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ABSTRACT 

This paper proposes an improved estimation method for the population coefficient 
of variation, which uses information on a single auxiliary variable. The authors 
derived the expressions for the mean squared error of the proposed estimators up 
to the first order of approximation. It was demonstrated that the estimators 
proposed by the authors are more efficient than the existing ones. The results of 
the study were validated by both empirical and simulation studies. 
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mean square error. 

1. Introduction 

It is a prominent fact in the theory of sample surveys that suitable use of 
auxiliary information increases the efficiency of the estimators used for estimating 
the unknown population parameters. Some important works illustrating use of 
auxiliary information at estimation stage are Singh et al. (2005), Singh et al. 
(2007), Khoshnevisan et al. (2007), Singh et al. (2009), Singh and Kumar (2011), 
Malik and Singh (2013) and Singh et al. (2018). Over a vast period of time 
a substantial amount of work has been done by several authors for the estimation 
of population mean, population variance but little attention has been given to the 
estimation of the population coefficient of variation. Das and Tripathi (1992–93) 
first proposed the estimator for the coefficient of variation when samples were 
selected using simple random sampling without replacement (SRSWOR) scheme. 
Other works include Patel and Shah (2009) and Ahmed, S.E. (2002). Breunig 
(2001) suggested an almost unbiased estimator of the coefficient of variation. 
Sisodia and Dwivedi (1981) suggested a modified ratio estimator using the 
coefficient of variation of auxiliary variable.  
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Rajyaguru and Gupta (2005) also worked on the problem of estimation of the 
coefficient of variation under simple random sampling and stratified random 
sampling. 

The coefficient of variation is extensively used in biology, agriculture and 
environmental sciences. 

A brief summary of the paper is as follows. 

Section 1 is introductory in nature, comprises the works that have been 
already done in the sampling literature. In Section 2 we considered five estimators 
for comparison purposes and their properties. In Section 3, we proposed two log 
type estimators for the coefficient of variation, one general type estimator and one 
wider type. In Section 4, an empirical study was carried out in support of our 
results. In Section 5, we carried out a simulation study to validate our theoretical 
results and have presented them with the help of bar graphs. In Section 6 we 
finally concluded our results. 

Let us consider a finite population P = (P1, P2……… PN) of size ‘N’ consisting 
of distinct and identifiable units. Let the study and auxiliary variables be denoted 
by Y and X, and let Yi and Xi be their values corresponding to ith unit in the 
population (i = 1, 2………. N). We define: 
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as the population covariance between the 

study and auxiliary variable, X and Y. 

Let us suppose that a sample of size ‘n’ has been drawn from this population 
of size ‘N’ units using SRSWOR technique. For this sample let yi and xi denote 
values of the ith sample unit corresponding to study variable Y and auxiliary 
variable X respectively.  

For the sample observations, we define: 
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Here, 
N

n
   f : Sampling fraction,  

Y

S
   

y
yC  and  

X

S
   xxC  are the 

population coefficient of variation for the study variable Y and auxiliary variable X, 

respectively. Also xy denotes the correlation coefficient between X and Y. 
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In general,  
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2. Existing estimators 

 The usual unbiased estimator to estimate the population coefficient of variation 
using information on a single auxiliary variable is defined below: 
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Its mean squared error (MSE) is given by: 
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 Solanki et al. (2015) introduced a difference type estimator for the population 

coefficient of variation yC
 
as: 
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 Solanki et al. (2015) defined another class of estimator for the population 

coefficient of variation  yC
 
as: 

 xxyd CCCC  ˆˆ  21

*          (2.5) 

 

 MSE of 
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dC  is given by: 
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On differentiating equation (2.6) with respect to 1 and 2 , we obtain their 

optimum values as: 
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On substituting these optimum values of 1  and ,2  
 in equation (2.6), we 

obtain the Minimum MSE for the estimator 
*

dC as: 
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 Adichwal et al. (2016) proposed a two-parameter ratio-product-ratio estimator 
for the population coefficient of variation as: 
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MSE of the estimators 1rt and 2rt are respectively given by: 
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3. Proposed estimators 

We have proposed some estimators for the coefficient of variation based on 
information on a single auxiliary variable. 

Motivated by Mishra and Singh (2017), we propose improved log type 
estimators for estimating the population coefficient of variation given by: 

estimators t1 and t2 as:  

a) 
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Expressing the estimator 1t and in terms of s' and then taking expectations 

up to the first order of approximation, we get MSE of  the estimator  as:  
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To obtain the optimum value of , we partially differentiate the expression 

(3.4) with respect to    and we obtain the optimum value as: 
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Putting this optimum value of   in equation (3.4), we get the minimum value 

for  1tMSE  as: 
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Expressing the estimators 2t in terms of s' and then taking expectations up 

to the first order of approximation we  get MSE  of  the estimator 2t  as:  
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To obtain the optimum value of 1w  and ,w 2 we differentiate the expression 

(2.21) with respect to 1w and 2w and obtain the optimum values as: 
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Putting these optimum values of 1w  and 2w  in equation (2.21), we get the 

minimum value for  2tMSE  as: 
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c) Following Srivastava and Jhajj (1981), we propose a general class of 

estimators to estimate the population coefficient of variation yC of the study 

variable Y using known mean and known variance of auxiliary variable X as: 
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Substituting the value of yĈ in the above expression (2.28), we get 
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Mean square error of the estimator t3 is given by  
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Simplifying the expression (2.30), we get 
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In order to obtain the minimum MSE for the estimator ,t3 we partially 

differentiate the  expression (2.31)  with respect to 1H and 2H  to get the 

optimum values as  
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Substituting these optimum values of 1H and 2H  in equation (2.31), we 

obtain the expression for the minimum MSE of 3t  
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d) Again, following  Srivastava and Jhajj (1981), we propose a wider class of 

estimators to estimate the population coefficient of variation 
yC as: 
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After simplifying the expression (2.39), we get: 
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In order to obtain the minimum MSE for the estimator 4t we partially 

differentiate the expression (2.40) with respect to 
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2H and obtain 

optimum values as: 
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Substituting these optimum values of 
*

1H and 
*

2H  in equation (2.40), we 

obtain the expression for the minimum MSE of 4t  
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4. Empirical study 

In this section, we have carried out an empirical study to explicate the 
performance of our proposed estimator. We used the following data sets: 
 

Population I:  399 p. (1967),Murthy  :Source . 

X: Area under wheat in 1963, 

Y: Area under wheat in 1964, 

N=34, n=15, 
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X =208.88, Y =199.44,  

72.0CX  , YC =0.75, 98.0
XY
 ,  

0045.121  , 9406.012  , 6161.340  , 8266.204  , 1128.130  , 

9206.003  , 0133.322   

Population II:  1116 p. (2003),Singh Sarjinder  :Source . 

X: Number of fish caught in year 1993, 

Y: Number of fish caught in year 1995, 

N=69, n=40, 

X =4591.07, Y =4514.89,  

38.1CX  , 
YC =1.35, 

19.221  , 30.212  , 66.740  , 84.904  , 11.130  , 52.203  , 19.822   

In order to determine the Percent Relative Efficiency (PRE) of the estimators 
we have used the following formula  
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where 432121
* .,,,,,, ttttttCCt rrdd . 

 

Table 1.  MSE and PRE of the estimators 

ESTIMATOR 
POPULATION-1 POPULATION-2  

MSE PRE MSE PRE 

0t  0.008016 100.00 0.0380 100.00 

dC  0.00123 651.7051 0.0298 127.4607 

*

dC  0.00122 654.4814 0.0285 133.2609 

1rt  0.006868 116.54 0.037313 102.04 

2rt  0.006963 114.95 0.037563 101.36 
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Table 1.  MSE and PRE of the estimators  (cont.( 

ESTIMATOR 
POPULATION-1 POPULATION-2  

MSE PRE MSE PRE 

1t  0.00123 651.7356 0.0299 127.4598 

2t  0.001038 771.9898 0.0283 134.6127 

3t  0.001203 666.4304 0.0297 128.345 

4t  0.001203 666.4304 0.0297 128.345 

 
We can summarize the results from Table 1 as: 

All the proposed estimators 1t , 2t , 3t and 4t are more efficient than the usual 

unbiased estimator 0t .The estimator 1t  turns out to be nearly as efficient as 

the difference type estimator dC while all the remaining estimators, 2t , 3t  and 

4t  are more efficient than the estimators dC , 
*

dC , 1rt  and 2rt . Among all the 

estimators, 2t  is the most efficient because of the smallest value of MSE and 

highest value of PRE. 

5. Simulation studies 

This section describes the procedure that we adopted for the simulation study. 
We have used R programming for calculating MSE of the existing and proposed 
estimators. We followed the procedure adopted by Reddy et al. (2010) and have 
generated bivariate population with a specified correlation coefficient between the 
study and auxiliary variable. The algorithm is as follows: 

1.  Generate two independent random variables X from ),( 2N  and Z from 

),( 2
11 N  using Box-Muller method (Jhonson, 1987). 

2.  Set ZXY 21    where 195.0,85.0,75.00  . 

3.  Consider the population with the parameters 5.2 , 22   ,  51

32
1   and repeat the steps 1-2 2000 times. 

4.  From the population of size N=2000, draw 1500 simple random samples 

),.....,2,1(),( nixy ii  without replacement of size 70,50,30n . 
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5.  For each of the sample, compute MSE of the estimators ot , Cd , *Cd , 1t , 2t , 

1rt  and 2rt . 

6.  Compute the average MSE of the estimator by the following formula: 

         




1500

1
1500

1

j

j imseiMSE    where 2121
* ,,,,, rro tandtttCdCdti . 

Table 2.  Table showing MSE and PRE of the existing and proposed estimators 
for different values of   and n 

  n Estimator MSE PRE 

 

 

ot  0.006053626 100.0000 

Cd  0.004924006 122.9410 

*Cd  0.004617663 131.0970 

1rt  0.005080027 119.1651 

2rt  0.005532107 109.4270 

1t  0.004668748 129.6626 

2t  0.004552470 132.9744 

50 

ot  0.003450581 100.0000 

Cd  0.002835622 121.6869 

*Cd  0.002671694 129.1533 

1rt  0.002688403 117.5860 

2rt  0.002650186 109.5933 

1t  0.002934516 128.3506 

2t  0.003148534 130.2015 

70 

ot  0.002412659 100.0000 

Cd  0.001990824 121.1889 

*Cd  0.001879170 128.3896 

1rt  0.002062564 116.9737 

2rt  0.002200267 109.6530 

1t  0.001887289 127.8373 

2t  0.001868644 129.1128 
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0.85 

30 

ot  0.006358341 100.0000 

Cd  0.004912595 129.4294 

*Cd  0.003809327 166.9151 

1rt  0.004876890 130.3769 

2rt  0.005133219 123.8665 

1t  0.003831045 165.9688 

2t  0.003739557 170.0293 

50 

ot  0.003621428 100.0000 

Cd  0.002828737 128.0228 

*Cd  0.002203557 164.3447 

1rt  0.002825058 128.1895 

2rt  0.002910006 124.4474 

1t  0.002210627 163.8190 

2t  0.002180249 166.1016 

70 

ot  0.002527309 100.0000 

Cd  0.001982556 127.4561 

*Cd  0.001547597 163.3054 

1rt  0.001984483 127.3535 

2rt  0.002027634 124.6433 

1t  0.001551035 162.9434 

2t  0.001536162 164.5210 
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95 

30 

ot  0.008647395 100.0000 

Cd  0.005851489 147.7811 

*Cd  0.002426053 356.4389 

1rt  0.005461214 158.3420 

2rt  0.005113439 169.1094 

1t  0.002430095 355.8459 

2t  0.002364604 365.7015 

50 

ot  0.004896276 100.0000 

Cd  0.003355658 145.9111 

*Cd  0.001397620 350.3295 

1rt  0.003172583 154.3309 

2rt  0.002841595 172.3073 

1t  0.001398209 350.1820 

2t  0.001376286 355.7601 

70 

ot  0.0034018746 100.0000 

Cd  0.0023435450 145.1593 

*Cd  0.009782472 347.7520 

1rt  0.0022234723 152.9983 

2rt  0.0019631488 173.2866 

1t  0.0009784789 347.6697 

2t  0.0009677328 351.5304 

 

From the table, we can observe that for a particular value of   the value of 

MSE of the estimators decreases as the sample size increases. Also, we can see 

that in each of the cases among the proposed estimators 1t and 2t , 2t is more 

efficient amongst all the existing estimators ot , Cd , *Cd , 1rt , 2rt and the proposed 

estimator 1t while the estimator 1t  turns out to be more efficient than the existing 

estimators ot , Cd , 1rt , 2rt and nearly as efficient as the estimator *Cd . Hence, it 

turns out that the proposed estimator performs better than the existing estimators, 
therefore it is desirable to use the estimator in practice. 



STATISTICS IN TRANSITION new series, December 2019 

 

107 

We have also shown the results through a bar diagram as below: 

 

 
 
 

Bar graph showing MSEs of the existing and proposed estimators for 75.0
and (n1, n2, n3)= (30, 50, 70) 
 
 

Explanation: It can be seen from the bar graph that for 75.0 , MSE of all the 

estimators decreases as the value of the sample size (n) increases. And for 

a particular value of n, estimator 2t has the least MSE among all the other 

estimators. 
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Bar graph showing MSEs of the existing and proposed estimators 85.0 and 

(n1, n2, n3) = (30, 50, 70) 
 
 

Explanation: It can be seen from the bar graph that for 85.0 , MSE of all the 

estimators decreases as the value of the sample size (n) increases. And for 

a particular value of n, estimator 2t  has the least MSE among all the other 

estimators. 
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 Bar graph showing MSE of the existing and proposed estimators 85.0 and 

(n1, n2, n3)= (30, 50, 70) 
 
 

Explanation: It can be seen from the bar graph that for 95.0 , MSE of all the 

estimators decreases as the value of the sample size (n) increases. And for 

a particular value of n, estimator 2t has the least MSE among all the other 

estimators. 
 
Combined Explanation: From the above three bar graphs it can be summarized 

that for every value of  95.0,85.0,75.0 , the increase in the sample size 

causes a decrease in the mean square error of all the estimators. It is also 

evident that for a particular value of n, 2t has the minimum MSE as compared to 

the other estimators. 

6.  Conclusion 

In this paper we have proposed estimators for the population coefficient of 
variation and compared them with some existing estimators and saw from the 

empirical and simulation studies that the proposed estimator 2t  performs better 
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than all the existing estimators  ot , Cd , *
dC  , 1rt , 2rt  and the proposed estimator 

1t . As regards 1t , it performs better than the estimators ot ,Cd , 
1rt , 

2rt but is no 

more better than the estimator *
dC . For a better understanding of our results we 

have also considered a graphical approach and considered bar graphs to depict 
our results. 
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