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Abstract—Sensory evaluation is used to assess the consumer
acceptance of foods or other consumer products, so as to
improve industrial processes and marketing strategies. The
procedures currently involved are time-consuming because they
require a statistical approach from measurements and feedback
reports from a wide set of evaluators under a well-established
measurement setup. In this paper, we propose to collect directly
the signal of the perceived quality of the food from Event-related
potentials (ERPs) that are the outcome of the processing of
visual stimuli. This permits to narrow the number of evaluators
since errors related to psychological factors are by-passed. We
present the design of a wearable system for ERP measurement
and we present preliminary results on the use of ERP to give
a quantitative measure to the appearance of a food product.
The system is developed to be wearable and our experiments
demonstrate that is possible to use it to identify and classify the
grade of acceptance of the food.

I. INTRODUCTION

In food industry, sensorial analysis is one of the tools
that industrial process and marketing management can use to
understand the target market and to optimize the effort and
investment during product development. Sensory evaluation
is defined as the scientific method used to give a quantitative
measure to the appearance or flavour of a food product as
perceived through the senses of sight, taste, smell, touch, and
hearing [1]. It is not just a collection of ”likes and dislikes“
but this discipline scientifically determines, measures, and in-
terprets physiological responses to physical stimuli produced
by a food product. The sensorial analysis is becoming an
irreplaceable tool in food industry for planning the success
of a product. In fact, when consumers buy food products,
they are mostly driven by personal sensorial feedback and by
the brand, rather than other important features like nutrition
elements or convenience.

Sensorial analysis methods can be classified into two
classes: affective, or hedonic, and analytical methods [2].
Affective methods use large consumer panels, or several
trained panelists, to answer a long questioner after having
tasted the products, following a well-defined procedure. He-
donic methods require a large panel size, because results
can be interpreted only with statistical tools to have high
confidence in the interpretation of the consumers feedback.
On the other side, analytical methods are specific tests done
done by trained experts. Analytical methods can be used
only to determine if products are different, or if a food
variety highlights a selected characteristic more than another.
Such methods follow a standardized ISO methodology [3].
Psychological and sensorial feedback from stimuli produced
by food products play a fundamental role also in ordinary
industrial transformation of food (e.g. fruit and vegetables)
as quality assessment during the whole transformation chain,
usually done by a manual screening of the operators.

Therefore, sensory evaluation is an integral part of the
food industrial process and of the success of a product.
Nevertheless, two major factors limit this method. Firstly, it
is time-consuming. When used for market analysis, forming
large panels of evaluators and training them for a good
evaluation campaign is expensive and takes several weeks
to set up. In the ordinary industrial process, the manual
screening from operators is time-consuming, tedious, labor-
intensive and expensive, and rarely applied at bulk trading
points [4]. The second limitation consists in the possible error
of the human activity in the loop. All the adopted methods
are prone to errors, driven by psychological factors, that may
be introduced even by the most expert judge. For example,
the evaluator may give undifferentiated scores to the samples
in the central part of the scale, for fear of making mistakes;
or may consider two different attributes very similar (e.g.
“ripe” and “juicy”) and thus rating them in a similar manner.
Finally, such methods may be hampered by maliciousness
or capriciousness of the evaluator that can misrepresent the
actual physiologic sensorial perception [5].

In this paper, we propose to collect directly the signal
of the perceived quality of the food from Event-related
potentials (ERPs) that are the outcome of the processing
of visual stimuli, and to process them in order to have
an objective evaluation of the sensory perception, without
any bias introduced by the operator through higher brain
functions.

ERPs are one of the most common technique to study
emotion processing by visual stimuli [6]. Evidence shows
how this response is modulated by motivational relevance
of the presented pictures. This has been applied to several
fields, including the study of craving towards food, nicotine
and recreational drugs [7]. Other studies [8], have proposed
to complement traditional measures with physiological mea-
sures to improve the advertising models. In this work, we
start to adopt this kind of measures to assess the perceived
quality of food pictures. Then, these metrics can be used to
train an automated grading system based on machine learning
from visual inspection. In particular, we focus in acquiring
and decoding brain activity response to food pictures.

In the last twenty years, several works [6] have shown
how ERPs (the averaged brain response recorded with scalp
electrodes to a recurrent stimuli, e.g. a visual one) vary with
the judged emotionality of visual stimuli. Specifically, a late
positive potential (LPP) is enhanced for stimuli evaluated
as distant from an established context. A pleasant stimulus
presented within a series of unpleasant pictures elicits a larger
LPP than does the same pleasant target, presented among
other pleasant stimuli (so called oddball paradigm). A dif-
ferent paradigm has also been used in which pleasant, neutral,
and/or unpleasant pictures appear with equal probability in



a random sequence. Substantial late positive shifts in the
ERPs are evoked by emotional pictures both pleasant and
unpleasant, compared with neutral images, similarly over left
and right lateral recording sites. This shifts can begin as early
as 200 ms after onset and last over a long period of picture
presentation.

We present a wearable system for the detection of ERPs
with quick setup features which can be adopted outside the
laboratory setting and we demonstrate that it is able to detect
different responses to two different food grades while also
embedding the required signal processing. In this prelim-
inary study, we distinguish between commercial and non-
commercial grade apples, but we plan to extend the analysis
to different types of food and finer-granularity grading scale.
We also show that, while running the application, the device
consumes only 10.88 mW, providing up to 19 hs of operation
with a battery life that is further extended up to 40 hs
when energy is generated through an Energy Harvesting (EH)
subsystem. The full software runs on the wearable node that
employs less than 10% of the total power to process the
data. Thus, the remaining power can be employed on power-
demanding high-quality AFEs, resulting in an improvement
of the overall performance of the system.

The system is based on BioWolf, an integrated plat-
form for computationally-intensive medical IoT applications,
which features the capability to acquire biosignals (up to 8
channels, 32 ksps, noise level compatible with high quality
EEG acquisition) and to process them locally on an ULP
computing platform with a power budget lower than that of
the analog front end. Our platform is based on Mr. Wolf
[9], a programmable Parallel Ultra-Low-Power processor
that combines high versatility and computational efficiency
higher than single-core architectures such as those available
in standard MCUs with wireless connectivity.

Details of the system design are described in Section II,
both from the hardware and data processing standpoints. Sec-
tion III presents a characterization of the system, specifically
in terms of power consumption and capability to distinguish
brain activity response to the two different class of pictures.
In Section IV we draw some conclusions and outline future
work.

II. SYSTEM DESCRIPTION

BioWolf is a highly-configurable platform for acquisition
and embedded processing of biopotentials. It features a Paral-
lel Ultra-Low-Power (PULP) SoC MCU for embedded signal
processing, an ARM-based SoC for Bluetooth Low Energy
(BLE) communication and system control and management,
and an Analog Front End (AFE) for analog-to-digital conver-
sion of up to 8 differential biosignal channels. It also includes
a nano-power buck-boost regulator for energy harvesting (e.g.
from solar source) and a fuel gauge to check for battery
status. Fig. 1 shows a block diagram of the complete system
and Fig. 2 shows the final PCB implementation.

BioWolf can operate in three different modalities to pro-
vide maximum flexibility while minimizing power consump-
tion.

• When on-board processing is not required or is very
limited (such as for basic filtering) and data needs to be
streamed out directly, Mr. Wolf is put in sleep mode and
the Nordic SoC acts as master on the SPI bus, reading
data directy from the AFE and streaming them out to
the host via BLE.

Fig. 1. BioWolf System Architecture.

Fig. 2. BioWolf Board. Top side allocates Mr. Wolf, the AFE and part of
the power supply section. Bottom side is mostly dedicated to the nRF52832
SoC, fuel gauge, connectors and the analog power supply section.

• When more computationally intensive processing is re-
quired, Mr. Wolf guarantees the best power efficiency to
the system. The ULP processor directly controls the SPI
bus as the master, while the Nordic SoC and the AFE
are both slave peripherals. Data is read from the AFE,
processed and only the result of such processing is sent
to the Nordic SoC and from there to the host through
BLE.

• A deep sleep mode is available to minimize power
consumption when the system is not required to acquire
and/or process data. The device can be woken up by
exposing it to an NFC field, such as tapping on it with
a NFC-enabled smart-phone or tablet.

Interface with subject skin is obtained through commercial
dry-electrode contacts (g.SAHARA from g.tec) [10], so as to
minimize setup time and reduce discomfort with respect to
standard wet electrodes requiring skin preparation. Custom
active electrodes are used to make signal quality resilient to
the higher contact impedance of dry electrodes with respect to
wet electrodes with skin preparation. As single-ended ampli-
fication stages with gain higher than one limit the rejection of
common mode noise [11], only signal buffering is performed
on the active electrode by an Operational Amplifier (O.A.)
connected as a unity-gain buffer. A 68 KΩ resistor in series
with the amplifier input limits the patient auxiliary current
below the applicable limit of 50 µA in single fault condition
(i.e. electrode shorted to one of the power supplies). The O.A.
is an AD8603 from Analog Devices, showing low voltage
noise (2.3 µV peak-to-peak in the 0.1 to 10 Hz band and 25
nV/sqrt(Hz) at 1 KHz) and a maximum quiescent current
of 50 µA. Input impedance is in excess of 500 MΩ in the
EEG band.

The outputs of the active electrodes are acquired by a
multichannel commercial AFE from TI (ADS1298), which
can be configured to acquire up to 8 channels at sampling
rates up to 32 ksps. Input can be configured in differential and
single-ended mode, with a gain of the input programmable
gain amplifier (PGA) from 1 to 12 and a maximum resolution



of 24-bits. The system supports active electrodes with both
dry- and wet-contact. The ADSXXXX family of AFEs is the
de-facto standard for biopotential acquisition as they present
a very favorable trade-off between performance and power
consumption and between size and number of channels. With
respect to ADS1299 which targets EEG signal acquisition,
the adopted ADS1298 has reduced power consumption and
allows for 2.7 V supply operation (removing the need for
step-up DC/DC conversion of the battery voltage) without
significantly degrading noise performance [12].

Mr. Wolf is a multi-core programmable SoC implemented
in CMOS 40nm technology that combines a tiny (12 Kgates)
RISC-V processor (zero-risky) [13], namely the Fabric Con-
troller (FC), with a cluster of eight RISC-V processors
equipped with flexible and powerful DSP extensions available
on the RI5CY processor [13]. The cluster is coupled with
a single-cycle latency multi-banked L1 memory (64 kB)
allowing fast data transfer among the cores, and with an ’off
the cluster’ 512 kB of memory (L2) with 15 cycles latency.
A dedicated DMA controller allows reducing the latency and
computational power associated with data transfer. It also
features two floating-point units (FPU) that are shared among
the cores. Mr. Wolf can achieve very fine-grained parallelism
and high energy efficiency in parallel workloads through a
dedicated hardware block (HW Sync) that provides fast event
management, parallel thread dispatching and synchronization.
The SoC contains a full set of peripherals, including a Quad
SPI (QSPI), I2C and UART, with data transfers also managed
by a multi-channel I/O DMA to reduce the load on the
system. In run mode, the SoC is powered by an internal
DC/DC converter that can be programmed to deliver from 0.8
V to 1.1 V. In sleep mode, a low-dropout (LDO) regulator
powers a real-time clock (32 kHz crystal oscillator) that
controls a programmed wake-up and, optionally, part of the
L2 memory, allowing retention of application state for fast
wake-up. In deep sleep mode, the power consumption of the
MCU is about 108 µW that can be further reduced to 72 µW
when no retention is required.

Data communication with a remote host (and eventually
basic processing if needed) is performed by the nRF52832
SoC from Nordic. The MCU is based on an ARM Cortex-M4
core running up to 64 MHz clock frequency and provides
flexible Bluetooth 5 (BLE) communication at a low-power
budget. This MCU also serves as a device manager for the
board. It allows choosing the operation mode (sleep, raw
data streaming, data acquisition and processing) and checking
battery charging operation and status. As Mr. Wolf does not
embed any non-volatile memory, its firmware is stored in a
portion of the Nordic SoC Flash memory. Programming is
performed by the Nordic SoC itself by transferring the code
to Mr. Wolf L2 memory through JTAG interface.

Power supply, battery management, and EH from solar
sources are managed by a Texas Instruments BQ25570. The
IC implements a Maximum Power Point Tracking (MPPT)
that adapts the input impedance of the solar cells maximizing
the energy conversion in all the lighting conditions with up
to 90% of efficiency. This energy is then used to recharge a
small form factor 60 mAh LiPo battery. The EH also provides
a high-efficiency buck converter that delivers a stable voltage
output of 1.8 V to supply the digital portions of the board.
An additional output is available, connected to the battery
voltage when its voltage level is higher than 3 V. This is used
to power the analog portions of the board, in particular, the

Fig. 3. Setup and processing steps of the presented system. Images are
presented on a 17 inch LCD screen, while EEG is recorded in PO7 and
PO8 with reference on Fz. Data is band-pass filtered between 0.25 and 30
Hz and decimated by a factor 5 to 100 sps. Epochs with data above a ± 50
µV are discarded. The remaining epochs are averaged to provide the final
EPRs.

analog circuitry of the AFE which is powered at its minimum
supply voltage of 2.7 V by a low noise linear regulator.

A. System Setup
To minimize setup time and improve user friendliness,

the EEG signal is acquired on three electrodes only. Elec-
trode positions (Fz, PO7 and PO8 according to the 10/20
system) have been selected through preliminary testing. The
electrodes in the parietal-occipital region capture the visual
processing of the image, while the signal measured in the
frontal region reflects the cognitive processing of the image.
They can be acquired at the same time with a setup as simple
as a headband. Images are presented on a 17-inches LCD
screen from a PC running Psychtoolbox under MATLAB.
Setup and processing steps are presented in Fig.3.

B. Data Processing
Data processing is performed on Mr. Wolf. Since

computation is relatively simple, all processing can be
performed on the FC which processes data in double-
precision fixed point representation. It also takes care of
exchanging data with the AFE for signal acquisition and with
the nRF32832 SoC for communication with the host through
BLE. The latter is a bidirectional communication as the
host needs to provide synchronization signals (triggers) to
inform the device of the instant at which the visual stimulus
is presented to the subject. When acquisition of a complete
trial is completed, the device sends the reconstructed ERPs
to the host.

The processing steps for reconstruction of the ERPs
are the following:

• Preprocessing: the first operation is the computation of
the average of data acquired from the two differential
channels (PO7-Fpz and PO8-Fpz) at 500 SPS. Data
is then filtered with a Finite Impulse Response (FIR)
low-pass filter (LPF), with 100 taps and -3dB corner
frequency of 30 Hz. This allows to down-sample data
of a factor 5, reducing the computational burden of the
filtering steps as both the outputs of the LPF and the
subsequent High-Pass Filter (HPF) can be computed at
a reduced sampling frequency of 100 SPS. FIR filtering
is preferred to IIR despite the increased computational
burden because of its linear phase which allows to
minimize distortion in the reconstructed ERP. Since
we are interested in late potentials in the ERP, high



pass filtering needs to be performed at very low corner
frequency of 0.25 Hz. This requires the use of an
extremely high order filter (1000 taps) which dominates
the computational burden of the ERP reconstruction
algorithm.

• Epochs reconstruction: to remove epochs containing
artifacts we adopted a simple method based on au-
tomatically rejecting epochs containing samples over
±50µV . To this purpose, each sample at the output
of the HPF is checked at run-time and, if its absolute
value is higher than the threshold, the epoch is rejected
and every computation for that epoch (including filtering
of subsequent samples) is stopped. Information on the
time at which the epoch starts is sent from the host via
BLE. When the epoch is not rejected, it is averaged with
previously accepted epochs to reconstruct the ERP.

III. EXPERIMENTAL RESULTS

A. Power Consumption
To evaluate the performance of the system, we set the

operating frequency and voltage of Mr. Wolf at 50 MHz and
0.8 V, respectively. Although this frequency can be scaled
up to 450 MHz to meet more constrained applications, the
processing required in this work is minimal. Thus, a lower
operational frequency satisfies the real-time constraints while
minimizing the overall power consumption.

The power consumption of the system is the contribution of
the active blocks, namely, Mr. Wolf, the ADC, and the Nordic
SoC, for a total of 10.88 mW. Data sampling through the
analog sections (ADS1298) requires the highest share of the
overall power (around 80%). Although the use of this ADC
comes at a high power cost, it ensures the required signal
quality, also allowing to avoid more rigorous filtering of the
signal that could be translated into higher power consumption
at the MCU side. The digital section that includes occasional
BLE transmission of computation results and synchronization
of the trigger, and the data transfers between AFE and Mr.
Wolf, represents the 11% of the total power.

Mr. Wolf is responsible for the remaining power, which
is the result of power management techniques, such as
switching thought the MCU power modes. While working in
Run Mode, the acquisition and processing of a single sample
only requires 0.5 ms and, when in idle, the MCU is put into
sleep mode to minimize the power consumption. Since the FC
is able to satisfy the real-time requirements of the application,
the cluster remains off all the times. This demonstrates the
versatility of Mr. Wolf to work at a low power budget
throughout different computational needs. Future work that
might include heaver DSP will take advantage of the cluster,
able provide heavier computing of the kernel functions.

As a result, our system achieves up to 19 h of autonomy
with a 60 mAh battery, which can be further extended up
to 20 h and 40 h in indoor (600 lux)/outdoor (10000 lux)
scenarios, respectively, using the EH subsystem.

B. ERP Analysis
We tested the device on five able-bodied, (aged 26-

42) without previous history of neurological disorders. All
participants provided written consent to take part to the
experiments. The subject was sit in a dimly lighted room,
approximately 80 cm apart from a 17-inches LCD screen. 200
images of good-quality and defective fruits (100 per class)
were presented randomly on a 17-inches LCD monitor for 1
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Fig. 4. ERP from subject 1. Red line corresponds to non-commercial grade
apple pictures, blue line to commercial-grade ones. Data is band-pass filtered
between 0.25 and 40 Hz, epochs are rejected if EEG amplitude exceeds ±
50 uV.
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Fig. 5. Grand average of the ERPs extracted from the five subjects.
Red line corresponds to non-commercial grade apple pictures, blue line to
commercial-grade ones. Data is band-pass filtered between 0.25 and 40 Hz,
epochs are rejected if EEG amplitude exceeds ± 50 uV.

second, separated by a 1 second fixation cross. Event Related
Potentials were measured as the average potential between
electrodes PO7 and PO8 versus Fz. Fig. 5 presents results
obtained through the analysis of ERPs on the five subjects
(grand average on top) and on a single subject (bottom).

Averaged responses are flat before presentation of the stim-
ulus (t=0) and present a high correlation till approximately
300 ms (ERP components related to visual processing of the
image). After that time, late positive potentials (LPP) compo-
nents show significant differences in response to commercial
grade vs. non-commercial grade fruit images, testifying how
responses to the two classes of stimuli are distinguishable,
and giving a clear indication on the suitability of this ap-
proach for automated quality grading analysis.

IV. CONCLUSIONS

This work presented an ERP measurement system featur-
ing BioWolf, a Parallel Ultra Low Power platform, which
allows EEG signal acquisition and processing that allow
on-board, online and real-time differentiation of classes of
images, with the objective of ranking food quality. In the
presented work we show that our system detects 2 distinct
ERPs responses to commercial and non-commercial grade
apples. The processing of the EEG signal is performed on-
line on the Mr. Wolf platform, and, by virtue of its energy
efficiency, the system exceeds 19h of battery life with a tiny
60 mAh LiPo battery. Future work will target a finer grain
classification of ERPs for visual stimuli presentation and the
exploration of more advanced optimization and classification
strategies.
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