FACTA UNIVERSITATIS (NIŠ)
Ser. Math. Inform. Vol. 34, No 4 (2019), 641-649
https://doi.org/10.22190/FUMI1904641H

A CHARACTERIZATION OF $U_{4}(2)$ BY NSE*

Farnoosh Hajati, Ali Iranmanesh and Abolfazl Tehranian

(C) 2019 by University of Niš, Serbia | Creative Commons Licence: CC BY-NC-ND

Abstract

Let G be a finite group and $\omega(G)$ be the set of element orders of G. Let $k \in$ $\omega(G)$ and m_{k} be the number of elements of order k in G. Let $n s e(G)=\left\{m_{k} \mid k \in \omega(G)\right\}$. The aim of this paper is to prove that, if G is a finite group such that nse $(G)=\operatorname{nse}\left(U_{4}(2)\right)$, then $G \cong U_{4}(2)$.

Keywords. element order; number of elements of the same order; projective special unitary group; simple K_{n} - group.

1. Introduction

This section contains the relevant definitions, some standard facts on nse, and a brief exposition of nse history. Throughout this paper, G is a finite group. We denote by $\pi(G)$ the set of prime divisors of $|G|$, and by $\omega(G)$, we introduce the set of order of elements from G. Set $m_{k}=m_{k}(G)=|\{g \in G \mid o(g)=k\}|$, and $\operatorname{nse}(G)=\left\{m_{k} \mid k \in \omega(G)\right\}$. In fact, m_{k} is the number of elements of order k in G and $n s e(G)$ is the set of sizes of elements with the same order in G.

To the world's mathematics and researchers, one of the important problems in group theory is characterization of a group by a given property, that is, to prove there exists only one group with a given property (up to isomorphism). Until now, different characterizations are investigated for finite simple groups. For instance, in [21, 22] motivated by one of the Thompson's problem, the authors introduced a new characterization for the finite simple group G by $n s e(G)$ and $|G|$. In fact, they proved that if G is a simple $K_{i^{-}}$group $(i=3,4)$, then G is characterizable by nse (G) and $|G|$ (The simple group G is called simple K_{n}-group if $|\pi(G)|=n$). Following this result, several groups were characterized by nse and order. For example, in [5, 11], it is proved that Suzuki group, and sporadic groups are characterizable by nse and order.

[^0]We remark here that not all groups can be characterized by their group orders and the set nse. As an illustration, let $H_{1}=C_{4} \times C_{4}$ and $H_{2}=C_{2} \times Q_{8}$, where C_{2} and C_{4} are cyclic groups of order 2 and 4 respectively, and Q_{8} is a quaternion group of order 8. It is easy to see that $n \operatorname{se}\left(H_{1}\right)=\operatorname{nse}\left(H_{2}\right)=\{1,3,12\}$ and $\left|H_{1}\right|=\left|H_{2}\right|=16$ but $H_{1} \neq H_{2}$.

However, it is claimed that some simple groups could be characterized by exactly the set nse without considering the order of group. In fact, a finite nonabelian simple group H is called characterizable by $n s e$, if every finite group G with $n s e(G)=n s e(H)$ implies that $G \cong H$. In $[7,8,9,10,12,13,24]$ it is proved that the alternating groups A_{n}, where $n \in\{7,8\}$, the symmetric groups S_{n} where $n \in\{3,4,5,6,7\}, M_{12}, L_{2}(27), L_{2}(q)$ where $q \in\{16,17,19,23\}, L_{2}(q)$ where $q \in\{7,8,11,13\}, L_{2}(q)$ where $q \in\{17,27,29\}$, are uniquely determined by nse (G). Besides, in $[1,14,15,16]$ it is proved that $U_{3}(4), L_{3}(4), U_{3}(5), L_{3}(5)$, are uniquely determined by $\operatorname{nse}(G)$. Recently, in $[3,6,18,19]$, it is proved that the simple groups $U_{3}(3), L_{3}(3), G_{2}(4), L_{2}\left(3^{n}\right)$, where $\left|\pi\left(L_{2}\left(3^{n}\right)\right)\right|=4$, and $L_{2}\left(2^{m}\right)$, where $\left|\pi\left(L_{2}\left(2^{m}\right)\right)\right|=4$, are uniquely determined by $\operatorname{nse}(G)$. Therefore, it is natural to ask what happens with other kinds of simple groups.

In an effort to fill some of the empty ground about the characterization of simple groups by nse, in this paper we will prove the following main theorem.
Main Theorem. Let G be a group such that $n s e(G)=n s e\left(U_{4}(2)\right)$. Then G is isomorphic to $U_{4}(2)$.

2. Notation and Preliminaries

Before we get started, let us fix some notations that will be used throughout the paper. For a natural number n by $\pi(n)$, we mean the set of all prime divisors of n, so it is obvious that if G is a finite group, then $\pi(G)=\pi(|G|)$. A Sylow r-subgroup of G is denoted by P_{r} and by $n_{r}(G)$, we mean the number of Sylow r- subgroup of G. Also the largest element order of P_{r} is signified by $\exp \left(P_{r}\right)$. Moreover, we denote by ϕ the Euler function. In the following, we bring some useful lemmas which be used in the proof of the main theorem.

Lemma 2.1. [25]. Let G be a group containing more than two elements. If the maximal number s of elements of the same order in G is finite, then G is finite and $|G| \leqslant s\left(s^{2}-1\right)$.

Lemma 2.2. [24]. Let G be a group. If $1 \neq n \in n s e(G)$ and $2 \nmid n$, then the following statements hold:
(1) $2||G|$;
(2) $m_{2}=n$;
(3) for any $2<t \in \omega(G), m_{t} \neq n$.

Lemma 2.3. [2]. Let G be a finite group and m be a positive integer dividing $|G|$. If $L_{m}(G)=\left\{g \in G \mid g^{m}=1\right\}$, then $m\left|\left|L_{m}(G)\right|\right.$.

Lemma 2.4. [23]. Let G be a group and P be a cyclic Sylow p-group of G of order p^{α}. If there is a prime r such that $p^{\alpha} r \in \omega(G)$, then $m_{p^{\alpha} r}=m_{r}\left(C_{G}(P)\right) m_{p^{\alpha}}$. In particular $\phi(r) m_{p^{\alpha}} \mid m_{p^{\alpha} r}$, where $\phi(r)$ is the Eular function of r.

Lemma 2.5. [17]. Let G be a finite group and $p \in \pi(G)$ be odd. Suppose that P is a Sylow p-subgroup of G and $n=p^{s} m$, where $(p, m)=1$. If P is not cyclic group and $s>1$, then the number of elements of order n is always a multiple of p^{s}.

We say that a group G acts semi regularly on set X if G acts on X in such a way that $G_{x}=1$ for all $x \in X$.

Lemma 2.6. [20]. Let the finite group G acts on the finite set X. If the action is semi regular, then $|G|||X|$.

Let us mention the structure of simple K_{3}-groups, that will be needed in Section 3.

Lemma 2.7. [4]. If G is a simple K_{3}-group, then G is isomorphic to one of the following groups:

$$
A_{5}, A_{6}, L_{2}(7), L_{2}(8), L_{2}(17), L_{3}(3), U_{3}(3), U_{4}(2)
$$

Lemma 2.8. [22]. Let G be a group and M a simple K_{3}-group. Then $G \cong M$ if and only if the following hold: (1) $|G|=|M|$, (2) nse $(G)=n s e(M)$.

3. Main Theorem and its Proof

Suppose G is a group such that $n s e(G)=n s e\left(U_{4}(2)\right)$. By Lemma 2.1, we can assume that G is finite. Let m_{n} be the number of elements of order n. We notice that $m_{n}=k \phi(n)$, where k is the number of cyclic subgroups of order n in G. In addition, we notice that if $n>2$, then $\phi(n)$ is even. If $n \in \omega(G)$, then by Lemma 2.3 and the above argument, we have

$$
\left\{\begin{array}{l}
\phi(n) \mid m_{n} \tag{3.1}\\
n \mid \sum_{d \mid n} m_{d}
\end{array}\right.
$$

In the proof of the main theorem, we often apply formula (3.1) and the above comments.

Proof of the Main Theorem. Let G be a group with

$$
n s e(G)=n s e\left(U_{4}(2)\right)=\{1,315,800,3780,4320,5184,5760\}
$$

where $\left.U_{4}(2)\right)$ is the projective special unitary group of degree 4 over field of order 2. We have divided the proof into a sequence of lemmas.

Remark 3.1. Let $2 \neq p \in \pi(G)$, by formula (3.1), $p \mid\left(1+m_{p}\right)$ and $(p-1) \mid m_{p}$, which implies that $p \in\{3,5,7,17,19\}$.

In the following lemma, we prove some basic properties of group G :
Lemma 3.1. If $p \in \pi(G)$ and $p \in\{2,3,5\}$, then
(1) $2 \in \pi(G)$ and $m_{2}=315$;
(2) $m_{3}=800, m_{5}=5184$;
(3) $\left\{5^{2}, 3^{6}, 2^{9}\right\} \bigcap \omega(G)=\varnothing$;
(4) $\mid P_{2} \| 2^{9}$.

Proof. The proof is straightforward according to Lemma 2.2, Lemma 2.3, and formula (3.1).

Lemma 3.2. $\{17,19\} \bigcap \pi(G)=\varnothing$.
Proof. We prove that $17 \notin \pi(G)$. Conversely, suppose that $17 \in \pi(G)$. Then formula (3.1) implies $m_{17}=5184$. On the other hand, by formula (3.1), we conclude that if $2.17 \in \omega(G)$, then $m_{2.17} \in\{800,4320,5184,5760\}$ and $2.17 \mid 1+m_{2}+m_{17}+$ $m_{2.17}(=6300,9820,10684,11260)$, which is a contradiction, and hence $2.17 \notin \omega(G)$. Since $2.17 \notin \omega(G)$, the group P_{17} acts fixed point freely on the set of elements of order 2 of G and by Lemma 2.6, $\left|P_{17}\right| \mid m_{2}$, which is a contradiction. Hence, $17 \notin \pi(G)$. Similarly, we can prove that $19 \notin \pi(G)$.

To remove the prime 7 , let us first show that $5 \in \pi(G)$.
Lemma 3.3. $\{5\} \bigcap \pi(G)=\{5\}$.
Proof. Assume that $5 \notin \pi(G)$.

- If $3,7 \notin \pi(G)$, then G is a 2 -group. Since $2^{9} \notin \omega(G)$, we have $\omega(G) \subseteq\left\{1,2,2^{2}, \cdots, 2^{8}\right\}$.

Hence $|G|=2^{m}=20160+800 k_{1}+3780 k_{2}+4320 k_{3}+5184 k_{4}+5760 k_{5}$, where $k_{1}, k_{2}, k_{3}, k_{4}, k_{5}$ and m are non-negative integers, and $0 \leqslant k_{1}+k_{2}+k_{3}+k_{4}+k_{5} \leqslant 2$. It is obvious that $20160 \leqslant|G| \leqslant 20160+\left(k_{1}+k_{2}+k_{3}+k_{4}+k_{5}\right) 5760$ and so $20160 \leqslant|G| \leqslant 20160+2.5760$. Now, it is easily seen that the equation has no solution.
Hence 3 or 7 belongs to $\pi(G)$, and the following cases are considered.

- If $7 \in \pi(G)$, by formula (3.1) $m_{7}=5760$, then as $\exp \left(P_{7}\right)=7, \mid P_{7} \| 1+m_{7}$ and so $\left|P_{7}\right|=7$. Since $\left.n_{7}=\frac{m_{7}}{\phi(7)}=2^{6} .3 .5 \| G \right\rvert\,$, it follows that $5 \in \pi(G)$, which is a contradiction.
- If $3 \in \pi(G)$, then $\exp \left(P_{3}\right)=3,3^{2}, 3^{3}, 3^{4}, 3^{5}$.
\star If $\exp \left(P_{3}\right)=3$, then by Lemma 2.3, |P $P_{3}| |\left(1+m_{3}\right)$ and so $\left|P_{3}\right| \mid 3^{2}$. We will consider two cases for $\left|P_{3}\right|$.
Case 1 If $\left|P_{3}\right|=3$, then since $\left.n_{3}=\frac{m_{3}}{\phi(3)}=2^{3} .5^{3}| | G \right\rvert\,, 5 \in \pi(G)$ which is a contradiction.

Case 2 If $\left|P_{3}\right|=3^{2}$, then since $5,7 \notin \pi(G)$ and $\pi(G) \subseteq\{2,3,5,7\}$, we can assume that $\{2\} \subseteq \pi(G) \subseteq\{2,3\}$, and so we have

$$
\omega(G) \subseteq\left\{1,2, \cdots 2^{8}\right\} \cup\left\{3,3.2,3.2^{2}, 3.2^{3}, \cdots, 3.2^{7}\right\}
$$

$\left(2^{8} .3 \notin \omega(G)\right.$ by formula (3.1)) and $|\omega(G)| \leqslant 17$. Therefore $20160+800 k_{1}+3780 k_{2}+$ $4320 k_{3}+5184 k_{4}+5760 k_{5}=|G|=2^{a} .9$ where $k_{1}, k_{2}, k_{3}, k_{4}, k_{5}$, and a are non-negative integers and $0 \leqslant k_{1}+k_{2}+k_{3}+k_{4}+k_{5} \leqslant 10$. Since $20160 \leqslant 2^{a} .9 \leqslant 20160+10.5760$, we have $a=12$, or $a=13$. If $a=12$, then since $\mid P_{2} \| 2^{9}$, we have a contradiction. Similarly, we can rule out $a=13$.
\star If $\exp \left(P_{3}\right)=3^{2}$, then, by Lemma 2.3, | $P_{3}| |\left(1+m_{3}+m_{3^{2}}\right)$ and so $\mid P_{3} \| 3^{8}$. (for example, when $\left.m_{9}=5760\right)$. We will consider seven cases for $\left|P_{3}\right|$.
Case 1. If $\left|P_{3}\right|=3^{2}$, then $n_{3}=\frac{m_{9}}{\phi(9)}$, since $m_{9} \in\{3780,4320,5184,5760\}, n_{3}=$ $3^{2} .2 .5 .7, n_{3}=2^{4} .3^{2} .5$, or $n_{3}=2^{6} .3 .5$, and so $5 \in \pi(G)$, which is a contradiction, and if $n_{3}=2^{5} .3^{3}$, since $n_{3} \not \equiv 1(\bmod 3)$, we have a contradiction.
Case 2. If $\left|P_{3}\right|=3^{3}$, then since 5, $7 \notin \pi(G)$, we can assume that $\{2\} \subseteq \pi(G) \subseteq\{2,3\}$
and so we have $\omega(G) \subseteq\left\{1,2, \cdots 2^{8}\right\} \cup\left\{3,3.2,3.2^{2}, \cdots, 3.2^{7}\right\} \cup\left\{3^{2}, 3^{2} .2,3^{2} .2^{2}, \cdots, 3^{2} .2^{7}\right\}$
($2^{8} .3 \notin \omega(G), 2^{8} .3^{2} \notin \omega(G)$ by formula (3.1)) and $|\omega(G)| \leqslant 25$. Therefore $20160+$ $800 k_{1}+3780 k_{2}+4320 k_{3}+5184 k_{4}+5760 k_{5}=|G|=2^{a} .27$, where $k_{1}, k_{2}, k_{3}, k_{4}, k_{5}$, and a are non-negative integers and $0 \leqslant k_{1}+k_{2}+k_{3}+k_{4}+k_{5} \leqslant 18$. Since $20160 \leqslant 2^{a} .27 \leqslant 20160+18.5760$, we have $a=10, a=11$, or $a=12$.
If $a=10$, then since $\mid P_{2} \| 2^{9}$, we have a contradiction. Similarly, we can rule out $a=11$ and $a=12$.
Case 3. If $\left|P_{3}\right|=3^{4}$, then since $\exp \left(P_{3}\right)=3^{2}$ and $2^{8} .3,2^{8} .9 \notin \omega(G), \omega(G) \subseteq$ $\left\{1, \cdots, 2^{8}\right\} \cup\left\{3, \cdots, 3.2^{7}\right\} \cup\left\{3^{2}, \cdots, 3^{2} .2^{7}\right\}$. On the other hand, if $2^{8} \in \omega(G)$ since $2^{8} .3 \notin \omega(G)$, the group P_{3} acts fixed point freely on the set of elements of order 2^{8}. Hence $\left|P_{3}\right| \mid m_{2^{8}}=5760$, which is a contradiction. Hence $2^{8} \notin \omega(G)$ and $|\omega(G)| \leqslant 24$. Therefore $20160+800 k_{1}+3780 k_{2}+4320 k_{3}+5184 k_{4}+5760 k_{5}=|G|=2^{a} .81$, where $k_{1}, k_{2}, k_{3}, k_{4}, k_{5}$, and a are non-negative integers and $0 \leqslant k_{1}+k_{2}+k_{3}+k_{4}+k_{5} \leqslant 17$. Since $20160 \leqslant 2^{a} .81 \leqslant 20160+17.5760$, we have $a=8, a=9$, or $a=10$.
If $a=8$, then $576=800 k_{1}+3760 k_{2}+4320 k_{3}+5184 k_{4}+5760 k_{5}$ where $0 \leqslant$ $k_{1}+k_{2}+k_{3}+k_{4}+k_{5} \leqslant 17$. By a computer calculation, it is easy to see this equation has no solution.
If $a=9$, then $21312=800 k_{1}+3780 k_{2}+4320 k_{3}+5184 k_{4}+5760 k_{5}$ where $0 \leqslant$ $k_{1}+k_{2}+k_{3}+k_{4}+k_{5} \leqslant 17$. The only solution of this equation is $(0,0,0,3,1)$. We show this is impossible. Since $|\omega(G)|=11$ and $2^{8} \notin \omega(G), \exp \left(P_{2}\right)=2^{i}$, where $3 \leqslant i \leqslant 7$. Hence, if $\exp \left(P_{2}\right)=2^{i}$ where $3 \leqslant i \leqslant 7$, then $\mid P_{2} \|\left(1+m_{2}+m_{4}+\cdots+m_{2^{i}}\right)$ by Lemma 2.3. In fact $\mid P_{2} \|\left(1+315+800 t_{1}+3780 t_{2}+4320 t_{3}+5184 t_{4}+5760 t_{5}\right)$ where $t_{1}, t_{2}, t_{3}, t_{4}, t_{5}$, are non-negative integers and $0 \leqslant t_{1}+t_{2}+t_{3}+t_{4}+t_{5} \leqslant 6$. Because $k_{1}=0$ and $m_{3}=800, m_{2^{i}} \neq 800$ for $1 \leqslant i \leqslant 7, t_{1}=0$. Since $k_{2}=0,0 \leqslant t_{2} \leqslant 1$. We claim $t_{2}=0$. Suppose, contrary to our claim, $t_{2}=1$. If $m_{4}=3780$, then since $m_{9} \in\{3780,4320,5184,5760\}$, we have a contradiction and so $t_{2}=0$. If $m_{4} \neq 3780$, then by a computer calculation $m_{8}=3780$, since $m_{9} \in\{3780,4320,5184,5760\}$, we have a contradiction and so $t_{2}=0$. Also $k_{3}=0, k_{4}=3$, and $k_{5}=1$, thus $0 \leqslant t_{3} \leqslant 1$, $0 \leqslant t_{4} \leqslant 4$, and $0 \leqslant t_{5} \leqslant 2$. By an easy computer calculation, this is impossible.

If $a=10$, then since $\mid P_{2} \| 2^{9}$, we have a contradiction.
Similarly, we can rule out the other cases.
\star If $\exp \left(P_{3}\right)=3^{3}$, then by Lemma 2.3, $\left|P_{3}\right| \mid\left(1+m_{3}+m_{3^{2}}+m_{3^{3}}\right)$ and so $\left|P_{3}\right| \mid 3^{4}$ (for example when $m_{9}=5184$ and $m_{27}=5760$). We will consider two cases for $\left|P_{3}\right|$.
Case 1. If $\left|P_{3}\right|=3^{3}$, then $n_{3}=\frac{m_{27}}{\phi(27)}$, since $m_{27} \in\{3780,4320,5184,5760\}, n_{3}=$ 2.3.5.7, $n_{3}=2^{4} .3 .5$, or $n_{3}=2^{6} .5$, and so $5 \in \pi(G)$, which is a contradiction, and if $n_{3}=2^{5} .3^{2}$, since $n_{3} \not \equiv 1(\bmod 3)$, we have a contradiction.
Case 2. If $\left|P_{3}\right|=3^{4}$, then by Lemma 2.5, $27 \mid m_{27}$. Since ($27 \backslash 5760$), it is understood that $\left.m_{27} \in\{3780,4320,5184\}\right)$. Since $2^{8} .3 \notin \omega(G), 2^{8} .3^{2} \notin \omega(G), 2^{8} .3^{3} \notin \omega(G)$, and $2^{8} \notin \omega(G),|\omega(G)| \leqslant 32$. Therefore $20160+800 k_{1}+3780 k_{2}+4320 k_{3}+5184 k_{4}+$ $5760 k_{5}=|G|=2^{a} .81$, where $k_{1}, k_{2}, k_{3}, k_{4}, k_{5}$, and a are non-negative integers and $0 \leqslant k_{1}+k_{2}+k_{3}+k_{4}+k_{5} \leqslant 25$. Since $20160 \leqslant 2^{a} .81 \leqslant 20160+25.5760$, we have $a=8, a=9$, or $a=10$.
If $a=8$, then $576=800 k_{1}+3780 k_{2}+4320 k_{3}+5184 k_{4}+5760 k_{5}$ where $0 \leqslant$ $k_{1}+k_{2}+k_{3}+k_{4}+k_{5} \leqslant 25$. By a computer calculation, it is easily seen that the equation has no solution.
If $a=9$, then $21312=800 k_{1}+3780 k_{2}+4320 k_{3}+5184 k_{4}+5760 k_{5}$ where $0 \leqslant$ $k_{1}+k_{2}+k_{3}+k_{4}+k_{5} \leqslant 25$. By a computer calculation, the only solution of this equation is $(0,0,0,3,1)$. We show this is impossible. Since $|\omega(G)|=11$ and $2^{8} \notin \omega(G), \exp \left(P_{2}\right)=2^{i}$, where $3 \leqslant i \leqslant 7$. Hence, if $\exp \left(P_{2}\right)=2^{i}$, where $3 \leqslant i \leqslant 7$ then $\left|P_{2}\right| \mid\left(1+m_{2}+m_{4}+\cdots+m_{2^{i}}\right)$ by Lemma 2.3. In fact $\left|P_{2}\right| \mid\left(1+315+800 t_{1}+\right.$ $\left.3780 t_{2}+4320 t_{3}+5184 t_{4}+5760 t_{5}\right)$ where $t_{1}, t_{2}, t_{3}, t_{4}, t_{5}$, are non-negative integers and $0 \leqslant t_{1}+t_{2}+t_{3}+t_{4}+t_{5} \leqslant 6$. Because $k_{1}=0$ and $m_{3}=800, m_{2^{i}} \neq 800$ for $1 \leqslant i \leqslant 7, t_{1}=0$. Since $k_{2}=0,0 \leqslant t_{2} \leqslant 1$. We claim $t_{2}=0$. Suppose, contrary to our claim, $t_{2}=1$. If $m_{4}=3780$, then since $m_{27} \in\{3780,4320,5184\}$, we have a contradiction and so $t_{2}=0$. If $m_{4} \neq 3780$, then by computer calculation $m_{8}=3780$, since $m_{27} \in\{3780,4320,5184\}$, we have a contradiction and so $t_{2}=0$. Also $k_{3}=0, k_{4}=3$, and $k_{5}=1$, thus $0 \leqslant t_{3} \leqslant 1,0 \leqslant t_{4} \leqslant 4$, and $0 \leqslant t_{5} \leqslant 2$. By an easy computer calculation, this is impossible.
If $a=10$, then since $\mid P_{2} \| 2^{9}$, we have a contradiction.
\star If $\exp \left(P_{3}\right)=3^{4}$, then by Lemma 2.3, |P3 $\left|\mid\left(1+m_{3}+m_{3^{2}}+m_{3^{3}}+m_{3^{4}}\right)\right.$ and so $\left|P_{3} \|\right| 3^{4}$ (for example when $m_{9}=5760, m_{27}=3780$, and $m_{81}=4320$).
If $\left|P_{3}\right|=3^{4}$, then $n_{3}=\frac{m_{81}}{\phi(81)}$, since $m_{81} \in\{3780,4320,5184\}, n_{3}=2^{4} .5$, or $n_{3}=$ 2.5.7, and so $5 \in \pi(G)$, which is a contradiction, and if $n_{3}=2^{5} .3$, since a cyclic group of order 81 has two elements of order $3, m_{3} \leqslant 2^{5} .3 .2=192$, which is a contradiction.
\star If $\exp \left(P_{3}\right)=3^{5}$, then by Lemma 2.3, $\left|P_{3}\right| \mid\left(1+m_{3}+m_{3^{2}}+m_{3^{3}}+m_{3^{4}}+m_{3^{5}}\right)$ and so $\left|P_{3}\right| 3^{5}$ (for example when $m_{9}=5184, m_{27}=5760$, and $m_{81}=m_{243}=5184$). In a similar way we have a contradiction. Therefore, $5 \in \pi(G)$.

Lemma 3.4. $\{7\} \cap \pi(G)=\varnothing$.
Proof. By Lemma $2.3\left|P_{5}\right| \mid 1+m_{5}$ and so $\left|P_{5}\right|=5$. In the following, that the prime 7 do not belong to $\pi(G)$ is proved. Let $7 \in \pi(G)$. Then formula (3.1) implies
$m_{7.5} \in\{4320,5184,5760\}$ and $7.5 \mid 1+m_{5}+m_{7}+m_{5.7}(=15256,16129,16705)$, which is a contradiction, and hence $5.7 \notin \omega(G)$. It follows that the Sylow 7 -subgroup of G acts fixed point freely on the set of elements of order 5 and so $\mid P_{7} \| m_{5}$, which is a contradiction. Hence $7 \notin \pi(G)$.

From what has already been proved, we conclude $2,5 \in \pi(G)$, so the following cases will be considered $\{2,5\},\{2,3,5\}$.

Lemma 3.5. $\pi(G)=\{2,3,5\}$.
Proof. If $\pi(G)=\{2,5\}$, since $\exp \left(P_{5}\right)=5$, then by Lemma 2.3, $\left|P_{5}\right| \mid 1+m_{5}$, and so $\left|P_{5}\right|=5$. Since $n_{5}=\frac{m_{5}}{\phi(5)}=2^{4} .3^{4}$, it follows that 3 belongs to $\pi(G)$, which is a contradiction. Hence $\pi(G)=\{2,3,5\}$. The proof is completed by showing that $|G|=\left|U_{4}(2)\right|$.

Lemma 3.6. $G \cong U_{4}(2)$.
Proof. First, we show that $|G|=\left|U_{4}(2)\right|$. From the above arguments, we have $\left|P_{5}\right|=$ 5. Now, we prove $10 \notin \omega(G)$. Conversely, suppose that $10 \in \omega(G)$. Then formula (3.1) implies $m_{10} \in\{800,3780,4320,5760\}$. On the other hand, if $2.5 \in \omega(G)$, then by Lemma 2.4, $m_{2.5}=m_{5} . \phi(2) . t$ for some integer t, which is a contradiction and hence $2.5 \notin \omega(G)$. Since $2.5 \notin \omega(G)$, the group P_{2} acts fixed point freely on the set of elements of order 5 , and so $\mid P_{2} \| m_{5}$, hence $\mid P_{2} \| 3^{4} .2^{6}$. In fact $\mid P_{2} \| 2^{6}$. In the same way, since $15 \notin \omega(G), \mid P_{3} \| m_{5}$ and hence $\mid P_{3} \| 3^{4} .2^{6}$. In fact $\left|P_{3}\right| \mid 3^{4}$. Therefore we have $|G|=2^{m} .3^{n} .5$. Since $20160=2^{6} .3^{2} .5 .7 \leqslant|G|=2^{m} .3^{n} .5,|G|=2^{6} .3^{4} .5$. Hence $|G|=2^{6} .3^{4} .5=\left|U_{4}(2)\right|$ and by assumption $n s e(G)=n s e\left(U_{4}(2)\right)$, so by Lemma 2.8, $G \cong U_{4}(2)$ and the proof is completed.

Acknowledgments: The authors would like to express their deep gratitude to the referees for their helpful comments and valuable suggestion for improvement of this paper. Part of this research work was done while the second author was spending his sabbatical leave at the Department of Mathematics of University of California, Berkeley. This author expresses his thanks for the hospitality and facilities provided by Department of Mathematics of UCB.

REFERENCES

1. D. Chen : A characterization of $P S U(3,4)$ by nse. International Journal of Algebra and Statistics 2 (2013), 51-56.
2. G. Frobenius: Verallgemeinerung des Sylowschen Satze. Berl. Ber. (1895), 981-993.
3. F. Hajati, A. Iranmanesh, and A. Tehranian: A characterization of projective special unitary group $\operatorname{PSU}(3,3)$ and projective special linear group $\operatorname{PSL}(3,3)$ by nse. Mathematics 6, no. 7 (2018).
4. M. Herzog : On finite simple groups of order divisible by three primes only. J. Algebra 10, no.3, (1968), 383-388.
5. A. Iranmanesh, H. Parvizi Mosaed and A. Tehranian,: Characterization of Suzuki group by nse and order of group. Bull.Korean Math.Soc. 53, no. 3, (2016), 651-656, .
6. M. Jahandideh Khangheshlaghi and M. R. Darafsheh: Nse characterization of the Chevalley group $G_{2}(4)$. Arabian Journal of Mathematics 7 (2018), 21-26.
7. A. Khalili Asboei, S. S. Salehi Amiri, A. Iranmanesh, and A. Tehranian: A new characterization of A_{7}, A_{8},. Anale Stintifice ale Universitatii Ovidius Constanta 21 (2013), 43-50 .
8. A. Khalili Asboei, S. S. Salehi Amiri and A. Iranmanesh: A new characterization of Symmetric groups for some n. Hacettepe Journal of Mathematics and Statistics 43, (2013), 715-723.
9. A. Khalili Asboei, S. S. Salehi Amiri and A. Iranmanesh: A new note on characterization of a Mathieu group of degree 12. Southeast Asian Bulletin of Mathematics 38 (2014), 383-388.
10. A. Khalili Asboei : A new characterization of PSL(2,27). Bol. Soc. Paran. Mat. 32 (2014), no.1, 43-50.
11. A. Khalili Asboei, S. S. Salehi Amiri, A. Iranmanesh, and A. Tehranian: A characterization of sporadic simple groups by nse and order. J.Algebra and its Applications 12 (2013), no.2.
12. A. Khalili Asboei, S. S. Salehi Amiri, and A. Iranmanesh: A new characterization of $\operatorname{PSL}(2, q)$ for some q,. Ukrainian Mathematical Journal 67 (2016), no.9, 1297-1305.
13. M. Khatami, B. Khosravi and Z. Akhlaghi: A new characterization for some linear groups. Monatsh. Math. 163 (2011), no.1, 39-50.
14. S. LiU : A characterization of $L_{3}(4)$. Sci. Asia 39 (2013), 436-439.
15. S. Liu : A characterization of projective special unitary group $U_{3}(5)$ by nse. Arab Journal of Mathematical Sciences 20 (2014), no.1, 133-140.
16. S. LiU : A characterization of projective special linear group $L_{3}(5)$ by nse . Italian Journal of Pure and Applied Mathematics (2014), no.32, 203-212.
17. G. A. Miller : Addition to a theorem due to Frobenius,. Bull. Amer. Math. Soc. 11 (1904), no.1, 6-7.
18. H. Parvizi Mosaed, A. Iranmanesh and A. Tehranian: Nse characterization of simple group $L_{2}\left(3^{n}\right)$. Publications De L'institut Mathematique Nouvelle Serie 99 (2016), no.113, 193-201.
19. H. Parvizi Mosaed, A. Iranmanesh, M. Foroudi Ghasemabadi and A. Tehranian: A new characterization of simple group $L_{2}\left(2^{m}\right)$,. Hacettepe Journal of Mathematics and Statistics 44 (2016), no.4, 875-886.
20. D. Passman: Permutation Groups. W.A. Benjamin, New York, 1968.
21. C. Shoa, W. Shi and Q. Jiang: Characterization of simple K_{4}-groups,. Front. Math.China 3 (2008), no.3, 355-370.
22. C. Shoa, W. Shi, and Q. Jiang: A characterization of simple K_{3}-groups. Advances in Mathematics 38 (2009), no.3, 327-330.
23. C. Shoa and Q. Jiang: A new characterization of some linear groups by nse. Journal of Algebra and its Applications 13 (2014), no. 2.
24. C. Shoa and Q. Jiang,: Characterization of groups $L_{2}(q)$ by nse where $q \in$ $\{17,27,29\}$. Chin. Ann. Math. 37B (2016), no.1, 103-110.
25. R. Shen, C. Shoa, W. Shi, Q. Jiang, and V. Mazurov: A new characterization of A_{5}, Monatsh. Math. 160 (2010), 337-341.
26. W. Shi: A new characterization of sporadic simple groups. In: Group Theory,(Proceeding of the 1987 Singapore Conference on Group Theory) Walter de Gruyter, Berlin 1989, pp. 531-540.

Farnoosh Hajati
Department of Mathematics, Science and Research Branch Islamic Azad University
P. O. Box 14515-775
Tehran, Iran
F_hajati@azad.ac.ir

Ali. Iranmanesh
Faculty of Mathematical Sciences
Department of Mathematics
Tarbiat Modares University
P. O. Box 14115-137
Tehran, Iran
iranmanesh@modares.ac.ir

Abolfazl. Tehranian
Department of Mathematics, Science and Research Branch
Islamic Azad University
P. O. Box 14515-775
Tehran, Iran
tehranian@srbiau.ac.ir

[^0]: Received February 02, 2019; accepted August 14, 2019
 2010 Mathematics Subject Classification. Primary 20D06; Secondary 20D20

 * Corresponding author: Ali Iranmanesh

