
inorganics

Editorial

Bioinorganic Chemistry of Nickel

Michael J. Maroney 1,* and Stefano Ciurli 2,*
1 Department of Chemistry and Program in Molecular and Cellular Biology, University of Massachusetts

Amherst, 240 Thatcher Rd. Life Sciences, Laboratory Rm N373, Amherst, MA 01003, USA
2 Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna,

Viale G. Fanin 40, I-40127 Bologna, Italy
* Correspondence: mmaroney@chem.umass.edu (M.J.M.); stefano.ciurli@unibo.it (S.C.)

Received: 11 October 2019; Accepted: 11 October 2019; Published: 30 October 2019
����������
�������

Following the discovery of the first specific and essential role of nickel in biology in 1975 (the dinuclear
active site of the enzyme urease) [1], nickel has become a major player in bioinorganic chemistry, particularly
in microorganisms, having impacts on both environmental settings and human pathologies. At least
nine classes of enzymes are now known to require nickel in their active sites, including catalysis of redox
[(Ni,Fe) hydrogenases, carbon monoxide dehydrogenase, methyl coenzyme M reductase, acetyl coenzyme
A synthase, superoxide dismutase] and nonredox (glyoxalase I, acireductone dioxygenase, lactate
isomerase, urease) chemistries. In addition, the dark side of nickel has been illuminated in regard to
its participation in microbial pathogenesis, cancer, and immune responses. Knowledge gleaned from
the investigations of inorganic chemists into the coordination and redox chemistry of this element
have boosted the understanding of these biological roles of nickel in each context. In this issue, eleven
contributions, including four original research articles and seven critical reviews, will update the
reader on the broad spectrum of the role of nickel in biology.

The understanding of the biological role of nickel from the inorganic chemistry side is reviewed on
a theoretical basis by Siegbahn et al. [2], who discuss the enzyme mechanisms, including the canonical
mechanism of urease, in view of the recently reported crystal structure of the enzyme-substrate
complex [3]. This chemistry is further elucidated by original contributions on the pH dependence of
binuclear nickel peptide complexes by Keegan et al. [4].

The knowledge of proteins involved in cellular nickel trafficking (metalloregulators and
metallochaperones) is summarized by Higgins in a review [5], which is complemented by a second
monographic article by Nim and Wong [6], that focuses more specifically on the maturation of the nickel
enzyme urease as a paradigmatic example of how cells balance nickel essentiality and toxicity. These
two reviews are augmented by two original research papers on this aspect of the nickel bioinorganic
chemistry field: the paper by Alfano et al. [7] is focused on CooJ, an accessory protein necessary for
the maturation of the nickel-dependent enzyme carbon monoxide dehydrogenase, while the paper
by Barchi and Musiani [8] describes the structure-function relationships in InrS, a nickel-dependent
transcription factor from cyanobacteria.

Other reviews in this issue focus on aspects of nickel in human health, with the goal of making
this literature more accessible to the bioinorganic community. The general aspects of the field are
surveyed by Buxton et al. [9], while a more focused review by Maier and Benoit [10] discusses the role
of nickel in microbial pathogenesis. The role of noncoding RNA in nickel-induced human cancer is
discussed in a review by Zhu et al. [11], while the role of human acireductone dioxygenase in human
health and its metal-dependent function are discussed in the monograph by Liu and Pochapsky [12].

The range of nickel containing systems is still expanding, as demonstrated by the original research
paper by Suttisansanee and Honek, which reports a preliminary characterization of a nickel activated
and mycothiol-dependent glyoxalase I from fungi [13].
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In conclusion, we hope that these open-access contributions will serve as guiding lights for future
research into the biological role of nickel. We thank the authors for their original contributions for the
special issue, and we thank the reviewers for their insightful comments on each article.
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