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Abstract We study equilibrium configurations of a homoge-
nous ball of matter in a bootstrapped description of gravity
which includes a gravitational self-interaction term beyond
the Newtonian coupling. Both matter density and pressure
are accounted for as sources of the gravitational potential for
test particles. Unlike the general relativistic case, no Buch-
dahl limit is found and the pressure can in principle support
a star of arbitrarily large compactness. By defining the hori-
zon as the location where the escape velocity of test particles
equals the speed of light, like in Newtonian gravity, we find
a minimum value of the compactness for which this occurs.
The solutions for the gravitational potential here found could
effectively describe the interior of macroscopic black holes
in the quantum theory, as well as predict consequent devia-
tions from general relativity in the strong field regime of very
compact objects.

1 Introduction and motivation

The true nature of black holes is already problematic in the
classical description given by general relativity and notori-
ously more so once one tries to incorporate the unavoidable
quantum physics. Once a trapping surface appears, singular-
ity theorems of general relativity require an object to collapse
all the way into a region of vanishing volume and infinite den-
sity [1]. At the same time, a point-like source is well known
to be classically unacceptable [2–4]. One would therefore
hope that quantum physics cures this problem, the same way
it makes the hydrogen atom stable, by affecting the gravi-
tational dynamics, at least in the strong field regime (where
the description of matter likely requires physics beyond the
standard model as well [5,6]).
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In light of the above observations, in Ref. [7] we studied
an effective equation for the gravitational potential of a static
source which contains a gravitational self-interaction term
besides the usual Newtonian coupling with the matter density.
Following an idea from Ref. [8], this equation was derived
in details from a Fierz–Pauli Lagrangian in Ref. [9], and it
can therefore be viewed as stemming from the truncation of
the relativistic theory at some “post-Newtonian” order (for
the standard post-Newtonian formalism, see Ref. [10]). How-
ever, since the “post-Newtonian” correction VPN ∼ M2/r2

is positive and grows faster than the Newtonian potential
VN ∼ M/r near the surface of the source, one is allowed
to consider only matter sources with radius R � RH in this
approximation (where we remark that M is the total ADM
mass [11] of the system and

RH ≡ 2 GN M (1.1)

is the gravitational radius of the source.) This consistency
condition clearly excludes the possibility to study very com-
pact matter sources and, in particular, those with R � RH

which are on the verge of forming a black hole. For the ulti-
mate purpose of including such cases and gain some hind-
sight about the fate of matter which collapses inside a black
hole, in Ref. [7] we studied the non-linear equation of the
effective theory derived in Ref. [9] at face value, without
requiring that the corrections it introduces with respect to
the Newtonian potential remain small.

In Ref. [7], we showed that the qualitative behaviour of
the complete solutions to that non-linear equation resem-
bles rather closely the Newtonian counterpart. This result,
which essentially stems from including a gravitational self-
interaction in the Poisson equation, is what we call “boot-
strapping” the Newtonian gravity. In fact, including those
specific non-linear terms could be viewed as the first step in
the perturbative reconstruction of classical general relativ-
ity (see, e.g. Refs. [12–14]). However, we could also enter-
tain the idea that these terms are meaningful to determine
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the (mean field) gravitational potential of extremely com-
pact objects if the quantum break-down of classical general
relativity occurs at macroscopic scales and general relativity
therefore fails at describing (the interior of) black holes [15–
18,20,21]. In this case, although its origin lies in the quan-
tum nature of gravity (and matter), if this effective potential
applies for macroscopic sources, it does not need to contain
explicitly a dependence on the Planck constant h̄ such that
general relativistic configurations are (formally) recovered
for vanishing h̄.1 On the other hand, Newtonian physics is
recovered (by construction) for sources with small compact-
ness GN M/R ∼ RH/R � 1, and one can therefore consider
that the compactness GN M/R is the parameter measuring
deviations from general relativity in the bootstrapped poten-
tial.2 To be more specific, we expect that the bootstrapped
potential admits a description in terms of a quantum state
of bound gravitons, like the coherent state that can be used
to reproduce the Newtonian potential [8,9]. The quantum
features of the system would hence become apparent only
after such a quantum state is constructed explicitly (which we
leave for future investigations). Moreover, by studying static
sources of uniform density ρ in Ref. [7], we found a finite
matter pressure p could support sources of arbitrarily large
compactenss GN M/R ∼ RH/R � 1, so that there is no
equivalent of the Buchdahl limit [23] of general relativity in
the bootstrapped Newtonian gravity. Of course, the pressure
becomes the dominant source of energy when GN M/R � 1
and, although the strong energy condition ρ + p > 0 still
holds, the dominant energy condition ρ ≥ |p| is violated in
this regime (see, e.g. Ref. [24]). This suggests that the source
of highly compact configurations, such as black holes, must
be matter in a quantum state with no purely classical ana-
logue (like Bose–Einstein condensates [15–21] or degener-
ate neutron stars). This result is again consistent with the fact
that classical general relativistic configurations are expected
to become physically relevant only for astrophysical objects
with small compactness RH/R � 1.

Since we are mainly interested in investigating static
sources which we found can be very compact, a pressure
term which prevents the gravitational collapse needs to be
included from the onset. For this reason, we here modify the
effective theory used in Ref. [7] in order to consistently sup-
plement the matter density with the pressure as sources of the
gravitational potential. We then study systems with generic
compactness GN M/R ∼ RH/R, from the regime R � RH,
in which we recover the standard post-Newtonian picture, to
R � RH where we find the source is enclosed within a hori-

1 Terms explicitly proportional to h̄ are usually obtained as perturbative
corrections to classical solutions and they can therefore be trusted only
as long as they remain smaller than the quantities they perturb (see,
e.g. Ref. [22]).
2 A detailed study of orbits in the region outside the source is underway.

zon. The latter is defined according to the Newtonian view
as the location at which the escape velocity of test particles
equals the speed of light. Of course, it should be possible to
treat the single microscopic constituents of the source in this
test particle approximation and the presence of an horizon
therefore refers to their inability to escape the gravitational
pull.

Like in Refs. [7,9], we shall just consider (static) spheri-
cally symmetric systems, so that all quantities depend only
on the radial coordinate r , and the matter density ρ = ρ(r)
will also be assumed homogenous inside the source (r ≤ R)
for the sake of simplicity. The pressure will instead be deter-
mined consistently from the condition of staticity. The paper
is organised as follows: in Sect. 2, we briefly review the
derivation of the equation for the potential with the inclusion
of a pressure term; in Sect. 3, we solve for the outer and inner
potential generated by the homogenous source using appro-
priate analytical methods for the diverse regimes. In partic-
ular, we study intermediate and large compact sources with
R � RH as possible candidates for effectively describing
collapsed objects which should act as black holes according
to general relativity; their horizon structure is then analysed
in Sect. 4; we finally comment about our results and possible
outlooks in Sect. 5.

2 Bootstrapped theory for the gravitational potential

From Ref. [9], we recall that the non-linear equation for the
potential V = V (r) describing the gravitational pull on test
particles generated by a matter density ρ = ρ(r) can be
obtained starting from the Newtonian Lagrangian

LN[V ] = − 4 π

∫ ∞

0
r2 dr

[ (
V ′)2

8 π GN
+ ρ V

]
, (2.1)

where f ′ ≡ d f/dr , and the corresponding equation of
motion is the Poisson equation

r−2
(
r2 V ′)′ ≡ �V = 4 π GN ρ (2.2)

for the Newtonian potential V = VN. We can then include
the effects of gravitational self-interaction by noting that the
Hamiltonian

HN[V ] = −LN[V ] = 4 π

∫ ∞

0
r2 dr

(
− V �V

8 π GN
+ ρ V

)
,

(2.3)

computed on-shell by means of Eq. (2.2), yields the total
Newtonian potential energy

UN[V ] = 2 π

∫ ∞

0
r2 dr ρ V
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= 1

2 GN

∫ ∞

0
r2 dr V �V

= −4 π

∫ ∞

0
r2 dr

(
V ′)2

8 π GN
, (2.4)

where we used Eq. (2.2) in the second line and assumed that
boundary terms vanish at r = 0 and r = ∞ as usual in
the last line (for an alternative but equivalent derivation, see
Appendix A). One can therefore view the above UN as given
by the interaction of the matter distribution with the gravita-
tional field or, following Ref. [8] (see also Ref. [25]), as the
volume integral of the gravitational current proportional to
the gravitational energy UN per unit volume δV = 4 π r2 δr ,
that is3

JV � 4
δUN

δV = −
[
V ′(r)

]2

2 π GN
. (2.5)

As mentioned in the Introduction, in Ref. [7] we found that
the pressure p which prevents the system from collapsing
becomes very large for compact sources with a size R � RH,
where RH is the gravitational radius of Eq. (1.1). We must
therefore add a corresponding potential energy UB, associ-
ated with the work done by the force responsible for the
pressure p, such that

p � −δUB

δV = JB . (2.6)

We will accordingly have to couple the potential field with the
energy densities JV and JB and then add the analogous higher
order term Jρ = −2 V 2 which couples with the matter sector,
i.e. with the total matter energy density ρ+p. Upon including
these new source terms, we obtain the total Lagrangian [9]

L[V ] = LN[V ] − 4 π

∫ ∞

0
r2 dr [qV JV V + qB JB V

+ qρ Jρ (ρ + p)
]

= −4 π

∫ ∞

0
r2 dr

[ (
V ′)2

8 π GN
(1−4 qV V )

+V (ρ + qB p) − 2 qρV
2 (ρ + p)

]
. (2.7)

The parameters qV , qB and qρ play the role of coupling
constants4 for the three different currents JV , JB and Jρ
respectively. They also allow us to control the origin of non-
linearities, as we recover the Newtonian Lagrangian (2.1) by
setting all of them equal to zero.

3 The factor of 4 in the expression (2.5) of JV is chosen in order to
recover the expected first post-Newtonian correction in the vacuum
potential for the coupling constant qV = 1 (see Sect. 3.1).
4 Different values of qV , qB and qρ can be implemented in order to
obtain the approximate potentials for different motions of test particles
in general relativity and describe different interiors.

The associated effective Hamiltonian is simply given by

H [V ] = −L[V ], (2.8)

and the Euler–Lagrange equation for V reads

(1 − 4 qV V ) �V = 4 π GN (ρ + qB p)

−16 π GN qρ V (ρ + p) + 2 qV
(
V ′)2

. (2.9)

The latter must be supplemented with the conservation equa-
tion that determines the pressure,

p′ = −V ′ (ρ + p) , (2.10)

which can be seen as a correction to the usual Newtonian
formula that accounts for the contribution of the pressure to
the energy density, or as an approximation for the Tolman–
Oppenheimer–Volkoff equation of general relativity.

Although we showed the three parameters q�, qB and qρ

explicitly, we shall only consider q� = qB = qρ = 1 in the
following for the sake of simplicity. In this case, Eq. (2.9)
reduces to

�V = 4 π GN (ρ + p) + 2
(
V ′)2

1 − 4 V
, (2.11)

from which we see that the differences with respect to the
Poisson Eq. (2.2) are given by the inclusion of the pressure
p and the derivative self-interaction term in the right hand
side.

3 Homogeneous ball in vacuum

Since we are interested in compact sources, we will consider
the simplest case in which the matter density is homogeneous
and vanishes outside the sphere of radius r = R, that is

ρ = ρ0 ≡ 3 M0

4 π R3 �(R − r), (3.1)

where � is the Heaviside step function, and

M0 = 4 π

∫ R

0
r2 dr ρ(r). (3.2)

Of course, the uniform density (3.1) is not expected to be
compatible with an equation of state, since the pressure
p = p(r) must depend on the radial position so as to main-
tain equilibrium [7]. We also remark that uniform density is
not very realistic and is here used just for mathematical con-
venience and because it is the source for the exact interior
Schwarzschild solution [26] in general relativity.5

The potential must also satisfy the regularity condition in
the centre

V ′
in(0) = 0 (3.3)

5 More realistic energy densities with physically motivated equations
of state will be considered in future developments.
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Fig. 1 Potential Vout (solid line) vs Newtonian potential (dashed line)
vs order G2

N expansion of Vout (dotted line) for r > 0 (all quantities are
in units of GN M)

and be smooth across the surface r = R, that is

Vin(R) = Vout(R) ≡ VR (3.4)

V ′
in(R) = V ′

out(R) ≡ V ′
R, (3.5)

where we defined Vin = V (0 ≤ r ≤ R) and Vout = V (R ≤
r).

3.1 Outer vacuum solution

In the vacuum, where ρ = p = 0, Eq. (2.10) is trivially
satisfied and Eq. (2.11) with q� = 1 reads

�V = 2
(
V ′)2

1 − 4 V
, (3.6)

which is exactly solved by

Vout = 1

4

[
1 −

(
1 + 6GN M

r

)2/3
]

. (3.7)

where two integration constants were fixed by requiring the
expected Newtonian behaviour in terms of the ADM-like
mass M for large r . In fact, the large r expansion now reads

Vout �
r→∞ −GN M

r
+ G2

N M2

r2 − 8G3
N M3

3 r3 , (3.8)

and contains the expected post-Newtonian term VPN of order
G2

N without any further assumptions [9] (see Fig. 1).
From Eq. (3.7), we also obtain

VR = Vout(R) = 1

4

[
1 −

(
1 + 6GN M

R

)2/3
]

, (3.9)

and

V ′
R = V ′

out(R) = GN M

R2 (1 + 6GN M/R)1/3 , (3.10)

which we will often use since they appear in the boundary
conditions (3.4) and (3.5).

3.2 The inner pressure

We first consider the conservation Eq. (2.10) and notice that,
for 0 ≤ r ≤ R, we can write it as

(ρ0 + p)′

ρ0 + p
= −V ′, (3.11)

which allows us to express the total effective energy density
as

ρ0 + p = α e−V . (3.12)

The integration constant can be determined by imposing the
usual boundary condition

p(R) = 0, (3.13)

which finally yields

p = ρ0

[
eVR−V − 1

]
, (3.14)

where VR is given in Eq. (3.9).

3.3 The inner potential

The field equation (2.11) for 0 ≤ r ≤ R and q� = 1 becomes

�V = 4 π GN ρ0 e
VR−V + 2

(
V ′)2

1 − 4 V

= 3GN M0

R3 eVR−V + 2
(
V ′)2

1 − 4 V
, (3.15)

and we notice that ρ0 eVR < ρ0 since VR < 0. The relevant
solutionsVin to Eq. (3.15) must also satisfy the regularity con-
dition (3.3) and the matching conditions (3.4) and (3.5), with
VR and V ′

R respectively given in Eq. (3.9) and (3.10). Since
Eq. (3.15) is a second order (ordinary) differential equation,
the three boundary conditions (3.3), (3.4) and (3.5) will not
only fix the potential Vin uniquely, but also the ratio of the
proper mass parameter GN M0/R for any given value of the
compactness GN M/R.

It is hard to find the complete solution of the above prob-
lem for general compactness. An approximate analytic solu-
tion to Eq. (3.15) can be found quite straightforwardly only
in the regimes of low and intermediate compactness (i.e. for
GN M/R � 1 and GN M/R � 1). On the other hand, for
GN M � R, the non-linearity of Eq. (3.15) and the inter-
play between M0 and the boundary conditions (3.3), (3.4)
and (3.5) make it very difficult to find any (approximate or
numerical) solutions. In fact, even a slight error in the esti-
mate of M0 = M0(M, R) can spoil the solution completely.
For this reason, we will take advantage of the comparison
method [27–30] which essentially consists in finding two
bounding functions V± (upper and lower approximate solu-
tions) such that E+(r) < 0 and E−(r) > 0 for 0 ≤ r ≤ R,
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where

E± ≡ �V± − 3GN M±
0 (M)

R3 eVR−V± − 2
(
V ′±

)2

1 − 4 V±
. (3.16)

Comparison theorems then guarantee that the proper solu-
tion will lie in between the two bounding functions (see
Appendix C for more details6), that is

V− < Vin < V+. (3.17)

The advantage of this method is twofold. It will serve as a
tool for finding approximate solutions in the regime of large
compactness and will also allow us to check the accuracy of
the approximate analytic solution for low and intermediate
compactness.

3.3.1 Small and intermediate compactness

For the radius R of the source much larger or of the order of
GN M , an analytic approximation Vs for the solution Vin can
be found by simply expanding around r = 0, and turns out
to be

Vs = V0 + GN M0

2 R3 eVR−V0 r2. (3.18)

where V0 ≡ Vin(0) < 0 and VR is given in Eq. (3.9). We
remark that the regularity condition (3.3) requires that all
terms of odd order in r in the Taylor expansion about r = 0
must vanish.

We can immediately notice that the above form is
qualitatively similar to the Newtonian solution recalled in
Appendix B. Like the latter, the present case does not show
any singularity in the potential for r = 0 and the pressure,

p � ρ0

[
eVR−V0−B r2 − 1

]
, (3.19)

is also regular in r = 0,

p(0) = ρ0

[
e−(V0−VR) − 1

]
> 0, (3.20)

since V0 < VR < 0.
The two matching conditions at r = R can now be written

as⎧⎨
⎩

2 R (VR − V0) � GN M0 eVR−V0

R2 V ′
R � GN M0 eVR−V0 ,

(3.21)

One can solve the second equation of the system above for
V0 to obtain

V0 = 1

4

[
1 − (1 + 6GN M/R)2/3

]

6 We just remark here that the comparison theorems do not require that
the approximate solutions V± have the same functional forms of the
exact solution Vin.

+ ln

[
M0

M
(1 + 6GN M/R)1/3

]
, (3.22)

which is written in terms of M0 and M . Using the first equa-
tion in (3.21), one then finds

M0 = M e
− GN M

2 R(1+6GN M/R)1/3

(1 + 6GN M/R)1/3 . (3.23)

This last expression, along with the one for V0, can be used
to write the approximate solution (3.18) in terms of M only
as

Vs = R3
[
(1+6GN M/R)1/3 − 1

] +2 GN M
(
r2−4 R2

)
4 R3 (1+6GN M/R)1/3 ,

(3.24)

where we remark that this expression contains only the terms
of the first two orders in the series expansion about r = 0.

We can now estimate the accuracy of the approxima-
tion (3.18) by means of the comparison method. The plots
in Figs. 2 and 3 show that Vs is already in good agreement
with the numerical solution for both small and intermedi-
ate compactness and the smaller the ratio GN M/R, the less
Vs differs from the numerical solution. Indeed, the approxi-
mate solution Vs fails in the large compactness regime, which
will be studied in the next subsection. The same plots also
tell us that Vs is actually an upper bounding function V+
up to GN M/R � 1/20, but becomes a lower bounding
function V− for higher compactness (this can be verified by
showing that it satisfies the required conditions described in
Appendix C). The other bounding function (V− or V+) can
be found by simply multiplying Vs by a suitable constant fac-
tor C determined according to the theorem in Appendix C
(with C > 1 for small compactness and C < 1 for interme-
diate compactness). This means that the approximate solu-
tion (3.18) overestimates the expected true potential Vin for
low compactness, whereas it underestimates Vin when the
compactness grows beyond GN M/R � 1/20. We also note
that the gap between the above V− and V+ increases for
increasing compactness, which signals the need for a better
estimate of M0 = M0(M) in order to narrow this gap and
gain more precision for describing the intermediate compact-
ness. The latter regime is particularly useful for understand-
ing objects that have collapsed to a size of the order of their
gravitational radius.7 We should remark that, in this analysis,
we actually employed the comparison method in the whole
range 0 ≤ r < ∞ by defining V± = C± Vout, for r > R,
where Vout is the exact solution in Eq. (3.7) (see Figs. 4 and

7 The uniform density profile (3.1) can also be viewed as a crude
approximation of the density in the corpuscular model of black holes, in
which the energy is distributed throughout the entire inner volume [15–
21,31–40].
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Fig. 2 Numerical solution to Eq. (3.15) (solid line) vs approximate
solution Vs = V+ in Eq. (3.24) (dotted line) vs lower bounding func-
tion V− = C Vs (dashed line), for GN M/R = 1/100 (top left panel,
withC = 1.002),GN M/R = 1/50 (top central panel, withC = 1.003)

and GN M/R = 1/20 (top right panel, with C = 1.004). The bottom
panels show the region 0 ≤ r ≤ R/100 where the difference between
the three potentials is the largest

Fig. 3 Numerical solution to Eq. (3.15) (solid line) vs approximate
solution Vs = V− in Eq. (3.24) (dotted line) vs upper bounding func-
tion V+ = C Vs (dashed line), for GN M/R = 1/10 (top left panel,
with C = 0.998), GN M/R = 1/5 (top central panel, with C = 0.980)

and GN M/R = 1 (top right panel, with C = 0.680). The bottom pan-
els show the region 0 < r < R/100 where the difference between the
three expressions is the largest

123
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Fig. 4 Upper panels: numerical solution Vn to Eq. (3.15) matched
to the exact outer solution (3.7) (solid line) vs approximate solution
Vs = V+ in Eq. (3.24) (dotted line) vs lower bounding function V−
(dashed line) for GN M/R = 1/100 (top left), GN M/R = 1/50 (top
middle) and GN M/R = 1/20 (top right). Bottom panels: relative dif-

ference (Vs −Vn)/Vn (dotted line) vs (V− −Vn)/Vn (dashed line) in the
interior region for GN M/R = 1/100 (bottom left), GN M/R = 1/50
(bottom middle) and GN M/R = 1/20 (bottom right). The negative
sign of (Vs − Vn)/Vn shows that the approximate solution is an upper
bounding function Vs = V+ in this range of compactness

5). This means that we did not require that the lower func-
tion V− (for GN M/R � 1/20) and the upper function V+
(for GN M/R � 1/20) satisfy the boundary conditions (3.4)
and (3.5) at r = R. However, since we have the analytical
form for Vout in its entire range of applicability, all that is
needed to ensure that V± are the upper and lower bounding
functions is for the constants C± which multiply the expres-
sion for Vout to be smaller, respectively larger than one.

As stated earlier, the analytic approximation (3.24) works
best in the regime of small compactness, in which we
can further Taylor expand all quantities to second order in
GN M/R � 1 to obtain

V0 � −3GN M

2 R

(
1 − 4 GN M

3 R

)
, (3.25)

and finally use Eq. (3.23) to obtain

M0 � M

(
1 − 5GN M

2 R

)
, (3.26)

in qualitative agreement with the result of Ref. [7], where
however the effect of the pressure on the potential was
neglected.

The above expressions for M0 and V0 can be used to write
the inner potential (3.18) in a much simpler form in terms of
M as

Vin � −3GN M

2 R
+ 2 G2

N M2

R2 + GN M (R − 2 GN M)

2 R4 r2.

(3.27)

As expected, the solution for small compactness, which can
be useful for describing stars with a radius orders of magni-
tude larger in size than their gravitational radius, qualitatively
tracks the Newtonian case. This can also be seen from Fig. 6.
The limitations of the small compactness approximation can
be inferred from Eq. (3.27). For 2 GN M ≡ RH ∼ R the last
term vanishes and Vin becomes a constant.

Finally, it is important to remark that, as opposed to what
was done in Ref. [7], the pressure now acts as a source and
can be consistently evaluated with the help of Eqs. (3.14)
and (3.18). The plots in Fig. 7 clearly show that the pressure
can be well approximated by the Newtonian formula in the
regime of low compactness, to wit

p � 3GN M2 (R2 − r2)

8 π R6 , (3.28)

again in qualitative agreement with Ref. [7]. Nevertheless,
the same plots indicate that it rapidly departs from the New-
tonian expression when we approach the regime of interme-
diate compactness, while remaining almost identical to the
numerical approximation.
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Fig. 5 Upper panels: numerical solution Vn to Eq. (3.15) matched
to the exact outer solution (3.7) (solid line) vs approximate solution
Vs = V− in Eq. (3.24) (dotted line) vs upper bounding function V+
(dashed line) for GN M/R = 1/10 (top left), GN M/R = 1/5 (top
middle) and GN M/R = 1 (top right). Bottom panels: relative differ-
ence (Vs − Vn)/Vn (dotted line) vs (V+ − Vn)/Vn (dashed line) in the

interior region for GN M/R = 1/10 (bottom left), GN M/R = 1/5
(bottom middle) and GN M/R = 1 (bottom right). The negative sign of
(Vs − Vn)/Vn shows that the approximate solution is a lower bounding
function Vs = V− in this range of compactness. The rapid growth in
modulus of (V+ − Vn)/Vn with the compactness signals the need of a
better estimate of M = M(M0) for a more accurate description

Fig. 6 Potential Vout (solid line) vs approximate solution (3.24) (dotted line) vs Newtonian potential (dashed line), for GN M/R = 1 (left panel),
GN M/R = 1/10 (center panel) and GN M/R = 1/100 (right panel)

Fig. 7 Pressure obtained from the expansion (3.18) (solid line) vs numerical pressure (dotted line) vs Newtonian pressure (3.28) (dashed line), for
GN M/R = 1/100 (left panel), GN M/R = 1/10 (center panel) and GN M/R = 1 (right panel)
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3.3.2 Large compactness

ForGN M/R � 1, rather than employing a Taylor expansion
like we did for small compactness, it is more convenient to
fully rely on comparison methods [27–30] and start from the
exact solution of the simpler equation

ψ ′′ = 3GN M0

R3 eVR−ψ, (3.29)

which is given by

ψ(r; A, B) = −A
(
B + r

R

)

+ 2 ln

[
1 + 3GN M0

2 A2 R
eA (B+r/R)+VR

]
, (3.30)

where the constants A, B and M0 can be fixed (for any
value of R) by imposing the boundary conditions (3.3), (3.4)
and (3.5). Regularity at r = 0 in particular yields

M0 = 2 A2 R

3GN
e−A B−VR . (3.31)

Equation (3.5) for the continuity of the derivative across r =
R then reads

A tanh(A/2) = R V ′
R . (3.32)

For large compactness, R V ′
R ∼ (GN M/R)2/3 � 1, and we

can approximate the above equation as

A � R V ′
R . (3.33)

The continuity Eq. (3.4) for the potential finally reads

2 ln
(

1 + eR V ′
R

)
− R V ′

R (1 + B) = VR, (3.34)

and can be used to express B in terms of M and R. Putting
everything together, we obtain

ψ(r; M, R) � 1

4

⎧⎪⎨
⎪⎩1 − 1 + (2 GN M/R) (1 + 2 r/R)

(1 + 6GN M/R)1/3

+8 ln

⎡
⎢⎣1 + e

GN M r/R2

(1+6GN M/R)1/3

1 + e
GN M/R

(1+6GN M/R)1/3

⎤
⎥⎦

⎫⎪⎬
⎪⎭

� 1

2

(
GN M√

6 R

)2/3 (
2 r

R
− 5

)
, (3.35)

and

M0

M
� GN M/R

3 (1 + 6GN M/R)2/3
{

1 + cosh
[

GN M/R
(1+6GN M/R)1/3

]}

� 1

3

(
2 GN M

9 R

)1/3

e
−

(
GN M√

6 R

)2/3

, (3.36)

in which we showed the leading behaviours for GN M � R.
It is important to remark that the condition (3.3) is not

apparently satisfied by the above approximate expressions,
although it was imposed from the very beginning, which
shows once more how complex is to obtain analytical approx-
imations for the problem at hand.

The solutions to the complete equation (3.15) could then
be written as

Vin = f (r; A, B) ψ(r; A, B), (3.37)

where A, B and M0 should again be computed from the three
boundary conditions, so that Vin eventually depends only on
the parameters M and R. Since solving for f = f (r) is not
any simpler than the original task, we shall instead just find
lower and upper bounds, that is constants C± such that

C− < f (r) < C+, (3.38)

in the whole range 0 ≤ r ≤ R. In particular, we consider the
bounding functions

V± = C± ψ(r; A±, B±), (3.39)

where A±, B± and C± are constants computed by imposing
the boundary conditions (3.3), (3.4) and (3.5) and such that
E+(r) < 0 and E−(r) > 0 for 0 ≤ r ≤ R.

In details, we first determine a function VC=C ψ(r; A, B)

which satisfies the three boundary conditions for any constant
C . Equation (3.3) yields the same expression (3.31), whereas
the l.h.s. of Eq. (3.32) is just rescaled by the factor C and
continuity of the derivative therefore gives the approximate
solution

C A � R V ′
R . (3.40)

Equation (3.4) for the continuity of the potential likewise
reads

2C ln
(

1 + eR V ′
R/C

)
− R V ′

R (1 + B) = VR, (3.41)

Upon solving the above equations one then obtains VC =
C ψ(r; A(M, R,C), B(M, R,C)) and M0=M0(M, R,C).
For fixed values of R and M , one can then numerically
determine a constant C+ such that E+ < 0 and a constant
C− < C+ such that E− > 0.

For example, for the compactness GN M/R = 103, we
can use C− � 1 and C+ � 1.6, and the plots of E− and
E+ are shown in Fig. 8. In particular, the minimum value
of |E+| � 14. The corresponding potentials V± along with
Ṽ = C̃ ψ , where C̃ = (C+ +C−)/2, are displayed in Fig. 9.
It is easy to see that the three approximate solutions essen-
tially coincide almost everywhere, except near r = 0 where
they start to fan out, albeit still very slightly (the right panel
of Fig. 9 shows a close-up of this effect). A similar behaviour
is obtained for larger values of GN M/R. For smaller values
of the compactness up to GN M/R � 50, the approxima-
tion (3.40) is still quite accurate (see Fig. 10), even if the
smaller the compactness the bigger the difference between
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Fig. 8 Left panel: E− for C− = 1. Right panel: E+ for C+ = 1.6. Both plots are for GN M/R = 103

Fig. 9 Left panel: approximate inner potentials V− (dashed line), Ṽ
(solid line) and V+ (dotted line) for 0 ≤ r ≤ R and exact outer potential
Vout (dotted line) for r > R. Right panel: approximate inner potentials

V− (dashed line), Ṽ (solid line) and V+ (dotted line) for 0 ≤ r ≤ R/5.
Both plots are for GN M/R = 103

Fig. 10 Approximate inner potentials V− (dashed line), Ṽ (solid line) and V+ (dotted line) for 0 ≤ r ≤ R and exact outer potential Vout (dotted
line) for r > R and for GN M/R = 102 (left panel, with C− = 1.042 and C+ = 1.52) and GN M/R = 50 (right panel, with C− = 1.073 and
C+ = 1.5)
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Fig. 11 Approximate inner potentialsV− (dashed line),Vlin (solid line)
and V+ (dotted line) for 0 ≤ r ≤ R. Both plots are for GN M/R = 103

V±. Actually, the error in the derivative of the potential at
r = R is of the order of 0.01 % and 0.6 % forGN M/R = 102

and GN M/R = 50, respectively. In order to obtain a com-
parable precision for lower compactness, the approximate
expression (3.40) should be improved, but we do not need
to do that given how accurate is the perturbative expansion
employed in Sect. 3.3.1.

From the left panel of Fig. 9, it is clear that for GN M/R =
103 the potential Vin is practically linear, except near r = 0
where it turns into a quadratic shape, in order to ensure the
regularity condition (3.3). An approximate expression for the
source proper mass M0 in terms of M can then be obtained
from the simple linear approximation

Vlin � VR + V ′
R (r − R) , (3.42)

where VR and V ′
R are given by the usual expressions (3.9) and

(3.10), and which is shown in Fig. 11 for GN M/R = 103.
Upon replacing the approximation (3.42) into the Eq. (3.15)
for r = R, we obtain

M0

M
� 2 (1 + 5GN M/R)

3 (1 + 6GN M/R)4/3 . (3.43)

The linear approximation is not very useful when it comes
to evaluate the maximum value of the pressure, which we
expect to occur in the origin at r = 0, precisely where this
approximation must fail. We therefore consider again the
approximation Ṽ = C̃ ψ , which replaced into Eq. (3.14)
gives rise to the pressure shown in Fig. 12. Since the full
expression is very cumbersome, we just show the leading
order contribution for large compactness

p � M2 e
1
2

(
GN M√

6 R

)2/3(
3− 5

C̃

)

2 π C̃2 (6GN M/R)2/3

[
e

(
GN M√

6 R

)2/3
(1− r

R ) − 1

]
,

(3.44)

which yields

p(0) � M2 e
5
2

(
C̃−1
C̃

)(
GN M√

6 R

)2/3

2 π C̃2 (6GN M/R)2/3
, (3.45)

where we find that C̃ > 1 for GN M/R � 1. It is clear
from this expression and Fig. 12 how rapidly the pressure
grows near the origin when the compactness increases, but
still remaining finite and regular everywhere even for very
large compactness. In Fig. 13 we can see the comparison
of the above approximate expression with the graphs shown
in Fig. 12. Of course the biggest the compactness the more
rapidly the approximation (3.44) approaches the results of
Fig. 12. In Figs. 14 and 15 we instead plot the comparison
between the approximation (3.44) with C̃ = (C+ + C−)/2
and the pressure evaluated from Eq. (3.14) and V± = C± ψ .
The values of C− and C+ are the same as in Figs. 9 and 10
for the corresponding compactness.

4 Horizon and gravitational energy

The approach we used so far completely neglects any geomet-
rical aspect of gravity. In particular, it is well known that col-
lapsing matter is responsible for the emergence of black hole
geometries, providing us with the associated Schwarzschild
radius (1.1). In general relativity, this marks the boundary
between sources which we consider as stars (R � RH) and
black holes (R � RH). Moreover, if the pressure is isotropic,
stars must have a radius R > (9/8) RH, known as the Buch-
dahl limit [23], otherwise the necessary pressure diverges.

We found that the pressure is always finite in our boot-
strapped picture, hence there is no analogue of the Buchdahl
limit. This means that the source can have arbitrarily large
compactness, including R < RH. Lacking precise geomet-
rical quantities, we will follow a Newtonian argument and
define the horizon as the value rH of the radius at which the
escape velocity of test particles equals the speed of light,
namely

2 V (rH) = −1, (4.1)

as in Ref. [7]. Of course, when the source is diluted no horizon
should exist and the above definition correctly reproduces
this expectation, since that condition is never fulfilled for
small compactness (see Figs. 2 and 3). In fact, we can find a
limiting lower value for the compactness at which Eq. (4.1)
has a solution, by requiring

2 Vin(rH = 0) = −1, (4.2)

which gives GN M/R � 0.46 if we use V (0) = V0 from
Eq. (3.22). Upon increasing the compactness, the horizon
radius rH will increase and eventually approach the radius R
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Fig. 12 Pressure evaluated using the approximation Ṽ = C̃ ψ forGN M/R = 50 (left panel),GN M/R = 100 (center panel) andGN M/R = 1000
(right panel). The constant C̃ = (C+ + C−)/2, where C+ and C− are the same as in Figs. 9 and 10 for the corresponding cases

Fig. 13 Comparison between the approximate pressure (12) (dotted line) vs solution of Eq. (3.44) with Ṽ = C̃ ψ and C̃ = (C+ + C−)/2 (solid
line) for GN M/R = 50 (top left panel), GN M/R = 100 (top central panel), GN M/R = 1000 (top right panel), and the corresponding close-ups
in the bottom panels

Fig. 14 Pressure evaluated from V− = C− ψ (dashed line) vs pressure evaluated from Ṽ = C̃ ψ (dotted line) for GN M/R = 50 (left panel),
GN M/R = 100 (center panel) and GN M/R = 1000 (right panel)
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Fig. 15 Pressure evaluated from V+ = C+ ψ (dashed line) vs pressure evaluated from Ṽ = C̃ ψ with C̃ = (C+ + C−)/2 (dotted line) for
GN M/R = 50 (left panel), GN M/R = 100 (center panel) and GN M/R = 1000 (right panel)

of the matter source, which occurs when

2 Vin(rH = R) = 2 Vout(R) = −1, (4.3)

where Vout(R) = VR is given by the exact expression in
Eq. (3.9). This yields the compactness GN M/R � 0.69
and rH � R � 1.43GN M . For even larger values of the
compactness, the horizon radius will always appear in the
outer potential (3.7) and therefore remain fixed at this value
in terms of M . We can summarise the situation as follows⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

no horizon for GN M/R � 0.46

0 < rH ≤ R�1.4 GN M for 0.46 � GN M/R≤0.69

rH � 1.4 GN M for GN M/R � 0.69.

(4.4)

The above values of the compactness further correspond to
proper masses

M0

M
�

⎧⎨
⎩

0.56 for GN M/R � 0.46

0.47 for GN M/R � 0.69,

(4.5)

so that, when the horizon is precisely at the surface of the
source, we have

rH � 1.4 GN M � 3GN M0. (4.6)

It is also important to remark that the horizon rH lies inside
the source for a relatively narrow range of the compactness
(see Fig. 16 for the corresponding potentials).

We can next estimate the gravitational potential energy
UG from the effective Hamiltonian (2.8) (with q� = 1).
For calculation and conceptual purposes, it is convenient to
separate UG into three different parts: the “baryon-graviton”
contribution, for which the radial integral has only support
inside the matter source, given by

UBG = 4 π

∫ ∞

0
r2 dr (ρ + p) V (1 − 2 V )

= 3 M0

R3

∫ R

0
r2 dr eVR−VinVin (1 − 2 Vin) , (4.7)

Fig. 16 Potentials corresponding to rH = 0 (solid line) and rH = R
(dashed line)

where we employed Eq. (3.14); the “graviton-graviton” con-
tribution due to the potential self-interaction inside the source

U in
GG = 1

2 GN

∫ R

0
r2 dr

(
V ′

in

)2
(1 − 4 Vin) (4.8)

and outside the source

U out
GG = 1

2 GN

∫ ∞

R
r2 dr

(
V ′

out

)2
(1 − 4 Vout) , (4.9)

While the contribution from the outside is exactly given by

U out
GG = GN M2

2 R
. (4.10)

the inner contributions UBG and U in
GG can only be evaluated

within the approximations for the potential employed in the
previous sections.

The energy contributions for objects of low compactness
GN M/R � 1 can be evaluated straightforwardly. Starting
from the approximate expression in (3.26) and (3.27) the total
energy is calculated to be

UG = UBG +U in
GG +U out

GG � −3GN M2

5 R
+ 9G2

N M3

7 R2 ,

(4.11)
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Fig. 17 Total gravitational potential energy UG. Left panel: UG in the
low compactness regime from the analytic approximations valid in the
low and intermediate regime (continuous line) vs UG from Eq. (4.11)

(dashed line). Center panel: UG in the low and intermediate compact-
ness regime. Right panel: UG in the high compactness regime

where we immediately notice the usual newtonian term at
the lowest order.

One can also calculate the three components of the gravi-
tational potential energy in the regime of intermediate com-
pactness GN M/R ∼ 1, but the explicit expressions would
be too cumbersome to display. Instead, the left panel of
Fig. 17 shows a comparison in the regime of low compactness
between the above expression for UG and the one obtained
starting from the analytic approximations from Eqs. (3.23)
and (3.24), which are valid both for sources of low and inter-
mediate compactness. It can be seen that the two approxima-
tions lead to similar results for objects that have low compact-
ness. The center panel also shows the behaviour of UG for
objects of intermediate compactness. As expected, the grav-
itational potential energy becomes more and more negative
as the density of the source increases.

We conclude with the high compactness regime, in which
the increase in modulus of the negative gravitational potential
energy is even more dramatic, as shown in the right panel of
Fig. 17. To make things easier, we are going to evaluate the
contributions (4.7) and (4.8) in the limit GN M/R � 1, with
the help of the linear approximation (3.42) and (3.43). The
leading order in GN M/R � 1 then reads

UBG � −125 R

3GN
e

(
GN M√

6 R

)2/3

(4.12)

and

U in
GG � 5GN M2

36 R
. (4.13)

One expects that this negative and large potential energy UG

is counterbalanced by the positive energy (D.11) associated
with the pressure (3.44) inside the matter source.

Of course, the total energy of the system should still be
given by the ADM-like mass M , which must therefore equal
the sum of the matter proper mass M0 and the energy asso-
ciated with the pressure (see Appendix D for more details
about the energy balance).

5 Conclusions and (quantum) outlook

In this work we have fully developed a bootstrapped model of
isotropic and homogeneous stars, in which the pressure and
density both contribute to the potential describing the gravi-
tational pull on test particles. No equivalent of the Buchdahl
limit was found, and the matter source can therefore be kept
in equilibrium by a sufficiently large (and finite) pressure for
any (finite) value of the compactness GN M/R. When the
compactness of the source exceeds a value of order 0.46, a
horizon appears inside the source and its radius rH � R for
GN M/R � 0.69. For larger values of the compactness, the
source is entirely inside rH and we can consider cases with
rH � R as representing bootstrapped Newtonian black holes.

When the matter is collapsed further inside the horizon,
that is for larger compactness such that rH � R, the grav-
itational potential energy grows even more negative, and a
correspondingly very large pressure p is required in order
to support the matter core. In fact, if we assume that black
holes have regular inner cores of finite proper mass M0 and
thickness R, from Eq. (3.43) we obtain

GN M0

R
∼

(
GN M

R

)2/3

, (5.1)

so that M0/M ∼ (R/GN M)1/3 for GN M/R � 1. This
means that most of the matter energy must be accounted
for by the interactions that give rise to the pressure in very
compact sources. Such a huge pressure p � ρ violates the
dominant energy condition [24] and could only be of purely
quantum nature, thus requiring a quantum description of the
matter in the source.

Correspondingly, the regular potential we obtained in the
present work should be viewed as the mean field description
of the quantum state of the (off-shell) gravitons in a (regular8)
black hole when R � rH. It will be therefore a natural devel-

8 For a review, see Ref. [43]
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opment to investigate the quantum features of this potential,
as it affects both the quantum state of matter inside the black
hole (or falling into it) and the dynamics of the gravitons
themselves. Eventually, one would also like to identify the
fully quantum state that generates this potential, like it was
done for the Newtonian potential in Refs. [9,33,34], or in
Refs. [40–42]. Finally, we would like to remark that, although
we found that M � M0 for very large compactness, and one
could thus infer that matter become almost irrelevant inside
a black hole [15–21], the above picture inherently requires
the presence of matter, whose role in black hole physics we
believe needs more investigations [35–39].
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A Gravitational current

We present here an alternative derivation of the gravitational
current leading to the same Lagrangian (2.7) of Sect. 2. The
starting point will now be the Newtonian energy evaluated
on-shell inside a sphere of radius r , that is

UN(r) = 2 π

∫ r

0
r̄2 dr̄ ρ(r̄) V (r̄)

= 1

2 GN

∫ r

0
r̄2 dr̄ V (r̄)�V (r̄), (A.1)

in which we do not perform any integration by parts. We can
then define a current J̃V proportional to the energy density by
deriving UN(r) with respect to the volume V , which yields

J̃V � 2
dUN

dV = V (r)�V (r)

4 π GN
. (A.2)

One can immediately notice that we chose to have a dif-
ferent numerical factor in front of J̃V from the one in JV
of Eq. (2.5) in order to keep the same coupling parameter
q̃V = qV . It is now easy to see that by adding all other
sources described in Sect. 2 together with (A.2), we end up
with the same Lagrangian (2.7),

L̃[V ] = LN[V ] − 4 π

∫ ∞

0
r2 dr

×
[
qV J̃V V + qB JB V + qρ Jρ (ρ + p)

]
= L[V ],

(A.3)

where we discarded vanishing boundary terms. In fact, we
have∫ ∞

0
r2 dr JV V = 2

∫ ∞

0
r2 dr J̃V V +

[
r2 V 2 V ′]r→∞

r=0
,

(A.4)

and the second term in the right hand side vanishes because
of the boundary conditions at r → ∞ and Eq. (3.3) at r = 0.

B Newtonian solution

We recall that the Newtonian solution of the Poisson equa-
tion (2.2) with a homogeneous source of mass M0 and radius
R,

�VN = 3GN M0

R3 �(R − r), (B.1)

is given by

VN =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

GN M0

2 R3

(
r2 − 3 R2

)
for 0 ≤ r < R

−GN M0

r
for r > R,

(B.2)

which is continuous, with continuous first derivative across
r = R. We also remark that there is one and the same mass
parameter M0 = M in the interior and exterior part of the
potential.

C Comparison method

We have shown in Sect. 3.3 that a solution to Eq. (3.15)
satisfying Eq. (3.17) exists by employing comparison func-
tions [27–29] and we recall the fundamentals of this method
here for the sake of convenience.

Let us consider an equation of the form

u′′(r) = F(r, u(r), u′(r)), (C.1)

where F is a real function of its arguments, r varies in the
finite interval [r1, r2] and a prime denotes the derivative with
respect to r . We want to find a solution which further satisfies
the general boundary conditions

a1 u(r1) − a2 u
′(r1) = A0, (C.2)

b1 u(r2) + b2 u
′(r2) = B0, (C.3)
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with A0, B0, a1, b1 real numbers and a2, b2 non negative
real numbers satisfying a2

1 + a2
2 > 0 and b2

1 + b2
2 > 0.

The theorems in Refs. [27–29] guarantee that such a solution
u ∈ C2([r1, r2]) exists under the following three conditions:

1. we can find a lower bounding function

u′′−(r) ≥ F(r, u−(r), u′−(r)) (C.4)

a1 u−(r1) − a2 u
′−(r1) ≤ A0 (C.5)

b1 u−(r2) + b2 u
′−(r2) ≤ B0, (C.6)

and an upper bounding function

u′′+(r) ≤ F(r, u+(r), u′+(r)) (C.7)

a1 u+(r1) − a2 u
′+(r1) ≥ A0 (C.8)

b1 u+(r2) + b2 u
′+(r2) ≥ B0 ; (C.9)

2. the function F is continuous on the domain D =
{(r, u, u′) ∈ [r1, r2] × R

2 | u− ≤ u ≤ u+};
3. the function F satisfies a Nagumo condition: there exists

a continuous and positive function φ such that

∫ ∞

0

s ds

φ(s)
= ∞ (C.10)

and, ∀(t, u, u′) ∈ D,

|F(r, u(r), u′(r))| ≤ φ(|u′|). (C.11)

Moreover, the solution u will satisfy

u−(t) ≤ u(t) ≤ u+(t). (C.12)

We can now apply the above general theorem to our prob-
lem inside the source, for which r1 = 0 and r2 = R. We first
rewrite Eq. (3.15) as

V ′′ = 3GN M0

R3 eVR−V + 2
(
V ′)2

1 − 4 V
− 2 V ′

r
≡ F(r, V, V ′), (C.13)

and recall the boundary conditions (3.3) and (3.4), that is

V ′(0) = 0 (C.14)

V (R) = VR . (C.15)

We can now verify all the requirements of the theorem, and
will do so for the case of large compactness analysed in
Sect. 3.3.2. The upper and lower bounding functions are
therefore V± given in Eq. (3.39) and the domain

D = {(r, V, V ′) ∈ [0, R] × R
2 | V− ≤ V ≤ V+ }. (C.16)

Continuity of F on D is easily verified. In fact, the first term
on the right hand side of Eq. (C.13) is an exponential of V

which is always regular in D. The same is true for the second
term considering that V± < 0, thus V < 0 as well. The
last term could be tricky but the boundary condition (C.14)
require that V ′ vanishes at r = 0 at least as fast as r [see
the expansion around r = 0 in Eq. (3.18)] so that this is also
regular in D. Finally, we can choose

φ = max
D

(F), (C.17)

which must be finite given that F is continuous in D.
All of the hypotheses of the theorem hold and a solu-

tion to Eq. (3.15) therefore exists and satisfies Eq. (3.17).
By imposing the remaining boundary condition (3.5), one
can then obtain a relation between M0, which appears in the
Eq. (3.15), and M , which appears in the boundary condi-
tions (3.4) and (3.5), for any given value of R.

D Energy balance

In Sect. 4, we only computed the gravitational energy from
the Hamiltonian (2.8). The purely baryonic contribution will
be given by the proper mass M0 and the pressure energy
contribution found again from the newtonian argument (2.6),
whereby

UB(R) = D(M, R) − 4 π

∫ R

0
r2 dr p(r). (D.1)

In the newtonian regime, the integration constant D(M, R)

can be fixed so as to guarantee that the work done by gravity
is equal and opposite to the work done by the forces respon-
sible for the pressure p. In other words, in that case we find
D(M, R) by requiring that the gravitational force is conser-
vative. This will also ensure that the total energy related to
the Hamiltonian constraint equals the ADM-like mass M of
the system, that is

E = M0 +UG +UB = M. (D.2)

Of course, in the Newtonian case Eq. (D.2) simply reads
E = M0 ≡ M , as shown in Ref. [7].

In the bootstrapped picture, gravity is not a linear interac-
tion any more and it is not at all obvious that it will still be con-
servative. A precise energy estimate would therefore require
a complete knowledge of the dynamical process which led
to the formation of the equilibrium configuration of given
ADM-like mass M and radius R. Without that knowledge,
we can only assume that the total energy of the equilibrium
configuration equals M and fix D(M, R) so that the Hamil-
tonian constraint (D.2) is satisfied.

With that prescription, we can now evaluate the baryonic
contributions. In the low compactness case, we expand all
the terms in Eq. (D.2) to order M3, namely
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M0 � M − 5GN M2

2 R
+ 81G2

N M3

8 R2 , (D.3)

and the pressure energy

UB � Ds(M, R) − GN M2

5 R
+ 61G2

N M3

70 R2 . (D.4)

Equation (D.2) is then satisfied for

Ds(M, R) � −33GN M2

10 R
+ 3439G2

N M3

280 R2 (D.5)

so that

UB � 31GN M2

10 R

(
1 − 6390 GN M

1736 R

)
, (D.6)

which is positive only for small compactness, as its approx-
imation requires.

The high compactness regime of course yields quite dif-
ferent results. To make things easier, we again look at the
limiting case of very high compactness, where the linear
approximation (3.42) holds, and consider the Hamiltonian
constraint (D.2) only at leading order in M . The proper mass
in Eq. (3.43) can be simplified further to give

M0 � 5 M

9 (6GN M/R)1/3 , (D.7)

while the pressure energy can be written as

UB � Db(M, R) − 20 R3

G3
N M2

(
GN M√

6 R

)2/3

e

(
GN M√

6 R

)2/3

. (D.8)

Again, we just impose Eq. (D.2) and find

Db(M, R) � M + 20 R3

G3
N M2

(
GN M√

6 R

)2/3

e

(
GN M√

6 R

)2/3

+ 125 R

3GN
e

(
GN M√

6 R

)2/3

(D.9)

− 7GN M2

36 R
− 5 M

9 (6GN M/R)1/3 , (D.10)

so that

UB � 125 R

3GN
e

(
GN M√

6 R

)2/3

, (D.11)

which is positive as it should, and precisely counterbalances
Eq. (4.12).
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