Lemma 2.3, and for-
mula (3.1).

Lemma 3.2. {17, 19}
⋂

π(G) = Ø.

Proof. We prove that 17 /∈ π(G). Conversely, suppose that 17 ∈ π(G). Then
formula (3.1) implies m17 = 5184. On the other hand, by formula (3.1), we conclude
that if 2.17 ∈ ω(G), then m2.17 ∈ {800, 4320, 5184, 5760} and 2.17|1 +m2 +m17 +
m2.17(= 6300, 9820, 10684, 11260), which is a contradiction, and hence 2.17 /∈ ω(G).
Since 2.17 /∈ ω(G), the group P17 acts fixed point freely on the set of elements
of order 2 of G and by Lemma 2.6, |P17||m2, which is a contradiction. Hence,
17 /∈ π(G). Similarly, we can prove that 19 /∈ π(G).

To remove the prime 7, let us first show that 5 ∈ π(G).

Lemma 3.3. {5}
⋂

π(G) = {5}.

Proof. Assume that 5 /∈ π(G).
• If 3, 7 /∈ π(G), thenG is a 2-group. Since 29 /∈ ω(G), we have ω(G) ⊆ {1, 2, 22, · · · , 28}.
Hence |G| = 2m = 20160 + 800k1 + 3780k2 + 4320k3 + 5184k4 + 5760k5, where
k1, k2, k3, k4, k5 and m are non-negative integers, and 0 6 k1+k2+k3+k4+k5 6 2.
It is obvious that 20160 6 |G| 6 20160 + (k1 + k2 + k3 + k4 + k5)5760 and so
20160 6 |G| 6 20160 + 2.5760. Now, it is easily seen that the equation has no
solution.
Hence 3 or 7 belongs to π(G), and the following cases are considered.
• If 7 ∈ π(G), by formula (3.1) m7 = 5760, then as exp(P7) = 7, |P7||1 +m7 and
so |P7| = 7. Since n7 = m7

φ(7) = 26.3.5||G|, it follows that 5 ∈ π(G), which is a

contradiction.
• If 3 ∈ π(G), then exp(P3) = 3, 32, 33, 34, 35.

⋆ If exp(P3) = 3, then by Lemma 2.3, |P3||(1 + m3) and so |P3||3
2. We will

consider two cases for |P3|.
Case 1 If |P3| = 3, then since n3 = m3

φ(3) = 23.53||G|, 5 ∈ π(G) which is a contradic-
tion.
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Case 2 If |P3| = 32, then since 5, 7 /∈ π(G) and π(G) ⊆ {2, 3, 5, 7}, we can assume
that {2} ⊆ π(G) ⊆ {2, 3}, and so we have

ω(G) ⊆ {1, 2, · · ·28} ∪ {3, 3.2, 3.22, 3.23, · · · , 3.27}

(28.3 /∈ ω(G) by formula (3.1)) and |ω(G)| 6 17. Therefore 20160+800k1+3780k2+
4320k3+5184k4+5760k5 = |G| = 2a.9 where k1, k2, k3, k4, k5, and a are non-negative
integers and 0 6 k1+k2+k3+k4+k5 6 10. Since 20160 6 2a.9 6 20160+10.5760,
we have a = 12, or a = 13. If a = 12, then since |P2||2

9, we have a contradiction.
Similarly, we can rule out a = 13.

⋆ If exp(P3) = 32, then, by Lemma 2.3, |P3||(1 +m3 +m32) and so |P3||3
8. (for

example, when m9 = 5760 ). We will consider seven cases for |P3|.
Case 1 . If |P3| = 32, then n3 = m9

φ(9) , since m9 ∈ {3780, 4320, 5184, 5760}, n3 =

32.2.5.7, n3 = 24.32.5, or n3 = 26.3.5, and so 5 ∈ π(G), which is a contradiction,
and if n3 = 25.33, since n3 6≡ 1 (mod 3), we have a contradiction.
Case 2 . If |P3| = 33, then since 5, 7 /∈ π(G), we can assume that {2} ⊆ π(G) ⊆ {2, 3}
and so we have ω(G) ⊆ {1, 2, · · ·28}∪{3, 3.2, 3.22, · · · , 3.27}∪{32, 32.2, 32.22, · · · , 32.27}
( 28.3 /∈ ω(G), 28.32 /∈ ω(G) by formula (3.1) ) and |ω(G)| 6 25. Therefore 20160+
800k1 + 3780k2 + 4320k3 + 5184k4 + 5760k5 = |G| = 2a.27, where k1, k2, k3, k4, k5,
and a are non-negative integers and 0 6 k1 + k2 + k3 + k4 + k5 6 18. Since
20160 6 2a.27 6 20160 + 18.5760, we have a = 10, a = 11, or a = 12.
If a = 10, then since |P2||2

9, we have a contradiction. Similarly, we can rule out
a = 11 and a = 12.
Case 3 . If |P3| = 34, then since exp(P3) = 32 and 28.3, 28.9 /∈ ω(G), ω(G) ⊆
{1, · · · , 28} ∪ {3, · · · , 3.27} ∪ {32, · · · , 32.27}. On the other hand, if 28 ∈ ω(G) since
28.3 /∈ ω(G), the group P3 acts fixed point freely on the set of elements of order 28.
Hence |P3||m28 = 5760, which is a contradiction. Hence 28 /∈ ω(G) and |ω(G)| 6 24.
Therefore 20160+800k1+3780k2+4320k3+5184k4+5760k5 = |G| = 2a.81, where
k1, k2, k3, k4, k5, and a are non-negative integers and 0 6 k1+k2+k3+k4+k5 6 17.
Since 20160 6 2a.81 6 20160 + 17.5760, we have a = 8, a = 9, or a = 10.
If a = 8, then 576 = 800k1 + 3760k2 + 4320k3 + 5184k4 + 5760k5 where 0 6

k1 + k2 + k3 + k4 + k5 6 17. By a computer calculation, it is easy to see this
equation has no solution.
If a = 9, then 21312 = 800k1 + 3780k2 + 4320k3 + 5184k4 + 5760k5 where 0 6

k1 + k2 + k3 + k4 + k5 6 17. The only solution of this equation is (0, 0, 0, 3, 1). We
show this is impossible. Since |ω(G)| = 11 and 28 /∈ ω(G), exp(P2) = 2i, where
3 6 i 6 7. Hence, if exp(P2) = 2i where 3 6 i 6 7, then |P2||(1+m2+m4+· · ·+m2i)
by Lemma 2.3. In fact |P2||(1+315+800t1+3780t2+4320t3+5184t4+5760t5) where
t1, t2, t3, t4, t5, are non-negative integers and 0 6 t1 + t2 + t3 + t4 + t5 6 6. Because
k1 = 0 and m3 = 800, m2i 6= 800 for 1 6 i 6 7, t1 = 0. Since k2 = 0, 0 6 t2 6 1.
We claim t2 = 0. Suppose, contrary to our claim, t2 = 1. If m4 = 3780, then since
m9 ∈ {3780, 4320, 5184, 5760}, we have a contradiction and so t2 = 0. If m4 6= 3780,
then by a computer calculation m8 = 3780, since m9 ∈ {3780, 4320, 5184, 5760}, we
have a contradiction and so t2 = 0. Also k3 = 0, k4 = 3, and k5 = 1, thus 0 6 t3 6 1,
0 6 t4 6 4, and 0 6 t5 6 2. By an easy computer calculation, this is impossible.
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If a = 10, then since |P2||2
9, we have a contradiction.

Similarly, we can rule out the other cases.

⋆ If exp(P3) = 33, then by Lemma 2.3, |P3||(1+m3+m32 +m33) and so |P3||3
4

(for example when m9 = 5184 and m27 = 5760). We will consider two cases for
|P3|.
Case 1 . If |P3| = 33, then n3 = m27

φ(27) , since m27 ∈ {3780, 4320, 5184, 5760}, n3 =

2.3.5.7, n3 = 24.3.5, or n3 = 26.5, and so 5 ∈ π(G), which is a contradiction, and if
n3 = 25.32, since n3 6≡ 1 (mod 3), we have a contradiction.
Case 2 . If |P3| = 34, then by Lemma 2.5, 27|m27. Since (27 6| 5760), it is understood
that m27 ∈ {3780, 4320, 5184}). Since 28.3 /∈ ω(G), 28.32 /∈ ω(G), 28.33 /∈ ω(G),
and 28 /∈ ω(G), |ω(G)| 6 32. Therefore 20160+800k1+3780k2+4320k3+5184k4+
5760k5 = |G| = 2a.81, where k1, k2, k3, k4, k5, and a are non-negative integers and
0 6 k1 + k2 + k3 + k4 + k5 6 25. Since 20160 6 2a.81 6 20160 + 25.5760, we have
a = 8 , a = 9, or a = 10.
If a = 8, then 576 = 800k1 + 3780k2 + 4320k3 + 5184k4 + 5760k5 where 0 6

k1 + k2 + k3 + k4 + k5 6 25. By a computer calculation, it is easily seen that the
equation has no solution.
If a = 9, then 21312 = 800k1 + 3780k2 + 4320k3 + 5184k4 + 5760k5 where 0 6

k1 + k2 + k3 + k4 + k5 6 25. By a computer calculation, the only solution of
this equation is (0, 0, 0, 3, 1). We show this is impossible. Since |ω(G)| = 11 and
28 /∈ ω(G), exp(P2) = 2i, where 3 6 i 6 7. Hence, if exp(P2) = 2i, where 3 6 i 6 7
then |P2||(1 +m2 +m4 + · · ·+m2i) by Lemma 2.3. In fact |P2||(1 + 315 + 800t1 +
3780t2 + 4320t3 + 5184t4 + 5760t5) where t1, t2, t3, t4, t5, are non-negative integers
and 0 6 t1 + t2 + t3 + t4 + t5 6 6. Because k1 = 0 and m3 = 800, m2i 6= 800
for 1 6 i 6 7, t1 = 0. Since k2 = 0, 0 6 t2 6 1. We claim t2 = 0. Suppose,
contrary to our claim, t2 = 1. If m4 = 3780, then since m27 ∈ {3780, 4320, 5184},
we have a contradiction and so t2 = 0. If m4 6= 3780, then by computer calculation
m8 = 3780, since m27 ∈ {3780, 4320, 5184}, we have a contradiction and so t2 = 0.
Also k3 = 0, k4 = 3, and k5 = 1, thus 0 6 t3 6 1, 0 6 t4 6 4, and 0 6 t5 6 2. By
an easy computer calculation, this is impossible.
If a = 10, then since |P2||2

9, we have a contradiction.

⋆ If exp(P3) = 34, then by Lemma 2.3, |P3||(1 +m3 +m32 +m33 +m34) and so
|P3||3

4 (for example when m9 = 5760, m27 = 3780 ,and m81 = 4320).
If |P3| = 34, then n3 = m81

φ(81) , since m81 ∈ {3780, 4320, 5184}, n3 = 24.5, or n3 =

2.5.7, and so 5 ∈ π(G), which is a contradiction, and if n3 = 25.3, since a cyclic
group of order 81 has two elements of order 3, m3 6 25.3.2 = 192, which is a
contradiction.

⋆ If exp(P3) = 35, then by Lemma 2.3, |P3||(1 +m3 +m32 +m33 +m34 +m35)
and so |P3||3

5 (for example when m9 = 5184, m27 = 5760 ,and m81 = m243 = 5184
). In a similar way we have a contradiction. Therefore, 5 ∈ π(G).

Lemma 3.4. {7}
⋂

π(G) = Ø.

Proof. By Lemma 2.3 |P5||1 + m5 and so |P5| = 5. In the following, that the
prime 7 do not belong to π(G) is proved. Let 7 ∈ π(G). Then formula (3.1) implies
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m7.5 ∈ {4320, 5184, 5760} and 7.5|1+m5+m7+m5.7(= 15256, 16129, 16705), which
is a contradiction, and hence 5.7 /∈ ω(G). It follows that the Sylow 7-subgroup of
G acts fixed point freely on the set of elements of order 5 and so |P7||m5, which is
a contradiction. Hence 7 /∈ π(G).

From what has already been proved, we conclude 2,5 ∈ π(G), so the following
cases will be considered {2, 5}, {2, 3, 5}.

Lemma 3.5. π(G) = {2, 3, 5}.

Proof. If π(G) = {2, 5}, since exp(P5) = 5, then by Lemma 2.3, |P5||1 + m5, and
so |P5| = 5. Since n5 = m5

φ(5) = 24.34, it follows that 3 belongs to π(G), which is

a contradiction. Hence π(G) = {2, 3, 5}. The proof is completed by showing that
|G| = |U4(2)|.

Lemma 3.6. G ∼= U4(2).

Proof. First, we show that |G| = |U4(2)|. From the above arguments, we have |P5| =
5. Now, we prove 10 /∈ ω(G). Conversely, suppose that 10 ∈ ω(G). Then formula
(3.1) implies m10 ∈ {800, 3780, 4320, 5760}. On the other hand, if 2.5 ∈ ω(G), then
by Lemma 2.4, m2.5 = m5.φ(2).t for some integer t, which is a contradiction and
hence 2.5 /∈ ω(G). Since 2.5 /∈ ω(G), the group P2 acts fixed point freely on the set
of elements of order 5, and so |P2||m5, hence |P2||3

4.26. In fact |P2||2
6. In the same

way, since 15 /∈ ω(G), |P3||m5 and hence |P3||3
4.26. In fact |P3||3

4. Therefore we
have |G| = 2m.3n.5. Since 20160 = 26.32.5.7 6 |G| = 2m.3n.5, |G| = 26.34.5. Hence
|G| = 26.34.5 = |U4(2)| and by assumption nse(G) = nse(U4(2)), so by Lemma 2.8,
G ∼= U4(2) and the proof is completed.
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