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Abstract: In practice, there is no guarantee that the collected data would cover all different occlusions for all 

identities of interest. Here proposed an iterative method to address the face identification problem with block 
occlusions of two characteristics in order to model contiguous errors (e.g., block occlusion) effectively. The 
first describes a tailored loss function. The second describes the error image as having a specific low-rank 
image comparison structure. In this paper shown that joint characterization is effective for describing errors 
with spatial continuity. Our approach is computationally efficient due to the utilization of the alternating 
direction method of multipliers. Using of the fast iterative algorithm leads to the robust representation 
method, which is normally used to handle non-contiguous errors. Extensive results on representative face 
databases document the effectiveness of our method over existing robust representation methods with respect 
to both identification rates and computational time. 
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I. Introduction 

A facial recognition system is a technology capable of 

identifying or verifying a person from a digital image or 

a video frame from a video source. There are multiple 

methods in which facial recognition systems work, but 

in general, they work by comparing selected facial 

features from given image with faces within a database. 
It is also described as a Biometric Artificial Intelligence 

based application that can uniquely identify a person by 

analyzing patterns based on the person's facial textures 

and shape. This project was labeled man-machine 

because the human extracted the coordinates of a set of 

features from the photographs, which were then used by 

the computer for recognition. Using a graphics tablet, 

the operator would extract the coordinates of features 

such as the center of pupils, the inside corner of eyes, 

the outside corner of eyes, point of windows peak, and 

so on. From these coordinates, a list of 20 distances, 

such as the width of mouth and width of eyes, pupil to 
pupil, were computed. These operators could process 

about 40 pictures an hour. When building the database, 

the name of the person in the photograph was associated 

with the list of computed distances and stored in the 

computer.  

In the recognition phase, the set of distances was 

compared with the corresponding distance for each 

photograph, yielding a distance between the photograph 

and the database record. The closest records are 

returned.Face Identification (FI) focuses on deducing a 

subject’s identity through a provided test image and is 
one of the most popular problems in computer vision.  

Typically, test images exhibit large variations, such as 

occlusions. Ideally, if the training set contains the same 

type of occlusion as the test image then identification 

becomes a rather straight forward task. Early works on 

face identification attempted to deal with illumination 

variations. The concept of 41-graph, which is robust to 

data noises and naturally sparse, was introduced in to 

encode the overall behavior of the training set in sparse 

representations. To handle more complex variations 
such as face disguise and expressions, sparse 

representation based classification models were 

proposed. The main idea in these approaches is that a 

subject’s face sample can be represented as a linear 

combination of available images of the same subject. 

Then, the face class that yields the minimum 

reconstruction error is selected in order to classify the 

subject. One recent extension of the sparse 

representation based classification model is the class-

wise sparse representation. In this method, the number 

of training classes is minimized to alleviate the problem 

of representing the query by samples from many 
different subjects. Another extension is the patch based 

classification approach. The patch based approach 

employs the sparse representation-based classifier to 

each patch of the face separately and the final decision 

is made by fusing the patch classification results. 

Low-rank estimation has been considered in where a 

discriminative low-rank metric learning method was 

proposed that jointly learns a low-rank linear 

transformation matrix and a low-rank representation. A 

graph construction model, with robust similarity metric 

(low-rank representation, which is robust to noisy data) 
and balanced property for the application of semi-

supervised learning.  

In this work, we propose an iterative method to solve 

the FI problem with occlusions. We consider the same 
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scenario as in according to which we are given ―clean‖ 

frontal aligned views with a block occlusion which 

appear in any position on the test image but is ―unseen‖ 

to the training data. When corrupted training data are 

provided that are not frontally aligned (e.g., scenarios in 

an unconstrained environment) a tool such as RPCA 
and SLR is employed to separate outlier pixels and 

corruptions from the training samples as a pre-

processing step. Then, the ―clean‖ frontal aligned faces 

are used for training data to perform face identification 

with occluded test images.  

II. Related Work 

Rasied et al. displayed a created Face Recognition 

framework. The technique utilized particular esteemed 

disintegration as pictures highlight extractor and back 

spread neural systems as its classifier. The back spread 

preparing parameters are shifted so as to locate the best 

parameter with the best precision. The outcomes from 
tests have indicated that blends of the two strategies 

give great acknowledgment rate and along these lines 

considered as a compelling Face Recognition 

framework. Varieties in posture, demeanor and 

enlightenment circumstances make Face Recognition a 

significantly all the more testing and troublesome 

errand. Wang et al. introduced a Face Recognition 

approach by utilizing picture improvement and Gabor 

wavelets change. Logarithm change and standardization 

are performed in face pictures caught under different 

lighting conditions for Face Recognition. This 
incorporates convolving a face picture with a 

progression of Gabor wavelets at different areas, scales 

and areas and separating highlights from Gabor sifted 

pictures. Essential improvements are likewise seen 

when the preprocessing and Gabor separated pictures 

are utilized for include extraction rather than the first 

pictures. The methodology accomplishes 94.4% 

acknowledgment exactness utilizing just 160 highlights 

of a face picture. Results show that this technique 

propels Face Recognition execution utilizing this plan 

when preparing and testing on pictures caught under 

factor enlightenment and appearance. 

. The freedom property of these Gabor highlights 

encourages the use of the PRM technique for highlights 

arrangement. Gabor changed face pictures display solid 

attributes of direction selectivity and spatial region. 

These pictures can, along these lines, produce notable 

neighborhood includes that are generally reasonable for 

Face Recognition. While, ICA further lessens excess 

and speaks to free highlights expressly. These free 

highlights are gotten valuable for other consequent 

example separation and affiliated review. Tests done on 

Face Recognition utilizing the FERET for example 
Face Recognition Technology and the ORL database 

sets, where the pictures differ in demeanor, scale, 

enlightenment, and posture, show the possibility of the 

IGF strategy. Specifically, the IGF technique increase 

98.5% right Face Recognition exactness when utilizing 

180 highlights for the FERET dataset, and 100% 

precision for the ORL dataset utilizing 88 highlights. 
Rida et al. exhibited a paper shows how a Face 

Recognition framework can be structured with 

counterfeit neural system. Note that the preparation 

procedure didn't comprise of a solitary call to a 

preparation work. Rather, the system was prepared a 

few times on different info perfect and uproarious 

pictures, the pictures that substance face. For this 

situation preparing a system on various arrangements of 

loud pictures constrained the system to figure out how 

to manage clamor, a typical issue in reality [2].  

II. Recognition Metrics 

Metrics driven in two characteristics and uses a tailored 
loss function based on M-estimators. The 

methodhandlescontiguouserrorsthatareconsideredlow-

rank in comparison to the size of the image and is 

efficient in terms of computational cost. A special case 

of our method is also utilized to solve efficiently the 

robust representation problem for non-contiguouserrors.  

 

Fig. 2 Degradation Model 

Thetestsamplewithocclusioncanberepresentedasthelinear

combinationoftrainingsampleswithsomeintra-

classvariations(e.g., lighting) plus the error e. The error 

e has two characteristics; it is considered low-rank in 
comparison of image size and follows a distribution 

described by a tailored potential lossfunction. 

 Lety∈Rd denotethefacetestsampleinacolumn-

wise vectorized  form  where  j × k  =  d  is  the  size  of  

theimage. 

Let T=[Ti, . . .  , Tc ] € Rd ×ndenote the matrix 
(dictionary) with the set of  samples  of  c  subjects  

stacked  in  columns. 

Ti € Rd ×ni denotes the niset of samples of the ith 

subject, such that,  𝑛𝑖𝑖 =n. 

In Figure 2 we can represent the test sample with 
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occlusion as the superposition of training samples and a 

representation error e, thus, the degradation model is, 

y = Ta +e, (1) 

Optimization 

Let us now describe the iterative algorithm tofind 

efficiently at +1 in problem (11b).In order to solve  the 
proposed  problem,  first   we let y − Ta  = e and since 

we are interested in estimatingnonnegative coefficients 

for the representation vector we also introduce an  

additional  variable  z  suchthata=z. Then, the coding 

step (11b) is reformulatedas, 

 

Problem (1) is solved efficiently with ADMM which is 

known for fast convergence to an approximate solution 

[2]. As in the method of multipliers, the problem takes 

the form  of the augmentedLagrangian. 

 

whereρ1>0  and ρ2>0 are the penalty parameters, 

and  

u1andu2arethedualvariables.TheADMMupdatesca

nbe expressedas, 

 

where  sdenotes  the  ADMM  iteration  and  finally  

weset 

at+1 = lims→+∞as+1 

 

 

III. Implementation 

In this section we present experiments on four publicly 

available databases, AR, Extended Yale B, Multi-PIE 

and Labeled Facesin the Wild (LFW) 

 

Fig. 1. The three artificial images used for the block 

occlusion experiments. 

(a) Baboon.(b)Non-squareimage.(c)Dog. 

to show the efficacy of the proposed method. We 

demonstrate 

identificationandreconstructionresultsundervariousartifi

cial and real-world variations. We compare our 

framework with ten other FI algorithms, SRC [6], CR-

RLS [9], LR3 [2], L12,6and the robust algorithms 
SDR-SLR, HQ (additive form) [5], CESR [6], RRC_L1 

[4], RRC_L2[4],SSEC [9].  

We consider the following five FI cases: 

1) Cases with contiguous variations such as 

random block occlusion with different sizes and objects, 

face disguise and mixture noise which is a combination 

of block occlusion and pixelcorruption, 

2) Cases with non-contiguous variations such as 

illumination variations, pixel corruption, 

faceexpressions. 
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3) Cases with random block occlusion and few 

training samples. 

4) Cases in unconstrained environment and with 

corrupted testing and trainingsamples. 

For all methods, we used the solvers provided by the 

authors of the corresponding papers. We chose to solve 
the ℓ1 minimization problem in SRC and RRC_L1 with 

the Homotopy algorithm since it resulted in the highest 

accuracy in the performance comparison in with 

reasonable time execution. In our algorithms, we set 

ρ1= 1 and ρ2=0.1.  The convergence parameters were 

set equal to∈1=10−2, ∈2 =10−1, ∈3 =10−2. For fair 

comparisons with respect to execution time and 

identification rates we set the same ∈3 for the RRC 

algorithm and the same maximum number of iterations 

(t=100). All face images were normalized to have unit 

ℓ2-norm and all variables initialized to zero except for 

a1 = 1/n as in[14]. 

A. Identification Under Block Occlusions 

Experiments with occluded images were conducted 

on three datasets: Extended Yale B, AR and Multi-

PIE. 

 B. Identification under Expressions & Face Disguise 

In this experiment we tested our algorithms with face 
expressions and occlusion with real-world objects in 

three different scenarios: 1) faces with expressions 2) 

faces with sunglasses and 3) faces with scarves. The 

training set consists of the two neutral images (one 

from each session) from the AR dataset per subject. For 

the first scenario (face expressions) the 6 images per 

subject from sessions 1 and 2 with face expressions 

(smile, anger and scream) were selected for the testing 

set. 

 

Fig. 2. Identification Rates on the Extended Yale B 

and AR under Block Occlusion with Baboon, Vase 

and Dog. (a) Yale B dataset with baboon image. Yale 

B dataset with vase image. (c) Yale B dataset with dog 

image. (d) AR dataset with baboon image 

TABLE I 

Average Run Time per Test Sample on 

the Extended Yale B and Ar Datasets 

under Different Variations 

For the second scenario (faces with sunglasses) the 

 

testing set consisted of the 6 images per subject with 
sunglasses  

 

From sessions 1 and 2. In the third scenario (faces 

with scarves) the 6 images per subject with scarves 

from sessions 1 and 2 were chosen for the testing set. 

The images were resized to 60 x 43 pixels. 

TABLE II 

Identification Rates (%) Under Face Disguise On 

theAr Database 

 

 

    

 

 

 

 

 

 

 

 

    

 

Identification rates for the three scenarios are shown in 

Table II for the various methods. 
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For the face expressions experiment all robust 

algorithms achieved high performance. A key 

observation for this experiment is that modeling the 

error as low-rank does not improve the results since face 

expression errors do not in general form a contiguous 

area. 

For the sunglasses experiment we observed that our F-

LR-IRNNLS algorithm outperformed previous methods 

and was able to detect the outliers effectively. In this 

case modeling the error to be low-rank was adequate. 

This is due to the fact that the residual image consisted 

mainly of the sunglasses that made a contiguous error. 

SSEC performed poorly, perhaps, because the method 

does not capture well contiguous areas that are not 

square. A similar conclusion was drawn above with the 

random block occlusion experiment with a non-square 

image. 

Results  with  the  scarves  experiment  demonstrate  
that  all  methods  robust  to   contiguous  errors  

performed  well, as  expected  (since  the  scarf  

occlusion  is   contiguous).  Our F-LR-IRNNLS 

method achieved the best performance with 78.83% 

identification rate while our non-contiguous F-IRNNLS 

method achieved only 53.67%. This result emphasizes 

the fact that exploiting the spatial correlation in 

contigu- ous variations, such as scarves, is beneficial. 

Time performance is not reported here since all 

methods run very fast (less than a second) due to the 

fact that the training dictionary in this experiment was 
relatively small (200 training samples). 

C. Identification Under Mixture Noise 

In this experiment we evaluate the performance of our 

algorithm for the case of mixture noise. In this case, 

both pixel corruption and block occlusion degraded the 

testing images. An example image with this 

degradation is shown in Figure 12. This experiment 

was conducted with two datasets, Extended Yale B and 

AR. Similarly to the previous Extended Yale B 

settings, Subsets 1 and 2 of Extended Yale B were used 

for training and Subset 3 was used for testing. With the 

AR dataset we chose the 700 non-occluded AR images 
for training from session 1 and the 700 non-occluded 

images for testing from session 2. In both datasets, for 

each testing image a percentage of randomly chosen 

pixels was corrupted. Corruption was performed by 

replacing those pixel values with independent and 

identically distributed samples from a uniform 

distribution between [0, 255]. Then, we placed the 

baboon square image on each corrupted test image. In 

Yale B dataset we performed this experiment with 30% 

pixel corruption and 60% occlusion. With the AR 

dataset, experiments were conducted with 20% pixel 

corruption and 70% occlusion. Identification rates are 

shown in Table III for the various methods. 

F-LR-IRNNLS outperformed all previous methods 

which indicates that in the mixture noise case, our two 

error constraints capture the error term effectively. 

SSEC performed poorly due to the presence of pixel 
corruption. RRC_L1, RRC_L2 and HQ were robust to 

pixel corruption, however, their performance remained 

low since they were not effective on describing the 

occlusion part. Our F-LR-IRNNLS had a good balance 

on detecting the corrupted pixels and capturing the 

occlusion part with the employment of the weighted and 

nuclear norms. However, although F-LR-IRNNLS 

achieved higher performance than the previous 

methods, the actual accuracy was relative low with 

63.08% in YaleB and 57.29% in AR.  The result may 

indicate that in mixture of noises further investigation 

about modeling the error is required. 

TABLE III  

Identification Rates (%) & Time Performance (S) Under 

Mixture Noise: Yale B 30% Corruption & 60% 

Occlusion, Ar 20% Corruption & 50% Occlusion 

 

 

C. Identification UnderIllumination 

Experiments with variations in illumination were 

conducted on the Multi-PIE dataset. As in the block 

occlusion experiments, we used all 249 subjects in 

Session 1.   

TABLE IV 

Identification Rates onthe Multi-Pie under 

Illumination 
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As in [9], we used 14 frontal images with 14 

illuminations
 
and neutral expression from Session 1 for 

training, and 10 frontal images
 

from Session 4 for 

testing.  Identification rates are shown in Table IV for 
the various methods. 

Our first observation is that all methods achieved high 

identification rates. Simple SRC approaches performed 

well while robust methods only slightly improved the 

results. The reason with respect to our method is that for 

illumination variations modeling the error image as low-

rank does not hold in this case. Similar observations can 

also be deduced from results of the LR
3 

method in this 

case. 

With respect to time performance, our algorithm output- 

forms the previous robust methods. In particular the 

execution time in our approaches is around 1 second per 

test image while for RRC_L2 is around 30 seconds. 

Notice that although this was an experiment with a large 

training dictionary, our method retains very low running 
time. 

E. Identification Under Pixel Corruptions 

Experiments under pixel corruption were conducted on 

two datasets: Extended Yale B and AR. 

As in [6], [4] we used the non-occluded faces of 

Subsets 1 and 2 of the Extended Yale B for training and 

Subset 3  for testing. Images were resized to 96 x 84 

pixels.   In the AR dataset, to make the experiment more 

challenging 

 

 

Fig. 3. Identification Rates on the Extended Yale B and 

AR datasets under Pixel Corruptions. (a) Yale B 

dataset. (b) AR dataset. 

 F. Identification Under Unconstrained Environment and 

Occluded Testing andTraining Samples 

 1) Identification Under Unconstrained Environment: 

Thus far, we have assumed that training samples are 

―clean‖ frontal aligned views and without large 

variations of the same identity. In an unconstrained 

environment this assumption does not hold and often 

face images of the same identity exhibit large 

variations in pose, illumination, expression and 

occlusion. 

 

 

Fig. 4. Sample images from the LFW-a dataset and the 

SDR-SLR decomposition applied to the dataset. (a) 

Training sample images from the class-specific 

dictionary A. (b) Training sample images from the 

variation dictionary B. 

Furthermore, testing images may not contain the same 

variations and occlusions as the training images. 

To examine the robustness of our method on an 

unconstrained environment we evaluate its performance 
in the LFW database. The dataset contains images of 

5,749 different subjects and in this work we used the 

LFW-a [47], which is an aligned version of LFW based 

on commercial face alignment software. We used the 

subjects that include no less than ten samples and we 

constructed a dataset with 158 subjects from LFW-a. 

For each subject, we randomly chose 5 samples for 

training resulting in a dictionary of 790 faces) and 5 

samples for testing. The images were resized to 90x 90. 
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To deal with such environment we utilize the SDR-SLR 

algorithm as a pre-processing step as explained in 

Section II-F. Sample images from dictionaries A and B 

estimated on LFW-a dataset are illustrated in Figure 

8(a) and (b). More specifically, in Figure 8(b) images 

cover variations which are not class- specific and are 
used to represent complex variations of the query. These 

variations may be represented by the component B 

using images that do not belong to the same identity of 

the test image. Any remaining variations that cannon be 

described by B are captured by the term e. 

2) Identification Under Occluded Testing and Training 

Samples: In order to further investigate the scenario 

where we are given corrupted testing and training data 

in a constrained environment this time, 

TABLE V 

Identification Rates (%) In The Unconstrained Dataset 

Lfw-A In The Left Column. In The Right Column We 
Demonstrate Identification Rates (%) In Multi-Pie 

Dataset Under Occluded Training Samples 

 

 

 

 

 

We also conducted an experiment on the Multi-PIE 

dataset in the scenario that corrupted testing and training 

data are provided in a constrained environment. To 

simulate the cor- rupted (occluded) training data we 

considered the same train- ing and test sets as in Multi-

PIE block-occlusion experiment described above. In 

particular, we used the 6 frontal images with 6 

illuminations and neutral expression from Session 1 for 
training. For each of the 249 subjects we randomly 

chose half of the training images  to  be  occluded.  In 

each image we replace a random block with the square 

baboon image with occlusion chosen randomly from 

30% to 60%. We chose the 10 frontal images from 

Session 4 for testing. In each test image, we replace a 

random block with the square baboon image and the 

occlusion was randomly chosen from 30% to 60%. 

Identification rates are shown in Table V(right column). 

From the results we observe that as expected SDR-SLR 

perform way better than the SRC and CR-RLS. 
However, not all block-occlusions are sufficiently 

covered by B. This is due to the fact that occlusion 

appears in random places and sizes in the query as well 

as  in  training data.  Therefore, it might be very 

unlikely that the occlusion on the query and training 

images will be of the same type. Thus, when SDR-SLR 

method is combined with the F-LR-IRNNLS algorithm 

the best accuracy is reported since the proposed 

modeling of the error term is robust to handle 

occlusions of the query. Finally, we observe that our F-

LR-IRNNLS algorithm outperform the other approaches 

even when SDR-SLR is not utilized. The reason may be 
that our approach chooses the non-occluded training 

samples to represent the query since occlusion is 

effectively captured by the representation error image e. 

3) Comparison With Inductive Methods: In this section 

we compare our method with two inductive methods, 

namely IRPCA [29] and IDNMD [28]. Both methods 

are able to handle new data meaning that given a new 

sample an under- lying learnt projection matrix K can 

be used to efficiently remove corruptions and 

occlusions. A test face is recovered from occlusions by 

computing Ky. Then, the ―clean‖ test face Ky is 

provided as an input to a classifier to identify the 

subject. In this work we use the SRC classifier [6] for 

these methods in order to make direct comparisons with 

our method.
15 

Also, in this case we do not perform any 

pre-processing step such as SDR-SLR to clean the 
training data for identification in our and other methods 

to make fair comparisons. There are two main 

differences between IRPCA, IDNMD and our method; 

i) Our method does not require the same class of 

occlusions to be present in the training  and  test  data 

while inductive methods do to perform well. ii) Our 

method describes the error image by using two metrics, 

namely weighting and nuclear norms. 

G. Identification Under Few Training Samples 

To examine the robustness of our method under few 

training samples per subject we conducted experiments 
on the Multi- PIE database [4] with uncorrupted 

training data. As in the experiments under occlusion, 

we used 6 frontal images with 6 illuminations and 

neutral expression from Session 1 for training, and 10 

frontal images
16 

from Session 4 for testing. Then, we 
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randomly selected 2 or 4 samples per subject to 

perform experiments under fewer training examples. In 

each test image, we replace a random block with the 

square  baboon image, where each block randomly 

covered between 30% and 60% of the image area. 

 H. Weight Map Estimations 

Figure 5 shows the estimated weight maps between 

RRC_L1, RRC_L2 and our F-LR-IRNNLS in 

experiments with occlusions. Black values (close to 

zero) represent detected outliers by the various 

methods. We observe that  

 

Fig. 5. Estimated weight maps for three iterative 

reweighted coding methods. The weight maps of our F-

LR-IRNNLS method capture the outlier object of 

interest more accurately. With the other methods, a 

number of inlier pixels are detected as outliers. 

 

Fig. 6. Reconstruction results in 70% block occlusion. 

F-LR-IRNNLS detected the outlier objects more 

effectively than the other methods. Most of the black 

regions in the weight maps are concentrated on the 

occluded area. In particular, we observe in Figure 10 
(first row) that for the F-LR-IRNNLS method small 

weights are only assigned to the occluded (baboon) 

region as desired. On the other hand, the weight maps of 

RRC_L1 and RRC_L2 are not as accurate since outliers 

were detected in important pixels of the face. The 

reason is that with these methods there is no spatial 

correlation constraint between the weights. Similar 

conclusions can be drawn from all other examples in 

Figure 6. 

I. Face Reconstruction Results 

Figure 7 illustrates the face reconstruction results and 

the associated representation coefficients by the four 

methods. F-LR-IRNNLS and SSEC had the best 

reconstruction performance. The reconstructed face by 

LR
3 

was poor mainly due to the choice of the 

regularizer for the representation coefficients (42 norm). 

Similar reconstruction performance for the LR
3 

method 

was encountered in almost all of our conducted 

experiments. 

More reconstruction results for various methods are 

presented in Figure 7. With mixture noise, our F-LR-

IRNNLS achieved the best performance which 

demonstrates that our modeling was more effective in 

this case than the other methods. 

 

Face reconstruction was adequate for the case with 
scarves occlusion for all methods which validates the 

identification rates reported in Table II. 

J. Time Performance Between Our Method and 

RRC 

In this experiment we evaluate the identification rates in 

RRC [4] for the case where the maximum reweighted 

iterations t= 25. In other words, we want to investigate 

the performance degradation of RRC by keeping its 

execution time similar to our method. In our method we 

kept t =100. As shown in Figure 13, we observe that the 

computational time for RRC is now more competitive 
(although still higher than our method). However, the 

identification rates dropped significantly in both pixel 

corruption and block occlusion cases for RRC with t = 

25. 

K. Regularization of the Coefficients 

In Table VII we report performance comparisons of our 

method with different regularizations of the 

representation coefficients. Our main take away from 
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the results is that sparsity is overall slightly better than 

the two other regularizes (non-negative and 42) in terms 

of identification rates. However, the non-negative 

regularizer provided a better balance between 

computational cost and identification rates. 

Finally, there is significant difference in time 
performance between the RRC and our method 

regardless of the regularization of the coefficients. The 

efficiency of our method gives rise to robust face 

recognition systems for which computational time is a 

critical factor. 

V. Conclusion 

Finally, this project presents two characteristics. The 

first fits to the errors a distribution described by a 

tailored loss function. The second describes the error 

image as structural (low-rank). Our approach is 

computationally efficient due to the utilization of 

ADMM and PCA. The extensive experimental results 
support the claim that the proposed modeling of the 

error term can be beneficial and more robust than 

previous state-of-the-art methods to handle occlusions 

across a multitude of databases and in different 

scenarios. 
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