

Review

Bioprofiling TS/A Murine Mammary Cancer for a Functional Precision Experimental Model

Carla De Giovanni ¹, Giordano Nicoletti ², Lorena Landuzzi ², Arianna Palladini ¹, Pier-Luigi Lollini ^{1,†,*} and Patrizia Nanni^{1,†}

- ¹ Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum University of Bologna, Bologna, I-40126 Italy; carla.degiovanni@unibo.it (C.D.G.); arianna.palladini@unibo.it (A.P.); patrizia.nanni@unibo.it (P.N.)
- ² Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna I-40136, Italy; giordano.nicoletti@fastwebnet.it (G.N.); lorena.landuzzi@ior.it (L.L.)
- * Correspondence: pierluigi.lollini@unibo.it
- + These authors contributed equally to this paper.

Received: 23 October 2019; Accepted: 22 November 2019; Published: 27 November 2019

Abstract: The TS/A cell line was established in 1983 from a spontaneous mammary tumor arisen in an inbred BALB/c female mouse. Its features (heterogeneity, low immunogenicity and metastatic ability) rendered the TS/A cell line suitable as a preclinical model for studies on tumor–host interactions and for gene therapy approaches. The integrated biological profile of TS/A resulting from the review of the literature could be a path towards the description of a precision experimental model of mammary cancer.

Keywords: TS/A; murine mammary cancer; preclinical models; gene therapy; metastases; immunotherapy

1. Introduction

Precision medicine in clinics is an evolving concept which goes beyond mere genomic medicine and means matching individual patients with medicine [1]. According to these premises, in an experimental environment a precision cancer model should mean matching the appropriate preclinical model with target biology study [2]. Preclinical models of mammary cancer of increasing complexity have been proposed, including transplantable murine tumors, gene-driven mammary carcinogenic models, human cell lines grown in vitro or in vivo as xenografts and patient-derived xenografts and organoids (see Section 6 for a comparative discussion) [3,4]. Each model remains an approximation [2], with advantages and disadvantages depending on the specific aim of the study. The main advantage of transplantable murine mammary tumors consists of allowing mechanistic studies on tumor–host interactions, like those focusing on the role of microenvironment, the metastatic process and the immune response. A deep knowledge of a preclinical model, where literature studies are collected and retrospectively examined as a whole, like an individual patient's medical record, can help in a better design of experimental approaches. The aim of this review is the biological profiling of a popular model of murine mammary cancer (TS/A) for a better understanding and modeling of a complex pathology like human breast cancer [5].

2. The Dawn of Murine Models for Tumor-Host Interactions

At the beginning of the 1980s, metastases and tumor-host interaction studies mostly took advantage of a few tumor cell lines, established and subcultured for many years, such as 3LL Lewis lung carcinoma and B16 murine spontaneous melanoma [6]. Through the intravenous injection of

B16 cells, metastatic deposits to lungs and other organs could be easily obtained, allowing for important advancements in understanding post-intravasation late phases of the metastatic process. However, the B16 parental cell line was almost incapable of disseminating from a locally-growing tumor, and therefore it did not adequately model the invasion and intravasation phases. Moreover, the non-epithelial origin of B16 melanoma impeded inferences about the behavior of epithelial tumors. At the same time, some rodent cell lines were already being used as models for mammary cancer, but most of them were either carcinogen- or virus-induced [7,8]. These models did not undergo a long natural history in the host, in which they arose, and generally had a high immunogenicity due to the expression of strong tumor-associated antigens. Likely due to these features, they generally gave too optimistic results when used to study antitumor immune responses or immunotherapeutic approaches [9].

In this landscape, in 1983 we described a new cell line, TS/A, derived from a mammary tumor spontaneously arisen in a 20 month-old BALB/c inbred mouse strain [10]. The TS/A cell line exhibited some features typical of human breast cancer, which prompted its use as a preclinical model, such as the low immunogenicity, the ability of local tumors to give rise to distant metastases and the heterogeneity, well evident both of morphology and metastatic ability. The TS/A cell line (also referred to as TSA or TS/A-pc, see [11,12] and below) and its clones were distributed to many laboratories worldwide and were employed for different applications, such as studies on malignant phenotype, pharmacologic therapeutic approaches, antitumor immune response and as a gene therapy model.

A list of research studies exploiting the TS/A cell line or its cell variants is reported in the Supplementary Table S1. It includes (up to 2018) 276 research papers where TS/A was used as model system and 19 papers where it was a control model. Reviews reporting results obtained with TS/A and citations of the TS/A paper are also listed in the Supplementary Table S1.

This review aims at profiling the main biological features of the TS/A model system resulting from literature research papers (Table 1). The two research areas where TS/A-based models yielded important results will be discussed in depth: tumor-host interactions and experimental gene therapy.

Topics	Cell variants	Features	Refs
Cytoskeletal markers	E1	CK8-positive	[13]
Cytokine production	TS/A, clones and variants	CSF	[14–17]
	TS/A	TGF- β 1 production (about 4 ng/mL)	[18]
Cytokine receptors	TS/A	IFN-γ receptor (1000/cell)	[19]
Gene alterations	TS/A	Karyotype	[20]
	TS/A and E1	p53 mutated (codon 270 Arg to His)	[13,21]
Gene expression	TS/A	TERT (11,000 RNA copies)	[22]
Hormone sensitivity	TS/A and E1	Estrogen receptor positive	[10,13]
Immunity	TS/A	Low immunogenicity	[10,23,24]
	TS/A and engineered variants	Tumor associated antigen gp70env	[25]
	TS/A	Suppressor activity	[26,27]
	TS/A	Myeloid-derived suppressor cells (MDSC)	[28–35]
	TS/A	NK resistance	[36]
	TS/A	mD52 antigen	[37]
Membrane molecules	TS/A	Core 1 O-glycans	[38]
	TS/A	Muc-1	[39]
	TS/A	Tag72	[39]
Phenotype	TS/A, clones and variants	Heterogeneity (morphology, metastasis)	[10,40,41]
Stem cell markers	TS/A	Sca-1 (Ly6A/E)	[42,43]

Cancers 2019, 11, 1889

Tyrosine Kinase membrane receptors	TS/A	p185erbB2	[39,44]
Others	TS/A	Endoglin-negative	[45]
	TS/A	Fragile X mental retardation protein (FMRP), low expression	[46]
	TS/A	High Mobility Group Box1 (HMGB1)-positive	[47]
	TS/A	Lats2	[48]
	TS/A	ST6Gal activity (present, low)	[49]
	TS/A	TLR9-negative	[50]

3. Bioprofiling TS/A Cell Line

The mammary tumor originating the TS/A cell line was isolated in a 20 months-old BALB/c female retired breeder and was described as a moderately differentiated adenocarcinoma [10]. Its first in vivo passage into a healthy BALB/c female was adapted to in vitro culture and named TS/A (Figure 1). Several clones and cell variants were derived from TS/A and distributed worldwide. In particular, a TS/A subline was chosen by Guido Forni (University of Turin) for a large collaborative endeavor as the recipient cell for the systematic transduction of a large series of genes coding for immune modulators; such subline was referred to as TS/A-pc (from "parental cells"). TS/A and TS/A-pc share most features reviewed here, and some kind of drift occurred during the extensive amplification of TS/A-pc. Throughout this review, we will refer to the TS/A model system on the whole, and therefore incorrect terminology (such as TSA, TS/a, and so on) has been systematically corrected to "TS/A". However, the Supplementary Table reports exactly the TS/A cell variant used in each referenced paper.

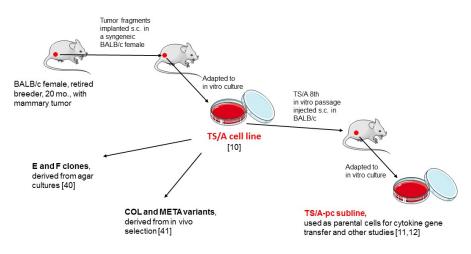


Figure 1. Origin of the TS/A cell line and variants. For pictures see [51].

The tumor from which the TS/A cell line was derived likely had a long natural history in its host of origin. When tested in a growth-excision test, TS/A cells did not confer protection against a second challenge, thus showing a low immunogenicity [10], thereafter confirmed in other studies (see, for example, [23]). Such a low immunogenicity was the basis for a huge number of immunopotentiation studies, most of which exploiting gene therapy approaches (see next section).

TS/A cells express the gp70env product of an endogenous retrovirus whose AH1 immunodominant class I epitope could be recognized by cytotoxic T lymphocytes through presentation by H-2L^d [25]. Gp70env antigen is shared by other murine cell lines, such as the colorectal cancer cell line CT26. The down-regulation of the L^d observed in TS/A cells [52] is likely due to the immunoediting process leading to evasion from the host immune response.

TS/A exerts a suppressive effect on the host immune response through several mechanisms, such as a selective loss of STAT5a/b expression in T and B lymphocytes [26], the production of transforming growth factor β 1 (TGF- β 1) [18], the induction of regulatory T cells [27], natural killer resistance [36] and the production of colony stimulating factors (CSFs) that deeply subvert hematopoiesis [14,15], giving rise to splenomegaly, leucocytosis and to tumor-infiltrating myeloid-derived suppressor cells (MDSC) [29,33,53].

When injected subcutaneously into syngeneic BALB/c mice, TS/A cells gave rise to local tumors rapidly disseminating to the lungs. Metastases could also be obtained after injection of TS/A cells by the intravenous route, thus allowing a comparison between the dynamics of the early and late phases of the metastatic process [10,41]. Metastases to lungs and liver have also been obtained by orthotopic cell injection [54]. Like other mammary carcinoma cell lines, the growth of micrometastases at distant organs was found to involve the formation of filopodium-like protrusions mediated by FAK/ERK and Rif/mDia2 signaling [54].

Heterogeneity of TS/A cells was observed in adherent cultures, with areas of epithelial-like and fibroblast-like morphology (Figure 2), and in anchorage-independent cultures [10,40]. Subcloning from agar cultures allowed the isolation of two types of cell clones, both tumorigenic and metastatic, but with markedly different metastatic power [40]. Unexpectedly high-metastatic clones had a prevalent epithelial morphology, compared to the fibroblast-like pattern of low-metastatic clones. Gene expression profiling of several murine mammary cancer cell lines showed clustering of TS/A-E1 (a high-metastatic clone) with high-claudin expressors [13]. Our data on gene expression profiling of TS/A clones showed that claudin-3 was the top overexpressed gene in high-metastatic clones (about 90-fold expression over low-metastatic clones), while low-metastatic clones overexpressed nme4 and necdin, two putative metastasis suppressor genes (our unpublished results). These data suggest that metastatic ability is not always a consequence of epithelial-mesenchymal transition but can also be acquired in an epithelial-like differentiation context.

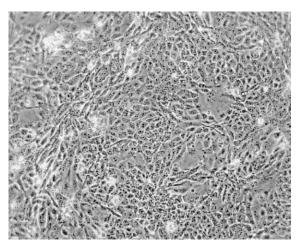


Figure 2. Morphology of the TS/A cell line in adherent culture (phase contrast, ×100).

The TS/A cell line has a triploid karyotype [20] and carries a mutated p53 at codon 270 [21]. About a third of the cells express the cancer stem cell marker Sca-1 [43]. In our laboratory, the expression of Sca-1 (also known as Ly6A) was almost negative, but inducible by IFN- γ [12]. TS/A cells express estrogen receptor [10] and endogenous murine p185-erbB2 product [39]. Its use as a negative HER2/neu mammary cancer cell line in studies on HER2/neu transgenic models relies upon the negativity to the reagent specifically recognizing rat HER2/neu.

4. Tumor-Host Interaction Studies

TS/A-induced tumors have a rich and heterogeneous infiltrate comprising granulocyte and monocyte/macrophage subpopulations, whose relative proportions change during tumor progression [55], in agreement with the known plasticity of myeloid cells. Several subpopulations contribute to maintainance of a tumor-promoting microenvironment in TS/A, as well as in many

other murine and human tumors [56], with a variety of mechanisms. Alternatively-activated M2 macrophages are strong producer of the immunosuppressive cytokine IL10 and of several chemokines recruiting Treg, Th2, eosinophils and basophils [56]. MDSC are heterogeneous immature CD11b+/Gr-1+ populations [57], with immunosuppressive function. Both M2-polarized macrophages and MDSC have been investigated in the TS/A model system, along with strategies to circumvent tumor promotion, pushing infiltrate cells towards more differentiated, activated cells.

In the TS/A model, the induction of M2 tumor-associated macrophages was mediated by the expression of the CD20 homolog *MS4A8A* gene [58]. In TS/A tumors, M2-polarized macrophages were more abundant and more proangiogenic in hypoxic tumor areas [55]. The M2 immune suppressing phenotype was switched to an anti-tumor M1 phenotype through the in vivo adenoviral gene transfer of the chemokine CCL16 [59]. Alternatively-activated M2 macrophages expressed highly restricted, individual-specific, combinatorial T cell receptor- $\alpha\beta$ immunoreceptors, suggestive of an adaptive response of macrophages to the tumor [60]. In TS/A, as well as in a variety of other murine and human tumors, alternatively-activated M2 tumor-associated macrophages expressed a multifunctional scavenger receptor named stabilin-1 involved in endocytic and phagocytic clearance of "unwanted-self" components, including soluble component of extracellular matrix SPARC (a tumor-inhibiting agent). Stabilin-1 was found to play a tumor promoting role in the TS/A model likely through enhanced clearance of SPARC [61].

A major component of TS/A infiltrate consisted of MDSC [53], which correlated with the production of CSFs by TS/A cells [14,29]. Immature myeloid progenitors can be released in the bloodstream, giving rise to peripheral leukocytosis and splenomegaly [14,15]. MDSC suppressed antigen-activated T lymphocytes through apoptosis induction [28,29], and suppressed NK cytotoxicity [62], with mechanisms involving nitric oxide [30]. Impaired anti-tumor immune response in aging can take advantage of an increased MDSC infiltrate [32]. MDSC expressed Fas–FasL and caspases, suggesting that Fas–FasL apoptosis regulated MDSC survival [33,34] and proposing new potential therapeutic options. MDSCs are key drivers of resistance to antiangiogenic therapy, but all-trans retinoic acid was able to induce differentiation of MDSC into mature cells, thus increasing the efficacy of the antiangiogenic therapy [63].

In the TS/A microenvironment, other non-tumoral cell types can play a tumor-promoting role, such as tumor-associated fibroblasts and adipocytes. Through a tumor-stromal cell co-injection model, novel candidate tumor-associated genes were identified in tumor-associated fibroblasts. The most studied gene was tubulin tyrosine ligase: its downregulation in tumor-associated fibroblasts promoted TS/A tumor growth [64]. Co-culture of TS/A cells with adipocytes caused an increased lipid content in TS/A cells and an increased lung colonization ability [65]. The release of free fatty acids from lipid droplets is mediated by an adipose triglyceride lipase-dependent lipolytic pathway, that was proposed as a potential therapeutic target. The metabolic cross-talk between tumor cells and tumor-associated adipocytes could favor epithelial-mesenchymal transition and increase tumor invasiveness.

TS/A cells, like other tumor cell lines, secrete membrane vesicles of endosomal origin called "exosomes", with contradictory roles in tumor biology. Exosomes could have some immunostimulatory effect, since they carry tumor antigens which can be transferred to dendritic cells and cross-prime cytotoxic T lymphocytes [66]. However, exosomes mainly exerted a potent immunosuppressive anti-tumor immune response through suppression of NK cell function [67] and inhibition of differentiation of bone marrow dendritic cells [68]. Tumor-derived exosomes released from irradiated TS/A cells showed an altered molecular composition and were able to transfer dsDNA to dendritic cells and stimulate upregulation of costimulatory molecules and STING-dependent activation of IFN-I [69].

5. Gene Therapy Studies

TS/A cells were easily transduced both with naked DNA and viral systems, generating good and stable transgene expression of secreted factors or membrane molecules. Most gene therapy

approaches were performed to directly increase TS/A immunogenicity with the purpose to use engineered cells as anticancer vaccines (Table 2).

Immune categories	Transgenes	Vector/transfer methods	Refs
Chemokines	h-CCL16/LEC	Naked DNA + lipofection	[70,71]
		Adenoviral, in vivo	[59,72]
Cytokines	m-IL2	Naked DNA + electroporation	[11,23,73–77]
	m-IL4	Retroviral	[73,74,78-85]
	m-IL5	Retroviral	[86,87]
	m-IL6	Retroviral	[74,80,87]
	m-IL7	Naked DNA + electroporation	[73,74,80,81,88,89]
	m-IL7	Adenoviral	[90]
	m-IL10	Naked DNA + electroporation	[74,91]
	m-IL12 p35 and p40	Naked DNA, in vivo	[92,93]
		Naked DNA + gene gun	[94]
		Naked DNA + lipofection	[95]
		Retroviral	[96,97]
		Canarypox	[98]
		Naked DNA + gene gun, in vivo	[24]
	h-IL13	Naked DNA + calcium phosphate	[99]
	m-IL15	Adenoviral	[100]
	IL15	Naked DNA + lipofection	[95,101]
	Pro-IL18 and ICE	Naked DNA + gene gun	[94]
	m-IL21	Naked DNA + lipofection	[102]
	m-IFNa1	Naked DNA + electroporation	[80,82,103-106]
	m-IFNa1	Naked DNA + gene gun	[107]
	m-IFNα4	Naked DNA + polymer	[108]
	m-IFNβ	Naked DNA + calcium phosphate	[109]
	m-IFNγ	Naked DNA + lipofection	[12,74,80,99,110–113]
	m-GMCSF	Retroviral	[74]
	m-TNFα	Retroviral	[74,80]
Membrane molecules	B7-1/CD80	Naked DNA	[114]
		Naked DNA + electroporation	[115,116]
		Retroviral	[81,89]
	B7-2/CD86	Naked DNA + electroporation	[115,116]
	Allogeneic MHC	Naked DNA + calcium phosphate	[111,117]
	CD70 (CD27L)	Retroviral	[118,119]
	CD153 (CD30L)	Retroviral	[118]
	CD154 (CD40L)	Retroviral	[118,120]
	TRAIL/APO2L	Naked DNA + lipofection	[121]
	LAG-3 and LAG5	Naked DNA + electroporation	[122,123]
	CCR7	Naked DNA + calcium phosphate	[124]
Suicide genes	Cytosine deaminase	Retroviral	[112,125]
		Naked DNA	[126]
		VSV (oncolytic)	[127,128]
	HSV-Thymidine kinase	Naked DNA	[104]
		Retroviral	[129]
		Naked DNA + lipofection	[130]
Others	CIITA	Naked DNA + lipofection	[131–133]
	GBP1	Retroviral (conditional) + naked DNA	[134]
	m-IRF1	Adenoviral	[135]
	111°11\11'1		[100]

Table 2. TS/A in gene therapy studies aiming to increase tumor immunogenicity.

Genes for a variety of cytokines, costimulatory molecules and major histocompatibility complex (MHC) antigens were inserted and stably expressed in TS/A cells. Cytokine transduction in TS/A cells

was often performed isolating clones with different levels of cytokine production, and this allowed to study the dose-related effects, such as the minimal cytokine release level required to significantly impact on tumor growth and immunogenicity and the potential side effects of highly-releasing cells. As an example, IFN- γ transduction led to isolate clones with cytokine production ranging from a few IU/ml up to a very high expressor clone (releasing 6000 IU/ml), likely the highest transduced expression ever obtained. Such a panel of IFN- γ releasing clones showed a dose-related growth inhibition and immunogenicity, but also showed potentially important side effects, such as increased lung colonizing ability and other systemic effects [12,136].

The wide portfolio of TS/A cells transduced with different cytokine genes allowed to understand the role played by each cytokine in the modulation of tumor infiltrate composition and its impact on tumor growth [137]. A major role for granulocytes in cytokine-induced tumor debulking was unexpectedly found, along with a continuous cross-talk between leukocytes and lymphocytes. The transduced cytokine drove the composition of the reactive cells elicited, the efficacy of the anti-tumor reaction and the immune memory against the non-transduced tumor. The increased memory reaction is the basis for the use of gene-engineered cells as anticancer vaccines. On the whole, data obtained with engineered TS/A vaccines (Table 2) showed that the most effective cytokines were IFN- γ and IL-12.

TS/A transduction with GM-CSF was performed only once [74], with almost no effect on tumor growth or immunogenicity. On the contrary, GM-CSF engineering of another murine model (B16 melanoma) gave good results [138] and prompted clinical studies. B16 melanoma did not produce spontaneously GM-CSF whereas TS/A abundantly secreted CSFs [16]. The spontaneous CSF production in TS/A did not hamper tumor growth but likely contributed to the tumor-promoting environment, showing that similar cytokines could play opposite roles in tumors of different origin.

Transduction of genes coding for activating pro-drug enzymes (suicide genes) was performed with the main aim to obtain more immunogenic cancer cell vaccines. It was reported that replicating cells were more immunogenic than dead cells [74], so prodrug activation by suicide gene products could switch off partially replicating cell vaccines after the start of the immune response. However, prodrug-induced cancer cell death itself was found to increase the specific immune response [125]. Suicide genes were also included in oncolytic viruses, to enhance their safety profile [128].

Gene therapy approaches to obtain increased TS/A cancer cell immunogenicity gave interesting but, at the same time, unsatisfactory results. Most approaches actually showed increased immunogenicity, but when challenged in therapeutic set up, a minority of mice could be cured, and only when therapy started at the very early phases of metastatic growth [106,112]. Similar conclusions could be drawn for the variety of gene therapy trials conducted in the last three decades with the purpose of increasing tumor immunogenicity through cytokine or costimulatory gene transduction. Therefore, results obtained with TS/A as well as with other experimental gene therapy models predicted the low efficacy found in trials. Combined gene therapy approaches showed better therapeutic activity and prompted new combination immune-gene therapy approaches [99,111].

Gene transduction was applied to the TS/A model to study cancer biology and cancer gene therapy (Table 3). Transduction of the wild-type p53 gene (p53wt), aiming to restore a correct p53 signaling, was performed in vitro and in vivo with a Canarypox vector carrying p53wt, leading to downstream p21 expression with a proapoptotic effect that caused tumor growth inhibition [21]. Tumor rejection was associated with the generation of a specific antitumor immune response in a sarcoma model but not in TS/A, thus confirming the low immunogenicity of the TS/A model system.

TS/A cells were transduced with luciferase gene and green fluorescent protein (GFP) variants and used in studies on imaging techniques (Table 3). TS/A cells were used as recipient for genes coding exogenous antigens as a surrogate to study features of the corresponding immune response (Table 3).

Silencing approaches were performed with retro- and lenti-viral vectors and recently with CRISPR-Cas9 technology. Through silencing, TGF- β 1 released by TS/A cells was found to play a suppressive role on graft-versus-tumor reaction [18].

Gene categories	Transgenes	Vector/transfer methods	Refs
Oncosuppressors	m-p53wt	Canarypox	[21]
	m-p53wt/mut	VSV (oncolytic)	[139]
Reporter genes	Luciferase	Naked DNA	[140,141]
	β-galactosidase	Naked DNA + polyfection	[142]
	GFP	Adenoviral	[143]
	GFP	Lentiviral	[46]
	EGFP	Lentiviral	[54]
	EGFP	Naked DNA + electroporation	[50]
	EGFP (driven by p21 or CMV promoter)	Naked DNA + electroporation	[144,145]
Silencing	antisense m-TGF-β1	Retroviral	[18]
	Rab27a	Lentiviral	[146]
	Mlh1	CRISPR-Cas9	[147]
	FoxP3	Lentiviral siRNA	[44]
	fragile X mental retardation protein (FMRP)	Lentiviral shRNA	[46]
Surrogate antigens	β-galactosidase	Retroviral	[81,148– 150]
	Hemagglutinin	Naked DNA + lipofection	[151,152]
	Leishmania receptor for activated C kinase (LACK)	Naked DNA	[153–155]
	Mycobacterial cell wall-associated 19- kDa lipoprotein		[156]
	Ovalbumin	Naked DNA	[157,158]
Others	Chromogranin A (Vasostatin-1 fragment)	Naked DNA + electroporation	[159–161]
	Extracellular domain of receptor tyrosine kinase Tie2/TEK (ex-TEK)	Naked DNA + calcium phosphate precipitation	[162]
	Apelin	Naked DNA + polyfection	[163]
	Interferon-regulatory factor-1 (IRF-1)	Adenoviral	[43]
	α1,2fucosyltransferase	Naked DNA + lipofection	[164]
	P27VP22	Naked DNA + polyfection	[165]

Table 3. TS/A in transduction studies of cancer biology.
--

In search of new genes potentially involved in metastasis of mammary cancer, along with data from human histopathological samples, some studies used TS/A cells for a mechanistic demonstration through silencing approaches. These studies were sometimes performed in parallel with another popular model of murine mammary cancer (4T1), which is more metastatic than TS/A cells (see Section 6). The overexpression of Fragile X mental retardation protein (FMRP) was concordantly related to lung metastases in both models [46]. On the contrary, some disagreement between TS/A and 4T1 was reported concerning the role of the small GTPase Rab27a [146]. Rab27a was involved in exosome secretion. Its silencing inhibited tumor growth and lung metastases in the 4T1 model, but not in TS/A. It should be noted that the authors described TS/A as a non-metastatic tumor model. Since TS/A is actually able to metastasize to lungs, two explanations are possible for such discrepancy: a) Rab27a is not an on/off determinant of metastatic power, but rather a quantitative modulator; b) 4T1 is a clone while TS/A is a polyclonal and heterogeneous cell line. TS/A extensive subculture can have led to drift phenomena with oligoclonal dominance of less metastatic cells, which are well represented in the cell line of origin.

Genetic inactivation through CRISPR/CAS9 technology of the DNA mismatched repair gene *MutL* homologue 1 (MLH1) in TS/A cells, as well as in other non-mammary murine cancer models, led to increased immunogenicity due to accumulation of neoantigens [147]. MLH1-inactivated cells acquired sensitivity to antibodies against checkpoint inhibitors, which now represent the forefront of cancer immunotherapy.

The expression of murine ErbB2 in TS/A cells was exploited to provide experimental evidence of the oncosuppressor role of FoxP3 in mammary cancers, that downmodulated the expression of the ErbB2 oncogene [44]. TS/A cells was also used as a model to study optimization of parameters of gene electrotransfer [50].

6. Comparison with Other Mammary Cancer Models

Modeling mammary cancer in mouse to study tumor–host interactions took advantage of several model systems [3,4,166]. Reordering models according to their intrinsic complexity, we can mention transplantable murine tumors, gene-driven mammary carcinogenic models, human cell lines grown in vitro or in vivo as xenografts and patient-derived xenografts and organoids.

Concerning transplantable murine mammary cancer, the most popular cell line is 4T1, derived from a spontaneous mammary cancer arisen in a BALB/cfC3H female [167-169]. 4T1 share several features with TS/A and with human mammary cancers, such as low immunogenicity and tumor-host interactions. In fact, several studies were performed using in parallel 4T1 and TS/A (see for example Supplementary Table S1, column N), which were considered as biological replicates and generally gave concordant results. We can focus here on the main differences between the two models. 4T1 is a thioguanine-resistant clone derived from a heterogeneous mammary cancer cell line [167,168]. TS/A is a cell line with heterogeneity spanning from morphology to metastatic ability and to CSF production (and therefore tumor-host interactions), as proven by the in vitro isolation of clones with markedly different features [14,40]. Populations with different abilities to metastasize were also isolated from TS/A through in vivo selection procedures [41]. Heterogeneity is a hallmark of mammary cancer, which comprises morphology, differentiation and metastatic ability, but cloned populations at least partially lose such heterogeneity. 4T1 is a highly aggressive clone, with the ability to give rise to a high number of lung metastases following subcutaneous, intravenous or orthotopic cell injections (see for example [146]). Moreover, 4T1 can metastasize to other organs (such as liver and bone) [170]. TS/A is a cell line provided with metastatic ability but giving rise to moderate number of lung metastases following local growth, subcutaneous and intravenous injections or orthotopic administration [10,54]. The lower metastatic ability of the TS/A model can allow to study a wider range of metastasis modulators.

In the last three decades the research on mammary tumor development and malignancy took advantage of transgenic models. One of the most studied models of gene-driven mammary carcinogenesis was that based on the rat HER2/neu oncogene under the transcriptional control of the Mouse Mammary Tumor Virus (MMTV) promoter [171,172]. Transgenic models recapitulated all the transitions from the normal mammary gland to mammary cancer, both from morphological and molecular points of view, and led to essential advancement in comprehension of the carcinogenic process and development of new therapeutic approaches. The reproducible carcinogenic process observed in transgenic models was exploited to study the prevention of tumor progression, including approaches based on immune strategies [173]. Transgene expression is somewhat artificial, concerning both the xenogeneic origin of the oncogene (rat HER2/neu) and the expression driven by a viral promoter. From an immunological point of view, the fast carcinogenesis and the altered immunoreactivity of mice being tolerant to transgene can be significant differences from the human pathogenetic development of mammary cancer. However, the main problems of transgenic models are time-consuming procedures and costs. Cell lines from spontaneous mammary cancer such as TS/A therefore are still widely employed in studies on biological features and new therapeutic approaches.

Human models for mammary cancer comprise cell lines and xenografts [4,166]. Human breast cancer is a heterogeneous disease that, thanks to biomarkers, can be subdivided in different subtypes with prognostic significance [174,175] and subjected to appropriate treatments. The main advantage of human models is that they can reproduce the heterogeneity among tumors, giving researchers the possibility to choose the correct subtype depending on the aim of the research, while the main constraint of human cell lines and xenografts is the lack of immune tumor–host interactions. To identify which subtypes can be modeled by the different murine mammary cancers, a comparison

among gene expression profiles of a panel of murine mammary cancer cell lines including a TS/A variant (clone E1) and profiles of the different human subtypes was performed [13]. E1 showed a non-basal profile, with prevalent features of luminal A and HER2 subtypes (about 50% and 20%–30% probability, respectively). Therefore, a single murine model can mimic a peculiar human subtype, but obviously is limited to the fixed genetic setting of the cell line and does not reflect diverse spectrum of personalized genetic and/or epigenetic alterations of human breast cancers.

To better depict individual mammary cancers, patient-derived xenografts (PDX) [176] and patient-derived organoids (PDO) were proposed [177–179]. Such approaches are more compatible with the need of precision oncology and without concern of species difference. PDX do not allow to study immune interactions (since they are grown in immunodeficient mice), and also present other disadvantages such as the low frequency of tumor take, with a bias toward more aggressive subtypes [180], the cost and the time-consuming procedure. PDO are 3D cultures obtained by dissociated tumor tissue which can be co-cultured with human lymphocytes, thus allowing to investigate tumor microenvironment, anticancer immunotherapy, and other aspects including development of novel therapeutics [181,182].

In conclusion, preclinical models of murine mammary cancer cell lines are still widely used thanks to their possibility to focus on tumor–host interactions comprising the role of stroma, the metastatic process and immune responses. The recent burst of immune-based anti-cancer therapies (see for example checkpoint inhibitors [133,147] and CAR-T [183]) likely will take advantage of murine models comprising mammary cancer cell lines. Other advantages are the low cost and time to obtain results. The possibility to study in parallel several cancer cell lines mimicking different breast cancer subtypes could remain a first-line means to study innovative molecular and therapeutic approaches, which will be then tested in individually precise, more complex human models.

7. Conclusions

The analysis of the main studies exploiting TS/A as a pre-clinical model of mammary cancer allows to draft a profile spanning from molecular alterations to malignant phenotype and immune interactions. This profile should be considered when designing experiments based on TS/A model. Knowledge of this profile can allow inference about the complexity of human breast cancer.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Table S1: Comprehensive list of papers using TS/A cell variants.

Author Contributions: All the Authors were involved in data collection, analysis, writing and editing of the manuscript. All the Authors read and approved the final manuscript.

Funding: This research was funded by grants from the Italian Association for Cancer Research (AIRC) (IG15324 to P-L. Lollini), the Department of Experimental, Diagnostic and Specialty Medicine of the University of Bologna (DIMES) ("Pallotti" Fund) and the University of Bologna.

Conflicts of Interest: The University of Bologna granted to EMD Millipore license for TS/A distribution worldwide. Royalties are destined for oncological research.

References

- 1. Letai, A. Functional precision cancer medicine-moving beyond pure genomics. Nat. Med. 2017, 23, 1028–1035.
- Gould, S.E.; Junttila, M.R.; De Sauvage, F.J. Translational value of mouse models in oncology drug development. *Nat. Med.* 2015, 21, 431–439.
- Heppner, G.H.; Miller, F.R.; Shekhar, P.V.M. Nontransgenic models of breast cancer. Breast Cancer Res. 2000, 2, 331–334.
- Gengenbacher, N.; Singhal, M.; Augustin, H.G. Preclinical mouse solid tumour models: Status quo, challenges and perspectives. *Nat. Rev. Cancer* 2017, 17, 751–765.
- Haynes, B.; Sarma, A.; Nangia-Makker, P.; Shekhar, M.P. Breast cancer complexity: Implications of intratumoral heterogeneity in clinical management. *Cancer Metastasis Rev.* 2017, 36, 547–555.
- Poste, G.; Doll, J.; Fidler, I.J. Interactions among clonal subpopulations affect stability of the metastatic phenotype in polyclonal populations of B16 melanoma cells. *Proc. Natl. Acad. Sci. USA* 1981, 78, 6226–6230.

- 7. Ramshaw, I.A.; Badenoch-Jones, P. Studies on rat mammary adenocarcinomas: A model for metastasis. *Cancer Metastasis Rev.* **1985**, *4*, 195–208.
- 8. Price, J.E.; Carr, D.; Tarin, D. Spontaneous and induced metastasis of naturally occurring tumors in mice: Analysis of cell shedding into the blood. *J. Natl. Cancer Inst.* **1984**, *73*, 1319–1326.
- 9. Hewitt, H.B. Second point: Animal tumor models and their relevance to human tumor immunology. J. Biol. Response Mod. **1983**, *2*, 210–216.
- 10. Nanni, P.; De Giovanni, C.; Lollini, P.L.; Nicoletti, G.; Prodi, G. TS/A: A new metastasizing cell line from a BALB/c spontaneous mammary adenocarcinoma. *Clin. Exp. Metastasis* **1983**, *1*, 373–380.
- Cavallo, F.; Di Pierre, F.; Giovarelli, M.; Gulino, A.; Vacca, A.; Stoppacciaro, A.; Forni, M.; Modesti, A.; Forni, G. Protective and Curative Potential of Vaccination with Interleukin-2-Gene-transfected Cells from a Spontaneous Mouse Mammary Adenocarcinoma. *Cancer Res.* 1993, 53, 5067–5070.
- Lollini, P.-L.; Bosco, M.C.; Cavallo, F.; De Giovanni, C.; Giovarelli, M.; Landuzzi, L.; Musiani, P.; Modesti, A.; Nicoletti, G.; Palmieri, G.; et al. Inhibition of tumor growth and enhancement of metastasis after transfection of the γ-interferon gene. *Int. J. Cancer* **1993**, *55*, 320–329.
- Yang, Y.; Yang, H.H.; Hu, Y.; Watson, P.H.; Liu, H.; Geiger, T.R.; Anver, M.R.; Haines, D.C.; Martin, P.; Green, J.E.; et al. Immunocompetent mouse allograft models for development of therapies to target breast cancer metastasis. *Oncotarget* 2017, *8*, 30621–30643.
- 14. Nicoletti, G.; Brambilla, P.; De Giovanni, C.; Lollini, P.L.; Del Re, B.; Marocchi, A.; Mocarelli, P.; Prodi, G.; Nanni, P. Colony-stimulating activity from the new metastatic TS/A cell line and its high- and low-metastatic clonal derivatives. *Br. J. Cancer* **1985**, *52*, 215–222.
- 15. Nicoletti, G.; Lollini, P.L.; Bagnara, G.P.; De Giovanni, C.; Del Re, B.; Bons, L.; Prodi, G.; Nanni, P. Are colonystimulating factor-producing cells facilitated in the metastatic process? *Anticancer Res.* **1987**, *7*, 695–700.
- 16. Nicoletti, G.; De Giovanni, C.; Lollini, P.L.; Bagnara, G.P.; Scotlandi, K.; Landuzzi, L.; Del Re, B.; Zauli, G.; Prodi, G.; Nanni, P. In vivo and in vitro production of haemopoietic colony-stimulating activity by murine cell lines of different origin: A frequent finding. *Eur. J. Cancer Clin. Oncol.* **1989**, *25*, 1281–1286.
- 17. Bronte, V.; Chappell, D.B.; Apolloni, E.; Cabrelle, A.; Wang, M.; Hwu, P.; Restifo, N.P. Unopposed production of granulocyte-macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation. *J. Immunol.* **1999**, *162*, 5728–5737.
- Kummar, S.; Ishii, A.; Yang, H.K.; Venzon, D.J.; Kim, S.J.; Gress, R.E. Modulation of graft-versus-tumor effects in a murine allogeneic bone marrow transplantation model by tumor-derived transforming growth factor-β1. *Biol. Blood Marrow Transplant*. 2001, 7, 25–31.
- 19. Cofano, F.; Fassio, A.; Cavallo, G.; Landolfo, S. Binding of murine 125I-labelled natural interferon-gamma to murine cell receptors. *J. Gen. Virol.* **1986**, *67*, 1205–1206.
- 20. Jentsch, I.; Geigl, J.; Klein, C.A.; Speicher, M.R. Seven-fluorochrome mouse M-FISH for high-resolution analysis of interchromosomal rearrangements. *Cytogenet. Genome Res.* **2003**, *103*, 84–88.
- 21. Odin, L.; Favrot, M.; Poujol, D.; Michot, J.P.; Moingeon, P.; Tartaglia, J.; Puisieux, I. Canarypox virus expressing wild type p53 for gene therapy in murine tumors mutated in p53. *Cancer Gene Ther.* **2001**, *8*, 87–98.
- 22. Yamano, T.; Kaneda, Y.; Hiramatsu, S.H.; Huang, S.; Tran, A.N.; Giuliano, A.E.; Hoon, D.S.B. Immunity against breast cancer by TERT DNA vaccine primed with chemokine CCL21. Cancer Gene Ther. **2007**, *14*, 451–459.
- Cavallo, F.; Giovarelli, M.; Gulino, A.; Vacca, A.; Stoppacciaro, A.; Modesti, A.; Forni, G. Role of neutrophils and CD4+T lymphocytes in the primary and memory response to nonimmunogenic murine mammary adenocarcinoma made immunogenic by IL-2 gene. J. Immunol. 1992, 149, 3627–3635.
- 24. Rakhmilevich, A.L.; Janssen, K.; Hao, Z.; Sondel, P.M.; Yang, N.S. Interleukin-12 gene therapy of a weakly immunogenic mouse mammary carcinoma results in reduction of spontaneous lung metastases via a T-cell- independent mechanism. *Cancer Gene Ther.* **2000**, *7*, 826–838.
- 25. Rosato, A.; Dalla Santa, S.; Zoso, A.; Giacomelli, S.; Milan, G.; Macino, B.; Tosello, V.; Dellabona, P.; Lollini, P.L.; De Giovanni, C.; et al. The cytotoxic T-lymphocyte response against a poorly immunogenic mammary adenocarcinoma is focused on a single immunodominant class I epitope derived from the gp70 Env product of an endogenous retrovirus. *Cancer Res.* 2003, *63*, 2158–2163.
- 26. Pericle, F.; Sconocchia, G.; Segal, D.M.; Bronte, V.; Kirken, R.A.; Dasilva, L. Immunocompromised tumor-bearing mice show a selective loss of STAT5a/b expression in T and B lymphocytes. *J. Immunol.* **1997**, *159*, 2580–2585.
- 27. Piconese, S.; Valzasina, B.; Colombo, M.P. OX40 triggering blocks suppression by regulatory T cells and facilitates tumor rejection. *J. Exp. Med.* **2008**, *205*, 825–839.

- Apolloni, E.; Bronte, V.; Mazzoni, A.; Serafini, P.; Cabrelle, A.; Segal, D.M.; Young, H.A.; Zanovello, P. Immortalized Myeloid Suppressor Cells Trigger Apoptosis in Antigen-Activated T Lymphocytes. J. Immunol. 2000, 165, 6723–6730.
- 29. Bronte, V.; Apolloni, E.; Cabrelle, A.; Ronca, R.; Serafini, P.; Zamboni, P.; Restifo, N.P.; Zanovello, P. Identification of a CD11b+/Gr-1+/CD31+ myeloid progenitor capable of activating or suppressing CD8+ T cells. *Blood* **2000**, *96*, 3838–3846.
- 30. Mazzoni, A.; Bronte, V.; Visintin, A.; Spitzer, J.H.; Apolloni, E.; Serafini, P.; Zanovello, P.; Segal, D.M. Myeloid Suppressor Lines Inhibit T Cell Responses by an NO-Dependent Mechanism. *J. Immunol.* **2002**, *168*, 689–695.
- Serafini, P.; Meckel, K.; Kelso, M.; Noonan, K.; Califano, J.; Koch, W.; Dolcetti, L.; Bronte, V.; Borrello, I. Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. *J. Exp. Med.* 2006, 203, 2691–2702.
- Grizzle, W.E.; Xu, X.; Zhang, S.; Stockard, C.R.; Liu, C.; Yu, S.; Wang, J.; Mountz, J.D.; Zhang, H.G. Agerelated increase of tumor susceptibility is associated with myeloid-derived suppressor cell mediated suppression of T cell cytotoxicity in recombinant inbred BXD12 mice. *Mech. Ageing Dev.* 2007, 128, 672–680.
- Sinha, P.; Chornoguz, O.; Clements, V.K.; Artemenko, K.A.; Zubarev, R.A.; Ostrand-Rosenberg, S. Myeloidderived suppressor cells express the death receptor Fas and apoptose in response to T cell-expressed FasL. *Blood* 2011, 117, 5381–5390.
- Ostrand-Rosenberg, S.; Sinha, P.; Chornoguz, O.; Ecker, C. Regulating the suppressors: Apoptosis and inflammation govern the survival of tumor-induced myeloid-derived suppressor cells (MDSC). *Cancer Immunol. Immunother.* 2012, 61, 1319–1325.
- Sinha, P.; Parker, K.H.; Horn, L.; Ostrand-Rosenberg, S. Tumor-induced myeloid-derived suppressor cell function is independent of IFN-γ and IL-4Rα. *Eur. J. Immunol.* 2012, 42, 2052–2059.
- Morandi, B.; Mortara, L.; Chiossone, L.; Accolla, R.S.; Mingari, M.C.; Moretta, L.; Moretta, A.; Ferlazzo, G. Dendritic cell editing by activated natural killer cells results in a more protective cancer-specific immune response. *PLoS ONE* 2012, 7, e39170.
- Mirshahidi, S.; Kramer, V.G.; Whitney, J.B.; Essono, S.; Lee, S.; Dranoff, G.; Anderson, K.S.; Ruprecht, R.M. Overlapping synthetic peptides encoding TPD52 as breast cancer vaccine in mice: Prolonged survival. *Vaccine* 2009, 27, 1825–1833.
- Clément, M.; Rocher, J.; Loirand, G.; Le Pendu, J. Expression of sialyl-Tn epitopes on β1 integrin alters epithelial cell phenotype, proliferation and haptotaxis. J. Cell Sci. 2004, 117, 5059–5069.
- Hsu, H.C.; Li, L.; Zhang, H.G.; Mountz, J.D. Genetic regulation of thymic involution. *Mech. Ageing Dev.* 2005, 126, 87–97.
- 40. Lollini, P.L.; De Giovanni, C.; Eusebi, V.; Nicoletti, G.; Prodi, G.; Nanni, P. High-metastatic clones selected in vitro from a recent spontaneous BALB/c mammary adenocarcinoma cell line. *Clin. Exp. Metastasis* **1984**, *2*, 251–259.
- 41. Nanni, P.; De Giovanni, C.; Lollini, P.L.; Nicoletti, G.; Prodi, G. Clones with different metastatic capacity and variant selection during metastasis: A problematic relationship. *J. Natl. Cancer Inst.* **1986**, *76*, 87–93.
- Lollini, P.L.; Landuzzi, L.; Nlcoletti, G.; De Giovanni, C.; Glovarelli, M.; Lalli, E.; Facchini, A.; Nanni, P. LY-6A/E gene is widely expressed among transformed nonhematopoietic cells. Autocrine modulation by interferon. *Anticancer Res.* 1992, 12, 2245–2252.
- Kim, R.J.; Kim, S.R.; Roh, K.J.; Park, S.B.; Park, J.R.; Kang, K.S.; Kong, G.; Tang, B.; Yang, Y.A.; Kohn, E.A.; et al. Ras activation contributes to the maintenance and expansion of Sca-1pos cells in a mouse model of breast cancer. *Cancer Lett.* 2010, 287, 172–181.
- Zuo, T.; Wang, L.; Morrison, C.; Chang, X.; Zhang, H.; Li, W.; Liu, Y.; Wang, Y.; Liu, X.; Chan, M.W.Y.; et al. FOXP3 Is an X-Linked Breast Cancer Suppressor Gene and an Important Repressor of the HER-2/ErbB2 Oncogene. *Cell* 2007, 129, 1275–1286.
- Dolinsek, T.; Markelc, B.; Bosnjak, M.; Blagus, T.; Prosen, L.; Kranjc, S.; Stimac, M.; Lampreht, U.; Sersa, G.; Cemazar, M. Endoglin Silencing has Significant Antitumor Effect on Murine Mammary Adenocarcinoma Mediated by Vascular Targeted Effect. *Curr. Gene Ther.* 2015, *15*, 228–244.
- Lucá, R.; Averna, M.; Zalfa, F.; Vecchi, M.; Bianchi, F.; La Fata, G.; Del Nonno, F.; Nardacci, R.; Bianchi, M.; Nuciforo, P.; et al. The Fragile X Protein binds mRNAs involved in cancer progression and modulates metastasis formation. *EMBO Mol. Med.* 2013, *5*, 1523–1536.

- Cottone, L.; Capobianco, A.; Gualteroni, C.; Monno, A.; Raccagni, I.; Valtorta, S.; Canu, T.; Di Tomaso, T.; Lombardo, A.; Esposito, A.; et al. Leukocytes recruited by tumor-derived HMGB1 sustain peritoneal carcinomatosis. *Oncoimmunology* 2016, *5*, e1122860.
- 48. Li, W.; Wang, L.; Katoh, H.; Liu, R.; Zheng, P.; Liu, Y. Identification of a tumor suppressor relay between the FOXP3 and the Hippo pathways in breast and prostate cancers. *Cancer Res.* **2011**, *71*, 2162–2171.
- 49. Dalziel, M.; Yeahuang, R.; Dall'Olio, F.; Morris, J.R.; Taylor-Papadimitriou, J.; Lau, J.T.Y. Mouse ST6Gal sialyltransferase gene expression during mammary gland lactation. *Glycobiology* **2001**, *11*, 407–412.
- Znidar, K.; Bosnjak, M.; Semenova, N.; Pakhomova, O.; Heller, L.; Cemazar, M. Tumor cell death after electrotransfer of plasmid DNA is associated with cytosolic DNA sensor upregulation. *Oncotarget* 2018, *9*, 18665–18681.
- 51. Servier Medical Art; licensed under a Creative Commons Attribution 3.0 Unported License. Available online: http://smart.servier.com (accessed on 24 Octorber 2019).
- Schirmbeck, R.; Riedl, P.; Kupferschmitt, M.; Wegenka, U.; Hauser, H.; Rice, J.; Kröger, A.; Reimann, J. Priming Protective CD8 T Cell Immunity by DNA Vaccines Encoding Chimeric, Stress Protein-Capturing Tumor-Associated Antigen. J. Immunol. 2006, 177, 1534–1542.
- 53. Serafini, P.; De Santo, C.; Marigo, I.; Cingarlini, S.; Dolcetti, L.; Gallina, G.; Zanovello, P.; Bronte, V. Derangement of immune responses by myeloid suppressor cells. *Cancer Immunol. Immunother.* **2004**, *53*, 64–72.
- 54. Shibue, T.; Brooks, M.W.; Fatih Inan, M.; Reinhardt, F.; Weinberg, R.A. The outgrowth of micrometastases is enabled by the formation of filopodium-like protrusions. *Cancer Discov.* **2012**, *2*, 706–721.
- Movahedi, K.; Laoui, D.; Gysemans, C.; Baeten, M.; Stangé, G.; Van Den Bossche, J.; Mack, M.; Pipeleers, D.; In't Veld, P.; De Baetselier, P.; et al. Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. *Cancer Res.* 2010, *70*, 5728–5739.
- 56. Galdiero, M.R.; Bonavita, E.; Barajon, I.; Garlanda, C.; Mantovani, A.; Jaillon, S. Tumor associated macrophages and neutrophils in cancer. *Immunobiology* **2013**, *218*, 1402–1410.
- 57. Bronte, V.; Brandau, S.; Chen, S.H.; Colombo, M.P.; Frey, A.B.; Greten, T.F.; Mandruzzato, S.; Murray, P.J.; Ochoa, A.; Ostrand-Rosenberg, S.; et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. *Nat. Commun.* **2016**, *7*, 12150.
- Schmieder, A.; Schledzewski, K.; Michel, J.; Tuckermann, J.P.; Tome, L.; Sticht, C.; Gkaniatsou, C.; Nicolay, J.P.; Demory, A.; Faulhaber, J.; et al. Synergistic activation by p38MAPK and glucocorticoid signaling mediates induction of M2-like tumor-associated macrophages expressing the novel CD20 homolog MS4A8A. *Int. J. Cancer* 2011, 129, 122–132.
- 59. Guiducci, C.; Vicari, A.P.; Sangaletti, S.; Trinchieri, G.; Colombo, M.P. Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. *Cancer Res.* **2005**, *65*, 3437–3446.
- Fuchs, T.; Hahn, M.; Riabov, V.; Yin, S.; Kzhyshkowska, J.; Busch, S.; Püllmann, K.; Beham, A.W.; Neumaier, M.; Kaminski, W.E. A combinatorial αβ T cell receptor expressed by macrophages in the tumor microenvironment. *Immunobiology* 2017, 222, 39–44.
- Riabov, V.; Yin, S.; Song, B.; Avdic, A.; Schledzewski, K.; Ovsiy, I.; Gratchev, A.; Verdiell, M.L.; Sticht, C.; Schmuttermaier, C.; et al. Stabilin-1 is expressed in human breast cancer and supports tumor growth in mammary adenocarcinoma mouse model. *Oncotarget* 2016, *7*, 31097–31110.
- 62. Liu, C.; Yu, S.; Kappes, J.; Wang, J.; Grizzle, W.E.; Zinn, K.R.; Zhang, H.G. Expansion of spleen myeloid suppressor cells represses NK cell cytotoxicity in tumor-bearing host. *Blood* **2007**, *109*, 4336–4342.
- 63. Bauer, R.; Udonta, F.; Wroblewski, M.; Ben-Batalla, I.; Santos, I.M.; Taverna, F.; Kuhlencord, M.; Gensch, V.; Päsler, S.; Vinckier, S.; et al. Blockade of myeloid-derived suppressor cell expansion with all-trans retinoic acid increases the efficacy of antiangiogenic therapy. *Cancer Res.* 2018, *78*, 3220–3232.
- 64. Rong, L.; Bian, Y.; Liu, S.; Liu, X.; Li, X.; Liu, H.; Zhou, J.; Peng, J.; Zhang, H.; Chen, H.; et al. Identifying tumor promoting genomic alterations in tumorassociated fibroblasts via retrovirus-insertional mutagenesis. *Oncotarget* **2017**, *8*, 97231–97245.
- Wang, Y.Y.; Attané, C.; Milhas, D.; Dirat, B.; Dauvillier, S.; Guerard, A.; Gilhodes, J.; Lazar, I.; Alet, N.; Laurent, V.; et al. Mammary adipocytes stimulate breast cancer invasion through metabolic remodeling of tumor cells. *JCI Insight* 2017, *2*, e87489.
- Wolfers, J.; Lozier, A.; Raposo, G.; Regnault, A.; Théry, C.; Masurier, C.; Flament, C.; Pouzieux, S.; Faure, F.; Tursz, T.; et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. *Nat. Med.* 2001, *7*, 297–303.

- Liu, C.; Yu, S.; Zinn, K.; Wang, J.; Zhang, L.; Jia, Y.; Kappes, J.C.; Barnes, S.; Kimberly, R.P.; Grizzle, W.E.; et al. Murine Mammary Carcinoma Exosomes Promote Tumor Growth by Suppression of NK Cell Function. *J. Immunol.* 2006, 176, 1375–1385.
- Yu, S.; Liu, C.; Su, K.; Wang, J.; Liu, Y.; Zhang, L.; Li, C.; Cong, Y.; Kimberly, R.; Grizzle, W.E.; et al. Tumor Exosomes Inhibit Differentiation of Bone Marrow Dendritic Cells. J. Immunol. 2007, 178, 6867–6875.
- Diamond, J.M.; Vanpouille-Box, C.; Spada, S.; Rudqvist, N.P.; Chapman, J.R.; Ueberheide, B.M.; Pilones, K.A.; Sarfraz, Y.; Formenti, S.C.; Demaria, S. Exosomes Shuttle TREX1-Sensitive IFN-Stimulatory dsDNA from Irradiated Cancer Cells to DCs. *Cancer Immunol. Res.* 2018, *6*, 910–920.
- Giovarelli, M.; Cappello, P.; Forni, G.; Salcedo, T.; Moore, P.A.; LeFleur, D.W.; Nardelli, B.; Di Carlo, E.; Lollini, P.-L.; Ruben, S.; et al. Tumor Rejection and Immune Memory Elicited by Locally Released LEC Chemokine Are Associated with an Impressive Recruitment of APCs, Lymphocytes, and Granulocytes. J. Immunol. 2000, 164, 3200–3206.
- Cappello, P.; Caorsi, C.; Bosticardo, M.; De Angelis, S.; Novelli, F.; Forni, G.; Giovarelli, M. CCL16/LEC powerfully triggers effector and antigen-presenting functions of macrophages and enhances T cell cytotoxicity. *J. Leukoc. Biol.* 2004, 75, 135–142.
- Guiducci, C.; Di Carlo, E.; Parenza, M.; Hitt, M.; Giovarelli, M.; Musiani, P.; Colombo, M.P. Intralesional Injection of Adenovirus Encoding CC Chemokine Ligand 16 Inhibits Mammary Tumor Growth and Prevents Metastatic-Induced Death after Surgical Removal of the Treated Primary Tumor. *J. Immunol.* 2004, 172, 4026–4036.
- Musiani, P.; Modesti, A.; Brunetti, M.; Modica, A.; Vitullo, P.; Gulino, A.; Bosco, M.C.; Colombo, M.P.; Nanni, P.; Cavallo, F.; et al. Nature and potential of the reactive response to mouse mammary adenocarcinoma cells engineered with interleukin-2, interleukin-4 or interferon-γ genes. *Nat. Immun.* 1994, *13*, 93–101.
- 74. Allione, A.; Consalvo, M.; Nanni, P.; Lollini, P.L.; Cavallo, F.; Giovarelli, M.; Forni, M.; Gulino, A.; Colombo, M.P.; Dellabona, P.; et al. Immunizing and Curative Potential of Replicating and Nonreplicating Murine Mammary Adenocarcinoma Cells Engineered with Interleukin (IL)-2, IL-4, IL-6, IL-7, IL-10, Tumor Necrosis Factor a, Granulocyte-Macrophage Colony-stimulating Factor, and y-Interfero. *Cancer Res.* 1994, 54, 6022–6026.
- Pericle, F.; Kirken, R.A.; Epling-Burnette, P.K.; Blanchard, D.K.; Djeu, J.Y. Direct killing of interleukin-2transfected tumor cells by human neutrophils. *Int. J. Cancer* 1996, *66*, 367–373.
- Vagliani, M.; Rodolfo, M.; Cavallo, F.; Parenza, M.; Melani, C.; Parmiani, G.; Forni, G.; Colombo, M.P. Interleukin 12 potentiates the curative effect of a vaccine based on interleukin 2-transduced tumor cells. *Cancer Res.* 1996, *56*, 467–470.
- 77. Provinciali, M.; Argentati, K.; Tibaldi, A. Efficacy of cancer gene therapy in aging adenocarcinoma cells engineered to release IL-2 are rejected but do not induce tumor specific immune memory in old mice. *Gene Ther.* **2000**, *7*, 624–632.
- Modesti, A.; D'Orazi, G.; Masuelli, L.; Modica, A.; Scarpa, S.; Bosco, M.C.; Forni, G. Ultrastructural evidence of the mechanisms responsible for interleukin-4-activated rejection of a spontaneous murine adenocarcinoma. *Int. J. Cancer* 1993, *53*, 988–993.
- Pericle, F.; Giovarelli, M.; Cavallo, F.; Di Pierro, F.; Novelli, F.; Forni, G.; Colombo, M.P.; Ferrari, G.; Musiani, P.; Modesti, A. An efficient Th2-type memory follows CD8+lymphocyte-driven and eosinophilmediated rejection of a spontaneous mouse mammary adenocarcinoma engineered to release IL-4. *J. Immunol.* 1994, 153, 5659–5673.
- Musiani, P.; Allione, A.; Modica, A.; Lollini, P.L.; Giovarelli, M.; Cavallo, F.; Belardelli, F.; Forni, G.; Modesti, A. Role of Neutrophils and Lymphocytes in Inhibition of a Mouse Mammary Adenocarcinoma Engineered to Release IL-2, IL-4, IL-7, IL-10, IFN-α, IFN-γ, and TNF-α. *Lab. Investig.* 1996, 74, 146–157.
- Cayeux, S.; Richter, G.; Noffz, G.; Dörken, B.; Blankenstein, T. Influence of gene-modified (IL-7, IL-4, and B7) tumor cell vaccines on tumor antigen presentation. *J. Immunol.* 1997, 158, 2834–2841.
- Belardelli, F.; Ferrantini, M.; Santini, S.M.; Baccarini, S.; Proietti, E.; Colombo, M.P.; Sprent, J.; Tough, D.F. The induction of in vivo proliferation of long-lived CD44(hi) CD8+ T cells after the injection of tumor cells expressing IFN-α1 into syngeneic mice. *Cancer Res.* 1998, *58*, 5795–5802.
- Di Carlo, E.; Modesti, A.; Coletti, A.; Colombo, M.P.; Giovarelli, M.; Forni, G.; Diodoro, M.G.; Musiani, P. Interaction between endothelial cells and the secreted cytokine drives the fate of an IL4- or an IL5transduced tumour. *J. Pathol.* 1998, 186, 390–397.

- Pacor, S.; Gagliardi, R.; Di Daniel, E.; Vadori, M.; Sava, G. In vitro down regulation of ICAM-1 and Ecadherin and in vivo reduction of lung metastases of TS/A adenocarcinoma by a lysozyme derivative. *Int. J. Mol. Med.* **1999**, *4*, 369–375.
- Pacor, S.; Magnarin, M.; Carotenuto, M.E.; Spessotto, P.; Zabucchi, G.; Sava, G. In vitro growth of TS/A adenocarcinoma and of the gene transfected TS/A-IL4 line on biological substrates. *Anticancer Res.* 2000, 20, 191–196.
- Krüger-Krasagakes, S.; Li, W.; Richter, G.; Diamantstein, T.; Blankenstein, T. Eosinophils infiltrating interleukin-5 gene-transfected tumors do not suppress tumor growth. *Eur. J. Immunol.* 1993, 23, 992–995.
- Di Carlo, E.; Coletti, A.; Modesti, A.; Giovarelli, M.; Forni, G.; Musiani, P. Local release of interleukin-10 by transfected mouse adenocarcinoma cells exhibits pro- and anti-inflammatory activity and results in a delayed tumor rejection. *Eur. Cytokine Netw.* **1998**, *9*, 61–68.
- Hock, H.; Dorsch, M.; Diamantstein, T.; Blankenstein, T. Interleukin 7 induces CD4 + T cell-dependent tumor rejection. J. Exp. Med. 1991, 174, 1291–1298.
- Cayeux, S.; Beck, C.; Aicher, A.; Dörken, B.; Blankenstein, T. Tumor cells cotransfected with interleukin-7 and B7.1 genes induce CD25 and CD28 on tumor-infiltrating T lymphocytes and are strong vaccines. *Eur. J. Immunol.* 1995, 25, 2325–2331.
- Willimsky, G.; Blankenstein, T. Interleukin-7/B7.1-encoding adenoviruses induce rejection of transplanted but not nontransplanted tumors. *Cancer Res.* 2000, *60*, 685–692.
- Giovarelli, M.; Musiani, P.; Modesti, A.; Dellabona, P.; Casorati, G.; Allione, A.; Consalvo, M.; Cavallo, F.; di Pierro, F.; De Giovanni, C. Local release of IL-10 by transfected mouse mammary adenocarcinoma cells does not suppress but enhances antitumor reaction and elicits a strong cytotoxic lymphocyte and antibodydependent immune memory. J. Immunol. 1995, 155, 3112–3123.
- Morini, M.; Albini, A.; Lorusso, G.; Moelling, K.; Lu, B.; Cilli, M.; Ferrini, S.; Noonan, D.M. Prevention of angiogenesis by naked DNA IL-12 gene transfer: Angioprevention by immunogene therapy. *Gene Ther.* 2004, 11, 284–291.
- 93. Weber, S.M.; Qi, C.; Neal, Z.; Sondel, P.; Mahvi, D.M. IL-12 cDNA direct injection: Antimetastatic effect from a single injection in a murine hepatic metastases model. *J. Surg. Res.* **2004**, *122*, 210–217.
- 94. Oshikawa, K.; Shi, F.; Rakhmilevich, A.L.; Sondel, P.M.; Mahvi, D.M.; Yang, N.S. Synergistic inhibition of tumor growth in a murine mammary adenocarcinoma model by combinational gene therapy using IL-12, pro-IL-18, and IL-1β converting enzyme cDNA. *Proc. Natl. Acad. Sci. USA* **1999**, *96*, 13351–13356.
- Comes, A.; Di Carlo, E.; Musiani, P.; Rosso, O.; Meazza, R.; Chiodoni, C.; Colombo, M.P.; Ferrini, S. IFN-γindependent synergistic effects of IL-12 and IL-15 induce anti-tumor immune responses in syngeneic mice. *Eur. J. Immunol.* 2002, *32*, 1914–1923.
- Cavallo, F.; Signorelli, P.; Giovarelli, M.; Musiani, P.; Modesti, A.; Brunda, M.J.; Colombo, M.P.; Forni, G. Antitumor efficacy of adenocarcinoma cells engineered to produce interleukin 12 (IL-12) or other cytokines compared with exogenous IL-12. *J. Natl. Cancer Inst.* 1997, *89*, 1049–1058.
- Gri, G.; Chiodoni, C.; Gallo, E.; Stoppacciaro, A.; Liew, F.Y.; Colombo, M.P. Antitumor effect of interleukin (IL)-12 in the absence of endogenous IFN-γ: A role for intrinsic tumor immunogenicity and IL-15. *Cancer Res.* 2002, *62*, 4390–4397.
- Puisieux, I.; Odin, L.; Poujol, D.; Moingeon, P.; Tartaglia, J.; Cox, W.; Favrot, M. Canarypox virus-mediated interleukin 12 gene transfer into murine mammary adenocarcinoma induces tumor suppression and longterm antitumoral immunity. *Hum. Gene Ther.* 1998, *9*, 2481–2492.
- De Giovanni, C.; Nicoletti, G.; Landuzzi, L.; Rossi, I.; Astolfi, A.; Ricci, C.; Di Carlo, E.; Musiani, P.; Forni, G.; Fradelizi, D.; et al. Therapy of lung metastases through combined vaccination with carcinoma cells engineered to release IL-13 and IFN-γ. *Gene Ther.* 2001, *8*, 1698–1704.
- 100. Morris, J.C.; Ramlogan-Steel, C.A.; Yu, P.; Black, B.A.; Mannan, P.; Allison, J.P.; Waldmann, T.A.; Steel, J.C. Vaccination with tumor cells expressing IL-15 and IL-15R inhibits murine breast and prostate cancer. *Gene Ther.* 2014, *21*, 393–401.
- Meazza, R.; Lollini, P.L.; Nanni, P.; De Giovanni, C.; Gaggero, A.; Comes, A.; Cilli, M.; Di Carlo, E.; Ferrini, S.; Musiani, P. Gene transfer of a secretable form of IL-15 in murine adenocarcinoma cells: Effects on tumorigenicity, metastatic potential and immune response. *Int. J. Cancer* 2000, *87*, 574–581.
- 102. Di Carlo, E.; Comes, A.; Orengo, A.M.; Rosso, O.; Meazza, R.; Musiani, P.; Colombo, M.P.; Ferrini, S. IL-21 Induces Tumor Rejection by Specific CTL and IFN-γ-Dependent CXC Chemokines in Syngeneic Mice. *J. Immunol.* 2004, *172*, 1540–1547.

- 103. Ferrantini, M.; Giovarelli, M.; Modesti, A.; Musiani, P.; Modica, A.; Venditti, M.; Peretti, E.; Lollini, P.L.; Nanni, P.; Forni, G.; et al. IFN-α1 gene expression into a metastatic murine adenocarcinoma (TS/A) results in CD8+T cell-mediated tumor rejection and development of antitumor immunity: Comparative studies with IFN-γ-producing TS/A cells. J. Immunol. 1994, 153, 4604–4615.
- 104. Santodonato, L.; D'Agostino, G.; Santini, S.M.; Carlei, D.; Musiani, P.; Modesti, A.; Signorelli, P.; Belardelli, F.; Ferrantini, M. Local and systemic antitumor response after combined therapy of mouse metastatic tumors with tumor cells expressing IFN-α and HSVtk: Perspectives for the generation of cancer vaccines. *Gene Ther.* **1997**, *4*, 1246–1255.
- 105. Scarpa, S.; Giuffrida, A.; Palumbo, C.; Vasaturo, F.; Signorelli, P.; Forni, G.; Modesti, M.; Ferrantini, M.; Belardelli, F.; Musiani, P.; et al. Extracellular matrix remodelling in a murine mammary adenocarcinoma transfected with the interferon-alpha1 gene. J. Pathol. 1997, 181, 116–123.
- 106. Rossi, I.; Nicoletti, G.; Landuzzi, L.; Frabetti, F.; De Giovanni, C.; Nanni, P.; Musiani, P.; Ferrantini, M.; Belardelli, F.; Lollini, P.L. Inhibition of lung colonisation of a mouse mammary carcinoma by therapeutic vaccination with interferon-α gene-transduced tumor cells. *Clin. Exp. Metastasis* **1998**, *16*, 123–128.
- 107. Tüting, T.; Gambotto, A.; Baar, J.; Davis, I.D.; Storkus, W.J.; Zavodny, P.J.; Narula, S.; Tahara, H.; Robbins, P.D.; Lotze, M.T. Interferon-α gene therapy for cancer: Retroviral transduction of fibroblasts and particle-mediated transfection of tumor cells are both effective strategies for gene delivery in murine tumor models. *Gene Ther.* **1997**, *4*, 1053–1060.
- 108. Coleman, M.; Muller, S.; Quezada, A.; Mendiratta, S.K.; Wang, J.; Thull, N.M.; Bishop, J.; Matar, M.; Mester, J.; Pericle, F. Nonviral interferon α gene therapy inhibits growth of established tumors by eliciting a systemic immune response. *Hum. Gene Ther.* **1998**, *9*, 2223–2230.
- 109. Rozera, C.; Carlei, D.; Lollini, P.L.; De Giovanni, C.; Musiani, P.; Di Carlo, E.; Belardelli, F.; Ferrantini, M. Interferon (IFN)-β gene transfer into TS/A adenocarcinoma cells and comparison with IFN-α. Differential effects on tumorigenicity and host response. *Am. J. Pathol.* **1999**, *154*, 1211–1222.
- Lollini, P.L.; Nanni, P. Minimal requirements for characterization of cytokine gene-transduced tumor cells: A proposal. J. Natl. Cancer Inst. 1995, 87, 1717–1718.
- 111. Nanni, P.; De Giovanni, C.; Landuzzi, L.; Nicoletti, G.; Frabetti, F.; Rossi, I.; Cavallo, F.; Giovarelli, M.; Forni, G.; Lollini, P.L. Therapy of murine mammary carcinoma metastasis with interferon γ and MHC gene-transduced tumour cells. *Br. J. Cancer* **1996**, *74*, 1564–1569.
- 112. Nanni, P.; De Giovanni, C.; Nicoletti, G.; Landuzzi, L.; Rossi, I.; Frabetti, F.; Giovarelli, M.; Forni, G.; Cavallo, F.; Di Carlo, E.; et al. The immune response elicited by mammary adenocarcinoma cells transduced with interferon-γ and cytosine deaminase genes cures lung metastases by parental cells. *Hum. Gene Ther.* **1998**, *9*, 217–224.
- 113. Sacchi, A.; Gasparri, A.; Curnis, F.; Bellone, M.; Corti, A. Crucial role for interferon γ in the synergism between tumor vasculature-targeted tumor necrosis factor α (NGR-TNF) and doxorubicin. *Cancer Res.* 2004, 64, 7150–7155.
- 114. Cavallo, F.; Martin-Fontecha, A.; Bellone, M.; Heltai, S.; Gatti, E.; Tornaghi, P.; Freschi, M.; Forni, G.; Dellabona, P.; Casorati, G. Co-expression of B7-1 and ICAM-1 on tumors is required for rejection and the establishment of a memory response. *Eur. J. Immunol.* **1995**, *25*, 1154–1162.
- 115. Martin-Fontecha, A.; Cavallo, F.; Bellone, M.; Heltai, S.; Lezzi, G.; Tornaghi, P.; Nabavi, N.; Forni, G.; Dellabona, P.; Casorati, G. Heterogeneous effects of B7-1 and B7-2 in the induction of both protective and therapeutic antitumor immunity against different mouse tumors. *Eur. J. Immunol.* **1996**, *26*, 1851–1859.
- 116. Martín-Fontecha, A.; Moro, M.; Crosti, M.C.; Veglia, F.; Casorati, G.; Dellabona, P. Vaccination with Mouse Mammary Adenocarcinoma Cells Coexpressing B7-1 (CD80) and B7-2 (CD86) Discloses the Dominant Effect of B7-1 in the Induction of Antitumor Immunity. *J. Immunol.* 2000, 164, 698–704.
- 117. Lollini, P.L.; De Giovanni, C.; Landuzzi, L.; Nicoletti, G.; Frabetti, F.; Nanni, P.; Landuzzi, L.; Nicoletti, G.; Cavallo, F.; Giovarelli, M.; et al. Transduction of Genes Coding for a Histocompatibility (MHC) Antigen and for Its Physiological Inducer Interferon-γ in the Same Cell: Efficient MHC Expression and Inhibition of Tumor and Metastasis Growth. *Hum. Gene Ther.* **1995**, *6*, 743–752.
- 118. Couderc, B.; Zitvogel, L.; Douin-Echinard, V.; Djennane, L.; Tahara, H.; Favre, G.; Lotze, M.T.; Robbins, P.D. Enhancement of antitumor immunity by expression of CD70 (CD27 ligand) or CD154 (CD40 ligand) costimulatory molecules in tumor cells. *Cancer Gene Ther.* **1998**, *5*, 163–175.

- Douin-Echinard, V.; Bornes, S.; Rochaix, P.; Tilkin, A.F.; Peron, J.M.; Bonnet, J.; Favre, G.; Couderc, B. The expression of CD70 and CD80 by gene-modified tumor cells induces an antitumor response depending on the MHC status. *Cancer Gene Ther.* 2000, 7, 1543–1556.
- Grangeon, C.; Cormary, C.; Douin-Echinard, V.; Favre, G.; Couderc, B.; Tilkin-Mariamé, A.F. In vivo induction of antitumor immunity and protection against tumor growth by injection of CD154-expressing tumor cells. *Cancer Gene Ther*. 2002, *9*, 282–288.
- 121. Giovarelli, M.; Cappello, P.; Rigamonti, L.; Bernabei, P.; Novelli, F.; Lollini, P.L.; Forni, G.; Musiani, P.; Di Carlo, E.; Garotta, G.; et al. A "stealth effect": Adenocarcinoma cells engineered to express TRAIL elude tumor-specific and allogeneic T cell reactions. *J. Immunol.* **1999**, *163*, 4886–4893.
- 122. Prigent, P.; El Mir, S.; Dréano, M.; Triebel, F. Lymphocyte activation gene-3 induces tumor regression and antitumor immune responses. *Eur. J. Immunol.* **1999**, *29*, 3867–3876.
- 123. Di Carlo, E.; Cappello, P.; Sorrentino, C.; D'Antuono, T.; Pellicciotta, A.; Giovarelli, M.; Forni, G.; Musiani, P.; Triebel, F. Immunological mechanisms elicited at the tumour site by lymphocyte activation gene-3 (LAG-3) versus IL-12: Sharing a common Th1 anti-tumour immune pathway. J. Pathol. 2005, 205, 82–91.
- 124. Croci, S.; Nicoletti, G.; Landuzzi, L.; Palladini, A.; Chiarini, F.; Nanni, P.; Lollini, P.L.; De Giovanni, C. Expression of a functional CCR7 chemokine receptor inhibits the post-intravasation steps of metastasis in malignant murine mammary cancer cells. *Oncol. Rep.* 2007, *18*, 451–456.
- 125. Consalvo, M.; Mullen, C.A.; Modesti, A.; Musiani, P.; Allione, A.; Cavallo, F.; Giovarelli, M.; Forni, G. 5-Fluorocytosine-Induced Eradication of Murine Adenocarcinomas Engineered To Express the Cytosine Deaminase Suicide Gene Requires Host Immune Competence and Leaves an Efficient Memory. *J. Immunol.* 1995, 154, 5302–5312.
- 126. Uckert, W.; Kammertöns, T.; Haack, K.; Qin, Z.; Gebert, J.; Schendel, D.J.; Blankenstein, T. Double suicide gene (cytosine deaminase and herpes simplex virus thymidine kinase) but not single gene transfer allows reliable elimination of tumor cells in vivo. *Hum. Gene Ther.* **1998**, *9*, 855–865.
- 127. Porosnicu, M.; Mian, A.; Barber, G.N. The Oncolytic Effect of Recombinant Vesicular Stomatitis Virus Is Enhanced by Expression of the Fusion Cytosine Deaminase/Uracil Phosphoribosyltransferase Suicide Gene. *Cancer Res.* 2003, 63, 8366–8376.
- Leveille, S.; Goulet, M.-L.; Lichty, B.D.; Hiscott, J. Vesicular Stomatitis Virus Oncolytic Treatment Interferes with Tumor-Associated Dendritic Cell Functions and Abrogates Tumor Antigen Presentation. J. Virol. 2011, 85, 12160–12169.
- Chen, X.; Zhang, D.; Dennert, G.; Hung, G.; Lee, A.S. Eradication of murine mammary adenocarcinoma through HSVtk expression directed by the glucose-starvation inducible grp78 promoter. *Breast Cancer Res. Treat.* 2000, 59, 81–90.
- Faneca, H.; Cabrita, A.S.; Simões, S.; Pedroso de Lima, M.C. Evaluation of the antitumoral effect mediated by IL-12 and HSV-tk genes when delivered by a novel lipid-based system. *Biochim. Biophys. Acta Biomembr.* 2007, 1768, 1093–1102.
- Meazza, R.; Comes, A.; Orengo, A.M.; Ferrini, S.; Accolla, R.S. Tumor rejection by gene transfer of the MHC class II transactivator in murine mammary adenocarcinoma cells. *Eur. J. Immunol.* 2003, 33, 1183–1192.
- 132. Mortara, L.; Frangione, V.; Castellani, P.; De Lerma Barbaro, A.; Accolla, R.S. Irradiated CIITA-positive mammary adenocarcinoma cells act as a potent anti-tumor-preventive vaccine by inducing tumor-specific CD4+ T cell priming and CD8+ T cell effector functions. *Int. Immunol.* 2009, *21*, 655–665.
- 133. McCaw, T.R.; Li, M.; Starenki, D.; Cooper, S.J.; Liu, M.; Meza-Perez, S.; Arend, R.C.; Buchsbaum, D.J.; Forero, A.; Randall, T.D. The expression of MHC class II molecules on murine breast tumors delays T-cell exhaustion, expands the T-cell repertoire, and slows tumor growth. *Cancer Immunol. Immunother.* 2019, 68, 175–188.
- 134. Lipnik, K.; Naschberger, E.; Gonin-Laurent, N.; Kodajova, P.; Petznek, H.; Rungaldier, S.; Astigiano, S.; Ferrini, S.; Stürz, M.; Hohenadl, C. Interferon γ-Induced human guanylate binding protein 1 inhibits mammary tumor growth in mice. *Mol. Med.* **2010**, *16*, 177–187.
- 135. Kim, P.K.M.; Armstrong, M.; Liu, Y.; Yan, P.; Bucher, B.; Zuckerbraun, B.S.; Gambotto, A.; Billiar, T.R.; Yim, J.H. IRF-1 expression induces apoptosis and inhibits tumor growth in mouse mammary cancer cells in vitro and in vivo. *Oncogene* 2004, 23, 1125–1135.
- 136. Lollini, P.-L.; D'Errico, A.; De Giovanni, C.; Landuzzi, L.; Frabetti, F.; Nicoletti, G.; Cavallo, F.; Giovarelli, M.; Grigioni, W.F.; Nanni, P. Systemic effects of cytokines released by gene-transduced tumor cells: Marked hyperplasia induced in small bowel by γ-interferon transfectants through host lymphocytes. *Int. J. Cancer* 1995, *61*, 425–430.

- 137. Musiani, P.; Modesti, A.; Giovarelli, M.; Cavallo, F.; Forni, G.; Lollini, P.L.; Colombo, M.P. Cytokines, tumour-cell death and immunogenicity: A question of choice. *Immunol. Today* **1997**, *18*, 32–36.
- 138. Dranoff, G.; Jaffee, E.; Lazenby, A.; Golumbek, P.; Levitsky, H.; Brose, K.; Jackson, V.; Hamada, H.; Pardoll, D.; Mulligan, R.C. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. *Proc. Natl. Acad. Sci. USA* **1993**, *90*, 3539–3543.
- 139. Heiber, J.F.; Barber, G.N. Vesicular Stomatitis Virus Expressing Tumor Suppressor p53 Is a Highly Attenuated, Potent Oncolytic Agent. J. Virol. 2011, 85, 10440–10450.
- Bonnet, M.E.; Gossart, J.B.; Benoit, E.; Messmer, M.; Zounib, O.; Moreau, V.; Behr, J.P.; Lenne-Samuel, N.; Kedinger, V.; Meulle, A.; et al. Systemic delivery of sticky siRNAs targeting the cell cycle for lung tumor metastasis inhibition. *J. Control. Release* 2013, *170*, 183–190.
- 141. Kéramidas, M.; De Fraipont, F.; Karageorgis, A.; Moisan, A.; Persoons, V.; Richard, M.J.; Coll, J.L.; Rome, C. The dual effect of mscs on tumour growth and tumour angiogenesis. *Stem Cell Res. Ther.* **2013**, *4*, 41.
- Josserand, V.; Texier-Nogues, I.; Huber, P.; Favrot, M.C.; Coll, J.L. Non-invasive in vivo optical imaging of the lacZ and luc gene expression in mice. *Gene Ther.* 2007, 14, 1587–1593.
- 143. Steel, J.C.; Morrison, B.J.; Mannan, P.; Abu-Asab, M.S.; Wildner, O.; Miles, B.K.; Yim, K.C.; Ramanan, V.; Prince, G.A.; Morris, J.C. Immunocompetent syngeneic cotton rat tumor models for the assessment of replication-competent oncolytic adenovirus. *Virology* 2007, 369, 131–142.
- Kamensek, U.; Sersa, G.; Vidic, S.; Tevz, G.; Kranjc, S.; Cemazar, M. Irradiation, cisplatin, and 5-azacytidine upregulate cytomegalovirus promoter in tumors and muscles: Implementation of non-invasive fluorescence imaging. *Mol. Imaging Biol.* 2011, 13, 43–52.
- 145. Kamensek, U.; Sersa, G.; Cemazar, M. Evaluation of p21 promoter for interleukin 12 radiation induced transcriptional targeting in a mouse tumor model. *Mol. Cancer* **2013**, *12*, 136.
- 146. Bobrie, A.; Krumeich, S.; Reyal, F.; Recchi, C.; Moita, L.F.; Seabra, M.C.; Ostrowski, M.; Théry, C. Rab27a supports exosome-dependent and -independent mechanisms that modify the tumor microenvironment and can promote tumor progression. *Cancer Res.* 2012, 72, 4920–4930.
- 147. Germano, G.; Lamba, S.; Rospo, G.; Barault, L.; Magri, A.; Maione, F.; Russo, M.; Crisafulli, G.; Bartolini, A.; Lerda, G.; et al. Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth. *Nature* 2017, 552, 1–5.
- Cayeux, S.; Richter, G.; Becker, C.; Pezzutto, A.; Dörken, B.; Blankenstein, T. Direct and indirect T cell priming by dendritic cell vaccines. *Eur. J. Immunol.* **1999**, *29*, 225–234.
- Cayeux, S.; Qin, Z.; Dörken, B.; Blankenstein, T. Decreased generation of anti-tumor immunity after intrasplenic immunization. *Eur. J. Immunol.* 2001, 31, 1392–1399.
- Preiss, S.; Kammertoens, T.; Lampert, C.; Willimsky, G.; Blankenstein, T. Tumor-induced antibodies resemble the response to tissue damage. *Int. J. Cancer* 2005, *115*, 456–462.
- Dobrzanski, M.J.; Reome, J.B.; Hylind, J.C.; Rewers-Felkins, K.A. CD8-Mediated Type 1 Antitumor Responses Selectively Modulate Endogenous Differentiated and Nondifferentiated T Cell Localization, Activation, and Function in Progressive Breast Cancer. J. Immunol. 2006, 177, 8191–8201.
- 152. Dobrzanski, M.J.; Reome, J.B.; Hylind, J.C.; Rewers-Felkins, K.A.; Abdulsamad, K.; Adams, S.L. Ag-specific type 1 CD8 effector cells enhance methotrexate-mediated antitumor responses by modulating endogenous CD49bexpressing CD4 and CD8 T effector cell subpopulations producing IL-10. *Immunol. Invest* 2008, 37, 315–338.
- 153. Benigni, F.; Zimmermann, V.S.; Hugues, S.; Caserta, S.; Basso, V.; Rivino, L.; Ingulli, E.; Malherbe, L.; Glaichenhaus, N.; Mondino, A. Phenotype and Homing of CD4 Tumor-Specific T Cells Is Modulated by Tumor Bulk. J. Immunol. 2005, 175, 739–748.
- Zimmermann, V.S.; Casati, A.; Schiering, C.; Caserta, S.; Hess, M.R.; Basso, V.; Mondino, A. Tumors hamper the immunogenic competence of CD4+ T cell-directed dendritic cell vaccination. J. Immunol. 2007, 179, 2899–2909.
- Schiering, C.; Guarnerio, J.; Basso, V.; Muzio, L.; Mondino, A. Antigen-experienced CD4+ T cells limit naïve T-cell priming in response to therapeutic vaccination in vivo. *Cancer Res.* 2010, 70, 6161–6170.
- Martino, A.; Vismara, D.; Cicconi, R.; Delpino, A.; Ivanyi, J.; Colizzi, V.; Cassol, M.; Fraziano, M.; Piselli, P. Effective anti-tumor immunity induced in mice by a two-step vaccination protocol. *In Vivo*. 2001, 15, 425–428.
- 157. Li, Z.; Pradera, F.; Kammertoens, T.; Li, B.; Liu, S.; Qin, Z. Cross-Talk between T Cells and Innate Immune Cells Is Crucial for IFN-γ-Dependent Tumor Rejection. *J. Immunol.* **2007**, *179*, 1568–1576.

- 158. Ghiringhelli, F.; Apetoh, L.; Tesniere, A.; Aymeric, L.; Ma, Y.; Ortiz, C.; Vermaelen, K.; Panaretakis, T.; Mignot, G.; Ullrich, E.; et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1Bdependent adaptive immunity against tumors. *Nat. Med.* **2009**, *15*, 1170–1178.
- 159. Colombo, B.; Curnis, F.; Foglieni, C.; Monno, A.; Arrigoni, G.; Corti, A. Chromogranin A expression in neoplastic cells affects tumor growth and morphogenesis in mouse models. *Cancer Res.* 2002, 62, 941–946.
- Malosio, M.L.; Giordano, T.; Laslop, A.; Meldolesi, J. Dense-core granules: A specific hallmark of the neuronal/neurosecretory cell phenotype. J. Cell Sci. 2004, 117, 743–749.
- Veschini, L.; Crippa, L.; Dondossola, E.; Doglioni, C.; Corti, A.; Ferrero, E. The vasostatin-1 fragment of chromogranin A preserves a quiescent phenotype in hypoxia-driven endothelial cells and regulates tumor neovascularization. *FASEB J.* 2011, 25, 3906–3914.
- 162. Melani, C.; Stoppacciaro, A.; Foroni, C.; Felicetti, F.; Caré, A.; Colombo, M.P. Angiopoietin decoy secreted at tumor site impairs tumor growth and metastases by inducing local inflammation and altering neoangiogenesis. *Cancer Immunol. Immunother.* 2004, 53, 600–608.
- 163. Sorli, S.C.; Le Gonidec, S.; Knibiehler, B.; Audigier, Y. Apelin is a potent activator of tumour neoangiogenesis. *Oncogene* 2007, 26, 7692–7699.
- 164. Marionneau, S.; Ruvoën, N.; Le MoullacVaidye, B.; Clement, M.; CailleauThomas, A.; RuizPalacois, G.; Huang, P.; Jiang, X.; Le Pendu, J. Norwalk Virus binds to histo-blood group antigens present on gastroduodenal epithelial cells of secretor individuals. *Gastroenterology* **2002**, *122*, 1967–1977.
- 165. Zavaglia, D.; Favrot, M.C.; Eymin, B.; Tenaud, C.; Coll, J.L. Intercellular trafficking and enhanced in vivo antitumour activity of a non-virally delivered P27-VP22 fusion protein. *Gene Ther.* **2003**, *10*, 314–325.
- Zitvogel, L.; Pitt, J.M.; Daillere, R.; Smyth, M.J.; Kroemer, G. Mouse models in oncoimmunology. *Nat. Rev. Cancer* 2016, 16, 759–773.
- Dexter, D.L.; Kowalski, H.M.; Blazar, B.A.; Fligiel, Z.; Vogel, R.; Gloria, H.; Heppner, H. Heterogeneity of Tumor Cells from a Single Mouse Mammary Tumor. *Cancer Res.* 1978, 38, 3174–3181.
- 168. Heppner, G.H.; Dexter, D.L.; DeNucci, T.; Miller, F.R.; Calabresi, P. Heterogeneity in drug sensitivity among tumor cell subpopulations of a single mammary tumor. *Cancer Res.* **1978**, *38*, 3758–3763.
- Aslakson, C.J.; Miller, F.R. Selective Events in the Metastatic Process Defined by Analysis of the Sequential Dissemination of Subpopulations of a Mouse Mammary Tumor. *Cancer Res.* 1992, 52, 1399–1405.
- Yoneda, T.; Michigami, T.; Yi, B.; Williams, P.J.; Niewolna, M.; Hiraga, T. Actions of bisphosphonate on bone metastasis in animal models of breast carcinoma. *Cancer* 2000, *88*, 2979–2988.
- 171. Guy, C.T.; Webster, M.A.; Schaller, M.; Parsons, T.J.; Cardiff, R.D.; Muller, W.J. Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. *Proc. Natl. Acad. Sci. USA* 1992, *89*, 10578–10582.
- 172. Lollini, P.L.; De Giovanni, C.; Nanni, P. Preclinical HER-2 vaccines: From rodent to human HER-2. *Front*. *Oncol.* **2013**, *3*, 151.
- 173. Lollini, P.L.; Cavallo, F.; Nanni, P.; Forni, G. Vaccines for tumour prevention. Nat. Rev. Cancer 2006, 6, 204–216.
- 174. Sørlie, T.; Perou, C.M.; Tibshirani, R.; Aas, T.; Geisler, S.; Johnsen, H.; Hastie, T.; Eisen, M.B.; Van De Rijn, M.; Jeffrey, S.S.; et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. *Proc. Natl. Acad. Sci. USA* 2001, *98*, 10869–10874.
- 175. Russnes, H.G.; Lingjærde, O.C.; Børresen-Dale, A.L.; Caldas, C. Breast Cancer Molecular Stratification: From Intrinsic Subtypes to Integrative Clusters. Am. J. Pathol. 2017, 187, 2152–2162.
- 176. Dobrolecki, L.E.; Airhart, S.D.; Alferez, D.G.; Aparicio, S.; Behbod, F.; Bentires-Alj, M.; Brisken, C.; Bult, C.J.; Cai, S.; Clarke, R.B.; et al. Patient-derived xenograft (PDX) models in basic and translational breast cancer research. *Cancer Metastasis Rev.* 2016, *35*, 547–573.
- 177. Baker, K. Organoids provide an important window on inflammation in cancer. Cancers 2018, 10, 151.
- 178. Sachs, N.; de Ligt, J.; Kopper, O.; Gogola, E.; Bounova, G.; Weeber, F.; Balgobind, A.V.; Wind, K.; Gracanin, A.; Begthel, H.; et al. A Living Biobank of Breast Cancer Organoids Captures Disease Heterogeneity. *Cell* 2018, *172*, 373–386.
- 179. Tuveson, D.; Clevers, H. Cancer modeling meets human organoid technology. Science 2019, 364, 952–955.
- 180. Du Manoir, S.; Orsetti, B.; Bras-Gonçalves, R.; Nguyen, T.T.; Lasorsa, L.; Boissière, F.; Massemin, B.; Colombo, P.E.; Bibeau, F.; Jacot, W.; et al. Breast tumor PDXs are genetically plastic and correspond to a subset of aggressive cancers prone to relapse. *Mol. Oncol.* **2014**, *8*, 431–443.

- 181. Dijkstra, K.K.; Cattaneo, C.M.; Weeber, F.; Chalabi, M.; van de Haar, J.; Fanchi, L.F.; Slagter, M.; van der Velden, D.L.; Kaing, S.; Kelderman, S.; et al. Generation of Tumor-Reactive T Cells by Co-culture of Peripheral Blood Lymphocytes and Tumor Organoids. *Cell* **2018**, *174*, 1586–1598.
- 182. Neal, J.T.; Li, X.; Zhu, J.; Giangarra, V.; Grzeskowiak, C.L.; Ju, J.; Liu, I.H.; Chiou, S.H.; Salahudeen, A.A.; Smith, A.R.; et al. Organoid Modeling of the Tumor Immune Microenvironment. *Cell* **2018**, *175*, 1972–1988.
- 183. Hu, J.; Sun, C.; Bernatchez, C.; Xia, X.; Hwu, P.; Dotti, G.; Li, S. T-cell homing therapy for reducing regulatory T cells and preserving effector T-cell function in large solid tumors. *Clin. Cancer Res.* **2018**, *24*, 2920–2934.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

	A	ВС	D	E	F	G	Н	<u>і</u>	J	к	L	м	N
1	l	ehensive list of papers using TS/A cell variant	-			-		•			-		
													Other murine cell
2	Authors	Year Title	Source title	Volume	Page start	Page end	Type of study	Category	Keyword 1	Keyword 2	Keyword 3	TS/A cell variant	lines
3	Nanni et al.	TS/A: a new metastasizing cell line from a BALB/c 1983 spontaneous mammary adenocarcinoma	Clin Exp Metastas	1	373	380	research paper	BIOLMET	heterogeneity	immunogenicity	metastasis	TS/A	
5	Namm et al.			1	373	500	research	BIOLIVIET	neterogeneity	Initiatiogenicity	metastasis	IJA	
4	Lollini et al.	High-metastatic clones selected in vitro from a recent 1984 spontaneous BALB/c mammary adenocarcinoma cell line	Clin Exp Metastas	2	251	259	paper	BIOLMET	heterogeneity	in vitro selection	metastasis	TS/A clones	
		Lymphokine-activated tumor inhibition in vivo. I. The local		-	231	235	pupe.	DIOLINET	neterogenetty		metablabib	10,7,10,00,000	
		administration of interleukin 2 triggers nonreactive lymphocytes from tumor-bearing mice to inhibit tumor					control						
5	Forni et al.	1985 growth	J Immunol	134	1305	1311	model	тимімм	immune activation	IL2	growth inhibition	TS/A	CE-2
		Alloantigen-activated lymphocytes from mice bearing a					research						
6	Giovarelli et al.	spontaneous "nonimmunogenic" adenocarcinoma inhibit 1985 its growth in vivo by recruiting host immunoreactivity	J Immunol	135	3596	3603	paper	TUMIMM	immune activation	alloantigens	growth inhibition	TS/A	CE-2
							control	-			0	-,	-
7	Lollini et al.	1985 In vivo reexpression of H-2 antigens in B16 melanoma cells	Exp Clin Immunogenet	2	14	23	model	тимімм	H-2	interferon	in vivo growth	TS/A	B16 variants
							research				-	TS/A, TS/A	
8	Nicoletti et al.	Colony-stimulating activity from the new metastatic TS/A 1985 cell line and its high- and low-metastatic clonal derivatives	Br J Cancer	52	215	222	paper	BIOLMET	microenvironment	CSF	metastasis	clones	
<u> </u>		Adhesion and spreading characterization of a rat tumor cell					control						
9	Werling et al.	1985 system exhibiting different metastatic behavior	Invas Metast	5	270	294	model	BIOLMET	rat tumor cell system	adhesion	metastasis	TS/A	
		Binding of murine 125I-labelled natural interferon-gamma					research						
10	Cofano et al.	1986 to murine cell receptors	J Gen Virol	67	1205	1209	paper	BIOLMET	IFNgamma		growth inhibition	TS/A	L1210, L-929
		Dexamethasone modulation of in vitro growth pattern and of lung colonization ability in clones of a metastatic BALB/c					research					TS/A, TS/A	
11	De Giovanni et al.	1986 mammary carcinoma cell line	Clin Exp Metastas	4	13	23	paper	BIOLMET	heterogeneity	dexamethasone	metastasis	clones	
		Effect of prolonged administration of low doses of dietary retinoids on cell-mediated immunity and the growth of					research						
12	Forni et al.	1986 transplantable tumors in mice	J Natl Cancer I	76	527	533	paper	тимімм	immune activation	retinoids	growth inhibition	TS/A	
												TS/A in vivo	
		Clones with different metastatic capacity and variant					research					selected	
13	Nanni et al.	1986 selection during metastasis: a problematic relationship	J Natl Cancer I	76	527	533	paper	BIOLMET	heterogeneity	in vivo selection	metastasis	variants	
		RMZ: A new cell line from a human alveolar rhabdomyosarcoma. in vitro expression of embryonic											
14	Nanni et al.	1986 myosin	Br J Cancer	54	1009	1014	citation						
		Morphological and metastatic murine melanoma variants:											
15	Clark et al.	1987 Motility, adhesiveness, cell surface and in vivo properties	Br J Cancer	56	577	584	citation						
		Heterogeneity and clonal interactions in the TS/A murine					research						
16	De Giovanni et al.	1987 mammary adenocarcinoma	Adv Exp Med Biol	233	5	14	paper	BIOLMET	heterogeneity	clonal interactions	metastasis	TS/A clones	
		In vitro and in vivo immunomodulatory activity of an N-9					research						
17	Giovarelli et al.		Int J Immunopharmaco	9	659	667	paper	TUMIMM	immune activation	PCF39	growth inhibition	TS/A	
18	Lollini et al.	Interferon-mediated modulation of metastasis and MHC 1987 antigens	Adv Exp Med Biol	233	129	139	citation						
		Interferon-mediated enhancement of metastasis. Are MHC											
19	Lollini et al.	1987 antigens involved?	Clin Exp Metastas	5	277	287	citation					TC /A in the	
							research					TS/A in vivo	
20	Nicoletti et al	Are colony-stimulating factor-producing cells facilitated in 1987 the metastatic process?	Anticancer Res	7	695	700	research paper	BIOLMET	heterogeneity	CSF	metastasis	selected variants	
20	Nicoletti et al.	Functional characterization of murine cell lines expressing	Anticalicer Res	/	לצס	700		DIOLIVIEI	heterogeneity			variants	FL 4 14240 K
24	Faccia at al	high, intermediate, or negative levels of surface receptors	Linterform D.		222	244	research	DIOLAST	IFNgamma	antivizal activity	growth inhibition	TC /A	EL-4, L1210, K-
21	Fassio et al.	1988 for interferon- gamma Different metastatic aggressiveness by murine TS/A clones:	J Interferon Res	8	333	341	paper	BIOLMET	IFNgamma	antiviral activity	growth inhibition	TS/A	BALB
		ultrastructure, extracellular glycoproteins and type IV		_			research						D 4 1 D (070
22	Garbisa et al.	1988 collagenolytic activity Mechanisms of organ selective tumour growth by	Invas Metast	8	177	192	paper	BIOLMET	heterogeneity	type IV collagenase	metastasis	TS/A clones	BALB/3T3
23	Murphy et al.	1988 bloodborne cancer cells	Br J Cancer	57	19	31	citation						
		Modulation by IFN-gamma of the metastatic ability of					research						
24	Lollini et al.	1989 murine, human, and H-2-transfected tumor cells	Tumori	75	383	388	paper	BIOLMET	H-2	IFNgamma	metastasis	TS/A clones	B16, B78H1
25	Nanni et al.	Human rhabdomyosarcoma cells in nude mice as a model 1989 for metastasis and differentiation	Invas Metast	9	231	2/11	citation						
25		In vivo and in vitro production of haemopoietic colony-	vus metust	9	201	271							P16 and
26	Nicolatti at al	stimulating activity by murine cell lines of different origin: a	Fur I Concor Clin Oncol	25	1701	1700	research		microonvironment	CSE	loukoovtosis	TC /A E1	B16 and
26	Nicoletti et al.	1989 frequent finding	Eur J Cancer Clin Oncol	25	1281	1286	paper	BIOLMET	microenvironment	CSF	leukocytosis	TS/A-E1	others

	A	В	C	D	E	F	G H	1	J	К	L	М	N
2	Authors	Year	Title	Source title	Volumo	Dage start	Page end Type of study	Catagoni	Keyword 1	Keyword 2	Keyword 3	TS/A cell variant	Other murine cell lines
2	Autiors	Tear	Low doses of IL-4 injected perilymphatically in tumor-	Source title	Volume	Page start	Page end Type of study	Category	Keyword 1	Reyword 2	Reyword 5	TS/A Cell Variant	intes
			bearing mice inhibit the growth of poorly and apparently nonimmunogenic tumors and induce a tumor-specific				research						
27	Bosco et al.	1990	immune memory	J Immunol	145	3136	343 paper	TUMIMM	immune activation	IL4	immune memory	TS/A	CE-2
20	11. J	1001	Interleukin 7 induces CD4+ T cell-dependent tumor	L Fun Mard	474	4204	research		engineered cancer		anan dh'inhihidian	TC /A	15501
28	Hock et al.	1991	rejection Role of neutrophils and CD4+ T lymphocytes in the primary	J Exp Med	174	1291	1298 paper	TUMIMM/GT	cells	IL7	growth inhibition	TS/A	J558L
			and memory response to nonimmunogenic murine mammary adenocarcinoma made immunogenic by IL-2				research		engineered cancer				
29	Cavallo et al.	1992		J Immunol	149	3627	3635 paper	TUMIMM/GT	cells	IL2	growth inhibition	TS/A	
			Ly-6A/E gene is widely expressed among transformed nonhematopoietic cells. Autocrine modulation by				research						B16 and
30	Lollini et al.	1992	interferon	Anticancer Res	12	2245	2252 paper	TUMIMM	autocrine production	IFNalpha/beta	Ly-6A/E	TS/A	others
			Protective and curative potential of vaccination with interleukin-2-gene-transfected cells from a spontaneous				research		engineered cancer				
31	Cavallo et al.	1993	mouse mammary adenocarcinoma	Cancer Res	53	5067	5070 paper	TUMIMM/GT	vaccines	IL2	growth inhibition	TS/A-pc	CE-2
			Eosinophils infiltrating interleukin-5 gene-transfected				research		engineered cancer				
32	Krüger-Krasagakes et al.	1993	tumors do not suppress tumor growth	Eur J Immunol	23	992	995 paper	TUMIMM/GT	cells	IL5	infiltrating leukocytes	TS/A	J558L
33	Lollini et al.	1993	Inhibition of tumor growth and enhancement of metastasis after transfection of the y-interferon gene	Int J Cancer	55	320	research 329 paper	TUMIMM/GT	engineered cancer cells	IFNgamma	metastasis	TS/A	
		1333	Ultrastructural evidence of the mechanisms responsible for		55	520	research		engineered cancer				
34	Modesti et al.	1993	interleukin-4-activated rejection of a spontaneous murine adenocarcinoma	Int J Cancer	53	988	993 paper	TUMIMM/GT	cells	IL4	growth inhibition	TS/A	
			Immunizing and curative potential of replicating and nonreplicating murine mammary adenocarcinoma cells								8		
			engineered with interleukin (IL)-2, IL-4, IL-6, IL-7, IL-10,										
			tumor necrosis factor alpha, granulocyte- macrophage colony-stimulating factor, and gamma-interferon gene or				research		engineered cancer				
35	Allione et al.	1994	admixed with conventional adjuvants	Cancer Res	54	6022	6026 paper	TUMIMM/GT	vaccines	cytokines	immune therapy	TS/A-pc	
			IFN-alpha 1 gene expression into a metastatic murine										
			adenocarcinoma (TS/A) results in CD8+ T cell-mediated				research		engineered cancer				
36	Ferrantini et al.	1994	tumor rejection and development of antitumor immunity. Comparative studies with IFN-gamma-producing TS/A cells	J Immunol	153	4604	4615 paper	TUMIMM/GT	vaccines	IFNalpha	immune therapy	TS/A-pc	
			Nature and potential of the reactive response to mouse mammary adenocarcinoma cells engineered with				research		engineered cancer				
37	Musiani et al.	1994	interleukin-2, interleukin-4 or interferon-gamma genes	Nat Immun	13	93	101 paper	TUMIMM/GT	vaccines	cytokines	immune therapy	TS/A-pc	
			An efficient Th2-type memory follows CD8+ lymphocyte- driven and eosinophil-mediated rejection of a spontaneous										
20	De dela su el	1004	mouse mammary adenocarcinoma engineered to release IL-		450	5650	research		engineered cancer			TC /A	
38	Pericle et al.	1994	4	J Immunol	153	5659	5673 paper	TUMIMM/GT	vaccines	IL4	immune therapy	TS/A-pc	
39	Cavallo et al.	1005	Co-expression of B7-1 and ICAM-1 on tumors is required for rejection and the establishment of a memory response	Eur J Immunol	25	1154	research 1162 paper	TUNAINANA/GT	multi-engineered cancer vaccines	costimulatory molecules	immuno thorany	TS/A-pc	J558L, EL-4, RMA, B16-F1
33	Cavallo Et al.	1322	Tumor cells cotransfected with interleukin-7 and B7.1		25	1154		TUMIMM/GT		molecules	immune therapy	13/A-pt	NWA, D10-F1
40	Cayeux et al.	1995	genes induce CD25 and CD28 on tumor-infiltrating T lymphocytes and are strong vaccines	Eur J Immunol	25	2325	research 2331 paper	TUMIMM/GT	multi-engineered cancer vaccines	IL7, B7	immune therapy	TS/A	J558L
			5-Fluorocytosine-induced eradication of murine		23	2323	popo.			,			
			adenocarcinomas engineered to express the cytosine deaminase suicide gene requires host immune competence				research		engineered cancer				
41	Consalvo et al.	1995	and leaves an efficient memory. Local release of IL-10 by transfected mouse mammary	J Immunol	154	5302	5312 paper	TUMIMM/GT	vaccines	cytosine deaminase	immune therapy	TS/A-pc	
			adenocarcinoma cells does not suppress but enhances				racaarah		angingarad cancer				
42	Giovarelli et al.	1995	antitumor reaction and elicits a strong cytotoxic lymphocyte and antibody-dependent immune memory	J Immunol	155	3112	research 3123 paper	TUMIMM/GT	engineered cancer vaccines	IL10	immune therapy	TS/A-pc	
12					133	5112	01_0 pope.						
			Systemic effects of cytokines released by gene-transduced tumor cells: marked hyperplasia induced in small bowel by				research		engineered cancer				
43	Lollini et al.	1995	gamma-interferon transfectants through host lymphocytes Minimal requirements for characterization of cytokine gene	Int J Cancer	61	425	430 paper	TUMIMM/GT	cells	IFNgamma	systemic effects	TS/A-pc	
44	Lollini and Nanni	1995	transduced tumor cells: a proposal	J Natl Cancer I	87	1717	1718 review						
			Transduction of genes coding for a histocompatibility										
			(MHC) antigen and for its physiological inducer interferon-				research		multi-engineered				
45	Lollini et al.	1995	gamma in the same cell: efficient MHC expression and inhibition of tumor and metastasis growth	Hum Gene Ther	6	743	752 paper	TUMIMM/GT	cancer cells	MHC, IFNgamma	growth inhibition	TS/A-pc	
_			Oxytocin and oxytocin-analogue F314 inhibit cell		-		research	,		.,		· · ·	
46	Cassoni et al.	1996	proliferation and tumor growth of rat and mouse mammary carcinomas	Int J Cancer	66	817	820 paper	PHARM	oxytocin		growth inhibition	TS/A	C26
· · · · ·					2.5		P - P -	1					

	Α	В	C	D	E	F	G	Н		J	К	L	М	N
2	Authors	Year	Title	Source title	Volume	Page start	Page end	Type of study	Category	Keyword 1	Keyword 2	Keyword 3	TS/A cell variant	Other murine cell lines
			Re:Randomized trial of adjuvant human interferon gamma					.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,				
47	Lollini et al.	1996	versus observation in high-risk cutaneous melanoma: a Southwest Oncology Group study.	J Natl Cancer I	88	926	927	review						
-17		1550	Heterogeneous effects of B7-1 and B7-2 in the induction of	, nut cancer i	00	520	527			multi anginaarad	costimulatory			
40	Martin-Fontecha et al.	1006	both protective and therapeutic anti-tumor immunity against different mouse tumors.	Eur J Immunol	26	1051	1050	research paper	TUMIMM/GT	multi-engineered cancer vaccines	costimulatory molecules	immune therapy	TS/A-pc	
48		1990	Role of Neutrophils and Lymphocytes in Inhibition of a	Eur J IIIIIIuiioi	20	1851	1009		TOMINIMI		molecules	initiatie therapy	тэ/А-рс	
			Mouse Mammary Adenocarcinoma Engineered to Release					research		engineered cancer				
49	Musiani et al.	1996	IL-2, IL-4, IL-7, IL-10, IFN-α, IFN-γ, and TNF-α	Lab Invest	74	146	157	paper	TUMIMM/GT	vaccines	cytokines	immune therapy	TS/A-pc	
			Therapy of murine mammary carcinoma metastasis with					research		multi-engineered				
50	Nanni et al.	1996	interferon gamma and MHC gene-transduced tumour cells	Br J Cancer	74	1564	1569	paper	TUMIMM/GT	cancer vaccines	IFNgamma, MHC	metastasis	TS/A-pc	
			Direct killing of interleukin-2-transfected tumor cells by					research		engineered cancer				
51	Pericle et al.	1996	human neutrophils	Int J Cancer	66	367	373	paper	TUMIMM/GT	cells	IL2	immune therapy	TS/A-pc	
			CD44 Is a Cytotoxic Triggering Molecule on Human					research						
52	Pericle et al.	1996	Polymorphonuclear Cells	J Immunol	157	4657	4663	paper	TUMIMM	CD44	hyaluronic acid	cytotoxicity	TS/A	MC1
			Interleukin 12 potentiates the curative effect of a vaccine					research		engineered cancer				
53	Vagliani et al.	1996	based on interleukin 2-transduced tumor cells Therapy of murine tumors with tumor peptide-pulsed	Cancer Res	56	467	470	paper	TUMIMM/GT	vaccines	IL2	systemic rIL12	TS/A	C-26, C-51
			dendritic cells: Dependence on T cells, B7 costimulation,					research		peptide-pulsed				
54	Zitvogel et al.	1996	and T helper cell 1-associated cytokines	J Exp Med	183	87	97	paper	TUMIMM	dendritic vaccine	tumor antigens	growth inhibition	TS/A	MCA205
			Interleukin-12 and B7.1 co-stimulation cooperate in the induction of effective antitumor immunity and therapy of					research		multi-engineered				
55	Zitvogel et al.	1996	established tumors	Eur J Immunol	26	1335	1341	paper	TUMIMM/GT	cancer vaccines	IL12, B7	growth inhibition	TS/A	MCA207
			Antitumor efficacy of adenocarcinoma cells engineered to					research		engineered cancer				
56	Cavallo et al.	1997	produce interleukin 12 (IL-12) or other cytokines compared with exogenous IL-12	J Natl Cancer I	89	1049	1058	paper	TUMIMM/GT	vaccines	Cytokines	systemic rIL12	TS/A-pc	
		1007			00	2010	1000	research		multi-engineered	ey connes	575000000	10//100	
57	Cayeux et al.	1997	Influence of gene-modified (IL-7, IL-4, and B7) tumor cell vaccines on tumor antigen presentation	J Immunol	158	2834	2841	paper	TUMIMM/GT	cancer vaccines	B7, IL7, IL4	antigen presentation	TS/A	MCA205
			Interleukin 6 gene-transfected mouse mammary		100	2001	2012			engineered cancer		8 P		
FO	Di Carla at al	1007	adenocarcinoma: Tumour cell growth and metastatic potential	J Pathol	182	76	0	research	BIOLMET/GT	cells	IL6	metastasis	TS/A-pc	
58	Di Carlo et al.	1997		J Pathol	102	70	60	paper research	BIOLIVIE 1/G1	Cells	costimulatory	metastasis	тэ/А-рс	B16-F10, MCA-
59	Mackey et al.	1007	Protective immunity induced by tumor vaccines requires interaction between CD40 and its ligand, CD154	Cancer Res	57	2569	2574	paper	тимімм	cancer cell vaccine	molecules	immune therapy	TS/A	105
35		1557	Bone marrow-derived dendritic cells serve as potent	cancer nes	57	2305	2374	paper			morecures	initialite therapy	13/A	105
60	Mayordomo et al.		adjuvants for peptide-based antitumor vaccines	Stem Cells	15	94	103	review						
61	Musiani et al.		Cytokines, tumour-cell death and immunogenicity: a question of choice	Immunol Today	18	32	36	review						
		1007	1	initiation roudy	10	02								
62	Deriele et el	1007	Immunocompromised tumor-bearing mice show a selective	Limmunal	150	25.00	25.05	research	TUNAINANA		CTATE	tumor boaring miss	TC /A	
62	Pericle et al.	1997	loss of STAT5a/b expression in T and B lymphocytes Down-regulation of the expression and function of the	J Immunol	159	2580	2585	paper	TUMIMM	Immune suppression	STAT5	tumor-bearing mice	TS/A	
			transporter associated with antigen processing in murine											
63	Salazar-Onfray et al.	1997	tumor cell lines expressing IL-10 Local and systemic antitumor response after combined	J Immunol	159	3195	3202	citation						
			therapy of mouse metastatic tumors with tumor cells							and a second second				
	Contradounte et -	1007	expressing IFN- α and HSVtk: Perspectives for the	Const Theorem		4046	4055	research	TUNANALOT	multi-engineered	quisido gos s	growth inhibition	TC / A	
64	Santodonato et al.	1997	generation of cancer vaccines Extracellular matrix remodelling in a murine mammary	Gene Ther	4	1246	1255	paper	TUMIMM/GT	cancer vaccines	suicide gene	growth inhibition	TS/A-pc	
			adenocarcinoma transfected with the interferon-alpha 1					research		engineered cancer				
65	Scarpa et al.	1997	gene Genetic modification of a carcinoma with the IL-4 gene	J Pathol	181	116	123	paper	BIOLMET/GT	cells	IFNalpha	microenvironment	TS/A-pc	MMF1
			increases the influx of dendritic cells relative to other					control		engineered cancer				
66	Stoppacciaro et al.	1997	cytokines	Eur J Immunol	27	2375	2382	model	TUMIMM/GT	cells	IL4	antitumor immunity	TS/A	C26
			Interferon-alpha gene therapy for cancer: retroviral transduction of fibroblasts and particle-mediated		T									
			transfection of tumor cells are both effective strategies for					research		engineered cancer				
67	Tuting et al.	1997	gene delivery in murine tumor models	Gene Ther	4	1053	1060	paper	TUMIMM/GT	cells	IFNalpha	growth inhibition	TS/A	MC38, B16
			The induction of in vivo proliferation of long-lived CD44(hi) CD8+ T cells after the injection of tumor cells expressing					research		engineered cancer				
68	Belardelli et al.	1998	IFN-α <inf>1</inf> into syngeneic mice	Cancer Res	58	5795	5802	paper	TUMIMM/GT	vaccines	IFNalpha	immune therapy	TS/A-pc	C26
			Is mts1 (S100A4) gene involved in the metastatic process					research						
69	Chiaramonte et al.	1998	modulated by gamma-interferon?	Pathobiology	66	38	40	paper	BIOLMET	mts1	IFNgamma	metastasis	TS/A	B16, B78H1
			Nonviral interferon α gene therapy inhibits growth of	07				research			-			
70	Coleman et al.	1998	established tumors by eliciting a systemic immune response	Hum Gene Ther	٩	2223	2220	paper	TUMIMM/GT	in vivo gene therapy	IFNalpha	immune therapy	TS/A	RENCA
/0	coleman et al.	1550		num dene mer	9	2225	2230	paper		Serie therapy		iune incrupy		

	А	ВС	D	E	F	G	н		l j	к	L	м	N
		-			-			· ·					Other murine cell
2	Authors	Year Title Enhancement of antitumor immunity by expression of	Source title	Volume	Page start	Page end	Type of study	Category	Keyword 1	Keyword 2	Keyword 3	TS/A cell variant	lines
		CD70 (CD27 ligand) or CD154 (CD40 ligand) costimulatory	· · ·		_		research		engineered cancer	costimulatory			
71	Couderc et al.	1998 molecules in tumor cells	Cancer Gene Ther	5	163	175	paper	TUMIMM/GT	vaccines	molecules	immune therapy	TS/A	MCA207
		Local release of interleukin-10 by transfected mouse					research		engineered cancer				
72	Di Carlo et al.	adenocarcinoma cells exhibits pro- and anti-inflammatory 1998 activity and results in a delayed tumor rejection	Eur Cytokine Netw	9	61	68	paper	TUMIMM/GT	vaccines	IL10	growth inhibition	TS/A-pc	
72	Di Carlo et al.	Interaction between endothelial cells and the secreted	Eur Cytokine Netw	9	01	00		TOIVIIIVIIVI/GT			growth minipition	13/А-рс	
		cytokine drives the fate of an IL4- or an IL5-transduced					research		engineered cancer				
73	Di Carlo et al.	1998 tumour	J Pathol	186	390	397	paper	TUMIMM/GT	vaccines	IL4, IL5	microenvironment	TS/A-pc	
74	Favrot and Puisieux	Application of gene transfer in cancer immunotherapy. 1998 From experimental data to clinical protocols	Adv Exp Med Biol	451	539	541	review						
		The immune response elicited by mammary	•										
		adenocarcinoma cells transduced with interferon-gamma and cytosine deaminase genes cures lung metastases by					research		multi-engineered	IFNgamma, cytosine			
75	Nanni et al.	1998 parental cells.	Hum Gene Ther	9	217	224	paper	TUMIMM/GT	cancer vaccines	deaminase	metastasis	TS/A-pc	
		Constitutive IL-10 production accounts for the high NK											
		sensitivity, low MHC class I expression, and poor transporter associated with antigen processing (TAP)-1/2					control		engineered cancer				
76	Petersson et al.	1998 function in the prototype NK target YAC-1	J Immunol	161	2099	2105	model	TUMIMM/GT	cells	IL10	antitumor immunity	TS/A	B16, RMA and
		Canarypox virus-mediated interleukin 12 gene transfer into					research		engineered cancer		,		
77	Puisieux et al.	murine mammary adenocarcinoma induces tumor 1998 suppression and long-term antitumoral immunity	Hum Gene Ther	9	2481	2/102	paper	TUMIMM/GT	vaccines	IL12	canarypoxvirus vector	TS/A	
,,			num dene mer	3	2401	2432	research		vacunes	1222	candi ypoxvirus vector	13/5	
78	Qin et al.	B cells inhibit induction of T cell-dependent tumor 1998 immunity	Nat Med	4	627	630	paper	TUMIMM	Immune suppression	B cell-deficient mice	antitumor immunity	TS/A	
78	Qin et al.	Inhibition of lung colonisation of a mouse mammary	Nat Meu	4	027	030				D cell-deficient mice		13/A	
		carcinoma by the rapeutic vaccination with interferon- $\boldsymbol{\alpha}$					research		engineered cancer				
79	Rossi et al.	1998 gene-transduced tumor cells	Clin Exp Metastas	16	123	128	paper	TUMIMM/GT	vaccines	IFNalpha	metastasis	TS/A-pc	
		Oxytocin receptor within the breast: biological function					research						
80	Sapino et al.	1998 and distribution Double suicide gene (cytosine deaminase and herpes	Anticancer Res	18	2181	2186	paper	PHARM	oxytocin		growth inhibition	TS/A	
		simplex virus thymidine kinase) but not single gene transfer					research		multi-engineered				
81	Uckert et al.	1998 allows reliable elimination of tumor cells in vivo	Hum Gene Ther	9	855	865	paper	TUMIMM/GT	cancer vaccines	suicide gene	growth inhibition	TS/A-pc	
		Interferon gamma-independent rejection of interleukin 12- transduced carcinoma cells requires CD4+ T cells and											
82	Zilocchi et al.	1998 Granulocyte/Macrophage colony-stimulating factor	J Exp Med	188	855	865	citation						
		Eradication of established murine tumors using a novel cell-	•				control						
83	Zitvogel et al.	1998 free vaccine: dendritic cell-derived exosomes	Nat Med	4	594	600	model	тимімм	exosomes	dendritic cells	antitumor immunity	TS/A	P815
											· · · · · · · · · · · · · · · · · · ·		Lewis lung
		In vitro cell cycle arrest, in vivo action on solid metastasizing tumors, and host toxicity of the					research						carcinoma,
84	Bergamo et al.	1999 antimetastatic drug NAMI-A and cisplatin	J Pharmacol Exp Ther	289	559	564	paper	PHARM	ruthenium	NAMI-A, cisplatin	metastasis	TS/A	MCA
							F - F -			,			
		Unopposed production of granulocyte-macrophage colony- stimulating factor by tumors inhibits CD8+ T cell responses					research						
85	Bronte et al.	1999 by dysregulating antigen-presenting cell maturation	J Immunol	162	5728	5737	paper	тимімм	Immune suppression	GM-CSF	tumor-bearing mice	TS/A	СТ26
		Immune events associated with the cure of established	-				research				J		
86	Cavallo et al.	tumors and spontaneous metastases by local and systemic 1999 interleukin 12	Cancer Res	59	414	101	paper	TUMIMM	tumor-bearing mice	rIL12	immune therapy	TS/A-pc	F1F
00	cavano et al.		Cancel Nes		414	421	paper				initialic therapy	10/17 pc	CT26,
							research						MCA205,
87	Cayeux et al.	1999 Direct and indirect T cell priming by dendritic cell vaccines	Eur J Immunol	29	225	224	paper	TUMIMM	dendritic cell vaccine	betaGal	immune therapy	TS/A	MCA203, MCA57
07	caycan et al.	A 'stealth effect': Adenocarcinoma cells engineered to	Ear 5 minution	29	225	204				Setudu	initialic therapy	19/1	
		express TRAIL elude tumor-specific and allogeneic T cell					research		engineered cancer				
88	Giovarelli et al.	1999 reactions Induction of therapeutic T-cell immunity by tumor targeting	J Immunol	163	4886	4893	paper	TUMIMM/GT	vaccines	TRAIL	antitumor immunity	TS/A-pc	
		with soluble recombinant B7-immunoglobulin					research		costimulatory				
89	Moro et al.	1999 costimulatory molecules	Cancer Res	59	2650	2656	paper	TUMIMM	molecules	recombinant B7	immune therapy	TS/A	RMA
90	Nanni et al.	1999 Cytokine gene therapy: hopes and pitfalls	Ann Oncol	3	261	266	review						
		Synergistic inhibition of tumor growth in a murine mammary adenocarcinoma model by combinational gene											
		therapy using IL-12, pro-IL- 18, and IL-1beta converting					research		multi-engineered	IL12, IL1beta converting			
91	Oshikawa et al.	1999 enzyme cDNA	P Natl Acad Sci U S A	96	13351	13356	paper	TUMIMM/GT	cancer vaccines	enzyme, pro-IL18	combined gene therapy	TS/A	COS7
		In vitro down regulation of ICAM-1 and E-cadherin and in					research						
92	Pacor et al.	vivo reduction of lung metastases of TS/A adenocarcinoma 1999 by a lysozyme derivative	Int J Mol Med	4	369	375	paper	BIOLMET	lysozyme	adhesion	metastasis	TS/A	
52				Ŧ	505	575	r 9 9 9 9		.,				

	A	B C	D	E	F	G	Н	I	J	К	L	М	N
2	Authors	Year Title	Source title	Volume	Page start	Page end	Type of study	Category	Keyword 1	Keyword 2	Keyword 3	TS/A cell variant	Other murine cell lines
	Autors	Paracrine effects of IL-4 transfection on TS/A	Source the	volume	i uge start		research	category	engineered cancer	Keyword 2	keyword 5		
93	Pacor et al.	1999 adenocarcinoma cells mediate reduced in vivo growth	Pathol Oncol Res	5	110		paper	BIOLMET/GT	cells	IL4	in vitro growth	TS/A-pc	
		Lymphocyte activation gene-3 induces tumor regression					research		engineered cancer				MCA205,
94	Prigent et al.	1999 and antitumor immune responses	Eur J Immunol	29	3867	3876	paper	TUMIMM/GT	vaccines	LAG3	growth inhibition	TS/A	RENCA
		Interferon (IFN)-β gene transfer into TS/A adenocarcinoma					research		engineered cancer		-		
95	Rozera et al.	cells and comparison with IFN-α. Differential effects on 1999 tumorigenicity and host response	Am J Pathol	154	1211	1222		TUMIMM/GT	vaccines	IFNbeta	growth inhibition	TS/A	
		Treatment of metastases of solid mouse tumours by NAMI-		104	1211				lacomes		8.011111101010		
06	Sava et al	A: comparison with cisplatin, cyclophosphamide and	Anticoncor Doc	10	060		research	DUADA	ruthanium		motostosis	TC /A	Lewis lung
96	Sava et al.	1999 dacarbazine T helper cell type 1-associated and cytotoxic T lymphocyte-	Anticancer Res	19	969		paper	PHARM	ruthenium	NAMI-A	metastasis	TS/A	carcinoma
		mediated tumor immunity is impaired in interleukin 4-					research						
97	Schüler et al.	1999 deficient mice Molecular characterization of dendritic cell-derived	J Exp Med	189	803	810	paper	TUMIMM	immune activation	IL4	immune therapy	TS/A	CT26
		exosomes. Selective accumulation of the heat shock					research						
98	Thery et al.	1999 protein hsc73.	J Cell Biol	147	599	610	paper	TUMIMM	exosomes	hsc73	dendritic cells	TS/A	
		Immortalized myeloid suppressor cells trigger apoptosis in					research						CT26, L1210,
99	Apolloni et al.	2000 antigen- activated T lymphocytes.	J Immunol	165	6723	6730	paper	TUMIMM	immune suppression	MDSC	apoptosis	TS/A	C26
		Effects of NAMI-A and some related ruthenium complexes					research						
100	Bergamo et al.	2000 on cell viability after short exposure of tumor cells	Anti-Cancer Drugs	11	665	672	paper	PHARM	ruthenium	NAMI-A	in vitro growth	TS/A	
		Antitumoral effect of a nonviral interleukin-2 gene therapy	-				control						
101	Bishop et al.	2000 is enhanced by combination with 5-fluorouracil	Cancer Gene Ther	7	1165	1171	model	TUMIMM/GT	combination therapy	IL2	antitumor immunity	TS/A	RENCA
		Identification of a CD11b(+)/Gr-1(+)/CD31(+) myeloid					research						
102	Bronte et al.	progenitor capable of activating or suppressing CD8(+) T 2000 cells.	Blood	96	3838	3846		тимімм	immune suppression	MDSC	CD8+ T cells	TS/A	CT26, MBL-2
102		Eradication of murine mammary adenocarcinoma through	Biood	50	0000							10,71	0120,111222
102	Characteria	HSVtk expression directed by the glucose-starvation		50	04		research		engineered cancer			TC /A	
103	Chen et al.	2000 inducible grp78 promoter The expression of CD70 and CD80 by gene-modified tumor	Breast Cancer Res Tr	59	81	90	paper	BIOLMET/GT	cells	suicide gene	immune memory	TS/A	
		cells induces an antitumor response depending on the					research		multi-engineered	costimulatory			
104	Douin-Echinard et al.	2000 MHC status	Cancer Gene Ther	7	1543	1556	paper	TUMIMM/GT	cancer vaccines	molecules	immune therapy	TS/A	B16.F10
		Tumor rejection and immune memory elicited by locally											
		released LEC chemokine are associated with an impressive					research		engineered cancer	00146			
105	Giovarelli et al.	2000 recruitment of APCs, lymphocytes, and granulocytes. Combined chemotherapy of murine mammary tumors by	J Immunol	164		3206	paper	TUMIMM/GT	vaccines	CCL16	immune therapy	TS/A-pc	F1F
		local activation of the prodrugs ifosfamide and 5-					research		engineered				
106	Kammertoens et al.	2000 fluorocytosine	Cancer Gene Ther	7	629	636	paper	BIOLMET/GT	xenogeneic cells	suicide gene	growth inhibition	TS/A	GR
		Increase of tumour infiltrating lymphocytes in mice treated					research						Lewis lung
107	Magnarin et al.	2000 with antimetastatic doses of NAMI-A Vaccination with mouse mammary adenocarcinoma cells	Anticancer Res	20	2939	2944	paper	PHARM	ruthenium	NAMI-A	metastasis	TS/A	carcinoma
		coexpressing B7-1 (CD80) and B7-2 (CD86) discloses the											
		dominant effect of B7-1 in the induction of antitumor		-			research		multi-engineered	costimulatory			
108	Martin-Fontecha et al.	2000 immunity Gene transfer of a secretable form of IL-15 in murine	J Immunol	164	698	704	paper	TUMIMM/GT	cancer vaccines	molecules	immune therapy	TS/A	
		adenocarcinoma cells: effects on tumorigenicity, metastatic					research		engineered cancer				
109	Meazza et al.	2000 potential and immune response	Int J Cancer	87	574	581	paper	TUMIMM/GT	vaccines	IL15	metastasis	TS/A-pc	F1F
		Combination of interleukin 12 and interferon alpha gene therapy induces a synergistic antitumor response against											
110	Mendiratta et al.	2000 colon and renal cell carcinoma	Hum Gene Ther	11	1851	1862	citation						
		In vitro growth of TS/A adenocarcinoma and of the gene					research		engineered cancer				
111	Pacor et al.	2000 transfected TS/A- IL4 line on biological substrates	Anticancer Res	20	191	196	paper	TUMIMM/GT	cells	IL4	in vitro adhesion	TS/A	
		Efficacy of cancer gene therapy in aging adenocarcinoma											
1		cells engineered to release IL-2 are rejected but do not					research		engineered cancer				
112	Provinciali et al.	2000 induce tumor specific immune memory in old mice	Gene Ther	7	624	632	paper	TUMIMM/GT	vaccines	IL2	aging	TS/A-pc	
		Interleukin-12 gene therapy of a weakly immunogenic mouse mammary carcinoma results in reduction of											
1		spontaneous lung metastases via a T-cell- independent					research						
113	Rakhmilevich et al.	2000 mechanism DNA vaccination against rat Her-2/Neu p185 more	Cancer Gene Ther	7	826	838	paper	TUMIMM/GT	in vivo gene therapy	IL12	metastasis	TS/A	4T1
1		effectively inhibits carcinogenesis than transplantable					control						
114	Rovero et al.	2000 carcinomas in transgenic BALB/c mice	J Immunol	165	5133	5142	model	TUMIMM/GT	DNA vaccine	HER2	antitumor immunity	TS/A-pc	TUBO
		Interleukin-7/B7.1-encoding adenoviruses induce rejection					research						
115	Willimsky and Blankenstein	2000 of transplanted but not nontransplanted tumors	Cancer Res	60	685	692	paper	TUMIMM/GT	in vivo gene therapy	IL7, B7	adenoviral vector	TS/A	CT26
	· ·	· · ·							17				

	Α	В	C	D	Е	F	G	Н	I	J	К	L	М	N
2	Authors	Year	Title	Source title	Volume	Page start	Page end Ty	pe of study	Category	Keyword 1	Keyword 2	Keyword 3	TS/A cell variant	Other murine cell lines
			Lack of in vitro cytotoxicity, associated to increased G <inf>2</inf> -M cell fraction and inhibition of matrigel											
			invasion, may predict in vivo-selective antimetastasis				re	esearch						
116	Zorzet et al.	2000	activity of ruthenium complexes	J Pharmacol Exp Ther	295	927	933 pa	· .	PHARM	ruthenium	NAMI-A	in vitro invasion	TS/A	
			Tumour cell uptake G2-M accumulation and cytotoxicity of					esearch						
117	Bergamo et al.	2001	NAMI-A on TS/A adenocarcinoma cells 111In-labeled 1, 4, 7, 10-tetraazacyclododecane- N, N', N",	Anticancer Res	21	1893	1898 pa	aper	PHARM	ruthenium	NAMI-A	in vitro toxicity	TS/A	
			N""-tetraacetic acid-Lys8-vasotocin: A new powerful					esearch						
118	Bussolati et al.	2001	radioligand for oxytocin receptor-expressing tumors	Cancer Res	61	4393	4397 pa	· .	IMAGING	oxytocin		targeted therapy	TS/A	
110	C	2001	Interleukin 12-activated lymphocytes influence tumor	Contrast Day	64	2540		esearch	TUNANANA			gene expression	TC /A	TUDO
119	Cavallo et al.	2001	genetic programs	Cancer Res	61	3518	3523 pa	aper esearch	TUMIMM	immune activation engineered cancer	IL12	profiling	TS/A	TUBO
120	Cayeux et al.	2001	Decreased generation of anti-tumor immunity after intrasplenic immunization	Eur J Immunol	31	1392	1399 pa		TUMIMM/GT	vaccines	surrogate antigen	intrasplenic immunization	TS/A	MCA205
120	Cayeux et al.	2001		Early miniation	51	1392		esearch		vacenies	Surrogate antigen	Initianization	TS/A-MC (alias	
121	Dalziel et al.	2001	Mouse ST6Gal sialyltransferase gene expression during mammary gland lactation	Glycobiology	11	407	412 pa		BIOLMET	ST6Gal	sialyltransferase	mammary cancer	TS/A-pc)	
				- , 0,		-		esearch	_	engineered cancer	, ,	,		
122	De Giovanni et al.	2001	Therapy of lung metastases through combined vaccination with carcinoma cells engineered to release IL-13 and IFN-y	Gene Ther	8	1698	1704 pa		TUMIMM/GT	vaccines	IFNgamma, IL13	metastasis	TS/A-pc	
			The intriguing role of polymorphonuclear neutrophils in						,,,,,			,	-/	
123	Di Carlo et al.	2001	antitumor reactions	Blood	97	339	345 re	eview						
			A combination of interleukin-2 and 60 nm cationic											
124	Fl mir et al	2001	supramolecular biovectors for the treatment of established	Fur I Cancor	27	1052		esearch	TUNAINANA/CT	combination therapy		immune thereasy	TC /A	
124	El mir et al.	2001	tumours by subcutaneous or intranasal administration Modulation of graft-versus-tumor effects in a murine	Eur J Cancer	37	1053	1060 pa		TUMIMM/GT	combination therapy	IL2	immune therapy	TS/A	
105		2004	allogeneic bone marrow transplantation model by tumor-		_			esearch			T0504		TC / A	
125	Kummar et al.	2001	derived transforming growth factor-betal	Biol Blood Marrow Tr	7	25	30 pa		TUMIMM/GT	Immune suppression	TGFβ1	graft-versus-tumor	TS/A	JC
126	Lambert et al.	2001	Intranodal immunization with tumor lysate-pulsed dendritic cells enhances protective antitumor immunity	Cancer Res	61	641	646 pa	esearch	TUMIMM	dendritic cell vaccine	tumor lysate	intranodal immunization	TS/A	MCA-105
120	Lampert et al.	2001		Cancer Res	01	041		esearch		engineered cancer		IIIIIIuiiizatioii	13/A	WICA-105
127	Martino et al.	2001	Effective anti-tumor immunity induced in mice by a two- step vaccination protocol	In Vivo	15	425	428 pa		TUMIMM/GT	vaccines	mycobacterial antigen	immune memory	TS/A	
127		2001	Canarypox virus expressing wild type p53 for gene therapy		15	423		esearch			inycobacteriai antigen	initiality includes a second s		
128	Odin et al.	2001	in murine tumors mutated in p53	Cancer Gene Ther	8	87	98 pa		GT	cancer gene therapy	p53	canarypoxvirus vector	TS/A	
			Generation of high-titer retroviral vector-producing				re	esearch		engineered				Neuro2A, CE-
129	Pastorino et al.	2001	macrophages as vehicles for in vivo gene transfer	Gene Ther	8	431	441 pa	aper	GT	macrophages	EGFP	in vivo gene transfer	TS/A	2, NIH3T3
			IL-12 inhibition of endothelial cell functions and angiogenesis depends on lymphocyte-endothelial cell cross-				re	esearch						
130	Strasly et al.	2001		J Immunol	166	3890	3899 pa	aper	TUMIMM	microenvironment	rlL12	angiogenesis	TS/A	
			Tumor-derived exosomes are a source of shared tumor				re	esearch						
131	Wolfers et al.	2001	rejection antigens for CTL cross-priming	Nat Med	7	297	303 pa	aper	TUMIMM	exosomes	CTL	antitumor immunity	TS/A	MC38
			Ruthenium-based NAMI-A type complexes with in vivo selective metastasis reduction and in vitro invasion				re	esearch						
132	Bergamo et al.	2002	inhibition unrelated to cell cytotoxicity	Int J Oncol	21	1331	1338 pa	aper	PHARM	ruthenium	NAMI-A	metastasis	TS/A	B16-F10, Lewis
			Murine Nr4a1 and Herpud1 are up-regulated by Wnt-1, but the homologous human genes are independent from β-				сс	ontrol						
133	Chtarbova et al.	2002	catenin activation	Biochem J	367	723	728 m	odel	BIOLMET	cell signaling	Wnt1	tumor-bearing mice	TS/A	C57-MG
134	Colombo and Trinchieri	2002	Interleukin-12 in anti-tumor immunity and immunotherapy	Cytokine Growth F R	13	155	168 re	view						
104		2002		Sytokine Growth F R	13	100		esearch		engineered cancer				
135	Colombo et al.	2002	Chromogranin A expression in neoplastic cells affects tumor growth and morphogenesis in mouse models	Cancer Res	62	941	946 pa		BIOLMET/GT	cells	chromogranin A	growth inhibition	TS/A	RMA
			IFN-γ-independent synergistic effects of IL-12 and IL-15					esearch		multi-engineered		-		
136	Comes et al.	2002	induce anti-tumor immune responses in syngeneic mice	Eur J Immunol	32	1914	1923 pa	aper	TUMIMM/GT	cancer vaccines	IL12, IL15	antitumor immunity	TS/A-pc	F1F
			Phenotype, antigen-presenting capacity, and migration of				re	esearch						
137	Donnini et al.	2002	antigen-presenting cells in young and old age	Exp Gerontol	37	1097	1112 pa	aper	TUMIMM	immunogenicity	antigen presentation	aging	TS/A	TUBO
			Efficacious immunomodulatory activity of the chemokine stromal cell-derived factor 1 (SDF-1): local secretion of SDF-											
			1 at the tumor site serves as T-cell chemoattractant and					ontrol						
138	Dunussi-Joannopoulos et al.	2002	mediates T-cell-dependent antitumor responses	Blood	100	1551	1558 m		TUMIMM	hSDF1	CXCR4	antitumor immunity	TS/A	C1498, B16F1
120	Fornandoz ot al	2002	Genetically engineered vesicular stomatitis virus in gene therapy: application for treatment of malignant disease	J Virol	70	005		esearch		oncolutic virothoromy	IL4/TK	VSV	τς / Δ	B16-F10
139	Fernandez et al.	2002	In vivo induction of antitumor immunity and protection		76	895	904 pa		BIOLMET/GT	oncolytic virotherapy	•	VJV	TS/A	D10-F10
4.40	C	2002	against tumor growth by injection of CD154-expressing	Concern Concern The sec	~	202		esearch		engineered cancer	costimulatory		TC /A	D16 510
140	Grangeon et al	2002	tumor cells	Cancer Gene Ther	9	282	288 pa	aper	TUMIMM/GT	vaccines	molecules	antitumor immunity	TS/A	B16-F10

	A	В	С	D	E	F	G	н	1	J	к	L	М	N
														Other murine cell
2	Authors	Year	Title Antitumor effect of interleukin (IL)-12 in the absence of	Source title	Volume	Page start	Page end		Category	Keyword 1	Keyword 2	Keyword 3	TS/A cell variant	lines
			endogenous IFN-y: A role for intrinsic tumor					research		engineered cancer				00.0
141	Gri et al.	2002	immunogenicity and IL-15	Cancer Res	62	4390	4397	paper	TUMIMM/GT	vaccines	IL12	growth inhibition	TS/A	C26
4.42		2002	BXD recombinant inbred mice represent a novel T cell-	Int I Company	101	270	270	research	TUNALNANA		DVD mins		TC /A	
142	Grizzle et al.	2002	mediated immune response tumor model	Int J Cancer	101	270	279	paper	TUMIMM	immunogenicity	BXD mice	metastasis	TS/A	
			Norwalk virus binds to histo-blood group antigens present					control						
143	Marionneau et al.	2002	on gastroduodenal epithelial cells of secretor individuals	Gastroenterology	122	1967	1977	model	BIOLMET	ABH antigens	fucosyltransferase	Norwalk virus	TS/A	
			Myeloid suppressor lines inhibit T cell responses by an NO-					research						
144	Mazzoni et al.	2002	dependent mechanism	J Immunol	168	689	695	paper	TUMIMM	immune suppression	MDSC	nitric oxide	TS/A	
		2002	Reactive oxygen species modulate Zn2+-induced apoptosis					research	DIOLAST	reactive oxygen	• • •	A	TC /A	
145	Provinciali et al.	2002	in cancer cells Immunological prevention of spontaneous tumors: A new	Free Radic Biol Med	32	431	445	paper	BIOLMET	species	zinc	Apoptosis	TS/A	
146	Quaglino et al.	2002	prospect?	Immunol Lett	80	75	79	review						
			Influence of chemical stability on the activity of the					research						
147	Sava et al.	2002	antimetastasis ruthenium compound NAMI-A	Eur J Cancer	38	427	435	paper	PHARM	ruthenium	NAMI-A	metastasis	TS/A	
			Reversal of tumor-induced dendritic cell paralysis by CpG immunostimulatory oligonucleotide and anti-interleukin 10					research						C26, P815,
148	Vicari et al.	2002	receptor antibody	J Exp Med	196	541	549	paper	тимімм	antigen presentation	CpG, IL10	antitumor immunity	TS/A	B16, MC38
			Synthesis, catalytic properties and biological activity of new											
			water soluble ruthenium cyclopentadienyl PTA complexes [(C5R5)RuCl(PTA)2] (R = H, Me; PTA = 1,3,5-triaza-7-					research						
149	Akbayeva et al.	2003	phosphaadamantane)	Chem Commun (Camb)		264	265	paper	PHARM	ruthenium		in vitro toxicity	TS/A	
			Distinct effects of dinuclear ruthenium(III) complexes on cell proliferation and on cell cycle regulation in human and					research						
150	Bergamo et al.	2003	murine tumor cell lines	J Pharmacol Exp Ther	305	725	732	paper	PHARM	ruthenium		in vitro toxicity	TS/A	B16-F10
			Improved radiotracing of oxytocin receptor-expressing					research						
151	Chini et al.	2003	tumours using the new [111In]-DOTA-Lys8-deamino- vasotocin analogue	Br J Cancer	89	930	936	paper	IMAGING	oxytocin	DOTA	growth inhibition	TS/A	
101		2000		Di l'editeci	05	550	550	pape.		engineered	2011	8.011111111111111	10//1	
			Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem					research		hematopoietic stem				LLC, B16,
152	De Palma et al.	2003		Nat Med	9	789	795	paper	BIOLMET/GT	cells	Tie2/Tek	angiogenesis	TS/A	N202.1A
			Involvement of CD70 and CD80 intracytoplasmic domains					research	,	engineered cancer	costimulatory	0.0		
153	Douin-Echinard et al.	2003	in the co-stimulatory signal required to provide an antitumor immune response	Int Immunology	15	359	372	paper	TUMIMM/GT	vaccines	molecules	antitumor immunity	TS/A	
100		2000	Seven-fluorochrome mouse M-FISH for high-resolution	Cytogenet Genome	15	335	572	research			molecules	interchromosomal	10/11	
154	Jentsch et al.	2003	analysis of interchromosomal rearrangements	Res	103	84	88	paper	BIOLMET	karyotype	multiplex-FISH	rearrangements	TS/A	TUBO-AG12
			CD3/CD28-costimulated T1 and T2 subsets: differential in					research			costimulatory		-	
155	Jung et al.	2003	vivo allosensitization generates distinct GVT and GVHD effects	Blood	102	3439	3446	paper	тимімм	graft-versus-tumor	molecules	antitumor immunity	TS/A	
100		2000		51000	102	5455	5440	research		engineered cancer	molecules	anticalities initiality		
156	Meazza et al.	2003	Tumor rejection by gene transfer of the MHC class II transactivator in murine mammary adenocarcinoma cells	Eur J Immunol	33	1183	1192	paper	TUMIMM/GT	vaccines	CIITA	antitumor immunity	TS/A-pc	C26, F1F
			The Oncolytic Effect of Recombinant Vesicular Stomatitis			0			,			, , , , , , , , , , , , , , , , , , , ,	-7 17-	
			Virus Is Enhanced by Expression of the Fusion Cytosine Deaminase/Uracil					research						
157	Porosnicu et al.	2003	Phosphoribosyltransferase Suicide Gene	Cancer Res	63	8366	8376	paper	TUMIMM/GT	oncolytic virotherapy	VSV	growth inhibition	TS/A	B16F10
150	Drovinciali at al	2002	Low effectiveness of DNA vaccination against HER-2/neu in	Vaccine	21	843	040	citation						
158	Provinciali et al.	2003		vacchie	21	043	048	citation research						
159	Roca et al.	2003	Hyperthermia inhibits angiogenesis by a plasminogen activator inhibitor 1-dependent mechanism	Cancer Res	63	1500	1507	paper	BIOLMET	hyperthermia	PAI1	angiogenesis	TS/A	
135		2003	The cytotoxic T-lymphocyte response against a poorly	Cancer Nes	05	1500	1307	Puper	S.OLIVIET			a		
1			immunogenic mammary adenocarcinoma is focused on a single immunodominant class I epitope derived from the					research						
160	Rosato et al.	2003	gp70 Env product of an endogenous retrovirus	Cancer Res	63	2158	2163	paper	тимімм	antigen presentation	gp70	antitumor immunity	TS/A-pc	CT26, J558
			Dual Action of NAMI-A in inhibition of solid tumor					research						
161	Sava et al.	2003	metastasis: selective targeting of metastatic cells and binding to collagen	Clin Cancer Res	9	1898	1905	paper	PHARM	ruthenium	NAMI-A	metastasis	TS/A	
		2000		e euneer nes	5	1000	1505							2T2 D16 and
160	Zavaglia et al	2002	Intercellular trafficking and enhanced in vivo antitumour activity of a non-virally delivered P27-VP22 fusion protein	Gene Ther	100	314	225	research paper	GT	cancer gene therapy	p27/HSV-VP22	non viral delivery	TS/A_pc	3T3, B16 and others
102	Zavaglia et al.	2003		Gene iner	100	314	325	hahei	J	cancer gene therapy	p21/113V-VP22	non virai delivery	TS/A-pc	Juliers
			Synthesis, characterization and biological activity of copper					research						
163	Belicchi Ferrari et al.	2004	complexes with pyridoxal thiosemicarbazone derivatives. X- ray crystal structure of three dimeric complexes	J Inorg Biochem	98	301	312	paper	PHARM	in vitro toxicity	copper complexes	growth inhibition	TS/A	
			· · · · · · · · · · · · · · · · · · ·		55	551	022		1		on the second		-,	

	А	В	C	D	E	F	G H	1	J	К	L	М	N
2	Authors	Year	Title	Source titl	e Volume	Page start	Page end Type of stud	Category	Keyword 1	Keyword 2	Keyword 3	TS/A cell variant	Other murine cell lines
			Global Gene Expression Profiling in Interleukin-12-Induced				research			, ·	gene expression	-	
164	Cao et al.		Activation of CD8+ Cytotoxic T Lymphocytes against Mouse Mammary Carcinoma	Cell Mol Immuno	1	357	366 paper	тимімм	immune activation	IL12	profiling	TS/A	
104			CCL16/LEC powerfully triggers effector and antigen-		· 1	337					proming	13/1	
			presenting functions of macrophages and enhances T cell				research						
165	Cappello et al.		cytotoxicity	J Leukocyte Bio	l 75	135	142 paper	TUMIMM	antigen presentation	CCL16	apoptosis	TS/A	F1F
			TGFbeta1 regulation and collagen-release-independent connective tissue re-modelling by the ruthenium complex				research						
166	Casarsa et al.		NAMI-A in solid tumours	J Inorg Biochen	n 98	1648	1654 paper	PHARM	ruthenium	TGFbeta1	metastasis	TS/A	NIH3T3
			Fundamentary of stated Target interest on Od Interests altern				research		engineered cancer				
167	Clément et al.		Expression of sialyl-Tn epitopes on β1 integrin alters epithelial cell phenotype, proliferation and haptotaxis	J Cell Sc	i 117	5059	5069 paper	BIOLMET/GT	cells	sialyltransferase	in vitro invasion	TS/A	
107			Induction of T-cell antitumor immunity and protection			5005							
			against tumor growth by secretion of soluble human CD70	· · · ·			research		engineered cancer	costimulatory		T C ()	
168	Cormary et al.		molecules. APC10.1: An ApcMin/+ intestinal cell line with retention of	Cancer Gene The	r 11	497	507 paper	TUMIMM/GT	vaccines	molecules	antitumor immunity	TS/A	
169	De Giovanni et al.		heterozygosity	Int J Cance	109	200	206 citation						
							research		engineered cancer				
170	Di Carlo et al.		IL-21 Induces Tumor Rejection by Specific CTL and IFN-γ- Dependent CXC Chemokines in Syngeneic Mice	J Immuno	I 172	1540	1547 paper	TUMIMM/GT	vaccines	IL21	antitumor immunity	TS/A-pc	C26
1/0		2004		5 111110	1, 1, 2	1340	1347 paper		vacenies		ancicalitor initiality	13/11 pc	
			Synthesis, characterization and biological activity of copper				research						
171	Forrari at al		complexes with pyridoxal thiosemicarbazone derivatives. X- ray crystal structure of three dimeric complexes	J Inorg Biochen	n 98	301		PHARM	in vitro toxicity	copper complexes	growth inhibition	TS/A	
1/1	Ferrari et al.		Intralesional Injection of Adenovirus Encoding CC	J IIIOI & DIOCHEII	90	501	312 paper	FRANIVI		copper complexes	growth minibition	13/A	
			Chemokine Ligand 16 Inhibits Mammary Tumor Growth				racaarah						
470			and Prevents Metastatic-Induced Death after Surgical		470	1025	research			66146		TC / A	474
172	Guiducci et al.		Removal of the Treated Primary Tumor Viral vector-mediated transduction of a modified	J Immuno	l 172	4026	4036 paper	TUMIMM/GT	in vivo gene therapy	CCL16	adenoviral vector	TS/A	4T1
			thrombospondin-2 cDNA inhibits tumor growth and				research						
173	Hahn et al.	2004	angiogenesis	Gene The	r 11	739	745 paper	BIOLMET/GT	cancer gene therapy	Nftsp2	angiogenesis	TS/A	NIH3T3
			IRF-1 expression induces apoptosis and inhibits tumor				research		engineered cancer				
174	Kim et al.		growth in mouse mammary cancer cells in vitro and in vivo	Oncogene	23	1125	1135 paper	BIOLMET/GT	cells	IRF1	apoptosis	TS/A	C3-L5
			A synthetic peptide homologous to functional domain of			1120	1100 1010					,	
			human IL-10 down-regulates expression of MHC class I and										
175	Kurte et al.		Transporter associated with Antigen Processing 1/2 in human melanoma cells	J Immuno	I 173	1731	1737 citation						
1/5				5 111110	. 1/5	1751	control		engineered cancer		neurosecretory		
176	Malosio et al.		Dense-core granules: a specific hallmark of the neuronal/neurosecretory cell phenotype	J Cell Sc	i 117	743	749 model	BIOLMET	cells	chromogranin A	phenotype	TS/A	PC12
1/0			Antiviral properties and cytotoxic activity of platinum(II)	J Cell Sc	1 11/	745		BIOLIVIET	Cells	chi omografiin A	phenotype	13/A	PCIZ
			complexes with 1,10-phenanthrolines and acyclovir or				research						
177	Margiotta et al.		penciclovir	J Inorg Biochen	n 98	1385	1390 paper	PHARM	platinum complexes	Me ₂ phen	cytotoxicity	TS/A	
			Angiopoietin decoy secreted at tumor site impairs tumor growth and metastases by inducing local inflammation and	Cancer Immuno	I		research						
178	Melani et al.		altering neoangiogenesis	Immunothe		600	608 paper	TUMIMM/GT	cancer gene therapy	angiopoietin decoy	metastasis	TS/A	C26
			Regulation of interleukin-12 gene expression and its anti-				research	, 21		<u> </u>			
170			tumor activities by prostaglandin E2 derived from			222		TUNANANA	immuno ortiveties	DCE2	austomia ril 12	TC / A	471
179	Mitsuhashi et al.	2004	mammary carcinomas	J Leukocyte Bio	I 76	322	332 paper	TUMIMM	immune activation	PGE2	systemic rIL12	TS/A	4T1
			Prevention of angiogenesis by naked DNA IL-12 gene	o ≕			research	TU 1 41				TC (A	
180	Morini et al.	2004	transfer: angioprevention by immunogene therapy	Gene The	r 11	284	291 paper	TUMIMM/GT	in vivo gene therapy	IL12	angiogenesis	TS/A	
			Type 1 and type 2 tumor infiltrating effector cell				research						
181	Reome et al.		subpopulations in progressive breast cancer	Clin Immuno	l 111	69	81 paper	TUMIMM	TIL	NKT	antitumor immunity	TS/A	
			Crucial role for interferon γ in the synergism between tumor vasculature-targeted tumor necrosis factor α (NGR-				research		tumor vascular				
182	Sacchi et al.		TNF) and doxorubicin	Cancer Re	64	7150	7155 paper	BIOLMET/GT	targeting	IFNgamma	doxorubicin	TS/A	B16
			Vaccination by genetically modified dendritic cells				control						TUBO,
100	Sakai at al		expressing a truncated neu oncogene prevents	Concor D-		0000		TUNAINANA/CT	UED2+ broast concer	adonoviral vassing	antitumor immunit	TC /A	
183	Sakai et al.		development of breast cancer in transgenic mice	Cancer Re	-	8022	8028 model	TUMIMM/GT	HER2+ breast cancer	adenoviral vaccine	antitumor immunity	TS/A	N202.1A
			Derangement of immune responses by myeloid suppressor	Cancer Immuno		_							
184	Serafini et al.	2004	cells Solution, solid state and biological characterization of	Immunothe	r 53	64	72 review						
			ruthenium(III)-DMSO complexes with purine base				research						
185	Turel et al.		derivatives	J Inorg Biochen	n 98	393	401 paper	PHARM	ruthenium	adhesion	in vitro growth	TS/A	
		· · · · · · · · · · · · · · · · · · ·		~					1	1			

	A	В	C	D	Е	F	G	Н	I	J	К	L	М	N
2	Authors	Year	Title	Source title	Volume	Page start	Page end	Type of study	Category	Keyword 1	Keyword 2	Keyword 3	TS/A cell variant	Other murine cell lines
			synthesis and Chemicai-Pharmacological Characterization of the Antimetastatic NAMI-A-Type Ru(III) Complexes (Hdmtp)[trans-RuCl4(dmso-S)[dmtp]], (Na)[trans- RuCl4(dmso-S)(dmtp]], and [mer-RuCl3(H2O)(dmso- S)(dmtp)] (ant p 5,7					research						
186	Velders et al.		Dimethyl[1,2,4]triazolo[1,5a]pyrimidine) IL-12 cDNA direct injection: antimetastatic effect from a	J Med Chem	47	1110	1121	paper research	PHARM	ruthenium	NAMI-A	metastasis	TS/A	B16-F10
187	Weber et al.	2004	single injection in a murine hepatic metastases model	J Surg Res	122	210	217	paper research	TUMIMM/GT	in vivo gene therapy engineered cancer	IL12	metastasis	TS/A	
188	Benigni et al.		Phenotype and homing of CD4 tumor-specific T cells is modulated by tumor bulk	J Immunol	175	739	748	paper	TUMIMM/GT	cells	CD4 homing	antitumor immunity	TS/A	
189	Casares et al.		Caspase-dependent immunogenicity of doxorubicin- induced tumor cell death	J Exp Med	202	1691	1701	control model	тимімм	immune activation	doxorubicin	caspase	TS/A	CT26,B16F10
190	Di Carlo et al.	2005	Immunological mechanisms elicited at the turnour site by lymphocyte activation gene-3 (LAG-3) versus IL-12: Sharing a common Th1 anti-tumour immune pathway Ex vivo rapamycin generates donor Th2 cells that potently	J Pathol	205	82	91	research paper	TUMIMM/GT	engineered cancer cells	LAG3	antitumor immunity	TS/A	
191	Foley et al.		inhibit graft-versus-host disease and graft-versus-tumor effects via an IL-4-dependent mechanism.	J Immunol	175	5732	5743	research paper	TUMIMM	graft-versus-tumor	rapamycin	growth inhibition	TS/A	
192	Garanger et al.		New multifunctional molecular conjugate vector for targeting, imaging, and therapy of tumors	Mol Ther	12	1168	1175	research paper	GT	in vivo gene therapy	alphaVbeta3	RAFT vector	TS/A-pc	
	Guiducci et al.		Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection	Cancer Res	65	3437		research paper	TUMIMM/GT	ТАМ	CCL16	adenoviral vector	TS/A	MCA38, 4T1
194	Hsu et al.		Genetic regulation of thymic involution	Mech Ageing Dev	126	87	97	review						TUBO,
195	Park et al.		Early role of CD4+Th1 cells and antibodies in HER-2 adenovirus vaccine protection against autochthonous mammary carcinomas	J Immunol	174	4228	4236	control model	TUMIMM/GT	HER2+ breast cancer	in vivo gene therapy	adenoviral vaccine	TS/A	N202.1A, N202.1E
196	Preiss et al.		Tumor-induced antibodies resemble the response to tissue damage	Int J Cancer	115	456	462	research paper	TUMIMM	tumor-induced antibodies	tissue damage	growth inhibition	TS/A	
197	Scolaro et al.		In vitro and in vivo evaluation of ruthenium(II)-arene PTA complexes The cytotoxic activity of the bacteriophage λ -holin protein	J Med Chem	48	4161	4171	research paper	PHARM	ruthenium	RAPTA-C	metastasis	TS/A	
198	Agu et al.	2006	reduces tumour growth rates in mammary cancer cell xenograft models	J Gene Med	8	229	241	research paper	GT	cancer gene therapy	λ holin	growth inhibition	TS/A	
100	Compatible		CD25+regulatory T cell depletion augments immunotherapy of micrometastases by an IL-21-secreting cellular vaccine	J Immunol	170	1750	1750	research	TUMIMM/GT	engineered cancer vaccines	IL21	Trog	TS/A	F1F
	Come et al.		CD8-mediated type 1 antitumor responses selectively modulate endogenous differentiated and nondifferentiated T cell localization, activation, and function in progressive		176	1750		paper research				Treg		
200	Dobrzanski et al.		breast cancer Anandamide inhibits adhesion and migration of breast	J Immunol	177	8191	8201	paper research	TUMIMM/GT	antigen presentation	surrogate antigen	antitumor immunity	TS/A	
201	Grimaldi et al.		cancer cells	Exp Cell Res	312	363	373	paper research	PHARM	anandamide	CB ₁ receptor	in vitro adhesion	TS/A-E1	
202	Liu et al.	2006	Murine mammary carcinoma exosomes promote tumor growth by suppression of NK cell function CIITA-induced MHC class II expression in mammary adenocarcinoma leads to a Th1 polarization of the tumor	J Immunol	176	1375	1385	paper	TUMIMM	exosomes	NK	antitumor immunity	TS/A	4T1
203	Mortara et al.		microenvironment, tumor rejection, and specific antitumor memory	Clin Cancer Res	12	3435	3443	research paper	TUMIMM/GT	engineered cancer vaccines	CIITA	immune memory	TS/A	C26, F1F
204	Richards et al.		Tumor growth impedes natural-killer-cell maturation in the bone marrow	Blood	108	246	252	research paper	TUMIMM	immune suppression	NK	antitumor immunity	TS/A	4T1, EL-4, RMA-s, MC38, B16-F1
205	Schirmbeck et al.		Priming protective CD8 T cell immunity by DNA vaccines encoding chimeric, stress protein-capturing tumor- associated antigen	J Immunol	177	1534	15/10	research paper	TUMIMM/GT	DNA vaccine	gp70	cancer prevention	TS/A	CT26, P815, RBL5/EL4, mKSA
	Scolaro et al.		Influence of hydrogen-bonding substituents on the cytotoxicity of RAPTA compounds	Organometallics	25	756		research paper	PHARM	ruthenium	RAPTA-C	drug uptake	TS/A	IIIIII

	A	В	C	D	E	F	G H		J	К	L	М	N
2	Authors	Year	Title	Source title	Volume	Page start	Page end Type of study	Category	Keyword 1	Keyword 2	Keyword 3	TS/A cell variant	Other murine cell lines
			Phosphodiesterase-5 inhibition augments endogenous										СТ26,
			antitumor immunity by reducing myeloid-derived				research						MCA203, B16-
207	Serafini et al.		suppressor cell function Tumor-induced expansion of regulatory T cells by	J Exp Med	203	2691	2702 paper	TUMIMM	immune suppression	MDSC	antitumor immunity	TS/A	GM, 4T1-HA
			conversion of CD4+CD25- lymphocytes is thymus and				research						
208	Valzasina et al.	2006	proliferation independent	Cancer Res	66	4488	4495 paper	TUMIMM	immune escape	Treg	antitumor immunity	TS/A	CT26, 4T1
209	Vock et al.		Synthesis, characterization, and in vitro evaluation of novel ruthenium(II) n6-arene imidazole complexes	J Med Chem	49	5552	research 5561 paper	PHARM	ruthenium		cytotoxicity	TS/A	
209	VOCK et al.			J Wed Chem	45	5552	5501 paper	FHANIVI	ruthemum		Cytotoxicity	13/A	
			Comparative analysis of antitumor activity of CD40L, RANKL, and 4-1BBL in vivo following intratumoral				research						
210	Yurkovetsky et al.		administration of viral vectors or transduced dendritic cells	J Gene Med	8	129	137 paper	TUMIMM/GT	in vivo gene therapy	cancer vaccines	growth inhibition	TS/A	MC38
			New anti-CD30 human pancreatic ribonuclease-based				research						
211	Braschoss et al.		immunotoxin reveals strong and specific cytotoxicity in vivo	Leukemia Lymphoma	48	1179	1186 paper	TUMIMM	immunotoxin		antitumor immunity	TS/A	
			Expression of a functional CCR7 chemokine receptor inhibits the post-intravasation steps of metastasis in				research		engineered cancer				
212	Croci et al.		malignant murine mammary cancer cells	Oncol Rep	18	451	456 paper	TUMIMM/GT	vaccines	CCR7	metastasis	TS/A	N202.1A
			Evaluation of the antitumoral effect mediated by IL-12 and	Biochim Biophys Acta -			research						
213	Faneca et al.	2007	HSV-tk genes when delivered by a novel lipid-based system	Biomembranes	1768	1093	1102 paper	GT	in vivo gene therapy	lipid-based system	growth inhibition	TS/A	
			A cleavable molecular adapter reduces side effects and concomitantly enhances efficacy in tumor treatment by				research						
214	Fuchs et al.	2007	targeted toxins in mice	J Control Release	117	342	350 paper	PHARM	targeting	saporin	growth inhibition	TS/A	
			Age-related increase of tumor susceptibility is associated										
245		2007	with myeloid-derived suppressor cell mediated suppression	Mash Assiss Day	420	670	research	TUNANANA		MDCC		TC /A	
215	Grizzle et al.		of T cell cytotoxicity in recombinant inbred BXD12 mice	Mech Ageing Dev	128	672	680 paper research	TUMIMM	immune suppression engineered cancer	MDSC	aging	TS/A	
216	Josserand et al.		Non-invasive in vivo optical imaging of the lacZ and luc gene expression in mice	Gene Ther	14	1587	1593 paper	IMAGING	cells	luciferase, betaGal	in vivo imaging	TS/A-pc	
		2007	Cross-talk between T cells and innate immune cells is	Gene mer	1-1	1307	research					13/11 pc	MCA205,
217	Li et al.	2007	crucial for IFN-y-dependent tumor rejection	J Immunol	179	1568	1576 paper	TUMIMM	immune activation	IFNgamma	antitumor immunity	TS/A	J558L
			Expansion of spleen myeloid suppressor cells represses NK				research						
218	Liu et al.		cell cytotoxicity in tumor-bearing host	Blood	109	4336	4342 paper	TUMIMM	immune suppression	MDSC	antitumor immunity	TS/A	YAC-1
			Experimental therapeutic approaches to adenocarcinoma: the potential of tumor cells engineered to express MHC		10								
219	Mortara et al.		class II molecules combined with naked DNA interleukin-12 gene transfer	Surg Oncol	16, suppl 1		S36 review						
219	Obeid et al.		Ecto-calreticulin in immunogenic chemotherapy	Immunol Rev			34 review						
220	obela et al.	2007			220		research						
221	Sancey et al.	2007	In vivo imaging of tumour angiogenesis in mice with the alpha(v)beta (3) integrin-targeted tracer 99mTc-RAFT-RGD.	Eur J Nucl Med Mol I	34	2037	2047 paper	IMAGING	in vivo imaging	alphaVbeta3	angiogenesis	TS/A-pc	B16F0
			Tuning the hydrophobicity of ruthenium(II)-arene (RAPTA)				research						
222	Scolaro et al.		drugs to modify uptake, biomolecular interactions and efficacy	Dalton Transactions		5065	5072 paper	PHARM	ruthenium	hydrophobicity	cytotoxicity	TS/A	
							research		engineered cancer	, , ,			
223	Sorli et al.	2007	Apelin is a potent activator of tumour neoangiogenesis	Oncogene	26	7692	7699 paper	BIOLMET/GT	cells	apelin	angiogenesis	TS/A	
			Immunocompetent syngeneic cotton rat tumor models for the assessment of replication-competent oncolytic				research						
224	Steel et al.	2007	adenovirus	Virology	369	131	142 paper	BIOLMET	oncolytic virotherapy	adenovirus	growth inhibition	TS/A	15-12RM
			Immunity against breast cancer by TERT DNA vaccine				research						
225	Yamano et al.	2007	primed with chemokine CCL21	Cancer Gene Ther	14	451	459 paper	TUMIMM/GT	DNA vaccine	TERT	antitumor immunity	TS/A	B16, 4T1
226	Yu et al.	2007	Tumor exosomes inhibit differentiation of bone marrow dendritic cells	J Immunol	178	6867	research 6875 paper	тимімм	exosomes	dendritic cells	antitumor immunity	TS/A	B16
220	iu ci al.			3 111110101	1/0	0007	research		CAUSUITES			13/1	510
227	Zhang et al.		Curcumin reverses breast tumor exosomes mediated immune suppression of NK cell tumor cytotoxicity	Biochim Biophys Acta	1773	1116	1123 paper	тимімм	exosomes	NK	antitumor immunity	TS/A	4T1
	U • •		Tumors hamper the immunogenic competence of CD4+T	. ,			research						
228	Zimmermann et al.	2007	cell-directed dendritic cell vaccination	J Immunol	179	2899	2909 paper	TUMIMM	dendritic cell vaccine	CD4+	antitumor immunity	TS/A	
			FOXP3 is an X-linked breast cancer suppressor gene and an				research		engineered cancer				
229	Zuo et al.	2007	important repressor of the HER-2/ErbB2 oncogene	Cell	129	1275	1286 paper	BIOLMET/GT	cells	HER2, FOXP3	growth inhibition	TS/A	4T1

	Α	BC	D	E	F	G	Н		J	К	L	М	N
2	Authors	Year Title	Source title	Volume	Page start	Page end	Type of study	Category	Keyword 1	Keyword 2	Keyword 3	TS/A cell variant	Other murine cell lines
		Ag-specific type 1 CD8 effector cells enhance methotrexate- mediated antitumor responses by modulating				_							
		differentiated T cell localization, activation and chemokine					research						
230	Dobrzanski et al.	2008 production in established breast cancer	Clin Immunol	37	315	338	paper	TUMIMM	antigen presentation engineered dendritic	methotrexate	antitumor immunity	TS/A	CMS4,
231	Komita et al.	2008 solid tumor growth	Cancer Res	68	8076	8084	research paper	TUMIMM/GT	cell vaccine	hemoglobin-beta	growth inhibition	TS/A	MethA, CT26
231	Konnta et al.	OX40 triggering blocks suppression by regulatory T cells	eunier nes	00	0070	0004	research				5.0.0.0.0		CT26, N2C,
232	Piconese et al.	2008 and facilitates tumor rejection	J Exp Med	205	825	839	paper	тимімм	Treg	OX40	growth inhibition	TS/A	MCA203
		Inhibition of tumor growth by targeted toxins in mice is dramatically improved by saponinum album in a synergistic					research						
233	Bachran et al.	2009 way	J Immunother	32	713	725	paper	PHARM	targeting	saporin	growth inhibition	TS/A	
234	Bierer, B.E.	2009 Animal models for tumor immunology	Curr Prot Immunol	85	20.0.1	20.0.9	review						
		Optimized systemic dosing with CpG DNA enhances dendritic cell-mediated rejection of a poorly immunogenic					research						
235	Cai et al.	2009 mammary tumor in BALB/c mice	Clin Transl Sci	2	62	66	paper	TUMIMM	dendritic cell vaccine	CpG	growth inhibition	TS/A	
		Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with					research						
236	Dewan et al.	2009 anti-CTLA-4 antibody	Clin Cancer Res	15	5379	5388	paper	PHARM	radiotherapy	abscopal effect	growth inhibition	TS/A	MCA38
		Activation of the NLRP3 inflammasome in dendritic cells											EG7, EL4,
		induces IL-1beta-dependent adaptive immunity against					research						MCA2, CT26,
237	Ghiringhelli et al.	2009 tumors	Nat Med	15	1170	1178	paper	TUMIMM	immune activation	inflammasome	antitumor immunity	TS/A	B16F10
238	Hirsch et al.	Anti-CD30 human IL-2 fusion proteins display strong and 2009 specific cytotoxicity In Vivo	Curr Drug Targets	10	110	117	research paper	TUMIMM/GT	fusion protein	CD30	antitumor immunity	TS/A	J558L
230			cuil blug laigets	10	110	11/	рареі			6030		13/A	FH32,
		Responsiveness of stromal fibroblasts to IFN-y blocks					control						MCA205,
239	Lu et al.	2009 tumor growth via angiostasis	J Immunol	183	6413	6421	model	тимімм	TAF	IFNalpha	angiogenesis	TS/A	J558L
		Overlapping synthetic peptides encoding TPD52 as breast					research		peptide-based				
240	Mirshahidi et al.	2009 cancer vaccine in mice: prolonged survival	Vaccine	27	1825	1833	paper	TUMIMM	vaccines	tumor protein D52	antitumor immunity	TS/A	P815
		Irradiated CIITA-positive mammary adenocarcinoma cells act as a potent anti-tumor-preventive vaccine by inducing											
244		tumor-specific CD4+T cell priming and CD8+T cell effector		24			research		engineered cancer	CUTA		TC /A	COC 515
241	Mortara et al.	2009 functions	Int Immunology	21	655	665	paper research	TUMIMM/GT	vaccines	CIITA	antitumor immunity	TS/A	C26, F1F
242	Sancey et al.	2009 Drug development in oncology assisted by noninvasive optical imaging	Int J Pharm	379	309	316	paper	PHARM	imaging	lipid-based system	apoptosis	TS/A-pc	
		Cyanine-loaded lipid nanoparticles for improved in vivo		0.0		010	research						
243	Texier et al.	2009 fluorescence imaging	J Biomed Opt	14	54005-1	54005-11	paper	IMAGING	targeting	lipid-based system	cyanine dyes	TS/A-pc	
244	Accolla et al.	2010 New strategies of mammary cancer vaccination	Breast J	16	S42	S44	review						
		CIITA-driven MHC-II positive tumor cells: preventive vaccines and superior generators of antitumor CD4+ T					research		engineered cancer				C51, RENCA,
245	Frangione et al.	2010 lymphocytes for immunotherapy	Int J Cancer	127	1614	1624	paper	TUMIMM/GT	vaccines	CIITA	antitumor immunity	TS/A	WEHI-164
		Tumor targeting of functionalized lipid nanoparticles:					research						
246	Goutayer et al.	2010 assessment by in vivo fluorescence imaging Deoxyelephantopin, a novel multifunctional agent,	Eur J Pharm Biopharm	75	137	147	paper	PHARM	targeting	lipid-based system	imaging	TS/A-pc	
		suppresses mammary tumour growth and lung metastasis					research						
247	Huang et al.	2010 and doubles survival time in mice Ras activation contributes to the maintenance and	Br J Pharmacol	159	856	871	paper	PHARM	chemoprevention	deoxyelephantopin	metastasis	TS/A	
		expansion of Sca-1poscells in a mouse model of breast	-				research						4T1, EMT6
248	Kim et al.	2010 cancer	Cancer Lett	287	172	181	paper	BIOLMET	cancer stem cells	Ras	Sca1	TS/A	and CT26
		Differential proteomic profiling identifies novel molecular					rosparch			paclitaxel,			
249	Lee et al.	2010 against mammary adenocarcinoma cells	J Proteome Res	9	237	253	research paper	PHARM	drug activity	deoxyelephantopin	proteomic profiling	TS/A	
245		Interferon y-induced human guarylate binding protein 1		5	257		research		engineered cancer		p. otcome proming		
250	Lipnik et al.	2010 inhibits mammary tumor growth in mice	Mol Med	16	177		paper	TUMIMM/GT	cells	hGBP1	angiogenesis	TS/A	
251	Liu et al	Contribution of MyD88 to the Tumor Exosome-Mediated 2010 Induction of Myeloid Derived Suppressor Cells	Blood	176	2400	2400	citation						
251	Liu et al.	Different Tumor Microenvironments Contain Functionally	0000	176	2490	2499							
252	Movahodi ot al	Distinct Subsets of Macrophages Derived from 2010 Ly6C(high)Monocytes	Concor De-	70	E730	5720	research	TUNAINANA		MDSC	microonvironment	τς / Δ	4T1 211 D
252	Movahedi et al.		Cancer Res	70	5728	5739	paper research	TUMIMM	immune suppression	MDSC	microenvironment	TS/A	4T1, 3LL-R
253	Schiering et al.	Antigen-experienced CD4+ T cells limit naïve T-cell priming 2010 in response to therapeutic vaccination in vivo	Cancer Res	70	6161	6170	paper	TUMIMM	cancer cell vaccine	surrogate antigen	antitumor immunity	TS/A	
235	section bet an		cancer hes	70	0101	0170	Pupei			San obuce antigen	and control minimumity		

	A	ВС	D	E	F	G	Н		J	К	L	М	N
2	Authors	Year Title	Source title	Volume	Page start	Page end	Type of study	Category	Keyword 1	Keyword 2	Keyword 3	TS/A cell variant	Other murine cell lines
		Evaluation of the role of tumor-associated macrophages in					research				peritoneal		
254	Cottone et al.	an experimental model of peritoneal carcinomatosis using 2011 18F-FDG PET	J Nucl Med	52	1770	1777	paper	IMAGING	PET	ТАМ	carcinomatosis	TS/A	
2.34	cottone et al.			52	1770	1///	research	INAGING	DNA-peptide-		carcinomacosis	13/1	B16-F10, MBL-
255	Daftarian et al.	Peptide-conjugated PAMAM dendrimer as a universal DNA 2011 vaccine platform to target antigen-presenting cells	Cancer Res	71	7452	7462	paper	TUMIMM/GT	dendrimer vaccines	gp70	antitumor immunity	TS/A	2, CT26
233	Daitailail et al.	ZOTT vaccine plation to target antigen-presenting cens	cancer nes	/1	7432	7402	hahei		dendrimer vaccines	gp/0		13/A	mouse
							research						embryonic
25.0	Llaiber and Darker	Vesicular stomatitis virus expressing tumor suppressor p53		05	10110	10450				-52		TC /A	
256	Heiber and Barber	2011 is a highly attenuated, potent oncolytic agent HCG hastens both the development of mammary	J Virol	85	10440	10450	paper	BIOLMET/GT	oncolytic virotherapy	p53	VSV	TS/A	fibroblasts
		carcinoma and the metastatization of HCG/LH and ERBB-2					control						
257	lezzi et al.	2011 receptor-positive cells in mice	Int J Immunopath Ph	24	621	630	model	BIOLMET	HER2+ breast cancer	hCG	metastasis	TS/A	TUBO
		Irradiation, cisplatin, and 5-azacytidine upregulate cytomegalovirus promoter in tumors and muscles:					research						
258	Kamensek et al.	2011 Implementation of non-invasive fluorescence imaging	Mol Imaging Biol	13	43	52	paper	GT	cancer gene therapy	GFP	CMV promoter	TS/A	LPB
		Vesicular stomatitis virus oncolytic treatment interferes					research						
259	Leveille et al.	with tumor-associated dendritic cell functions and 2011 abrogates tumor antigen presentation	Cancer Gene Ther	85	12160	12169		TUMIMM/GT	oncolytic virotherapy	antigen presentation	VSV	TS/A	PC3, B16-F10
233	Levenie et al.	Identification of a tumor suppressor relay between the	cancer Gene mer	- 65	12100	12109			oncorytic virotnerapy	antigen presentation	V3V	13/A	FC3, B10-110
		FOXP3 and the Hippo pathways in breast and prostate				_	research			50000			
260	Li et al.	2011 cancers	Cancer Res	71	2162	2171	paper	BIOLMET/GT	tumor suppressor	FOXP3	growth inhibition	TS/A	
1		Synergistic activation by p38MAPK and glucocorticoid											
		signaling mediates induction of M2-like tumor-associated					research				Gene expression		
261	Schmieder et al.	2011 macrophages expressing the novel CD20 homolog MS4A8A	Int J Cancer	129	122	132	paper	BIOLMET	TAM	CD20	profiling	TS/A	B16F1
		Myeloid-derived suppressor cells express the death receptor Fas and apoptose in response to T cell-expressed					research						
262	Sinha et al.	2011 FasL	Blood	117	5381	5390	paper	BIOLMET	immune suppression	MDSC	apoptosis	TS/A	4T1, AT3
		The vasostatin-1 fragment of chromogranin A preserves a					research		engineered cancer				
263	Veschini	quiescent phenotype in hypoxia-driven endothelial cells 2011 and regulates tumor neovascularization.	FASEB J	25	3906	3914	paper	BIOLMET/GT	cells	vasostatin1	angiogenesis	TS/A	
205	vesenini	Rab27a supports exosome-dependent and -independent		23	5500	5514		5.62			ungrogeneois		
		mechanisms that modify the tumor microenvironment and					research						
264	Bobrie et al.	2012 can promote tumor progression Epigenetic remodelling of gene expression profiles of	Cancer Res	72	4920	4930	paper	BIOLMET	exosomes	microenvironment	tumor progression	TS/A	4T1
		neoplastic and normal tissues: Immunotherapeutic					research			gene expression			
265	Coral et al.	2012 implications	Br J Cancer	107	1116	1124	paper	TUMIMM	epigenetic modulation	profiling	antitumor immunity	TS/A	
		Synergy of topical toll-like receptor 7 agonist with radiation and low-dose cyclophosphamide in a mouse model of					research						
266	Dewan et al.	2012 cutaneous breast cancer.	Clin Cancer Res	18	6668	6678	paper	BIOLMET	combination therapy	TLR7	metastasis	TS/A	
		Deoxyelephantopin impedes mammary adenocarcinoma											
		cell motility by inhibiting calpain-mediated adhesion dynamics and inducing reactive oxygen species and					research						
267	Lee and Shyur	2012 aggresome formation.	Free Radic Biol Med	52	1423	1436	paper	PHARM	calpain	deoxyelephantopin	motility	TS/A	
												-,	
269	Marandi at al	Dendritic cell editing by activated natural killer cells results 2012 in a more protective cancer-specific immune response	PLoS ONE	7	-20170		research	тимімм	immune activation	dendritic cells	antitumor immunity	TS/A	YAC-1
268	Morandi et al.	Regulating the suppressors: apoptosis and inflammation		/	e39170		paper			denuntic cens		13/A	TAC-1
1		govern the survival of tumor-induced myeloid-derived	Cancer Immunol				research						
269	Ostrand-Rosenberg et al.	2012 suppressor cells (MDSC)	Immunother	61	1319	1325	paper	TUMIMM	immune suppression	MDSC	proteomic profiling	TS/A	4T1, AT3
1		Potentiation of electrochemotherapy by intramuscular IL- 12 gene electrotransfer in murine sarcoma and carcinoma					research						
270	Sedlar et al.	2012 with different immunogenicity	Radiol Oncol	46	302	311	paper	GT	electrochemotherapy	IL12	growth inhibition	TS/A	SA-1
<u> </u>		The outgrowth of micrometastases is enabled by the					research			filopodium-like			
271	Shibue et al.	2012 formation of filopodium-like protrusions	Cancer Discov	2	706	721	paper	BIOLMET	motility	protrusions	metastasis	TS/A	D2
													CT26, 4T1,
		Tumor-induced myeloid-derived suppressor cell function is					research						B16, MC38,
272	Sinha et al.	2012 independent of IFN- γ and IL-4R α	Eur J Immunol	42	2052	2059	paper	TUMIMM	immune suppression	MDSC	antitumor immunity	TS/A	3LL
		MiR-135b coordinates progression of ErbB2-driven					control						
273	Arigoni et al.	mammary carcinomas through suppression of MID1 and 2013 MTCH2	Am J Pathol	182	2058	2070	model	BIOLMET	HER2+ breast cancer	miR-135b	tumor progression	TS/A	4T1, TUBO
213			Am J Fatilui	102	2038	2070	research	SIGLIVIET			tantor progression	13/5	-11,1000
274	Ren Vehdri et al	Triptolide-mediated inhibition of interferon signaling 2013 enhances vesicular stomatitis virus-based oncolysis.	Mol Ther	21	2043	2052	paper	BIOLMET	oncolytic virotherapy	triptolide	VSV	TS/A	PC3
274	Ben Yebdri et al.			21	2043	2053	research	DIOLIVIET	oncorytic virotnerapy	in pronue	VJV	13/1	103
275	Ponnot at al	Systemic delivery of sticky siRNAs targeting the cell cycle for 2013 lung tumor metastasis inhibition						CT	non viral corrier	ci DNA	motostosis	TC /A	
2/5	Bonnet et al.	2013 lung tumor metastasis inhibition Dendrogenin A arises from cholesterol and histamine	J Control Release				paper	GT	non viral carrier	siRNA	metastasis	TS/A	
		metabolism and shows cell differentiation and anti-tumour					research						
276	De Medina et al.	2013 properties	Nat Commun	4	1840		paper	PHARM	differentiation therapy	dendrogenin A	growth inhibition	TS/A	B16F10

	А	BC	D	E	F	G	Н	<u> </u>	J	К	L	М	Ν
2	Authors	Year Title	Source title	Volume	Page start	Page and	Type of study	Category	Keyword 1	Keyword 2	Keyword 3	TS/A cell variant	Other murine cell lines
2	Authors	Multiple Delivery of siRNA against Endoglin into Murine	Source title	volume	Page start	Page enu		Category	Keyword 1	Keyword 2	Keyword S	TS/A Cell Variant	lines
277	Delineele et el	Mammary Adenocarcinoma Prevents Angiogenesis and			-50722		research	CT		andaglin	angiaganasis	TC /A	21111
277	Dolinsek et al.	2013 Delays Tumor Growth Influence of size, surface coating and fine chemical	PLoS ONE	8	e58723		paper	GT	gene silencing	endoglin	angiogenesis	TS/A	2H11
		composition on the											
		in vitro reactivity and in vivo biodistribution of lipid nanocapsules	Nanomed-				research						
278	Hirsjarvi et al.	2013 versus lipid nanoemulsions in cancer models	Nanotechnol	9	375	387	paper	IMAGING	targeting	lipid-based system	biodistribution	TS/A-pc	
	· · ·								radiation-induced	. ,			
		Evaluation of p21 promoter for interleukin 12 radiation					research		transcriptional				
279	Kamensek et al.	2013 induced transcriptional targeting in a mouse tumor model	Mol Cancer	12	136		paper	GT	targeting	p21 promoter	growth inhibition	TS/A	
		The dual effect of mscs on tumour growth and tumour					research						
280	Kéramidas et al.	2013 angiogenesis	Stem Cell Res Ther	4	41		paper	BIOLMET	hMSCs	imaging	angiogenesis	TS/A	
281	Lollini et al.	2013 Preclinical vaccines against mammary carcinoma	Expert Rev Vaccines	12	1449	1463	review						
		The Fragile X Protein binds mRNAs involved in cancer					research		engineered cancer				
282	Lucá et al.	2013 progression and modulates metastasis formation	EMBO Mol Med	5	1523	1536	paper	BIOLMET/GT	cells	FMRP	Metastasis	TS/A	4T1
		FRET Imaging Approaches for in Vitro and in Vivo Characterization of					research						
283	Gravier et al.	2014 Synthetic Lipid Nanoparticles	Mol Pharmaceut	11	3133	3144	paper	IMAGING	targeting	lipid-based system	FRET	TS/A-pc	
							research						
284	Longo et al.	A general MRI-CEST ratiometric approach for pH imaging: 2014 Demonstration of in vivo pH mapping with iobitridol	J Am Chem Soc	136	14333	14336	paper	IMAGING	magnetic resonance	Iobitridol	рH	TS/A	
204			57411 Chem 300	150	14333	14550	research		engineered cancer		pri	13/7	TUBO, TRAMP
285	Morris et al.	Vaccination with tumor cells expressing IL-15 and IL- 2014 15Ralpha inhibits murine breast and prostate cancer	Gene Ther	21	393	401	paper	TUMIMM/GT	vaccines	IL15	antitumor immunity	TS/A	C2
200		Targeted radionuclide therapy with RAFT-RGD				.01							
206	Dozon Datitaria at al	radiolabelled with (90)Y or (177)Lu in a mouse model of 2015 alphavbeta3-expressing tumours	Eur J Nucl Med Mol I	42	252	262	research	PHARM	radiotherapy	alphaVbeta3	growth inhibition	TS/A-pc	
286	Bozon-Petitprin et al.	Antitumor activity of epigenetic immunomodulation		42	252	205	paper	FHANIVI	Таціопегару	alpilavbetas	growth minipition	13/А-рс	
		combined with CTLA-4 blockade in syngeneic mouse					research						
287	Covre et al.	2015 models Sensitive MRI detection of internalized	Oncolmmunology	4	e1019978		paper	TUMIMM	Epigenetic modulation	CTLA4	antitumor immunity	TS/A	
		T <inf>1</inf> contrast agents using magnetization transfer					research						
288	Delli Castelli et al.	2015 contrast	NMR Biomed	28	1663	1670	paper	IMAGING	magnetic resonance	MTC	in vivo imaging	TS/A	
		An MRI Method to Map Tumor Hypoxia Using Red Blood					research						
289	Di Gregorio et al.	2015 Cells Loaded with a pO <inf>2</inf> -Responsive Gd-Agent	ACS Nano	9	8239	8248	paper	IMAGING	magnetic resonance	hypoxia	in vivo imaging	TS/A	
		Endoglin silencing has significant antitumor effect on murine mammary adenocarcinoma mediated by vascular					research						
290	Dolinsek et al.	2015 targeted effect	Curr Gene Ther	15	228	244	paper	GT	gene silencing	endoglin	angiogenesis	TS/A	2H11
		Autologous cellular vaccine overcomes cancer											
291	Mazzocco et al.	2015 immunoediting in a mouse model of myeloma	Immunology	146	33	49	citation						
		Sonosensitive theranostic liposomes for preclinical in vivo											
202		MRI-guided visualization of doxorubicin release stimulated	L Control Bolonco	202	21	20	research	IMAGING	magnatic reconcise	linid bacad system	torgoting	TC /A	
292	Rizzitelli et al.	2015 by pulsed low intensity non-focused ultrasound Gene electrotransfer of plasmid with tissue specific	J Control Release	202	21	30	paper	INAGING	magnetic resonance	lipid-based system	targeting	TS/A	
		promoter encoding shRNA against endoglin exerts					research						B16F1,
293	Stimac et al.	antitumor efficacy against murine TS/A tumors by vascular 2015 targeted effects	PLoS ONE	10	e0124913		paper	GT	gene silencing	endoglin	angiogenesis	TS/A	B16F10, 2H11
235	Junide et al.	In vivo targeting of cutaneous melanoma using an	I LOS ONL	10	0124913		Paper	~ '	Bene silenellig	5405mi	3112102010313	13/1	510110, 21111
		melanoma stimulating hormone-engineered human protein cage with fluorophore and magnetic resonance					research						
294	Vannucci et al.	2015 imaging tracers	J Biomed Nanotechnol	11	81	92	paper	IMAGING	magnetic resonance	nanoparticles	drug delivery	TS/A	
		Leukocytes recruited by tumor-derived HMGB1 sustain				52	control		inflammatory				MC-38, CT26,
295	Cottone et al.	2016 peritoneal carcinomatosis	Oncoimmunology	5	e1122860		model	BIOLMET/GT	leukocytes	HMGB1	growth inhibition	TS/A	C26, RMA
	Falls et al.	2016 Murine tumor models for oncolytic rhabdo-virotherapy	ILAR Journal	57	73	85	review						
		An MRI-based classification scheme											
		to predict passive access of 5 to 50-nm large nanoparticles to					research						
297	Karageorgis et al.	2016 tumors	Sci Rep	6	21417		paper	IMAGING	magnetic resonance	nanoparticles	targeting	TS/A-pc	
		In Vivo Imaging of Tumor Metabolism and Acidosis by					research						
298	Longo et al.	2016 Combining PET and MRI-CEST pH Imaging	Cancer Res	76	6463	6470	paper	IMAGING	magnetic resonance	PET	tumor metabolism	TS/A	
		In Vitro and In Vivo Assessment of Nonionic Iodinated Radiographic Molecules as Chemical Exchange Saturation											
		Transfer Magnetic Resonance Imaging Tumor Perfusion					research						
299	Longo et al.	2016 Agents	Invest Radiol	51	155	162	paper	IMAGING	magnetic resonance	CEST	in vivo imaging	TS/A	

	А	B C D E F G		G Н	<u> </u>	T .	к	· ·	м	N		
	A		U	<u>с</u>	r		<u> </u>		<u> </u>			IN Other murine cell
2	Authors	Year Title	Source title		-	Page end Type of study	Category	Keyword 1	Keyword 2	Keyword 3	TS/A cell variant	lines
300	Maru	2016 Whole-Body Matter	Inflamm Metast	12	1	505 review	+	LIM Kinoca tat this				
201	Prunier et al	LIM kinase inhibitor Pyr1 reduces the growth and 2016 metastatic load of breast cancers	Cancer Res	76	25.44	research	BIOLMET	LIM Kinase Inhibitor	tavan	metastacic	TS/A	MEF
301	Prunier et al.	Stabilin-1 is expressed in human breast cancer and	Cancer Kes	76	3541	3552 paper		Pyr1	taxan	metastasis	13/A	IVIEF
202	Diabou at -!	supports tumor growth in mammary adenocarcinoma	0	_	24007	research		TANA	stabilin1	growth inhibition	TC / A	
302	Riabov et al.	2016 mouse model	Oncotarget	7	31097	31110 paper	BIOLMET	TAM	stabilin1	growth inhibition	TS/A	
	1	The release of Doxorubicin from liposomes monitored by				research						
303	Rizzitelli et al.	MRI and triggered by a combination of US stimuli led to a 2016 complete tumor regression in a breast cancer mouse model	J Control Release	230	57	63 paper	PHARM	magnetic resonance	doxorubicin	growth inhibition	TS/A	
		Standardized Extract from Caesalpinia spinosa is Cytotoxic			5,	research				5		
304	Sandoval et al.	over Cancer Stem Cells and Enhance Anticancer Activity of 2016 Doxorubicin	Am J Chinese Med	44	1693	1717 paper	PHARM	combination therapy	doxorubicin	chinese medicine	TS/A	B16, 4T1
				-++	1033	research					-,	
305	Stimac et al.	2016 Tumor radiosensitization by gene therapy against endoglin	Cancer Gene Ther	23	214	220 paper	GT	gene silencing	endoglin	angiogenesis	TS/A	
		In vivo evaluation of tumour acidosis for assessing the early metabolic response and onset of resistance to				· · ·		ŭ	-			
	۱ 	metabolic response and onset of resistance to dichloroacetate by using magnetic resonance										
200	Anomono et al	pHdichloroacetate by using magnetic resonance pH	Int I Ora-1	E A	400	research	IMAGING	magnetic reconcise	ducolution benefit	tumor motobalism	тс / л	
306	Anemone et al.	2017 imaging MRI-CEST assessment of tumour perfusion using X-ray	Int J Oncol	51	498	506 paper	IMAGING	magnetic resonance	glycolytic phenotype	tumor metabolism	TS/A	
207	Anomono et al	iodinated agents: comparison with a conventional Gd-			2470	research	INACONC	magnetic	CEST	tumor porfers'	TC / A	411
307	Anemone et al.	2017 based agent	Eur Radiol	27	2170	2179 paper	IMAGING	magnetic resonance	CEST	tumor perfusion	TS/A	4T1
308	Cavallari et al.	13C MR Hyperpolarization of Lactate by Using 2017 ParaHydrogen and Metabolic Transformation in Vitro	Chem-Eur J	23	1200	research 1204 paper	IMAGING	metabolic transformation	ParaHydrogen	tumor metabolism	TS/A	
500			Chemical J	23	1200	research						
309	Fuchs et al.	A combinatorial alpha-beta T cell receptor expressed by 2017 macrophages in the tumor microenvironment	Immunobiology	222	39	44 paper	тимімм	TAM	TCRalpha/beta	antitumor immunity	TS/A	
	•	Inactivation of DNA repair triggers neoantigen generation	81			research					· · · · · · · · · · · · · · · · · · ·	CT26, MC38,
310	Germano et al.	2017 and impairs tumour growth	Nature	552	1	5 paper	TUMIMM/GT	neoantigens	DNA repair	CRISPR	TS/A	PDAC
		A cytotoxic Petiveria alliacea dry extract induces ATP										
	1	depletion and decreases β -F1-ATPase expression in breast				research			american traditional			
311	Hernández et al.	2017 cancer cells and promotes survival in tumor-bearing mice	Braz J Pharmacogn	27	306	314 paper	PHARM	tumor metabolism	medicine	growth inhibition	TS/A	4T1, 3T3
212	Yurena et al	Magnetic nanoparticles for efficient cell transduction with 2017 SemlikiForest virus	J Virol Meth	345	20	research	GT	magnetofaction	Semliki Forest viral	in vitro gono thorses	TS/A	
312	Kurena et al.		J VILOI IVIETN	245	28	34 paper research		magnetofection	vectors	in vitro gene therapy	TS/A	
313	Longo et al.	EXCI-CEST: Exploiting pharmaceutical excipients as MRI- 2017 CEST contrast agents for tumor imaging	Int J Pharm	525	275	281 paper	IMAGING	magnetic resonance	CEST	excipients	TS/A	B16-F10
				525	2,3	puper						
	1	Identifying tumor promoting genomic alterations in tumorassociated fibroblasts via retrovirus-insertional				research						CT26, J558LFB
314	Rong et al.	2017 mutagenesis	Oncotarget	8	97231	97245 paper	BIOLMET	TAF	insertional mutagenesis	tumor progression	TS/A	61, MCA-205
	·	DNA exonuclease Trex1 regulates radiotherapy-induced				research						
315	Vanpouille-Box et al.	2017 tumour immunogenicity	Nat Commun	8	15618	paper	TUMIMM	radiotherapy	abscopal effect	Trex1	TS/A	4T1, MCA38
	1	Mammary adipocytes stimulate breast cancer invasion				research						
316	Wang et al.	2017 through metabolic remodeling of tumor cells	JCI Insight	2	e87489	paper	BIOLMET	mammary adipocytes	microenvironment	metastasis	TS/A	AT1 6014
	۱ 											4T1, 6DT1,
	۱ 											D2A1, E0771, MT6, F311,
	۱ 											HRM-1, M6,
	1	Immunocompetent mouse allograft models for development of therapies to target breast cancer				research		murine mammary				Met-1, MVT1,
317	Yang et al.	development of therapies to target breast cancer 2017 metastasis.	Oncotarget	8	30621	30643 paper	BIOLMET	models	genomic profiling	metastasis	TS/A-E1	r3T
		Blockade of Myeloid-Derived Suppressor Cell Expansion				research						
318	Bauer et al.	with All-Trans Retinoic Acid Increases the Efficacy of 2018 Antiangiogenic Therapy.	Cancer Res	78	3220	3232 paper	тимімм	retinoids	MDSC	angiogenesis	TS/A	4T1
		Electrotransfer of different control plasmids elicits different	t									
319	Bosnjak et al.	2018 antitumor effectiveness in B16.F10 melanoma Hyperthermic treatment at 56 degrees C induces tumour-	Cancers	10	E37	citation	+					TRAMP C1 CT
	1	specific immune protection in a mouse model of prostate				research						TRAMP-C1, CT 26, C-51,
320	De Sanctis et al.	cancer in both prophylactic and therapeutic immunization 2018 regimens	Vaccine	36	3708	3716 paper	тимімм	hyperthermia	HMGB1	antitumor immunity	TS/A	26, C-51, N202.1A
520			vacuile		5700	research				and an		
321	Diamond et al.	Exosomes Shuttle TREX1-Sensitive IFN-Stimulatory dsDNA 2018 from Irradiated Cancer Cells to DCs	Cancer Immunol Res	6	910		тимімм	exosomes	abscopal effect	Trex1	TS/A	A20, B16
~~*					210							-,

	A	В	С	D	E	F	G	Н	I	J	К	L	М	N
2	Authors	Year	Title	Source title	Volume	Page start	Dage and	Type of study	Catagoni	Keyword 1	Keyword 2	Keyword 3	TS/A cell variant	Other murine cell lines
2	Autors		Vascularization of the tumours affects the		volume	Page start			Category	Keyword 1	Keyworu z	Keyworu 5	TS/A Cell Valiant	lines
			pharmacokinetics of	Basic Clin Pharmacol				research						
322	Groselj et al.	2018	bleomycin and the effectiveness of electrochemotherapy	Toxicol	123	247	256	paper	PHARM	electrochemotherapy	Bleomycin	angiogenesis	TS/A	B16F1
			The expression of MHC class II molecules on murine breast	Cancer Immunol				research		engineered cancer				
222			tumors delays T-cell exhaustion, expands the T-cell		60	475			TUNANANA/CT	0	CIITA	+ : +	TC / A	
323	McCaw et al.		repertoire, and slows tumor growth Evidence for the Role of Intracellular Water Lifetime as a	Immunother	68	175	188	paper	TUMIMM/GT	cells	CITA	antitumor immunity	TS/A	
			Tumour Biomarker Obtained by In Vivo Field-Cycling					research						
324	Ruggiero et al.		Relaxometry	Angew Chemie Int Ed	57	7468	7472	paper	IMAGING	magnetic resonance	intracellular water	tumor biomarker	TS/A	4T1
			Involvement of Prokineticin 2-expressing Neutrophil											
			Infiltration in 5-Fluorouracil-induced Aggravation of Breast					research						
325	Sasaki et al.	2018	Cancer Metastasis to Lung.	Mol Cancer Ther	17	1515	1525	paper	BIOLMET	infiltrating neutrophils	5-FU	tumor progression	TS/A	4T1
			Intravital Monitoring of Vasculature After Targeted Gene	Technol Cancer Res				research						
326	Savarin et al.		Therapy Alone or Combined With Tumor Irradiation	Treat	17	1	8	paper	GT	gene silencing	endoglin	angiogenesis	TS/A	
			TPEN exerts antitumor efficacy in murine mammary	a						5 5		0.0		
			adenocarcinoma through an H2O2 signaling mechanism	Anticancer Agents Med				research						
327	Soto-Mercado et al.		dependent on caspase-3	Chem	18	1617	1628	paper	PHARM	caspase	TPEN	growth inhibition	TS/A	
			Functionalization of Gadolinium Chelates Silica	Contrast Media Mol				research						
328	Tran et al.		Nanoparticle through Silane Chemistry for Simultaneous MRI/(64)Cu PET Imaging		2018	7938267		paper	IMAGING	magnetic resonance	nanoparticles	biodistribution	TS/A	
328		2018	Wiki/(64)Cu PET Imaging	Imaging	2018	/93620/			INAGING	magnetic resonance	nanoparticles	biodistribution	13/A	
			Cripto-1 Plasmid DNA Vaccination Targets Metastasis and					research						TUBO, 4T1,
329	Witt et al.	2018	Cancer Stem Cells in Murine Mammary Carcinoma	Cancer Immunol Res	6	1417	1425	paper	TUMIMM/GT	DNA vaccine	Cripto1	metastasis	TS/A	D2F2
			Tumor cell death after electrotransfer of plasmid DNA is					research						
330	Znidar et al.		associated with cytosolic DNA sensor upregulation	Oncotarget	9	18665	18681	paper	GT	electrotransfer	cytosolic DNA sensors	tumor cell death	TS/A	WEHI164
			Immune targeting of autocrine IGF2 hampers		-						,		· ·	
331	De Giovanni et al.	2019	rhabdomyosarcoma growth and metastasis	BMC Cancer	19	126		citation						