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Abstract. In this paper, we introduce some new concepts of the exponentially preinvex
functions. We investigate several properties of the exponentially preinvex functions and
discuss their relations with convex functions. Optimality conditions are characterized
by a class of variational-like inequalities. Several interesting results characterizing the
exponentially preinvex functions are obtained. Results obtained in this paper can be
viewed as significant improvement of previously known results.
Keywords: preinvex function; convex function; convexity; nonlinear problems; varia-
tional inequalities.

1. Introduction

Convex functions and convex sets have played an important and fundamental part
in the development of various fields of pure and applied sciences. Convexity theory
describes a broad spectrum of very interesting developments involving a link among
various fields of mathematics, physics, economics and engineering sciences. Some of
these developments have made mutually enriching contacts with other fields. Ideas
explaining these concepts led to the developments of new and powerful techniques
to solve a wide class of linear and nonlinear problems. Convexity theory provides us
with a unified framework to develop highly efficient and powerful numerical meth-
ods to solve nonlinear problems, see [1, 2, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33]. In recent years, various exten-
sions and generalizations of convex functions and convex sets have been considered
and studied using innovative ideas and techniques. It is known that more accurate
and inequalities can be obtained using the logarithmically convex functions than
the convex functions. Closely related to the log-convex functions, we the concept
of exponentially convex(concave) functions, which have important applications in
information theory, big data analysis, machine learning and statistic, see, for exam-
ple, [1, 32] and the references therein. Exponentially convex(concave) functions can
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be considered as a significant extension of the convex functions. Pal and Wong [32]
have discussed its role in information geometry and statistics. Antczak [2] introuced
these exponentially convex functions implicitly and discuss their role in mathemati-
cal programming. We would like to mention that the origin of exponentially convex
functions can be traced back to Bernstein [6]. Avriel [3] introduced and studied
the concept of r-convex functions, where as the (r, p)-convex functions were studied
by Antczak [2]. The definition of exponential convex functions in Noor and Noor
[25, 26, 27, 28] and Alirazaei and Mathur [1] is quite different from Bernstein [6]
and Pecaric et al.[30, 31]. Alirazaie and Mathur [1] , Dragomir and Gomm [9, 10]
and Noor and Noor [25, 26, 27, 28] have derived several results for exponentially
convex functions.

Hanson [12] studied the concept of invex functions involving an arbitrary bi-
function to consider the mathematical programming problems. The invex functions
appeared to be a significant generalization of the convex functions. Ben-Israel and
Mond [5] introduced the invex sets and preinvex functions involving the bifunction,
which can be viewed as an important contribution in the field of optimization. They
proved that the differentiable preinvex functions imply the invex function, but the
converse is not true in general. Mohen and Neogy [14] showed that the differentiable
preinvex and invex functions are equivalent under suitable conditione. Noor [16]
proved that the optimality conditions of the differentiable preinvex functions can be
characterized by a class of variational inequalities, which is called variational-like
inequality. For the applications, formulation and other aspects of variational-like
inequalities and related equilibrium like problems, see [16, 17, 18, 19, 22, 23, 24, 28].
Antczak [2] introduced an discussed the properties of the preinvex functions in non-
linear optimization and mathematical programming.

Motivated and inspired by the ongoing research in this interesting, applicable
and dynamic field, we introduce the exponentially preinvex functions. It is has been
shown that the exponentially convex(concave) have nice nice properties which con-
vex functions enjoy. Several new concepts have been introduced and investigated.
We show that the local minimum of the exponentially preinvex functions is the
global minimum. The optimal conditions of the differentiable exponentially prein-
vex functions can be characterized by a class of variational inequalities, which is
called exponentially variational-like inequality, which is itself an interesting outcome
of our main results. The difference (sum) of the exponentially preinvex functions
and exponentially affine preinvex functions is again a exponentially convex function.
The ideas and techniques of this paper may be starting point for further research
in these areas.

2. Preliminary Results

Let K be a nonempty closed set in a real Hilbert space H . We denote by 〈·, ·〉 and
‖ · ‖ by the inner product and norm, respectively. Let F : K → R be a continuous
function.
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Definition 2.1. [5] The set Kη in H is said to be invex set, if there exists a
bifunction η(., .), such that

u+ tη(v, u) ∈ K, ∀u, v ∈ Kη, t ∈ [0, 1].

Definition 2.2. [5] A function F on the invex set set Kη in H is said to be a
preinvex funtion, if there exists a bifunction η(., .), such that

F (u + tη(v, u)) ≤ (1− t)F (u) + tF (v), ∀u, v ∈ Kη, t ∈ [0, 1].(2.1)

Definition 2.3. [5] A function F on the set Kη in H is said to be log-preinvex ,
if there exists a bifunction η(., .), such that

F (u+ tη(v, u)) ≤ (F (u))1−t(F (v))t, ∀u, v ∈ Kη, t ∈ [0, 1].(2.2)

We now define the concept of exponentially preinvex functions and their variant
forms.

Definition 2.4. A function F is said to be exponentially preinvex with respect to
an arbitrary bifunction η(v, u), if

eF (u+tη(v,u)) ≤ (1− t)eF (u) + teF (v), ∀u, v ∈ Kη, t ∈ [0, 1].(2.3)

One can easily show that Definition 2.4 is equivalent to the following definition
which is mainly due to Antczak [2].

Definition 2.5. [5] A function F is said to be exponentially preinvex with respect
to an arbitrary bifunction η(v, u). if

F (u+ tη(v, u)) ≤ log{(1− t)eF (u) + teF (v)}, ∀u, v ∈ Kη, t ∈ [0, 1],(2.4)

Definition 2.6. A function F is said to be log-preinvex with respect to an arbi-
trary bifunction η(v, u), if

eF (u+tη(v,u)) ≤ (eF (v))1−t(eF (v))t, ∀u, v ∈ Kη, t ∈ [0, 1].(2.5)

From definition 2.6, it follows that

eF (u+tη(v,u)) ≤ (1− t)eF (u) + teF (v), ∀u, v ∈ Kη, t ∈ [0, 1].

For t = 1, the Definition 2.4 reduces to

eF (u+η(v,u)) ≤ eF (v), ∀u, v ∈ Kη, t ∈ [0, 1],(2.6)

which is known as Condition A.

A function is called the exponentially prencave function F , if −F is exponentially
preinvex function. For the applications of the exponentially preinvex functions in
mathematical programming, see Antczak[2].

We remark that if η(v, u) = v − u, then the invex set Kη = K, the convex set
and Definition 2.4 reduces to:
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Definition 2.7. A function F is said to be exponentially convex function, if

eF (u+t(v−u)) ≤ (1− t)eF (u) + teF (v), ∀u, v ∈ K, t ∈ [0, 1].(2.7)

For the applications of the exponentially convex(concave) functions in the math-
ematical programming and information theory, see Antczak [2] and Alirezaei and
Mathar[1].

Example 2.1. [1] The error function

erf(x) =
2√
π

∫ x

0

e
−t2

dt,

becomes an exponentially concave function in the form erf(
√
x), x ≥ 0, which describes

the bit/symbol error probability of communication systems depending on the square root
of the underlying signal-to-noise ratio. This shows that the exponentially concave functions
can play important part in communication theory and information theory.

For the properties of differentiable exponential preinvex functions, see Noor and
Noor [28].

Definition 2.8. The function F on the convex set Kη is said to be exponentially
quasi preinvex with respect to an arbitrary bifunction η(v, u), if

eF (u+tη(v,u) ≤ max{eF (u), eF (v)}, ∀u, v ∈ Kη, t ∈ [0, 1].

From the above definitions, we have

eF (u+tη(v,u)) ≤ (e(F (u))1−t(eF (v))t

≤ (1 − t)eF (u) + teF (v))

≤ max{eF (u), eF (v)}.

This shows that every exponentially log-preinvex function is a exponentially con-
vex function and every exponentially convex function is a is a exponentially quasi-
preinvex function. However, the converse is not true.

Let Kη = Iη = [a, a + η(b, a)] be the interval. We now define the exponentially
preinvex function on Iη.

Definition 2.9. Let Iη = [a, a+ η(b, a)]. Then F is exponentially preinvex func-
tion, if and only if,

∣

∣

∣

∣

∣

∣

1 1 1
a x a+ η(b, a)

eF (a) eF (x) eF (b)

∣

∣

∣

∣

∣

∣

≥ 0; a ≤ x ≤ a+ η(b, a).

One can easily show that the following are equivalent:
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1. F is exponentially preinvex function.

2. eF (x) ≤ eF (a) + eF (b)
−eF (a)

η(b,a) (a− x).

3. eF (x)
−eF (a)

x−a
≤ eF (b)

−eF (a)

η(b,a) .

4. (a− x+ η(b, a))eF (a) + η(b, a)eF (x) + (x− a)eF (b) ≥ 0.

where x = a+ tη(b, a) ∈ [0, 1].

3. Main Results

In this section, we consider some basic properties of exponentially general preinvex
functions.

Theorem 3.1. Let F be a exponentially preinvex function. Then any local mini-

mum of F is a global minimum.

Proof. Let the exponentially preinvex function F have a local minimum at u ∈ Kη.

Assume the contrary, that is, F (v) < F (u) for some v ∈ Kη. Since F is exponentially
preinvex, so

eF (u+tη(v,u) ≤ (1− t)eF (u) + teF (v), for 0 < t < 1.

Thus
eF (u+tη(v,u)) − eF (u) ≤ t[eF (v) − eF (u)] < 0,

from which it follows that
eF (u+tη(v,u)) < eF (u),

for arbitrary small t > 0, contradicting the local minimum.

Theorem 3.2. If the function F on the invex set Kη is exponentially preinvex,

then the level set Lα = {u ∈ Kη : eF (u) ≤ α, α ∈ R} is an invex set.

Proof. Let u, v ∈ Lα. Then eF (u) ≤ α and eF (v) ≤ α. Now, ∀t ∈ (0, 1), v =
u+ tη(v, u) ∈ Kη, since Kη is an invex set. Thus, by the exponentially preinvexity
of F, we have

eF (u+tη(v,u)) ≤ (1 − t)eF (u) + teF (v)

≤ (1 − t)α+ tα = α,

from which it follows that u+ tη(v, u) ∈ Lα Hence Lα is an invex set.

Theorem 3.3. The function F is a exponentially preinvex, if and only if,

epi(F ) = {(u, a) : u ∈ Kη : eF (u) ≤ α, α ∈ R}

is a general invex set.
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Proof. Assume thatF is exponentially preinvex. Let (u, α), (v, β) ∈ epi(F ). Then
it follows that eF (u) ≤ α and eF (v) ≤ β. Thus, ∀t ∈ [0, 1], u.v ∈ Kη, we have

eF (u+tη(v,u)) ≤ (1− t)eF (u) + teF (v) ≤ (1 − t)α+ tβ,

which implies that (u + tη(v, u), (1 − t)α + tβ) ∈ epi(F ). Thus epi(F ) is an invex
set. Conversely, let epi(F ) be an invex set. Let u, v ∈ Kη. Then (u, eF (u)) ∈ epi(F )
and (v, eF (v)) ∈ epi(F ). Since epi(F ) is an invex set, we must have

(u+ tη(v, u), (1− t)eF (u) + teF (v)) ∈ epi(F ),

which implies that
eF (u+tη(v,u) ≤ (1− t)eF (u) + teF (v.

This shows that F is an exponentially preinvex function.

Theorem 3.4. The function F is exponentially quasi preinvex, if and only if, the

level set Lα = {u ∈ Kη, α ∈ R : eF (u) ≤ α} is an invex set.

Proof. Let u, v ∈ Lα. Then u, v ∈ Kη and max(eF (u), eF (v)) ≤ α. Now for t ∈
(0, 1), w = u + tη(v, u) ∈ Kη, by the invexity of Kη. We have to prove that u +
tη(v, u) ∈ Lα. By the exponentially general preinvexity of F, we have

eF (u+tη(v,u)) ≤ max (eF (u), eF (v)) ≤ α,

which implies that u+ tη(v, u) ∈ Lα, showing that the level set Lα is indeed a invex
set.

Conversely, assume that Lα is an invex set. Then, for any u, v ∈ Lα, t ∈ [0, 1],
u + tη(v, u) ∈ Lα. Let u, v ∈ Lα for α = maxeF (u), eF (v) and eF (v) ≤ eF (u). Then
from the definition of the level set Lα, it follows that

eF (u+tη(v,u)) ≤ max (eF (u), eF (v)) ≤ α.

Thus F is an exponentially quasi preinvex function. This completes the proof.

Theorem 3.5. Let F be an exponentially preinvex function. Let µ = infu∈Kη
F (u).

Then the set E = {u ∈ Kη : eF (u) = µ} is an invex set of K. If F is strictly expo-

nentially preinvex, then E is a singleton.

Proof. Let u, v ∈ E. For 0 < t < 1, let w = u+ tη(v, u). Since F is a exponentially
peinvex function, then

F (w) = eF (u+tη(v,u)) ≤ (1− t)eF (u) + teF (v) = tµ+ (1− t)µ = µ,

which implies that to w ∈ E. and hence E is an invex set. For the second part,
assume to the contrary that F (u) = F (v) = µ. Since Kη is an innvex set, then for
0 < t < 1, u + tη(v, u) ∈ Kη. Further, since F is strictly exponentially preinvex
function,

eF (u+tη(v,u)) < (1− t)eF (u) + teF (v) = (1 − t)µ+ tµ = µ.

This contradicts the fact that µ = infu∈Kη
F (u) and hence the result follows.
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Theorem 3.6. If F is exponentially preinvex function such that

eF (v) < eF (u), ∀u, v ∈ Kη,

then F is a strictly exponentially quasi preinvex function.

Proof. By the exponentially prinvexity of the function F, we have

eF (u+tη(v,u)) ≤ (1− t)eF (u) + teF (v) < eF (u), ∀u, v ∈ Kη, t ∈ [0, 1],

since eF (g(v)) < eF (g(u)), which shows that the function F is a strictly exponentially
quasi preinvex function.

We now discuss the properties of the differentiable general preinvex functions.
For this, we need the following, which is mainly due to Mohen and Neogy [14]:

Condition C. Let η(., .) : Kη ×Kη → H satisfy the following assumptions

η(u, u+ tη(v.u)) = −tη(v.u)),

η(v, u + tη(v.u))) = (1− t)η(v, u), ∀u, v ∈)Kη, t ∈ [0, 1].

Theorem 3.7. Let F be a differentiable function and Condition C hold. Then the

function F is exponentially preinnvex function, if and only if,

eF (v) − eF (u) ≥ 〈eF (u)F ′(u), η(v.u)〉, ∀v, u ∈ Kη.(3.1)

Proof. Let F be an exponentially preinvex function. Then

eF (u+tη(v,u)) ≤ (1 − t)eF (u) + teF (v), ∀u, v ∈ Kη,

which can be written as

eF (v) − eF (u) ≥ {
eF (u+tη(v,u)) − eF (u)

t
}.

Taking the limit in the above inequality as t → 0 , we have

eF (v) − eF (u) ≥ 〈eF (u)F ′(u), η(v, u)〉,

which is (3.1), the required result.

Conversely, let (3.1) hold. Then

∀u, v ∈ Kη, t ∈ [0, 1], vt = u+ tη(v, u) ∈ Kη.

Using Condition C, we have

eF (v) − eF (vt) ≥ 〈eF (vt)F ′(vt), η(v, vt)〉

= (1− t)〈eF (vt)F ′(vt), η(v, u))〉.(3.2)
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In a similar way, we have

eF (u) − eF (vt) ≥ 〈eF (vt)F ′(vt), η(u, , vt)〉

= −t〈eF (vt)F ′(vt), η(v, u)〉.(3.3)

Multiplying (3.2) by t and (3.3) by (1 − t) and adding the resultant, we have

eF (u+tη(v,u) ≤ (1− t)eF (u) + teF (v),

showing that F is a exponentially preinvex function.

Remark 3.1. From (3.1), we have

e
F (v)−F (u) − 1 ≥ 〈F ′(u), η(v.u)〉, ∀v, u ∈ Kη,

which can be written as

F (v)− F (u) ≥ log{1 + 〈F ′(u), η(v, u)〉} ∀v, u ∈ Kη.(3.4)

Changing the role of u and v in (3.4), we also have

F (u)− F (v) ≥ log{1 + 〈F ′(v), η(u, v))〉, } ∀v, u ∈ Kη.(3.5)

Adding (3.4) and (3.5), we have

〈F ′(u), η(v, u)〉 + 〈F ′(v, η(u, v)〉
≤ −(〈F ′(u), η(v, u)〉)(F ′(v), η(u, v)〉),

which express the η-monotonicity of the differential F ′(.) of the exponentially preinvex
functions.

Theorem 3.7 enables us to introduce the concept of the exponentially η-monotone
operators, which appears to be new.

Definition 3.1. The differential F ′(.) is said to be exponentially η-mononotone,
if

〈eF (u)F ′(u), η(v, u)〉+ 〈eF (v)F ′(v), η(u, v)〉 ≤ 0, ∀u, v ∈ H.

Definition 3.2. The differential F ′(·) is said to be exponentially pseudo η-mononotone,
if

〈eF (u)F ′(u), η(v, u)〉 ≥ 0, ⇒ −〈eF (v)F ′(v), η(v, u)〉 ≥ 0, ∀u, v ∈ H.

From these definitions, it follows that exponentially η-monotonicity implies expo-
nentially pseudo η-monotonicity, but the converse is not true.
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Theorem 3.8. Let F be differentiable exponentially preinvex function on the invex

set Kη. and Condition C hold. Then

eF (v) − eF (u) ≥ 〈eF (u)F ′(u), η(v, u)〉, ∀v, u ∈ Kη.(3.6)

if and only if, F ′ satisfies

〈eF (u)F ′(u), η(v, u)〉+ 〈eF (v)F ′(v), η(u, v)〉 ≤ 0, ∀u, v ∈ Kη.(3.7)

Proof. Let F be a exponentially preinvex function on the invex set Kη. Then, from
Theorem 3.1, we have

eF (v) − eF (u) ≥ 〈eF (u)F ′(u), η(v, u)〉, ∀u, v ∈ Kη.(3.8)

Changing the role of u and v in (3.8), we have

eF (u) − eF (v) ≥ 〈eF (v)F ′(v), η(u, v)〉, ∀u, v ∈ Kη.(3.9)

Adding (3.8) and (3.9), we have

〈eF (u)F ′(u), η(v, u)〉+ 〈eF (v)F ′(v), η(u, v)〉 ≤ 0, ∀u, v ∈ Kη,

which shows that F ′ is exponentially η-monotone operator.

Conversely, from (3.7), we have

〈eF (v)F ′(v), η(u, v)〉 ≤ −〈eF (u)F ′(u), η(v, u))〉.(3.10)

Since Kη is an invex set, ∀u, v ∈ Kη, t ∈ [0, 1] vt = u+ tη(v, u) ∈ Kη.

Taking v = vt in (3.10), we have

〈eF (vt)F ′(vt), η(u, vt)〉 ≤ 〈−eF (u)F ′(u), η(vt, u)〉,

which implies, using the Condition C, that

〈eF (vt)F ′(vt), η(v, u)〉 ≥ 〈eF (u)F ′(u), η(v, u)〉.(3.11)

Consider the auxiliary function

g(t) = eF (u+tη(v,u)),

from which, we have

g(1) = eF (u+η(v,u)), g(0) = eF (u).

Then, from (3.11), we have

g′(t) = 〈eF (vt)F ′(vt), η(v, u)〉 ≥ 〈eF (u)F ′(u), η(v, u)〉.(3.12)
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Integrating (3.12) between 0 and 1, we have

g(1)− g(0) =

∫ 1

0

g′(t)dt ≥ 〈eF (u)F ′(u), η(v, u)〉.

Thus it follows using the fact eF (u+η(v,u)) ≤ eF (v), that

eF (v) − eF (u) ≥ 〈eF (u)F ′(u), η(v, u)〉,

which is the required (3.6).

We now give a necessary condition for exponentially pseudo-preinvex function.

Theorem 3.9. Let F ′ be exponentially pseudomonotone. Then F is a exponen-

tially pseudo-invex function.

Proof. Let F ′ be a exponentially pseudomonotone operator. Then, ∀u, v ∈ Kη,

〈eF (u)F ′(u), η(v, u)〉 ≥ 0.

implies that

−〈eF (v)F ′(v), η(v, u)〉 ≥ 0.(3.13)

Since K is an invex set, ∀u, v ∈ Kη, t ∈ [0, 1], vt = u+ tη(v, u) ∈ Kη.

Taking v = vt in (3.13), we have

〈eF (vt)F ′(vt), η(v, u)〉 ≥ 0.(3.14)

Consider the auxiliary function

g(t) = eF (u+tη(v,u)) = eF (vt), ∀u, v ∈ Kη, t ∈ [0, 1],

which is differentiable, since F is differentiable function. Then, using (3.14), we
have

g′(t) = 〈eF (vt)F ′(vt), η(v, u)〉 ≥ 0.

Integrating the above relation between 0 to 1, we have

g(1)− g(0) =

∫ 1

0

g′(t)dt ≥ 0,

that is,

eF (v) − eF (u) ≥ eF (u+η(v,u)) − eF (u) ≥ 0,

showing that F is a exponentially pseudo-invex function.
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Definition 3.3. The function F is said to be sharply exponentially pseudo invex,
if

〈eF (u)F ′(u), η(v, u)〉 ≥ 0

⇒

F (v) ≥ eF (v+t(u−v)), ∀u, v ∈ Kη, t ∈ [0, 1].

Theorem 3.10. Let F be a sharply exponentially pseudo invex function on K.

Then

〈eF (v)F ′(v), v − u〉 ≥ 0, ∀u, v ∈ Kη.

Proof. Let F be a sharply exponentially pesudo invex function on K. Then

eF (v) ≥ eF (v+tη(u,v)), ∀u, v ∈ Kη, t ∈ [0, 1].

from which we have

0 ≤ lim
t→0

{
eF (v+tη(v,u))) − eF (v)

t
} = 〈eF (v)F ′(v), η(v, u)〉,

the required result.

Definition 3.4. A function F is said to be a exponentially pseudo preinvex
function, if there exists a strictly positive bifunction b(., .), such that

eF (v) < eF (u)

⇒

eF (u+tη(v,u)) < eF (u) + t(t− 1)b(v, u), ∀u, v ∈ Kη, t ∈ [0, 1].

Theorem 3.11. If the function F is an exponentially preinvex function such

that eF (v) < eF (u), then the function F is exponentially pseudo preinvex.

Proof. Since eF (v) < eF (u) and F is exponentially preinvex function, then ∀u, v ∈
Kη, t ∈ [0, 1], we have

eF (u+tη(v,u))) ≤ eF (u) + t(eF (v) − eF (u))

< eF (u) + t(1− t)(eF (v) − eF (u)

= eF (u) + t(t− 1)(eF (u) − eF (v)))

< eF (u) + t(t− 1)b(u, v),

where b(u, v) = eF (u) − eF (v) > 0, the required result. This shows that the function
F is an exponentially pseudo preinvex function.

We now discuss the optimality condition for the differentiable exponentially
preinvex functions, which is the main motivation of our next result.
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Theorem 3.12. Let F be a differentiable exponentially preinvex function. Then

u ∈ Kη is the minimum of the function F, if and only if, u ∈ Kη satisfies the

inequality

〈eF (u)F ′(u), η(v, u)〉 ≥ 0, ∀u, v ∈ Kη.(3.15)

which is called the exponentially variational-like inequality.

Proof. Let u ∈ Kη be a minimum of the function F. Then

F (u) ≤ F (v), ∀v ∈ Kη.

from which, we have

eF (u) ≤ eF (v), ∀v ∈ Kη.(3.16)

Since Kη is a convex set, so, ∀u, v ∈ Kη, t ∈ [0, 1],

vt = u+ tη(v, u) ∈ Kη.

Taking v = vt in (3.16), we have

0 ≤ lim
t→0

{
eF (u+tη(v,u)) − eF (u)

t
} = 〈eF (u)F ′(u), η(v, u)〉.(3.17)

Since F is differentiable exponentially preinvex function, so

eF (u+tη(v,u)) ≤ eF (u) + t(eF (v) − eF (u)), u, v ∈ Kη, t ∈ [0, 1],

from which, using (3.17), we have

eF (v) − eF (u) ≥ lim
t→0

{
eF (u+tη(v,u)) − eF (u)

t
} = 〈eF (u)F ′(u), η(v, u)〉 ≥ 0,

from which , we have

eF (v) − eF (u) ≥ 0,

which implies that

F (u) ≤ F (v), ∀v ∈ Kη.

This shows that u ∈ Kη is the minimum of the differentiable exponentialy preinvex
function the required result.

Remark 3.2. The inequality of the type (3.15) is called the exponentiall variational-like
inequality, which has been introduced and studied by Noor [21].

We now show that the difference of exponentially preinvex functions and exponen-
tially affine preinvex functions is again an exponentially preinvex function.
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Theorem 3.13. Let f be a exponentially affine preinvex function. Then F is a

exponentially preinvex function, if and only if, H = F− is a exponentially preivex

function.

Proof. Let f be exponentially affine preinvex function. Then

ef(u+tη(v,u)) = (1 − t)ef(u) + tef(v), ∀u, v ∈ Kη, t ∈ [0, 1].(3.18)

From the exponentially preinvexity of F, we have

eF (u+tη(v,u)) ≤ (1− t)eF (u) + teF (v), ∀u, v ∈ Kη, t ∈ [0, 1].(3.19)

From (3.18 ) and (3.19), we have

eF ((u+tη(v,u)) − ef((u+tη(v,u)

≤ (1− t)(eF (u) − ef(g(u))) + t(eF (v) − ef(v)),(3.20)

from which, it follows that

eH((u+tη(v,u) = eF ((u+tη(v,u)) − ef((1−t)f(u+tη(v.u)

≤ (1− t)(eF (u) − ef(u)) + t(eF (v) − ef(v)),

which show that H = F − f is an exponentially preinvex function.
The inverse implication is obvious.

We would like to remark that one can show that a function F is a exponen-
tially preinvex function, if and only if, F is exponentially affine preinvex function.
It is worth mentioning that the exponentially preinvex function is also a Wright
exponentially preinvex function. From the definition 2.4, we have

eF (u+tη(v,u)) + eF (v+tη(u,v) ≤ eF (u) + eF (v), ∀u, v ∈ Kη, t ∈ [0, 1],

which is called Wright exponentially preinvex function. It is an interesting prob-
lem to study the properties and applications of the Wright exponentially preinvex
functions.

Conclusion

In this paper, we have introduced and studied a new class of preinvex functions
which is called the exponentially preinvex function. It has been shown that expo-
nentially preinvex functions enjoy several properties which convex functions have.
We have shown that the minimum of the expedientially differentiable preinvex func-
tions can be characterized by a new class of variational inequalities, which is called
the exponential variational-like inequality. Several new properties of the exponen-
tially preinvex functions have been studied. Exponentially variational-like inequal-
ities is new one, which will be the subject of further research. This may stimulate
further research.
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