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ABSTRACT 

Large-scale complex surveys typically contain a large number of variables 
measured on an even larger number of respondents. Missing data is a common 
problem in such surveys. Since usually most of the variables in a survey are 
categorical, multiple imputation requires robust methods for modelling high-
dimensional categorical data distributions. This paper introduces the 3-stage 
Hybrid Multiple Imputation (HMI) approach, computationally efficient and easy to 
implement, to impute complex survey data sets that contain both continuous and 
categorical variables. The proposed HMI approach involves the application of 
sequential regression MI techniques to impute the continuous variables by using 
information from the categorical variables, already imputed by a non-parametric 
Bayesian MI approach. The proposed approach seems to be a good alternative to 
the existing approaches, frequently yielding lower root mean square errors, 
empirical standard errors and standard errors than the others. The HMI method 
has proven to be markedly superior to the existing MI methods in terms of 
computational efficiency. The authors illustrate repeated sampling properties of 
the hybrid approach using simulated data. The results are also illustrated by child 
data from the multiple indicator survey (MICS) in Punjab 2014. 

Key words: complex surveys, high-dimensional data, missing data, multiple 

imputation. 

1. Introduction 

Large scale complex surveys contain high-dimensional data with a large 
number of variables measured on an even larger number of respondents. The 
Multiple Indicator Cluster Surveys (MICS) is such a popular large scale 
international household survey. Like other cross-sectional surveys, the data sets 
from MICS contain complex survey features (e.g. many categorical variables). 
Missing values are also a problem in MICS surveys. Missing data problems arise 
when a sampled unit does not respond to the entire survey (also called unit non 
response) or to a particular question (also called item non response). For 
example, the MICS Punjab 2014 child data set contains more than 200 child 
health background variables on 31083 children under the age of 5. Among all 
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these variables, the missing data rates per variable range from 10% to 95% and 
26 variables have more than 50% missing values. Questions related to a child 
cleaning utensils or washing clothes and physical punishment, etc. may make 
participants reluctant to provide full information, which results in incomplete data 
(Akmatov (2011)) (Cappa and Khan (2011)). 

In recent decades, considerable efforts have been made into the development 
of statistical methods to treat the problem of missing data. Complete-case or 
available-case analysis, or single imputation methods such as mean and 
regression imputation, often result in potentially biased estimates when applied to 
incomplete data (Anderson et al. (1983)). Rubin (1987) proposed multiple 
imputation (MI) as an appropriate alternative under certain assumptions. 
Predictive distributions are used to draw repeated samples in order to simulate 
values for missing data. M>1 complete data sets are generated and point and 
variance estimates of interest are estimated and combined using the formulas 
developed by Rubin (1987). One advantage of MI is the decoupling of the 
imputation task and the analysis task although one has to be careful in choosing 
the imputation and the analysis model (Xie et al. (2017)). 

In this paper, we propose a computationally efficient and an easy to 
implement 3-stage Hybrid Multiple Imputation (HMI) approach to impute complex 
survey data sets that contain both continuous and categorical variables. The HMI 
approach applies sequential regression MI techniques to impute continuous 
variables by using information of categorical variables already imputed by a non-
parametric Bayesian MI approach. This blended version of joint and sequential 
modelling MI techniques makes it possible to obtain complete datasets with both 
types of variables. This approach is motivated by missing values in background 
variables related to children’s life and health in MICS. In order to get valid and 
accurate results, it becomes important to impute all types of variables in MICS. As 
we noted earlier, handling mixed continuous and categorical data in high 
dimensions presents unique challenges to MI. Existing MI methods can be difficult 
to implement in the presence of complex dependence structures among 
categorical variables, whereas some recently developed methods focus on 
missing values of few variables (Zhao and Long (2016)). Moreover, various MI 
techniques are limited to categorical variables or require transformations (or other 
tricks) for continuous variables (Si and Reiter (2013)). 

The reminder of the paper is organized as follows. We begin in Section 2 by 
describing missing data mechanisms. In Section 3, we review imputation methods 
dedicated to categorical, continuous and mixed data in high dimensions. In 
section 4 we illustrate Rubin’s inference and various estimates used for 
comparing the performance of the imputation algorithms. Section 5 presents the 
proposed hybrid architecture. In Section 6 we present the simulation studies and 
relevant results to evaluate our proposed approach.  Section 7 presents the 
imputation of the MICS Child Data. We conclude with a discussion at the end. 

2. Missing data mechanisms 

There are three missing data mechanisms. Missing values in any data can be 
missing completely at random (MCAR), or missing at random (MAR), or missing 
not at random (MNAR) (Rubin (1987)), (Little and Rubin (2002)). Let 𝑌 denote the 
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n × p data matrix with n rows (cases) and p variables. Let 𝑦𝑖𝑗 refer to the value in 

row i  and column j of 𝑌, where i=1,…,n and j=1,…,p. Further, suppose that there 

are two components of the data set 𝑌 = {𝑌𝑚𝑖𝑠𝑠 , 𝑌𝑜𝑏𝑠} where the first component 
denotes the observed part of the data and the second component is the missing 
data.  Let 𝑈 be a response indictor matrix with the same dimensions as 𝑌 
indicating whether an element of 𝑌 is observed or missing: 

 

𝑈𝑖𝑗 = {
0  𝑖𝑓 𝑦𝑖𝑗 𝑖𝑠  𝑚𝑖𝑠𝑠𝑖𝑛𝑔,

  1  𝑖𝑓 𝑦𝑖𝑗 𝑖𝑠  𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑.
 

 
Data is MCAR when 𝑃𝑟(𝑈ǀ𝑌𝑚𝑖𝑠𝑠 , 𝑌𝑜𝑏𝑠)=𝑃𝑟(𝑈), MAR when 

𝑃𝑟(𝑈ǀ𝑌𝑚𝑖𝑠𝑠 , 𝑌𝑜𝑏𝑠)=𝑃𝑟(𝑈ǀ𝑌𝑜𝑏𝑠) and MNAR when 𝑃𝑟(𝑈ǀ𝑌𝑚𝑖𝑠𝑠 , 𝑌𝑜𝑏𝑠) ≠ 𝑃𝑟(𝑈ǀ𝑌𝑜𝑏𝑠) 
(Little and Rubin (2002)). MNAR is also called “non-ignorable” (NI). 

3. Imputation methods for large scale complex surveys  

A complete overview of the state of the art MI methods for accommodating 
nonlinear relationships and best ways to impute categorical and non-normal 
continuous variables is given in Vermunt et al. (2008), Yucel et al. (2011), Lee et 
al. (2012), Seaman et al. (2012) and Lee and Carlin (2017). Information on 
missing categorical data can be obtained by log-linear models (Schafer (1997)).  

Imputation of large scale survey data can become challenging due to the 
presence of irregular missing patterns, interdependent logical constraints and 
data inconsistencies. There exist several approaches for MI for high-dimensional 
data. For example, in hot-deck imputation, which replaces missing values with 
observed values of pre-defined “donor” cells (Marker et al. (2002)), the 
probabilities of donor selection can be modified by respondent sampling weights 
(Andridge (2009)), or a k nearest neighbours (KNN) MI approach based on the 
distance metric for high-dimensional data (Holder (2015)) may be used or 
a principal component method to impute missing values (Audigier et al. (2016)). 
But most of the existing methods are not designed to handle mixed data 
(quantitative and categorical), become difficult to implement in the situation of 
large dimensions and are extremely time-consuming (Erosheva et al. (2002)). 
Moreover, the presence of complex dependence structures can also lead to 
biased estimates (Wirth and Tchetgen (2014)).  

Sequential regression models (Raghunathan et al. (2001)) or fully conditional 
specification (FCS) (Su et al. (2011)), (van Buuren and Oudshoorn (1999)) is 
another general approach for MI. It is an iterative process. It specifies univariate 
conditional distributions on a variable-by-variable basis, and it draws missing 
values iteratively from the specified conditional distributions. FCS is also known 
as MI by chained equations (MICE) (Raghunathan et al. (2001)), (van Buuren and 
Groothuis-Oudshoorn (2011)), (White et al. (2011)), (Su et al. (2011)). The 
researcher can choose a suitable regression model for each incomplete variable 
where all the other variables are included as predictor variables, and a suitable 
imputation method, e.g. predictive mean matching (PMM) (Morris et al. (2014)). 
Examples are a linear regression model for a continuous variable or a logistic 
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regression model for a binary variable. Also, classification and regression trees 
(CART; Breiman (2001)) can be used. Vermunt et al. (2008) and van Buuren 
(2007) applied FCS to impute a small number of categorical and continuous 
variables. The theoretical implementation of this approach may become 
challenging when specified conditional densities become incompatible due to high 
dimensions (White et al. (2011)). Chained equations, when implemented by 
default settings (i.e. ignoring interaction effects in the conditional models) can also 
result in biased estimates. Moreover, standard MICE methods cannot handle 
high-dimensional data (Deng et al. (2016)). Sometimes problems of convergence 
and incompatibility arise when MICE is used to specify univariate conditional 
distributions (Arnold and Press (1989)), (Gelman and Speed (1993)) and due to 
the presence of complex dependencies, implementation of MICE may fail. Similar 
to log-linear models, conditional models in MICE suffer from model selection and 
estimation problems in high dimensions, which makes the regression imputations 
very time-consuming.  

 
Random forest imputation is a method for handling missing data (Stekhoven 

et al. (2012)). Random forest imputation is a machine learning technique for 
nonlinearity and interaction problems and does not require a particular model to 
be specified. Shah et al.  (2014) used random forest imputation for imputing 
complex epidemiological data sets. They found that MI based on random forest 
techniques tends to be more efficient and produced narrower confidence intervals 
as compared to standard MI methods. However, they focused on the setting 
where few variables have missing values. One disadvantage of algorithms based 
on random forests is that they are computationally expensive to implement in high 
dimensions and do not account for the uncertainty of estimating parameters in the 
imputation models (Rubin (1987)). 

Loh et al. (2016) implement CART and forests to overcome incomplete data 
problems when the auxiliary variables are numerous. The study shows that the 
CART and forests methods are more reliable than likelihood methods for MI but 
CART can be biased toward selecting variables that allow more splits (Loh and 
Shih (1997)), (Kim and Loh (2001)). The study by Burgette and Reiter (2010) 
suggests that inferences based on the CART imputation engine can be more 
reliable than default applications of MICE based on main-effects generalized 
linear models. However, despite of various merits, CART methods and other fully 
conditional specifications are subject to odd behaviours, e.g. CART can be biased 
toward selecting variables that allow more splits in high dimensions 
(Raghunathan et al. (2001)), (van Buuren and Oudshoorn (1999)). Categorical 
predictors with many levels can be a major hurdle for CART algorithms. For 
example, over two billion potential partitions are formed for a categorical predictor 
with 32 levels, which makes CART algorithms computationally inefficient for 
standard computers.  

The joint modelling (JM) specification is an alternative to the FCS approach. 
JM involves specifying a multivariate distribution for the data and draws 
imputations from their conditional distributions by Markov Chain Monte Carlo 
(MCMC) methods. Joint distributions of the variables with missing values are also 
specified by parametric, non-parametric and semi parametric models. A non-
parametric Bayesian joint modelling approach for MI for multivariate categorical 
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data presented by Si and Reiter (2013) uses the Dirichlet process mixtures of 
multinomial distributions (DPMPM) (Dunson and Xing (2009)). This approach 
automatically models complex dependencies whereas other MI methods (log 
linear model or conditional logistic regressions) can fail to detect complex 
structures in high-dimensional categorical variables. Akande et al. (2017) 
compared the performance of various MI methods for categorical data. According 
to their study, the Bayesian mixture model approach dominates the approach 
based on chained equations (which uses generalized linear models) and is as 
reliable as imputations based on CART in MICE. They also found that the 
Bayesian joint modelling approach is substantially faster than the FCS methods 
for MI. However, in the presence of a large number of categorical and continuous 
variables, the sequential behaviour of CART can form suboptimal and unstable 
trees (Hastie et al. (2001)), (Marshall and Kitsantas (2012)), (Strobl et al. (2009)). 
Moreover, to implement a fully Bayesian, joint modelling approach as suggested 
by Akande et al. (2017), one has to either discard all continuous variables or to 
categorize them. Murray and Reiter (2016) extended the Bayesian, joint modelling 
approach for multivariate continuous and categorical variables. However, this 
approach involves knowledge of complicated models to create the dependence 
structure between the continuous and the categorical variables. Schafer (1997) 
uses a JM approach called general location models for a mixture of continuous 
and categorical variables. Despite of being superior to FCS and CART in many 
ways, He (2010) suggests that the JM approaches can lack the flexibility needed 
to represent complex data structures arising in many studies (van Buuren (2007)).  

Various recursive partitioning (RP) techniques (Iacus and Porro (2007, 2008)), 
(Nonyane and Foulkes (2007)), (Burgette and Reiter (2010)), (Stekhoven and 
Bühlmann (2012)), (Doove et al. (2014)) were proposed to overcome the problem 
of ignoring interactions in chained equations but most of the proposed methods 
combine recursive partitioning with single imputation instead of multiple 
imputation.  

An approach called multilevel singular value decomposition (SVD) is used by 
Husson et al. (2018) for mixed data. SVD uses the between and within groups 
variability to impute values.  One major drawback of SVD is that it cannot be 
implemented with MI. Geneviève et al. (2018) addressed main effects and 
interaction challenges in mixed and incomplete data frames.  

MI by multiple correspondence analysis (MIMCA) (Audigier et al. (2017b)) 
utilizes the dimensionality reduction property of multiple correspondence analysis 
to impute categorical data with a high number of categories. Estimates obtained 
by MIMCA are as reliable as methods using MI with log linear models or 
conditional logistic regressions. MIMCA is less time-consuming on data sets with 
high dimensions than the other multiple imputation methods. However, MIMCA is 
limited to only categorical variables. Imputation methods that treat the categorical 
data as continuous, for example, as multivariate normal, can work well for some 
problems but are known to fail in others, even in low dimensions (Ake (2005)), 
(Allison (2000)), (Bernaards et al. (2007)), (Finch (2010)), (Graham and Schafer 
(1999)), (Horton et al. (2003)), (Yucel et al. (2011)). 

An iterative singular value decomposition (SVD) algorithm for MI can be a 
good choice for quantitative (Hastie et al. (2015)), qualitative (Audigier et al. 
(2017a)) and mixed data (Audigier et al. (2016)) because of better performance 
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than their counterparts. However, these methods cannot be suitable for the 
complex data we address in this paper. 

Recently, hybrid techniques for imputations have gained a lot of attention 
(Ankaiah et al. (2011)), (Tang et al. (2015)), (Liyong et al. (2016)), (Shukur and 
Lee (2015)). For example, Ankaiah and Ravi (2011) propose a hybrid two stage 
imputation method involving the K-means algorithm and a multi-layer perceptron 
(MLP) in stage 1 and stage 2, respectively. Also, Nishanth et al. (2012) proposed 
a hybrid clustering and model based method, where they combine the K-means 
with an artificial neural network (ANN). Nishanth and Ravi (2013) propose an 
online data imputation framework incorporating data mining techniques. 
Considering the local similarity of data, Li et al. (2013) borrowed the idea from 
clustering and applied it to the problem of missing data imputation. Azim et al. 
(2014) present a hybrid model that uses a multi-layer perceptron and a fuzzy c-
means clustering working in sequence for data imputation. Liang et al. (2015) also 
proposed a novel missing value imputation method using the stacked auto-
encoder and incremental clustering (SAIC). However, obtaining good clustering 
results may become challenging due to the expansion of the data volume with 
existing clustering algorithms. Multiple Imputation using grey theory and entropy 
based on clustering (MIGEC) is another hybrid missing data method proposed by 
Ting et al. (2014). The MIGEC method divides the complete data into clusters and 
selects the nearest cluster based on grey theory for each incomplete instance and 
imputes values using a weighted average based on the information entropy.  

Various other MI approaches are suggested in nested imputation (Rubin 
(2003)), where a set of a variable is imputed based on the former set. Two-stage 
multiple imputation by Harel (2007), Harel and Schafer (2003), Reiter and 
Drechsler (2007), Reiter and Raghunathan (2007) are examples for nested 
imputations. These methods explicitly manage two multiple imputation procedures 
in a dependent structure (Rubin (2003)). Weirich et al. (2014) extended nested 
imputation methods in both continuous and categorical background variables for a 
large-scale assessment. However, we think these procedures are computationally 
more extensive, implemented in limited ways and require further research. Zhao 
and Long (2016) did some recent work for imputation methods in the presence of 
high-dimensional data. However, they focused on the setting where only one 
variable has missing values. Most recently, Nikfalazar et al. (2019) proposed a 
new hybrid imputation method that deals with the missing data issue in the 
Mobility in Cities Database (MCD). Their hybrid method combines features of 
decision trees and fuzzy clustering into an iterative algorithm for missing data 
imputation. 

When dealing with large scale complex data with missing values in high-
dimensional situations, we desire a hybrid multiple imputation approach (HMI) 
that (i) avoids odd behaviours of FCS techniques in high dimensions (ii) avoids 
difficulties of creating complicated models for the dependence between the 
continuous and the categorical variables as in JM approaches (iii) avoids the 
problem of a specification of clusters (iv) offers efficient computation. HMI is a 
flexible and practical technique, which combines properties of existing 
approaches to handle missing values in large scale complex surveys. We 
propose a HMI technique which applies FCS MI techniques to impute continuous 
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variables based on information obtained by categorical variables that are already 
imputed by a JM MI approach. 

4. Materials and methods 

Before introducing the proposed hybrid architecture, a brief description of FCS 
and JM MI methods, Rubin’s inference and various estimates used for comparing 
the performance of the imputation algorithms is given below. 

4.1.  Fully Conditional Specification (FCS): Chained Equations  

The FCS method specifies an imputation model for each variable with missing 
values conditional on the other variables in the data set.  Missing values are 
sequentially imputed in each iteration. Imputation starts from the first variable with 
missing values. 

 In the first step, initial values for missing values in all variables are specified, 

i.e. 𝑌1
0 , ... ,𝑌1

0. 
 In the second step, at iteration t: for j  = 1 to p, most recently imputed values, 

i.e. X, 𝑌1
𝑡, ... ,𝑌𝑗−1

𝑡 ,𝑌𝑗+1
𝑡−1 , ... ,𝑌𝑝

𝑡−1 of all other variables, X, 𝑌2
𝑡−1, ... , 𝑌𝑝

𝑡−1 for j=1 and 

𝑌1
𝑡−1, ... ,𝑌𝑝

𝑡−1 use a univariate method to impute all missing values in the  jth 

variable 𝑌𝑗
𝑡.  Here, X denotes a set of variables that have no missing values. 

Repeat the second step until the maximum number of iterations is reached. The 
above steps (including the first one) are repeated M times to get M imputations. 
The starting values for each chain are generated with a different seed for random 
numbers to generate different initial values. 

4.2.  Fully Bayesian joint modelling (JM) using Dirichlet process infinite 
mixtures of products of multinomials (DPMPM) 

The fully Bayesian, joint modelling (JM) approach known as “Dirichlet process 
mixtures of products of multinomial distributions model” (DPMPM) (Dunson and 
Xing, (2009)) is described as: 

1. Assume that each individual i belongs to exactly one of K < ∞ latent classes. 

2. For i = 1,…, n, let 𝑔𝑖 𝜖  { 1, … , 𝑘}  indicate the class of individual i, and let 𝜋𝑘 =Pr 
(𝑔𝑖 = 𝑘) . Assume further that  𝜋  =  {𝜋1, … , 𝜋𝑘} is the same for all individuals. 

3. Within any class, we suppose that each of the j variables independently 
follows a class-specific multinomial distribution, i.e. for any value 

                             𝑦 𝑗   𝜖  { 1, … , 𝑑𝑗}, let 𝜙𝑘𝑐𝑗
(𝑗)

= 𝑃𝑟(𝑦𝑖𝑗 = 𝑦𝑗  ǀ𝑔𝑖 = 𝑘). 

Note that dj denotes the number of categories of the j-th variable. 
 
Mathematically, the finite mixture model can be expressed as follows: 
 

           𝑦𝑖𝑗|g𝑖 , 𝜙    𝑖𝑛𝑑
 ~

  Multinomial (𝜙𝑔𝑖1
(𝑗)

, … , 𝜙𝑔𝑖𝑑𝑗

(𝑗)
) for all i and  j                     (4.1) 

                        g𝑖| 𝜋 ~ Multinomial (𝜋1, … , 𝜋𝐾) for all i                              (4.2) 
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For prior distributions on 𝜙 and 𝜋 , we have 

  𝜋𝑘 = 𝑉𝑘  ( ∏ 1 − 𝑉𝑔𝑙<𝑘 )  For k=1,…,K 

𝑉𝑘    
  𝑖𝑖𝑑
  ~

   𝐵𝑒𝑡𝑎 (1, 𝛼)     

𝛼  ~ Gamma (𝑎𝛼, 𝑏𝛼 ) 

𝜙𝑘𝑗   ~ Dirichlet    ( 𝑎𝑗1 , … , 𝑎𝑗𝑑𝑗
)  

We set 𝑎𝑗1=…= 𝑎𝑗𝑑𝑗
 = 1 for all j, and (𝑎𝛼 = 0.25; 𝑏𝛼 = 0.25). In order to get 

complete data sets, first the latent class indicator for each individual is drawn from 
the full conditional and then each missing 𝑦𝑖𝑗 is drawn from the class specific, 

independent multinomial distributions.  

4.3. Rubin’s inference: 

For m = 1,…,M, let 𝑞(𝑚) and 𝑢(𝑚) be respectively the point estimates of Q (e.g. the 
estimated regression coefficient in an analysis model) and the variance estimates 

of 𝑞(𝑚) of the interesting analysis model, e.g. a parametric regression model. 

Valid inferences for a scalar Q are obtained by combining the 𝑞(𝑚) and 𝑢(𝑚),  
using Rubin’s (1987) rules as follows: 

                                                   𝑞
𝑀

=∑
𝑞(𝑚)

𝑀

𝑀
𝑚=1 ,                                          (4.3) 

                                               𝑏𝑀=∑
(𝑞(𝑚)−𝑞𝑀)2

𝑀−1

𝑀
𝑚=1 ,                                      (4.4) 

                                             𝑢𝑀 =∑
𝑢(𝑚)

𝑀

𝑀
𝑚=1  ,                                          (4.5)  

 

𝑞
𝑀

 can be used to estimate Q and  the variance of 𝑞
𝑀

 can be estimated by 

                                       𝑇𝑀 =  (1 +
1

𝑀
) 𝑏𝑀 + 𝑢𝑀,                                         (4.6) 

 with degrees of freedom 𝑣𝑀 = (𝑀 − 1)(1 +
𝑢𝑀

((1+
1

𝑀
)𝑏𝑀)2

).                                   (4.7) 
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5. Proposed hybrid architecture 

 

 

Figure 1.  Schematic diagram illustrating the proposed hybrid architecture  

 
 
A schematic diagram illustrating the proposed hybrid architecture is provided 

in Figure 1. The proposed missing data imputation approach is a 3-stage 
approach. Step 1: We begin by partitioning incomplete data into two different 
groups, i.e. categorical data → Miss.cat and incomplete continuous data → 
Miss.num, where Miss.cat and Miss.num may contain missing values. After 
partitioning, multiple complete versions → Imp.cat are created for Miss.cat by 
applying a fully Bayesian joint modelling approach to MI. In this step, Miss.num 
still contains missing values. Step 2: All variables in the data set Miss.num are 
added to each of the Imp.cat data sets, resulting in M partially imputed datasets 
where values in the continuous variables may be missing and values in the 
categorical variables have already been imputed in step 1. Step 3: Incomplete 
continuous variables in the M partially imputed datasets are imputed using MICE 
such that the draws from the posterior predictive distribution of the unobserved 
continuous data depend on the given categorical variables, which have been 
already imputed by the fully Bayesian joint modelling MI.  

To implement the HMI approach, we combine a JM approach “DPMPM” with 
the FCS approach MICE. We select “DPMPM” due to its computational efficiency, 
its ability to automatically model complex dependencies and its successful 
implementation for the case of high-dimensional categorical variables in various 
fields, i.e. econometrics (Chib and Hamilton (2002), Hirano (2002)), social science 
(Kyung, Gill, and Casella (2010)), and finance (Rodrı´guez and Dunson (2011)). 
MICE is selected due to its open source character and popularity. R (R Core 
Team (2018)) software, version 3.0.1 is used to perform all calculations. The two 
R packages “mice” (van Buuren and Groothuis-Oudshoorn, (2011)), version 2.17 
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and “NPBayesImputeCat” (Quanli et al. (2018)), version 0.1 are used to 
implement the HMI approach. The “default” function of “mice” uses predictive 
mean matching (PMM) for continuous variables, logistic regression for factor 
variables with two levels and multinomial logit model for more than two 
categories. We also use the package 'mitools' (Thomas (2019)) to combine the 
results from MI. Default versions of chained equations using “mice” fail to impute 
missing values in the child data. The neural net function, called by “mice” for 
categorical variables with more than two categories, stops the default version 
because of exceeded "maximum allowable number of weights". The function 
“nnet” is used to prevent running code that will take a very long time to complete 
when there are factor variables with many levels. This gives an indication that 
complex dependence structures in the data make it complicated to identify them 
by the default application of MICE. Therefore, we did not implement the default 
version and compare two HMI approaches, i.e. “H.CART” and “H.DEF” with the 
MICE based method “MiceCART” (classification and regression trees (CART)). 
“H.CART” and “H.DEF” combine a fully Bayesian joint modelling approach with 
the MICE algorithms “CART” and “Default”, respectively. To implement the hybrid 
approach, we examine a small prior specification for 𝑎𝛼 and  𝑏𝛼 (i.e. 𝑎𝛼= 0.25, 𝑏𝛼 
= 0.25) with a moderate number of mixture components (i.e. k=80).  

6.  Simulation studies 

To investigate the performance of the HMI method via simulation, we 
generate a large number (X=39) of mixed type variables. First, we generate 31 
binary (Xb) variables. A multivariate normal (MVN) distribution is used to generate 
correlated random covariates Ci comprising 1000 observations. The marginal 
distributions are: Ci ~ N (0, 0.5), where i={1,…,31}.The correlation structure is 
given as:   

                                          R = (
1 ⋯ 𝜌
⋮ ⋱ ⋮
𝜌 ⋯ 1

). 

Where 𝜌 = 0.5. Random covariates (Ci) are transformed into binary values 
(Xb) using the following threshold: 

  

𝑋𝑏𝑖 
=  {

0   𝑖𝑓    𝐶𝑖  ≤ 0 ,   
   1   𝑖𝑓    𝐶𝑖  > 0,        

 

where i={1,…,31}.  

 
In order to generate two multilevel categorical covariates, i.e. (𝑋𝑚1 

and 𝑋𝑚2 
), 

we first generate two random covariates from normal distributions (ND) given as: 

  𝐶32  ̴  𝑁 (𝜇1; √2),   𝐶33   ̴  𝑁 (𝜇2; √2), where 𝜇1 and 𝜇2 are described as: 

𝜇1  =  0.1 + 0.1 ∑ 𝑋𝑏𝑖 

31
𝑖=1 + 0.1𝑋𝑏2 

𝑋𝑏3 
+ 0.1𝑋𝑏5 

𝑋𝑏8 
+ 0.1𝑋𝑏2 

𝑋𝑏29
..                  (6.1) 

𝜇2  =  0.1 + 0.1 ∑ 𝑋𝑏𝑖 
+31

𝑖=1 0.1𝐶32 + 0.1𝑋𝑏2 
𝑋𝑏3 

+ 0.1𝑋𝑏5 
𝑋𝑏8 

+ 1.1𝑋𝑏2 
𝑋𝑏29

.    (6.2)  



STATISTICS IN TRANSITION new series, December 2019 

 

43 

Further, all observations in 𝐶31and 𝐶32 are randomly split into various 

homogeneous groups and two multilevel categorical variables 𝑋𝑚1 
and 𝑋𝑚2 

 are 

formed with four and six categories respectively. 
To encode complex dependence relationships with higher order interactions, 

we generate another binary covariate 𝑋𝑏32  from Bernoulli distributions with 

probabilities governed by the logistic regression with  
 𝑙𝑜𝑔𝑖𝑡 𝑃𝑟 (𝑋𝑏32

) = 0.001 −  0.01𝑋𝑏1 
−  0.09𝑋𝑏2 

− 0.09𝑋𝑏3 
− 0.09𝑋𝑏4 

+ 0.05𝑋𝑏5 
+

0.08𝑋𝑏6 
−  0.02 𝑋𝑏7 

+ 0.08 𝑋𝑏8
 + 0.01𝑋𝑏9 

+  0.01 𝑋𝑏10 
− 0.02 𝑋𝑏11 

+ 0.01𝑋𝑏𝑖12
−

 𝑋𝑏13 
 + 0.02𝑋𝑏14 

− 0.01𝑋𝑏15 
+  0.02 𝑋𝑏16 

− 0.03𝑋𝑏17 
− 0.02𝑋𝑏18 

−  0.07𝑋𝑏19 
+

0.08𝑋𝑏20 
+ 0.08𝑋𝑏21 

+ 0.01𝑋𝑏22 
+ 0.09𝑋𝑏23 

+ 0.09𝑋𝑏24
 +  0.05𝑋𝑏25 

+ 0.08𝑋𝑏26 
−

0.02𝑋𝑏27 
 +  0.08𝑋𝑏28 

+ 0.08𝑋𝑏29 
− 0.01𝑋𝑏30 

+ 0.09 𝑋𝑏31 
+ 0.02 𝐶32 + 0.02𝐶33 +

0.02 𝑋𝑏12 
𝑋𝑏29 

− 0.02𝑋𝑏15
𝑋𝑏18 

𝑋𝑏29 
.                      

   (6.3 
                           

We then generate two continuous covariates, i.e. 𝑋𝑛1  
and 𝑋𝑛2   from normal 

distributions (ND) as follows: 

𝑋𝑛1 
 ̴  𝑁 (𝜇3; √0.5). 

Where, 𝜇3 =  −2 −  1.5𝑋𝑏1 
+  2.15𝑋𝑏2 

+ 2.25 𝑋𝑏3 
− 3.6 𝑋𝑏4

− 1.88𝑋𝑏5
+

1.11 𝑋𝑏6 
+ 2𝑋𝑏7 

− 5𝑋𝑏8 
+ 𝑋𝑏9 

− 2𝑋𝑏10 
+ 2𝑋𝑏11 

+ 5𝑋𝑏12 
− 2𝑋𝑏13 

+ 3𝑋𝑏14 
 +

4𝑋𝑏15 
 + 𝑋𝑏16 

 + 𝑋𝑏17 
− 𝑋𝑏18 

− 𝑋𝑏19 
− 𝑋𝑏20 

 − 𝑋𝑏21 
− 𝑋𝑏22 

+ 2𝑋𝑏23 
− 𝑋𝑏24 

+ 𝑋𝑏25 
+

𝑋𝑏26 
+ 𝑋𝑏27 

+ 𝑋𝑏28 
 + 𝑋𝑏29 

+ 𝑋𝑏30 
+ 𝑋𝑏31 

+ 2𝐶32 − 𝐶33 +  𝑋𝑏32
+ 2𝑋𝑏11 

𝑋𝑏12 
𝑋𝑏13 

−

2 𝑋𝑏15
𝑋𝑏18 

+ 2𝑋𝑏12
 𝑋𝑏29

.                           

  (6.4)  

And 

                                                𝑋𝑛2 
 ̴  𝑁 (𝜇4; √0.5).                                               (6.5) 

Where, 𝜇4 =  𝜇3+  𝑋𝑛1 
.   

 (6.6) 
Both continuous covariates are highly positively correlated, i.e. 𝑟 = 0.9. 
We then define a covariate dependent continuous response with expectation 

𝜇𝑦 = 1 + ∑ 𝑋𝑏𝑖 
+32

𝑖=1 ∑ 𝑋𝑛𝑖 

4
𝑖=1 +  ∑ 𝑋𝑚1_𝑖 

4
𝑖=2 + ∑ 𝑋𝑚2_𝑖 

6
𝑖=2 + 𝑋𝑏9 

𝑋𝑏15 
+ 𝑋𝑏1 

𝑋𝑏17 
+

𝑋𝑏14 
𝑋𝑏20 

+ 𝜖.    

                                                                    (6.7)  

Additionally, a random component 𝜖    ̴   𝑁 ( 0;  0.5) is added. The regression 
coefficients for categorical variables with multiple levels are expressed as dummy 

variables, e.g. ∑ 𝑋𝑚1_𝑖 

4
𝑖=2  and ∑ 𝑋𝑚2_𝑖 

6
𝑖=2  in the predictor (all coefficients are 1.0).     

Equations 6.1–6.7 include higher-order interactions to represent complex 
dependence structures. Imputation approaches based on log-linear models or 
chained equations may fail to capture these structures. There is no particular 
importance of the specific values of the coefficients. Nonzero coefficients are 
specified for higher order interactions for generating complex dependencies. The 
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analysis model of interest is the linear model. Observations in all covariates can 
be missing (at random) with probabilities based on a logistic probability 
distribution model. Probabilities for missing for a random covariate X are given as: 

𝜋𝑋𝑖
=    

𝑒
(−2−𝑋𝑗)

(1 + 𝑒
(−2−𝑋𝑗)

)
. 

Here, i={1,…,39} and j ≠ i. Missingness in 𝑋𝑖 is attributed solely to other 

observed variable 𝑋𝑗. This yields 10% of the observations to be MAR. Based on 

recommendations in the MI literature (White et al. (2011)), (van Buuren (2012)), 
we decided to include all of the variables from the generated data in the 
imputation model to ensure that the imputation model preserves the relationships 
between the variables of interest (Schafer (1997)), (Moons et al. (2006)). Based 
on Z =1000 simulation runs, the parameters of interest are estimated using the 
aforementioned Rubin’s method. According to Rubin (1987), the number of 
suitable imputations for useful statistical inferences can be determined by a 
fraction of missing data. A surprisingly high relative efficiency can be obtained 
with no more than five imputations. Fichman and Cummings (2003) suggest, that 
M=10 imputations are more than suitable in almost any realistic application. 
Therefore, ten imputed datasets are generated for each of the proposed and the 
MICE MI methods. Two hundred iterations (for each imputation step) are run to 
insure convergence and to obtain results of the simulations in a reasonable time. 
To compare the performance of the imputation algorithms, two error-based 
measurements were chosen to evaluate the quality of MI: Root mean square error 
(RMSE) and empirical standard errors (ESE) (Akande et al. (2017)), (Armina et al. 
(2017)). Smaller values for RMSEs and ESEs indicate better performance (Oba et 
al. (2003)). RMSE and ESE are calculated using the following formulas: 

Root mean square error (RMSE 𝑞𝑚
) =√∑ (�̅�𝑀

𝑧 − 𝛽 )
2𝑍

𝑧=1

𝑍
,                            (6.8) 

Empirical standard errors (ESE 𝑞𝑚
) =√∑ (�̅�𝑀

𝑧 − �̅� )
2𝑍

𝑧=1

𝑍
,                             (6.9) 

where �̅�𝑀
𝑧  denotes the estimated parameter pooled over M imputed data sets in 

simulation run number z and β  denotes the original parameter. The arithmetic 

mean of �̅�𝑀
𝑧  and (√𝑇𝑀  ) across all z = {1,…,Z} simulations are denoted as  �̅� and 

√𝑇 ̅̅ ̅̅ ̅. The amount of bias can be calculated by a simple difference, i.e.  
    

                                  𝐵𝑖𝑎𝑠 =  𝑅𝑀𝑆𝐸 –  𝐸𝑆𝐸                                  (6.10) 
 

The coverage rates of at least 95% are calculated as:  
 

                  Coverage rate 𝑞𝑚
= 

∑  1 [𝛽 ∈𝐶𝐼 (�̅�𝑀
𝑧 ,𝑇𝑀

𝑧 )]𝑍
𝑧=1

𝑍
 ,                        (6.11)   

 
where 1 [𝛽 ∈  𝐶𝐼 (�̅�𝑀

𝑧 , 𝑇𝑀
𝑧 )] is an indicator function.  The indicator function is equal 

to one when the confidence interval based on  �̅�𝑀
𝑧   and 𝑇𝑀

𝑧  contains 𝛽 and equal to 
zero otherwise. 
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Table 1 gives the performance of the MI methods. Means for CI coverage and 
RMSEs over all beta coefficients are presented in Table 2. Various researchers 
(White et al. (2011)), (van Buuren, 2012)) recommend graphical comparisons of 

the imputation methods. For that purpose, boxplots of standard errors (√𝑇𝑀  ) and 

point estimates (𝑞
𝑀

) for the regression coefficients  for the 1000 simulation runs 

are presented in Figures 2 and 3 respectively.  

6.1. Results 

 

Table 1.  Performance of methods for MI 

 

 

Estimates Parameter MICECART H.DEF H.CART 

RMSES (ESEs) 𝑋𝑏23 
 

𝑋𝑚1_2 
 

𝑋𝑚2_3 
 

𝑋𝑏32 
 

𝑋𝑛2 
 

𝑋𝑏1 
𝑋𝑏17 

 

0.158(0.114) 
0.158(0.155) 
0.187(0.148) 
0.045(0.032) 
0.063(0.063) 
0.190(0.182) 

0.148(0.089) 
0.228(0.122) 
0.167(0.114) 

0.071(0) 
0.071(0.032) 

0.239(0.130) 

0.122(0.110) 

0.173(0.158) 
0.164(0.145) 
0.032(0.032) 
0.055(0.055) 

0.195(0.190) 

�̅�(√𝑇 ̅̅ ̅̅̅) 𝑋𝑏23 
 

𝑋𝑚1_2 
 

𝑋𝑚2_3 
 

𝑋𝑏32 
 

𝑋𝑛2 
 

𝑋𝑏1 
𝑋𝑏17 

 

 

0.891(0.192) 
1.038(0.266) 
0.887(0.245) 

0.969(0.049) 
1.014(0.088) 

0.951(0.319) 

1.119(0.137) 
0.808(0.193) 
1.122(0.176) 
1.065(0.027) 

0.935(0.049) 
0.800(0.255) 

0.947(0.137) 

0.928(0.272) 
0.920(0.249) 
1.006(0.047) 
0.995(0.086) 
0.958(0.225) 

Bias 
 
 
 
 

 
 
 
 

Coverage(%) 

𝑋𝑏23 
 

𝑋𝑚1_2 
 

𝑋𝑚2_3 
 

𝑋𝑏32 
 

𝑋𝑛2 
 

𝑋𝑏1 
𝑋𝑏17 

 

 
𝑋𝑏23 

 

𝑋𝑚1_2 
 

𝑋𝑚2_3 
 

𝑋𝑏32 
 

𝑋𝑛2 
 

𝑋𝑏1 
𝑋𝑏17 

 

0.044 
0.772 
0.039 

0.013 
0.956 
0.008 

 
 
99 
100 
100 
97 
99 
100 
 
   

0.059 
0.615 

0.053 
0.071 
0.886 

0.109 
 

 
95 
94 
97 
29 
83 
96 
 

0.012 

0.656 
0.671 
   0 

0.909 
0.005 

 
 
100 
100 
100 
99 
100 
100 
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Root mean square errors and empirical standard errors (top), point estimates, 
standard errors and bias for different methods (middle) and estimated coverage 
probability (bottom) for MI methods under the Missing at Random (MAR) 
assumption. The middle panel lists the mean estimated standard errors and point 
estimates across the simulated data sets. All results are based on 10 imputations. 
Estimates are shown for only six regression coefficients, i.e. for variables 𝑋𝑏23 

, 

𝑋𝑚1_2 
, 𝑋𝑚2_3

, 𝑋𝑏32 
, 𝑋𝑛2 

, 𝑋𝑏1 
𝑋𝑏17 

. Bold figures indicate the smallest mean root 

mean square errors, mean empirical standard errors and amount of bias among 
the three imputation variants. 

 

Table 2.  Results over all beta coefficients 

 
 

Means for CI coverages and RMSEs are estimated over all regression 
coefficients for all MI methods. Bold values indicate the smallest mean for RMSEs 
over all regression coefficients among the three imputation variants. 

 
 

Figure 2. Simulated data: Boxplots for the point estimates (𝑞
𝑀

) across 1000 

simulations by imputation methods under Missing at Random (MAR) 
and ten imputations. Point estimates are shown for only six regression 
coefficients, i.e. for variables 𝑋𝑏23 

, 𝑋𝑚1_2 
, 𝑋𝑚2_3

, 𝑋𝑏32 
, 𝑋𝑛2 

, 𝑋𝑏1 
𝑋𝑏17 

.The 

horizontal red lines indicate the respective “true” values  

 

 

Estimates MICECART H.DEF H.CART 

 CI coverage  

  RMSEs  

98.66 

0.184 

91.91 

0.170 

 99.89 

 0.146 
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Figure 3. Simulated data: Boxplots for standard errors (√𝑇𝑀  ) across 1000 

simulations by imputation methods under Missing at Random (MAR) 
and ten imputations. Standard errors are shown for only six regression, 
i.e. 𝑋𝑏23 

, 𝑋𝑚1_2 
, 𝑋𝑚2_3

, 𝑋𝑏32 
, 𝑋𝑛2 

, 𝑋𝑏1 
𝑋𝑏17 

 coefficients 

 
The average point estimates based on H.CART are closer to the 

corresponding true values than those based on CART. H.CART tends to be less 
biased as compared to the CART method for all types of covariates and 
interaction terms, whereas H.DEF tends to be upward biased for binary and the 
multilevel covariate with four levels and slightly downward biased for the 
multilevel covariate with six levels, for the continuous covariates and the 
interaction terms as compared to the CART method (Figure 2). There seem to be 
similarities in the structure among all MI methods (i.e. all methods are downward 
biased) for binary covariate 𝑋𝑏32

, which was generated with higher order 

interactions. The H.DEF method tends to have smaller standard errors as 
compared to two relevant methods for all covariates, whereas the H.CART 
method tends to have similar standard errors as compared to CART for most of 
the cases (Figure 3). The estimated RMSES, ESEs and averages of standard 
errors for the H.CART method are smaller for all types of covariates except the 
multilevel covariate with many categories. H.CART shows similar ESEs and 
averages of standard errors and slightly higher RMSES for the multilevel covariate 
with more categories as compared to CART. The H.DEF method shows smaller 
ESEs and averages of standard errors for all types of covariates and slightly 
higher RMSEs for most of the covariates as compared to the other methods 
(Table 1). The H.DEF method led to more overall accuracy with smaller means for 
RMSEs over all beta coefficients as compared to CART (Table 2). A possible 
explanation for the efficiency gain with H.DEF is that it was able to make better 
use of the available information by accommodating nonlinearities among the 
predictors. For the most part, coverage rates for H.CART are in line with those 
from CART and produce almost identical results. In most cases, coverage 
probabilities for H.CART were 100%, which suggests that these confidence 
intervals may be too conservative. The simulated coverage rates of the 95% 
confidence intervals based on H.DEF are near to nominal 95% for most cases. 
Few of the incidences in H.DEF led to under-coverage. All but one of the 
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incidences, i.e. 𝑋𝑏32
in which coverages dip below 30% occur. This severe under-

coverage suggests that H.DEF (which uses the Bayesian approach for categorical 
and PMM as default for continuous covariates) might performing not well for 
continuous covariates but works well for categorical covariates. This might be one 
of the reasons that H.DEF gets biased results. Increasing M can lead to obtain 
coverage rates that are close to nominal in the case of under-coverages. 
Nevertheless, the H.DEF method led to coverage rates that are close to nominal 
over all beta coefficients as compared to CART (Table 2). 

7.  Imputation of MICS child data 

The data for MICS is collected at both family and person level and it allows 
the study of relationships between health indicators and other characteristics. In 
this study, we use the child data set from the MICS Punjab 2014 household 
survey. The MICS Punjab data for children contains more than two hundred 
indicators on a variety of a child’s conditions. For example, indicators on a child’s 
mental development (e.g. a child is able to pick up small object with 2 fingers, 
etc.), a child’s nutrition intake in diet (e.g. a child drank or ate vitamin or mineral 
supplements, etc.) and vaccinations (e.g. ever had vaccination card, etc.). The 
MICS data for children contains a complex data structure for categorical variables 
with multiple levels and large amounts of missingness, which can be problematic 
for MICE. It can be tedious for MICE to specify imputation models and interaction 
terms in the presence of large databases with hundreds of variables and 
multicollinearity (Van Buuren and Oudshoorn 1999).  It was not possible to have a 
proper comparison of the proposed and existing MI approaches in such case. 
Therefore, multiple categories for categorical variables were reduced by merging 
them, and a sub-sample of 52 variables, which contains information on child 
health, nutrition and development, is selected from MICS Punjab 2014 children 
data. Among these variables, 43 background variables are categorical with 
multiple categories and the remaining are continuous. Demographical variables 
like “district” and “area” are also included in the sub-sample. In this sub-sample, 5 
variables have between 6 and 21% of missing values, 17 variables have 48% of 
missing values, 27 variables have between 50% and 86% of missing values, and 
1 variable has more than 90% of missing values. Of all variables, only 3, i.e. “sex”, 
“wealth” and “area”, have complete records (see additional file). The variable 
“district” has 36 levels, hence keeping the analysis comparable and challenging at 
the same time. There are various reasons listed for item non response in the 
methodology of MICS i.e. nonresponse, don’t know and not reached, etc. Without 
distinguishing reasons for item non response, we assume that the items are MAR in 
the data under consideration. Similar to the simulation study, all of the variables 
from the sub-sample are included in the imputation model.  

After imputations, parameters of interest for the child health are estimated 
using linear models for continuous response (height for age percentiles NCHS). 
The response variable, “height for age percentiles NCHS”, is obtained by using a 
table of Z-scores (percentile = the area from infinity to Z). Based on the evidence 
from demographical and behavioural risk factors associated to height, two 
continuous covariates i.e. “age”, “polio_vacc.” and two categorical variables, i.e. 
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“grains_in_diet” (Yes/ No) and “eggs_in_diet” (Yes/ No) are selected as potential 
determinants in the analysis model. Since there are no true values to compare for 
in the real data example, we calculated complete case (CC) estimates for 
comparison purposes (Table 5). The R package “VIM” (Templ et al.  (2012)) is 
utilized for exploring data and the pattern of missing values. Figure 4 shows 
graphics of the incomplete predictors. Graphics for the remaining variables in the 
sub-sample are provided in an additional file. Similar to the simulation study 
ESEs, average point estimates and average standard across the 200 simulations 
are calculated for real data. Computational time and ESEs for MI methods are 
shown in Tables 3 and 4 respectively. Figures 5 and 6 display the average point 
estimates and average standard errors for the MI methods across the 200 
simulations. 

7.1. Results 

Figure 4.  Real data: Aggregateplot in R, graphics of incomplete predictors. For 
purposes of displaying the graphical depiction, only four variables with 
proportions of missing values ranges between 18-28 were selected 

 

Figure 5.  Real data: Boxplots for point estimates (𝑞
𝑀

) across 200 simulations by 

imputation methods under Missing at Random (MAR) and ten 
imputations  
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Figure 6.  Real data: Boxplots for standard errors (√𝑇𝑀  ) across 200 simulations 

by imputation methods under Missing at Random (MAR) and ten 
imputations. 

 
 

Table 3.  Real data: Time taken for various MI methods 

Method Default CART H..DEF H.CART 

Time No run 3.25d 22.78h. 21.21h 

Note: time = the time to complete 10 multiple imputation by variants of MI across 1000 
simulations, h = hours, d = days, and Not Run = the program not able to complete multiple 
imputation on this subset. The maximum number of iterations is set to 200.   

 

Table 4.  Real data: ESEs for various MI methods 

 

Variables CART H.DEF          H.CART 

age 

eggs_in_diet  

polio_vacc.   

grains_in_diet 

0.06 

0.21 

0.07 

0.17 

0.04 

0.22 

0.04 

0.16 

0.06 

0.20 

0.09 

0.21 

 
 
Empirical standard errors by imputation methods under Missing at Random 

(MAR) and ten imputations. Cases where both HMI methods result in minimum 
between imputation variances (ESEs) as compared to CART are highlighted in 
bold. 
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Table 5.  Real data: complete case (CC) estimates  

Variables est se 

age 3.542 0.899 

eggs_in_diet -9.866 1.305 

polio_vacc. -0.808 0.242 

grains_in_diet 0211 1,342 

 
The CC analysis uses only the complete cases (n = 4264), “est” and “se” 

denote the point estimates and standard errors of the coefficients of the linear 
model, respectively. 

Figure 4 displays graphics of incomplete predictors. The bar plot on the left 
side shows the proportions of missing values in the predictors. The continuous 
predictor “polio_vacc.” has the highest amount of missing values (i.e. about 80%) 
while the amount is rather small in the other three variables (i.e. less than 60% for 
two binary predictors and less than 40% for predictor “age”). An aggregation plot 
on the right side shows all existing combinations of missing (red) and imputed 
observed (blue) values. Additionally, the frequencies of different combinations are 
visualized by a small bar plot and by the number of their occurrences on the right 
side (Templ et al. (2012)). The aggregation plot reveals that missing values in the 
variable “polio_vacc.” are also missing in the two binary variables. We note that 
the standard errors for all of the coefficients are smaller compared to the 
(absolute) point estimates under all MI methods (see Figures 5-6). This happens 
most likely due to sampling variability in the multiple imputation inferences. The 
empirical example with real data indicated that the CART and HMI variants 
yielded differing point estimates. We noticed that point estimates in CART are 
nearer to the estimates in complete case analysis for most of the cases with 
larger standard errors as compared to hybrid methods (see Table 5, Figures 5-6).  
Figure 6 displays smaller standard errors for H.DEF as compared to CART. ESEs 
for HMI variants are also smaller as compared to CART for most of the cases 
(see Table 5), suggesting better performance over CART. Given the results 
produced by the MI methods, a look at the computation times in Table 3 may be 
useful for a further comparison. Almost 4 days were taken by CART to run on 
standard computers, whereas, surprisingly, this time was reduced to almost one 
day when HMI methods were applied. We also applied the proposed methods to 
the full MICS data set with hundreds of variables and categories with multiple 
levels. We found that the proposed methods have a good capacity to perform for 
the MICS data where the MICE methods simply fail.  

8.  Conclusion and remarks 

We acknowledge that results of MI can be biased even when complex 
multivariate data is MAR (White and Carlin, 2010). However, in this paper, we 
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assumed that the missing data mechanism is MAR. We applied our hybrid 
strategy to handle missing data in large scale survey data with complex 
dependence structures among categorical variables and a high percentage of 
missing information. Identification of complex dependence structures among 
mixed type covariates will be difficult for JM and FCS MI methods in high 
dimensions. We obtain promising results by performing an illustrative analysis. 
The results obtained from the simulation studies and a real data example confirm 
the potential of our proposed approach to handle missing data under MAR. 
Superiority of H.DEF was its efficiency relative to the other imputation inference 
methods. The H.DEF method outperformed the other methods with respect to 
RMSEs, ESEs and standard errors but its point estimates were downwardly 
biased for a few regression coefficients, which led to under-coverage of the 
confidence intervals. H.CART gives estimates with less bias but over-coverage of 
confidence intervals. There was no noticeable difference in coverage and 
standard errors between H.CAT and CART.  H.CART produces smaller RMSEs 
and ESEs for most parts and 3 times less computational cost as compared to 
MICE. A problem of the HMI approach is that it does not use the information 
available on the continuous variables for imputing the categorical variables. 
Further work is needed to use iterative procedures to develop strong relationships 
between the categorical and continuous variables. Currently, we are 
implementing solutions for this problem and we use the concept of categorizing 
continuous variables. We are working on the development of a new R package 
that will implement the proposed HMI approach with the hope that it will contribute 
in MI of large scale survey data. 
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