
 

 

UTILIZING REMOTELY PILOTED AIR SYSTEMS 

IN THE DELINEATION OF  

FUNCTIONAL LAND MANAGEMENT ZONES 

 

 
 

 

 

 

 

 

A Thesis Submitted to the College of Graduate and Postdoctoral Studies 

in Partial Fulfillment of the Requirements 

for the Degree of Master of Science 

in the Department of Soil Science 

University of Saskatchewan 

Saskatoon, SK, Canada 

 

 

 

 

 

 

By 

Lukas Alexander Raphael Smith 

 

 

 

 

 

 

 

 

 

 

 

© Copyright Lukas Alexander Raphael Smith, December 2019. All rights reserved. 



i 
 

PERMISSION TO USE 

In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree from 

the University of Saskatchewan, I agree that the Libraries of this University may make it freely 

available for inspection. I further agree that permission for copying of this thesis in any manner, 

in whole or in part, for scholarly purposes may be granted by the professor or professors who 

supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the 

College in which my thesis work was done. It is understood that any copying or publication or 

use of this thesis or parts thereof for financial gain shall not be allowed without my written 

permission. It is also understood that due recognition shall be given to me and to the University 

of Saskatchewan in any scholarly use that may be made of any material in my thesis. Requests 

for permission to copy or to make other uses of materials in this thesis, in whole or part, should 

be addressed to: 

 

Dean 

College of Graduate and Postdoctoral Studies 

University of Saskatchewan 

116 Thorvaldson building, 110 Science Place 

Saskatoon, Saskatchewan 

Canada, S7N 5C9 

 

Head, Department of Soil Science 

College of Agriculture and Bioresources 

University of Saskatchewan 

51 Campus Dr. 

Saskatoon, SK 

Canada, S7N 5A8 

 

 

 

 

 

 



ii 
 

DISCLAIMER 

Reference in this thesis to any specific commercial product, process, or service by trade name, 

trademark, manufacturer, or otherwise, does not constitute or imply its endorsement, 

recommendation, or favoring by the University of Saskatchewan. The views and opinions of the 

author expressed herein do not state or reflect those of the University of Saskatchewan, and shall 

not be used for advertising or product endorsement purposes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

ABSTRACT 

Global food production must increase significantly before 2050 to ensure food security. This 

necessitates the intensification of agriculture to keep with land resource constraints. Meanwhile, 

climate change is occurring, and these two factors are exerting pressure on the medium through 

which food production occurs: the soil. Soil provides many of the ecosystem services provided 

by farmland and is essential for functions such as food production, water storage, carbon cycling 

and storage, functional and intrinsic biodiversity, as well as nutrient cycling. In order for 

agriculture to intensify sustainably, these soil functions must be maintained. However, we do not 

currently have a baseline measure of the overall functions soils are providing which is needed in 

order to track how climate change and agricultural intensification are impacting the soil. 

Precision agriculture provides an avenue to achieve this and management zones are essential to 

precision agriculture. Traditional methods of sampling to gather soil information are labor 

intensive and time consuming; it is necessary to find faster alternatives. Remote sensing and 

digital soil mapping (DSM) are two technologies with great potential for quickly gathering soil 

information at large spatial scales. The objectives of this study were to: 1) test remote sensing 

methods for the interpolation of surficial soil organic carbon using a remotely piloted air system 

(RPAS); and 2) develop a method of management zone delineation that accounts for multiple 

soil functions. Remote sensing was found to be the most effective at estimating soil organic 

carbon (SOC) through the use of DSM. SOC and topography were found to be key factors for 

multiple soil functions. These factors were used to develop a management zone delineation 

method that was indicative of multiple soil functions. An RPAS is not necessary for this method 

but remote sensing data is essential. This method assists land users to, within a familiar 

framework, quickly estimate and manage for multiple soil functions. It produces a measure of 

soil health that enables land productivity and value to be maximized while providing the 

opportunity to respond timely to the effects of climate change and agricultural intensification. 
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Chapter 1.0  

GENERAL INTRODUCTION 

1.1 Context 
 

Global populations are rapidly increasing and the Food and Agriculture Organization suggests 

that primary food production will need to increase by up to 60% by 2050 (Coyle et al., 2016). A 

further challenge is climate change, which has – and will continue to – pressure the 

environment’s resiliency. A major question for global food security is whether food production 

can be achieved at higher than current rates without undermining ecological functions and 

ecosystems services (Squire et al., 2015). To ensure food security there is pressure for the 

intensification of agricultural inputs. Intensification needs to be sustainable, which means 

increasing food production from current agricultural areas while reducing or decoupling negative 

environmental impacts (Schulte et al., 2014). Agricultural intensification has been linked to 

problems such as reduced water quality and biodiversity, and it can significantly decrease 

resiliency to change (Power, 2010). There is a need to characterize the resiliency of key soil 

ecosystem services in Canadian agricultural landscapes as resilience controls the points at which 

ecosystem services shift (Ludwig et al., 2018). Assessing and linking soil ecosystem services to 

land resource policy and management is necessary. It has been suggested that the inclusion of 

soils in policy and decision making is essential and an important determinant in a country’s 

economic status (Adhikari and Hartemink, 2016). 

 

Soil is responsible for many ecological functions and ecosystem services, including: food 

production; water storage, purification, and regulation; carbon cycling and storage; functional 

and intrinsic biodiversity; as well as nutrient cycling and provision (O’Sullivan et al., 2015; 

Poggio and Gimona, 2016). The amount of function provided varies depending on soil 

properties, topography, land use, and management (Noorbakhsh et al., 2008; Parent et al., 2008; 

Schulte et al., 2014). Poor agricultural management of soils in the past has led to catastrophes 

such as wind erosion events in the 1930s (Pennock et al., 2011), and a significant decrease in soil 

organic matter (Anderson and Cerkowniak, 2010). Therefore, it is important not only to manage 

farmland soils to increase food production, but to preserve and enhance the other soil functions 

for the entire ecosystem. 
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Modern agricultural practices such as ‘Precision Agriculture’ (PA) try to manage for soil 

variability by dividing fields into management zones that can receive customized inputs to 

maximize crop productivity within each zone. Historically, PA has largely been focused on the 

management of cropland (Schellberg et al., 2008) and management zones focused on a single 

soil function: crop productivity. Present methods of management-zone delineation may have the 

potential to indicate variation in multiple soil functions under different land uses as key soil 

properties related to plant productivity are also related to other soil functions (Adhikari and 

Hartemink, 2016). PA needs to expand to include more land uses within an agricultural 

landscape as well as more soil functions to allow for holistic decision-making that maximizes the 

total ecosystem services provided by soil in agricultural landscapes. 

 

Climate change pressures are occurring now and can affect the soil. In order to measure this 

effect a baseline measure of soil and its functions is needed now, and remote sensing and digital 

soil mapping can be part of the solution. Digital soil mapping development has been driven by 

food security, ecosystem health, and climate change, and its goal is to provide high quality 

spatial soil information (Zhang et al., 2017). Replacing and or supplementing on-ground methods 

with remote-sensing and digital soil mapping methods will significantly decrease the time 

needed to collect the necessary soil data to delineate functional land management zones. 

Remotely Piloted Air Systems (RPAS) have higher spatial resolution (Matese et al., 2015) and 

can have higher temporal resolutions than satellites, with relatively low operational costs (Zhang 

and Kovacs, 2012). Utilizing RPAS allows for management decisions based on data collected 

from the flying platform to be made quickly after a flight. 

 

1.2 Research Objectives 

There were two primary objectives for this research. The first was to test remote sensing methods 

of sampling and interpolating surficial soil organic carbon using an RPAS against physical soil 

sampling methods. The second was to develop and test a method for delineating management 

zones that are indicative of multiple soil functions. 

 

The management zones delineated in this project will provide the framework for identifying soil 

functions in a landscape and then quantifying and valuing the provided ecosystem services. As 
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such, the management zones developed will be referred to as ‘Functional Land Management 

Zones’. The framework will be explicitly linked to the sustainability metrics soil landforms used 

by Agriculture and Agri-Food Canada. This project is a sub-project within a larger study on 

“Understanding Resilience in Agroecosystems” with a focus on landscapes in transition. In the 

face of climate change, this study seeks to determine the ecosystem services provided by soils 

under different land use and quantify agroecosystem resilience so that resiliency can be enhanced 

through the optimization of soil quality and key ecosystem services (Bedard-Haughn, 

unpublished, 2016). As such the sub-project described in this thesis utilizes data collected by 

peers for other sub-projects. 

 

1.3 Organization of Thesis 

This thesis is written in the manuscript-style format. Chapter One and Two provide a general 

introduction and a literature review, respectively. Chapter Three focusses on testing RPAS 

methods of measuring surficial soil organic carbon while Chapter Four explores the 

implementation of these methods in delineating management zones that are indicative of multiple 

soil functions. Chapter Five summarizes the two research Chapters (Three and Four), 

commenting on how the research can be applied and improved upon. Appendix A provides 

additional soil and plant indices data collected for the study. Appendix B provides the zone 

delineation method implemented in Chapter Four. Finally, Appendix C contains zone delineation 

maps for the St. Denis National Wildlife Area and the Conservation Learning Centre.  
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Chapter 2.0 

LITERATURE REVIEW 

Over 110 billion dollars of Canada’s GDP is from the agriculture and agri-food industry 

(Agriculture and Agri-Food Canada, 2017). Most of Canada’s farmland is found in the Prairie 

Provinces with Saskatchewan itself having 38% of the total (Veeman and Veeman, 2015). In 

2011, the total farm area in Saskatchewan was 25 million hectares (61.6 million acres) of which 

59.1% was cropland (field crops and hay) (Statistics Canada, 2016), and approximately 27% was 

pasture land (Government of Saskatchewan, 2015). Besides crop production and providing space 

and feed for livestock, farmland can provide many other benefits. These non-market benefits can 

include plant and wildlife habitat, soil erosion control, flood protection, improved water quality, 

carbon sequestration, scenic views and recreation opportunities (Ministry of Agriculture and 

Lands, 2007). Agriculture is an essential industry that provides economic, societal, and 

environmental benefit. 

 

Of the many ecosystem services and benefits the soil provides, Schulte et al. (2014) identified 

five key soil functions: food, fibre, and fuel production, water purification, carbon sequestration, 

habitat for biodiversity, and recycling of nutrients/agro-chemicals. Soil is the medium in which 

plants are grown for food, forage, and bioenergy (Greiner et al., 2017). It holds water for plant 

use and it maintains surface and groundwater quality by buffering and filtering organic 

compounds (Jónsson and Davídsdóttir, 2016; Greiner et al., 2017). Soil has high value in terms 

of mitigating global climate change as it has greater carbon storage potential than vegetation and 

the atmosphere (Srivastava et al., 2012). Previous cultivation has resulted in soil carbon stores 

being halved in agricultural areas, by implementing better management practices these stores can 

be restocked (McCarl et al., 2007). Soils are a habitat for millions of species including bacteria, 

fungi, and microfaunal grazers which provide benefits such as nutrient mineralization and 

excretion for plant uptake, toxin remediation, and improving soil structure and resiliency (Birgé 

et al., 2016; Jónsson and Davídsdóttir, 2016). Lastly, soils provide an environment for nutrient 

storage and cycling and they have the ability to absorb and retain solutes and contaminants 

(Jónsson and Davídsdóttir, 2016; Greiner et al., 2017). 
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In order to meet the challenges of producing enough food for a growing global population and 

making more efficient and considered use of natural resources, sustainable food production is at 

the top of the global policy agenda (Schulte et al., 2014). A critical aspect of sustainable food 

production is good soil management and Schulte et al. (2014) responded by introducing the 

concept of “Functional Land Management” (FLM). This concept aims to optimize the multi-

functionality of soils and land use to meet agricultural and environmental targets at local and 

national levels. Their group has since sought to expand the FLM framework and has developed 

the concepts of demand and supply of soil function, providing a ‘proof of concept’ at a national 

level, relating a soils’ function to land use (Schulte et al., 2014). They have examined the trade-

off between primary productivity and carbon storage in response to the intervention of drainage 

systems (O’Sullivan et al., 2015). Then they reviewed soil function under different soil drainage 

and land use scenarios (Coyle et al., 2016) and assessed how soil management and land use 

management interact in meeting multiple targets simultaneously (Valujeva et al., 2016). Also, 

they designed an optimized catchment based on soil function targets and identified gaps in 

implementation of the proposed design (O’Sullivan et al., 2017). The idea of managing soil for 

multiple ecosystem functions was also explored by Williams et al. (2016). They used the term 

“Soil Functional Zone Management” which entailed the creation and management of distinct yet 

complementary zones with the potential to reduce trade-offs between soil quality and short-term 

productivity through non-uniform management of tillage and crop residues. The aforementioned 

work of Schulte’s research group was mostly focused on, and conducted in, Ireland. Williams’ 

study was conducted in the USA. While managing for soil function has been explored in Canada 

(Saad et al., 2011) it requires further exploration and there is a lack of methods available for land 

users to implement soil FLM. 

 

Precision Agriculture (PA) has been said to be “one of the top ten revolutions” in agriculture 

(Mulla, 2013) and a key direction in modern agricultural development (Zhang et al., 2014). PA 

dates back to the 1980s and has been commercially practiced since the 1990s (Mulla, 2013). PA 

can improve farm management of inputs: increasing crop productivity while simultaneously 

decreasing negative environmental effects. By customizing the inputs applied to different parts 

of a field, less chemicals can be used which not only lowers the cost associated with fertilizer, 

pesticides, herbicides, and fungicides but reduces the risk of these inputs contaminating the 
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surrounding air, soil and water (Mulla, 2013; Zhang et al., 2014). Further benefits can include 

lower fuel costs, more precise hybrid selection and rental agreements better aligned with actual 

crop productivity (Mulla, 2013). When PA began, there were two primary schools of thought: 1) 

management based on soil mapping units and; 2) management based on homogenous sub-field 

units called management zones (also referred to as Site-Specific Crop Management). For each 

soil mapping unit or management zone a customized management practice is applied. 

 

Management zones became more widely adopted when it was shown that soil mapping units 

were too large-scale to capture in-field variability (Mulla, 2013). In a recent survey of western 

Canadian farmers, 93% agreed or strongly agreed that PA is useful and 75% said they intended 

to use more PA tools in the future. For the 2016 season, 48% of respondents claimed to use PA 

tools and/or services on their whole farm while 37% claimed to use them on only a portion of 

their farm. However, 49% of respondents did not use prescription maps or variable-rate 

technology to apply variable or unique rates to their fields. The largest perceived barriers to 

adopting PA technology were price, internet speeds and/or cellular data coverage, lack of 

knowledgeable people, continuously evolving technology, and incompatible (old) farm 

equipment (Steele, 2017). PA adoption rates are significant in Canada (Mulla, 2013) and there is 

room for current PA users to adopt further PA tools and services, but barriers still exist.  

 

It has been suggested that a better definition of PA would include the use of information 

technologies and encompass every agricultural activity: plant production, animal production and 

welfare, management of natural resources, agricultural landscape management, and post-harvest 

processing of raw material. PA practices can be applied to other land uses such as grasslands and 

pasture but constraints such as low economic value, the natural heterogeneity of grasslands, and 

the spatial patterns of biomass created by grazing animals have limited its application 

(Schellberg et al., 2008; Cicore et al., 2016). In its current capacity, PA allows for an increase in 

crop productivity while simultaneously preserving the environment, but the practice of PA still 

needs to be expanded to be further implemented with land uses other than crop fields and to 

account for the management of multiple soil functions. 
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Regardless of how PA is defined, management zones are an important consideration (Elstein, 

2003) and a popular basis for implementing variable rate technology (Song et al., 2009). There 

are many methods for delineating management zones; many require soil mapping. Variables like 

soil electrical conductivity, yield data, soil texture, topography, soil organic matter and various 

soil nutrients have all been used to delineate management zones (Gozdowski et al., 2014), but the 

soil properties have typically only been considered in the context of crop yield. The same soil 

properties could also be looked at in the context of other soil functions. For example, a 

delineation method may use soil organic matter content as a variable as it is related to soil 

organic carbon (SOC) content. Not only does SOC content indicate potential crop yield 

(Gozdowski et al., 2014) but it also provides a measure of carbon sequestration. Also, the 

amount of nutrients in soil impacts plant growth, and nutrient cycling is also a soil function as it 

can absorb and detoxify organic wastes (Coyle et al., 2016). Other links between soil properties 

and functions exist as well (Birgé et al., 2016); measuring key soil properties not only allows for 

crop performance to be predicted but the ability of the soil to provide other functions can also be 

assessed. Management zones have been implemented in grassland management (Pena-

Yewtukhiw et al., 2017) but a lack of literature on the topic suggests this is not a common 

practice. Invasive and non-invasive soil sampling, landscape factors from DEMs, remote sensing 

imagery and photography have all been used as approaches for delineating management zones 

(Buttafuoco et al., 2010; Gozdowski et al., 2014). Grid sampling is a common method of 

characterizing spatial variation and zone delineation but it is labor intensive and time consuming 

and therefore not viable from a site-specific crop management perspective (Song et al., 2009; 

Moral et al., 2010). Management zones are essential for the implementation of precision 

agriculture and the utilization of remote sensing technology allows for more efficient 

management zone delineation. 

 

Current soil maps are often lacking in detail and resolution. In order to deal with global food 

security, climate change pressures, land degradation, and ecosystem health (issues closely related 

to soil function), detailed and accurate spatial data is required; and this is the driving force 

behind digital soil mapping (DSM) (Zhang et al., 2017). DSM (also known as predictive soil 

mapping) has been defined as “the creation and population of spatial information systems by the 

use of field and laboratory observational methods coupled with spatial and non-spatial inference 
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systems” (Zhang et al., 2017). Its major components are: an input (legacy soil observations, 

statistical sampling techniques, and environmental co-variates [Minasny et al., 2013]), a process 

(building models relating soil observations with environmental co-variates), and an output 

(spatial soil information systems including rasters of predictions) (Minasny and McBratney, 

2016). Environmental co-variates can also effectively be used as inputs as well (Taghizadeh-

Mehrjardi et al., 2016). The applications of DSM range from agricultural management to 

ecosystem services. DSM can be used in the management zone delineation process but more 

sophisticated technologies for predicting soil properties across a landscape with high resolution 

and accuracy are needed (Zhang et al., 2017). 

 

Remote sensing has a long history of being used to consistently and repeatedly gather spatial 

data at large scales (Redhead et al., 2012). In the 1930s, aerial photos were being used for precise 

measurements of cropland area (Zhang and Kovacs, 2012) and satellite-based remote sensing has 

been used for agriculture since the 1970s (Mulla, 2013). Remote sensing can also be important in 

the mapping and modelling of soil properties (Poggio and Gimona, 2016). Other applications 

include measuring crop yield, biomass, crop nutrient and water stress, and the spread of weeds, 

insects and plant diseases (Mulla, 2013). Remote sensing has also proven useful for the 

management of forage (Cicore et al., 2016), grassland (Dusseux et al., 2015) and pasture 

(Edirisinghe et al., 2011). Despite all this, the use of satellite and aerial remotely sensed data is 

not yet widespread. Although, spatial and temporal resolution have improved greatly in recent 

years, they have traditionally served as barriers to satellite use (Mulla, 2013). Using aircraft for 

remote sensing can come with its own limitations such as the inability to provide images at low 

altitudes and low speeds (Huang et al., 2016). Cloud cover can also severely limit the use of 

satellite and aerial imagery (Mulla, 2013). In the recent survey of western Canadian farmers, 

17% did not look at imagery or maps of their fields and 59% did not look at in-season crop 

imagery or remote sensing of their crops and fields. Of those who did utilize in-season imagery 

and remote sensing, 28% used satellite and 19% used RPAS imagery (Steele, 2017). The use of 

remote sensing for agriculture will only continue to grow into the future as the utilization of 

remote sensing technology allows for more efficient management zone delineation. 

 



9 
 

In recent years, the use of RPAS has increased significantly (Toth and Jóźków, 2016). Remotely 

sensed data from an RPAS platform provides high resolution data with great control over the 

timing of surveys (Matese et al., 2015). The high temporal resolution that can be achieved with 

an RPAS system means within 1-2 days an RPAS flight can be made, the data processed and 

interpreted, and an appropriate management response determined. Not only could this make a 

significant difference in regards to managing for pests and disease but it has been concluded that 

the temporal variability of crop production indicators is often larger in magnitude than is spatial 

variability (Schellberg et al., 2008), and this variability could be better managed for. Initially, 

barriers such as the high cost and low reliability of RPASs, lack of commercial sensors, high cost 

of sensors, limited payload, low-battery life and regulatory issues prevented their widespread 

use, but many of these issues have been addressed and as a result, RPAS use has grown. There 

still exist challenges in the use of RPASs such as evolving regulations, the need for certification, 

training for data interpretation, the need for a powerful computer and expensive software (or 

paying for data to be processed via cloud services), management of large data volumes, and a 

lack of standard methodology for their use (Hardin and Jensen, 2011; Wright, 2014; Zhang et al., 

2014; Matese et al., 2015; Shi et al., 2016). However, the potential benefits of RPAS remote 

sensing are great, the technology is swiftly advancing, and costs continue to decrease. It has been 

demonstrated that RPASs can be successfully and efficiently used for agricultural decision 

support (Herwitz et al., 2004). RPASs have great potential for helping make land management 

decisions in mixed-use areas at the field scale (quarter-section or section level) but with evolving 

regulations and technological advances there is a need to further explore their potential and work 

towards standardizing methodologies. 

 

Moving forward, agricultural practices will need to take into consideration all land uses and soil 

functions and FLM should be the framework that Canadian agriculture adapts as a solution. 

Precision agriculture improves field productivity in a more economic and environmental manner 

(Mulla, 2013) and could be made to fit within this framework through the use and optimization 

of management zones. In order to create management zones that are effective for FLM, spatial 

soil data at large scales are required. Typically, this has involved laborious, time consuming 

practices. Tools such as remote sensing and DSM can quicken this process (Song et al., 2009; 

Minasny et al., 2013) but there is a need to further explore these alternate modelling and soil 
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mapping technologies (Gray et al., 2015; Zhang et al., 2017), especially before they can be 

implemented into a method for delineating functional land management zones. 
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Chapter 3.0 

REMOTELY PILOTED AIR SYSTEM BASED REMOTE SENSING AND DIGITAL 

SOIL MAPPING OF SURFICIAL SOIL ORGANIC CARBON IN ANNUAL AND 

PERENNIAL LANDSCAPES 

3.1 Preface 

In order for Remotely Piloted Air System (RPAS) and Digital Soil Mapping (DSM) to be 

integrated into a methodology for creating functional land management zones, they must first be 

assessed in their ability to replace or supplement soil sampling. This research chapter explores 

the effectiveness of RPAS at estimating surficial soil organic carbon through remote sensing 

indices and predictive modelling. 
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3.2 Abstract  

Physical soil sampling for soil properties and for the interpolation of soil properties at the field 

scale can be labor intensive and time consuming. Climate change pressures and the need for 

agricultural intensification have created the need for quicker and more efficient ways to measure 

soil properties and the soil functions they indicate. In order to monitor soil change caused by 

climate change we need to establish a baseline now. Two technologies have emerged to meet this 

challenge: remote sensing and digital soil mapping. Remote sensing allows for large areas to be 

mapped and imaged, from which information about surface soil organic carbon (SOC) may be 

extracted. Digital soil mapping (DSM) allows for soil data to be combined with co-variates such 

as topographical data to interpolate SOC over large areas. Each method only requires soil 

sampling for training, significantly reducing the number of samples needed when compared to 

methods like grid sampling. The objectives of this chapter were to: 1) evaluate a remote sensing 

index method for estimating surficial soil organic carbon using an RPAS, and 2) evaluate a 

method for estimating surficial soil organic carbon using DSM and an RPAS. It was shown that 

in cropland both technologies were useful for measuring surficial soil carbon, with digital soil 

mapping having more accurate results. When compared to physical sampling and dry 

combustion analysis, in cropland, the best remote sensing index method had an r2 of 0.348 while 

the digital soil mapping method had an r2 of 0.690. It was also shown that digital soil mapping 

can be utilized for multiple land uses. In grassland the digital soil mapping method had an r2 of 

0.606 when compared to physical sampling and dry combustion analysis. 

 

3.3 Introduction 

Precision Agriculture (PA) plays an important role in achieving sustainable agriculture 

(Lindblom et al., 2017) and the use of management zones is an important aspect of PA (Elstein, 

2003). While there are many soil measures that can be used for delineating management zones; 

soil organic carbon has been shown to be one of the most relevant (Gozdowski et al., 2014). 

Currently, grid sampling is a common method for capturing soil property variation but it is 

laborious (Song et al., 2009); replacing grid soil sampling with a quicker method would allow  

for soil property variation to be more readily considered when delineating management zones. 
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Within the past decade the use of Remotely Piloted Air System (RPAS) for remote sensing has 

risen exponentially (Bareth et al., 2016). This is due to their high spatial and temporal resolution, 

low operational costs (Zhang and Kovacs, 2012), and accessibility (Bareth et al., 2016). RPAS 

allows for management decisions to be quickly made based on data collected from the platform 

providing successful and efficient agricultural decision support (Herwitz et al., 2004). However, 

RPAS users still face many challenges such as evolving regulations and a lack of standard 

methodology for their use (Hardin and Jensen, 2011; Wright, 2014). RPAS adoption for land 

management has the potential to provide efficient and effective land assessment but, considering 

its challenges and technological advances (Matese et al., 2015), the platform requires further 

exploration in its ability to aid in measuring soil properties. 

 

Remote sensing is well established in precision agriculture as a support for crop management 

(Bareth et al., 2016). It can be used to quickly obtain spatial information over large areas (Song 

et al., 2009) and has proven useful for the management of cropland, grassland, and forest 

(Edirisinghe et al., 2011; Dusseux et al., 2015; Cicore et al., 2016). It has also shown promise for 

estimating multiple soil properties (Poggio and Gimona, 2016). Soil organic matter (SOM) when 

greater than 2 percent, largely controls the reflectance of the soil (Fox and Sabbagh, 2002). SOM 

is complex and difficult to measure (Cameron and Breazeale, 1904; Rowell, 2000) and is usually 

estimated from soil organic carbon (SOC) (Pribyl, 2010). The Soil Line Euclidean Distance 

(SLED) method looks at the relationship between the red and near-infrared reflectance of bare 

soil in order to predict SOM and SOC (Fox and Sabbagh, 2002; Ladoni et al., 2010; Croft et al., 

2012; Hassan-Esfahani et al., 2015). When remotely sensing bare soil, the red and near-infrared 

reflectance have a linear relationship and the line formed by this relationship is referred to as the 

soil line.  

 

Another methodology that is able to quickly and inexpensively estimate SOC over large areas is 

digital soil mapping (DSM) (Wang et al., 2017). DSM combines field sampling and laboratory 

analysis with modelling software to predict and map soil properties. It has seen a steady rise in 

the literature over the past years due to the increasing availability of spatial data and computing 

power, as well as the development of data mining and GIS tools (Minasny and McBratney, 

2016). Topography based attributes are the most commonly used covariates for the DSM of soil 
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carbon (Minasny et al., 2013). SOC has been shown to correlate strongly with topography, 

especially in the upper soil layer (Florinsky et al., 2002; Wang et al., 2017). Tree-based models 

have been found to have superior predictive performance than many other methods, due to their 

ability to deal with linear and non-linear soil property relationships with covariates (Heung et al., 

2016; Wang et al., 2017). It has also been shown that Tree-based DSM can be successfully 

applied in hummocky terrain (Kiss, 2018).  

 

The objectives of this study were to: 1) evaluate a remote sensing index method for estimating 

surficial SOC using an RPAS; and 2) evaluate a method for estimating surficial SOC using DSM 

and an RPAS. 

 

 

3.4 Materials and Methods 

3.4.1 Study site 

This study was conducted at the St. Denis National Wildlife Area (SDNWA) in South-Central 

Saskatchewan, 40 km east of Saskatoon (see Fig 3.1). The SDNWA has hummocky topography 

and is in the Moist Mixed Grassland ecoregion (HABISask, 2018). The soils are mapped as part 

of the Weyburn association (University of Saskatchewan, 2018) and were found to be mostly 

Dark Brown Chernozems at higher slope positions and Black Chernozems at lower slope 

positions. The SDNWA features both annual cropland and perennial grassland. The cropland was 

planted to barley for the 2018 season and the grassland is hayed tame forage (grass mix- 

primarily brome).  

 

3.4.2 Sampling design 

Two different sampling designs (Fig. 3.1) were used for this study: transect and random stratified 

sampling. The random stratified points were stratified by slope position (upper-, back-, foot-

slope, and depression) and transects were nested within these points. Soil organic carbon (SOC) 

data was sampled from the random stratified points and was supplemented with transect SOC 

data provided by another research project (Aguiar, 2019). The location for each sampling point 

was recorded using a Trimble GeoExplorer 2005 Series GeoXT GPS (Trimble California, 

U.S.A) which had an accuracy up to 0.43 m.   
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3.4.3 Soil sampling and analysis 

For both cropland and grassland physical surface samples (0-15cm) were taken from the random 

stratified points using a Dutch auger in May 2017, a year prior to RPAS flights. A sub-sample of 

these were then ball ground and analyzed for SOC via dry combustion without pre-treatment 

(Wang and Anderson, 1998) using a LECO C632 elemental analyzer (LECO, Michigan, U.S.A.) 

at a furnace temperature of 840°C. No pretreatment is necessary because there is a temperature 

gap between when SOC is completely combusted (420°C) and when carbonates start to 

decompose (850°C) (Wang and Anderson, 1998). 

 

3.4.4 Remotely piloted air system operation 

RPAS flights were conducted in September 2018, when the crop had been removed and the 

grasslands had been hayed. A DJI Phantom 4 (DJI, Shenzhen, China) RPAS equipped with a 

Parrot Sequoia (Parrot Drones SAS, Paris, France) multi-spectral camera and sun sensor was 

flown once over the sampling area one hour after solar noon. The sun sensor corrects for any 

changes in sunlight occurring during flights. RGB (Red, Green, Blue; standard colour imagery) 

as well as Red, Green, and Near-infrared (NIR) imagery were captured. The RPAS was flown at 

a height of 90 m and speed of 10 m·s-1, with a frontlap (top and bottom image overlap) and 

sidelap (left and right image overlap) of 75%. Before and after each flight imagery of a 

calibration panel was collected to correct flight imagery during processing. Imagery captured by 

the DJI Phantom 4 Pro camera had a pixel size of 3.78 cm and imagery captured by the Parrot 

Sequoia had a pixel size of 9.11 cm. Flights were programmed using the DroneDeploy app 

(DroneDeploy, California, U.S.A). Three ground control points were previously installed on the 

site within the sampling area and their positions recorded using a Trimble GeoExplorer 2005 

Series GeoXT GPS (Trimble California, U.S.A).  
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Figure 3.1. Map showing the location of the study site within the province of Saskatchewan as well as the 

sampling points and sampling designs used in the study. 
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3.4.5 Extracting remote sensing values 

Tiles of remotely sensed images for red and NIR bands were mosaicked and geo-rectified with 

the ground control points using Pix4D Desktop (2018), then imported into ArcGIS Desktop 

(ESRI, 2017). In ArcGIS, a 0.5-m radius graphic buffer was drawn around each sampling point 

and the red- and NIR-reflectance values within the resulting polygons were extracted using zonal 

statistics. Remote sensing values were also extracted for a 20-m grid that extended across the 

cropland in the sampling area. 

  

3.4.6 Statistical analysis 

Statistical analysis was completed using R (R Core Team, 2018). Comparisons between red and 

NIR reflectance, and soil properties were done based on Fox and Sabbagh’s (2002) soil line 

Euclidean distance (SLED) formula (Formula 3.1). NIR reflectance values were plotted against 

the red reflectance values from the 20-m grid (Fig. 3.2) to construct what is referred to as the 

NIR-red spectral space (Zhang et al., 2019). The distribution of points within the NIR-red 

reflectance space have a triangle distribution pattern with the bottom of the triangle representing 

the bare soil line (Zhang et al., 2019). SLED calculates the Euclidean distance of the sampled 

pixel’s reflectance values away from the minimum point (left-most extreme point) of the bare 

soil line point to estimate soil organic carbon (SOC) (Fox and Sabbagh, 2002). 

 

Formula 3.1: Soil Line Euclidean Distance 

SLED= √(NIRSL −  NIRmin)2  + (RSL − Rmin)2      

NIR= Near infrared reflectance 

R= Red reflectance 

SL= Sample location 

Min= Minimum point on soil line 
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Figure 3.2. Plot showing the relationship between near infrared reflectance (NIR) and red reflectance of soil, 

in a cropland after harvest. The line indicates bare soil (i.e., soil line).  

This study also modified the SLED formula (Formula 3.2) in attempts to provide smoother 

results than SLED. This modification is referred to as Modified Soil Line Distance (MSLD). 

Instead of relating a sample point directly to the minimum point on the soil line MSLD calculates 

what the near infrared reflectance value of the sample point would be if it fell directly on the soil 

line based on its corresponding red reflectance value. The Euclidean distance of that sampling 

point from the minimum point of the soil line is then used to estimate SOC. 

 

Formula 3.2: Modified Soil Line Distance 

MSLD= √R2 + [M(R + I)]2        

R= Red reflectance 

M= Slope of soil line 

I= Intercept of soil line 

 

Many of the points in Fig. 3.2 are away from the soil line. Points closest to the soil line are either 

bare soil or have very low vegetative cover. Points far from this line indicate the presence of 

vegetative material covering the soil. SLED (and subsequently MSLD) is meant to be used when 

the soil is bare and does not account for soil cover. In attempts to account for the vegetative 

cover a threshold parallel to the soil line was set where sample points above threshold line were 

Soil Line: 
y=1.18493x-0.00193 
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excluded from analysis (Fig. 3.3). Since the grassland had little to no bare soil SLED and MSLD 

were only performed on the cropland.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.3 Plot showing the relationship between near infrared reflectance (NIR) and red reflectance of soil in a 

cropland after harvest. Points above the threshold were excluded from analysis due to excess vegetative cover. 

3.4.7 Digital soil mapping 

Digital soil modelling was completed utilizing the point cloud data collected with the RPAS. 

Using the point cloud data Pix4D Mapper Pro outputs a digital surface model.  A digital surface 

model includes features like vegetation and buildings. This model was taken into SAGA GIS 

(Conrad et al., 2015) and converted into a digital terrain model (DTM) (represents a bare earth 

surface) using a slope filter (Vosselman, 2000). A selection of elevation derived co-variates 

based on or related to previous DSM research were chosen for the digital soil modelling of soil 

organic carbon (Table 3.1). Nineteen of the crop sampling points that measured soil organic 

carbon were also used as co-variates in the crop model and 20 of the grassland points were used 

in the grassland model. Of these points, 75% were randomly selected to train the corresponding 

model. DSM uses both the co-variate data and the training points were used to interpolate SOC 

across the extent of the DTM coverage via random forest regression. The remaining 25% of the 

points were used for internal model testing. The best models (Fig. 3.4) were selected based on 

this internal validation. In order to provide a measure of significance, a linear regression was 

applied to the model results using both the training and validation points. 

 

Threshold Line: 
y=1.18493x+0.04807 
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Figure 3.4. Map showing the results of digital soil mapping for organic carbon to a depth of 15 cm.  Two 

models are shown, one run exclusively with crop points and one run exclusively with grass points. Results are 

based on factors derived from a digital surface model produced by the remotely piloted air system and soil 

sampling. 
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Table 3.1 Co-variates used for digital soil mapping models and their references.  

Co-variate Reference 

Aspect Kiss (2018) 

Catchment Area Kiss (2018) 

Channel Network Base This study 

Channel Network Distribution This study 

Chlorophyll Index-Green This study 

Convergence Index Kiss (2018) 

Digital Terrain Model McBratney et al. (2003) 

Downslope Curvature This study 

Local Curvature This study 

Local Downslope Curvature This study 

Local Upslope Curvature This study 

LS (Slope length and steepness) Factor Kiss (2018) 

Modified Catchment Area This study 

Normalized Difference Vegetation Index (NDVI) Malone et al. (2009) 

Plan Curvature Kiss (2018) 

Profile Curvature Kiss (2018) 

Relative Slope Position Behrens et al. (2010) 

Slope Kiss (2018) 

Stream Power Index This study 

Topographic Position Index Nussbaum et al. (2018) 

Topographic Wetness Index Kiss (2018) 

Total Catchment Area This study 

Upslope Curvature This study 

Valley Depth Kiss (2018) 

 

3.5 Results and Discussion 

3.5.1 Soil line-based indices 

Even without accounting for excessively vegetated data points soil organic carbon (SOC) was 

found to have a logarithmic relationship with both SLED (Fig. 3.5A) and MSLD (Fig. 3.5C). The 

predictive capability of the MSLD relationship was found to be three times higher than that the 

SLED relationship. However, the strength of the MSLD correlation with SOC was relatively low 

with an r2 of 0.307. When excessively vegetated data points were removed from analysis the 

strength of both the SLED and MLSD correlations improved. The SLED improvement was 

threefold (Fig. 3.5B) while the MSLD r2 only improved by 0.041 (Fig. 3.5D). 
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C-Raw 

A-Raw B-Threshold 

r2=0.307 

Figure 3.5. Plots from post-harvest cropland showing: A) the logarithmic relationship between soil 

organic carbon (SOC) and the Euclidean distance between NIR and red reflectance B) the logarithmic 

relationship between soil organic carbon (SOC) and the Euclidean distance between NIR and red 

reflectance, data points with reflectance values above a threshold have been removed to account for excess 

vegetative cover; C) the logarithmic relationship between measured soil organic carbon (SOC) and the 

modified Euclidean distance between NIR and red reflectance and; D) the logarithmic relationship 

between measured soil organic carbon (SOC) and the modified Euclidean distance between NIR and red 

reflectance, data points with reflectance values above a threshold have been removed to account for excess 

vegetative cover.  

p<0.01 p=0.02 

p<0.01 p<0.01 

D-Threshold r2=0.348 

r2=0.321 r2=0.101 
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Fox and Sabbagh (2002) found highly correlated two-parameter exponential decay relationships 

between SLED and soil organic matter (SOM) at their two study sites with r2 values of 0.68 and 

0.79. While the Fox and Sabbagh study was measuring SOM, the relationship between SOM and 

SOC is generally consistent within an area (Heaton et al., 2016), and at this site the SOM would 

be  approximately 50% SOC (Pribyl, 2010). This likely did not contribute to the difference in 

results. In Fox and Sabbagh’s study most reflectance collection locations fell within 5 degrees of 

the soil line while in this study there was much greater variance (see Fig 3.2). Conservation 

tillage is practiced at this study site and as result crop stubble, residue, and some weed growth 

was prevalent throughout the site. This soil cover significantly increased the variance of NIR and 

red reflectance. Using MSLD was comparatively as effective for improving the estimation 

capability of SLED as removing excessively vegetated data points but both approaches were still 

inhibited by a lack of bare soil and had relatively low predictive capabilities. 

 

3.5.2 Digital soil mapping 

Digital soil mapping (DSM) of the cropland out-performed the soil line based approachess 

implemented in this study. The correlation of the model’s internal validation (Fig. 3.6) was twice 

as strong as that of MSLD with a threshold applied (Fig 3.5) and was comparable to the results 

of Fox and Sabbagh’s (2002) study. DSM of the grassland was still effective and outperformed 

the soil line approaches but its correlation was weaker than that of the cropland model (Fig. 3.6). 

 

The factors most likely contributing to the lower performance in grassland are heterogeneity in 

both the soil conditions and plant communities. One feature of the grassland portion of the study 

site is a long slope leading to a large pond. This area is stonier than the rest of the site with less 

plant growth. The hummocky terrain of the site has resulted in many small wetlands occupying 

the site, so certain areas are consistently wetter and more plant productivity occurs around these 

wetlands. This also contributes to heterogeneity in the make-up of plant communities throughout 

the site. Plant community heterogeneity is a known issue when it comes to the agricultural 

management of grasslands (Schellberg et al., 2008). Heterogeneity in soil conditions and plant 

communities means the input of SOM and SOC will vary greatly as well which makes it more 

difficult to effectively model.  

 



24 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

The largest advantage DSM has over the soil line methods of SOC is that vegetative cover is not 

a significant factor. DSM can be based entirely on topographical co-variates which removes the 

influence of soil cover. DSM requires more physical sampling than the soil line approaches 

(which still need some samples to tie results to actual values) in order to train the models but it is 

still an improvement over intensive sampling practices like grid sampling for estimating SOC 

across large areas. Another advantage of DSM is cost. While the soil line methods implemented 

in this study required the purchase and use of an expensive multi-spectral sensor. DSM only 

required the use of the camera that the RPAS came equipped with. A further advantage to not 

requiring an additional sensor is that the complexity of imagery collection and processing is 

decreased. The multi-spectral sensor requires the use of a calibration panel and the mosaicking of 

two sets of images instead of just one. The time needed for both imagery collection and 

processing was increased when using the multi-spectral sensor. 

 

3.6 Conclusions 

RPAS based remote sensing methods for estimating surficial SOC can be successfully 

implemented and MSLD is an improvement over SLED. However, the heterogeneity of soil 

Figure 3.6. Plots showing the linear relationship between sampled soil organic carbon values and soil 

organic carbon values estimated using Digital Soil Mapping in: A) a cropland after harvest and; B) a 

grassland after haying. Ir2= internal model validation r2, Er2= external validation r2 (model results against 

all sampled results). 

Ir2=0.606 

Er2=0.418 
p<0.01 

 

Ir2=0.690 

Er2=0.810 
p<0.01 

B- Grassland A- Cropland 
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cover negatively affects the ability of these approaches to provide results with a strong predictive 

capacity. Where a best management practice like conservation tillage is applied to cropland the 

effectiveness of soil line methods will be limited, even when attempts are made to account for 

vegetative cover. The high-resolution imagery produced by RPAS makes it easier to distinguish 

between vegetated and bare soil pixels, but if most of the pixels are vegetated then little benefit is 

provided by this advantage.   

 

The predictive strength of the remote sensing reliant methods of SOC measurement implemented 

in this study show that although remote sensing cannot replace physical sampling entirely 

(especially when soil cover is prevalent), it can supplement and reduce physical soil sampling 

through DSM. The digital terrain models that can be produced by RPAS are essential to 

topography-based DSM and do not require an expensive multi-spectral sensor (which also adds 

complexity to image collection and processing). While DSM still has error, and is not absolutely 

accurate, it does capture the relative differences in SOC which is enough to inform the 

delineation of management zones for precision agriculture.  
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Chapter 4.0 

DELINEATING FUNCTIONAL LAND MANAGEMENT ZONES IN ANNUAL AND 

PERENNIAL LANDSCAPES 

4.1 Preface 

This chapter utilizes the existing framework of precision agriculture and management zones to 

provide a quick and efficient way of capturing the variability of the soil properties that are key to 

soil functions across agricultural landscapes. This in turn provides the method by which soil 

function can be quickly and efficiently estimated, tracked, and valued. 
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4.2 Abstract 

Soil provides many of farmland’s ecosystem services and is essential for functions such as: food 

production, water storage, carbon cycling and storage, functional and intrinsic biodiversity, and 

nutrient cycling. It is important to manage farmland soils to increase both crop productivity and 

these other environmental benefits. Precision agriculture is seen to be an effective management 

tool for sustainably managing agricultural production; management zones are an integral part of 

its implementation. Management zones have the potential to be utilized not only to capture 

variation in plant productivity but in other soil functions as well. The objective of this chapter 

was to develop and assess a zone delineation method that considers multiple soil functions. The 

capacity of the soil to perform soil functions depends on certain key properties: slope, soil 

carbon, nitrogen, phosphorus, and texture. Soil organic carbon (SOC) correlates well with most 

of the key soil properties and it can be quickly measured and interpolated across a field by 

combining remotely piloted air systems and digital soil mapping. It was used in conjunction with 

slope position to create functional land management zones (FLMZs). The FLMZ method had 

mixed results. In terms of plant productivity in cropland and grassland, the delineated zones 

could capture within-field variation, but were far less effective when factors unrelated to SOC 

were impacting plant growth. The FLMZ method successfully indicated within-field variation of 

the soil potential to provide other soil functions related to SOC. The management zones seen as 

best for plant productivity did not always line up with the zones estimated to be best at providing 

other soil functions. 

 

 

 

4.3 Introduction 

Food production needs to increase by 60% by 2050 (Coyle et al., 2016) but a major question is 

whether this can be achieved without decreasing ecosystem function. Poor soil management 

practices can lead to significant decreases in function (Anderson and Cerkowniak, 2010; 

Pennock et al., 2011). In agricultural areas, soil is essential for many ecosystem functions 

including: food production; water storage, purification, and regulation; functional and intrinsic 

biodiversity; carbon cycling and storage; as well as nutrient cycling and provision (O’Sullivan et 

al., 2015; Poggio and Gimona, 2016). It is necessary to understand how to manage for soil 

function in order to achieve sustainability (Poggio and Gimona, 2016). Managing soil for 



28 
 

multiple functions requires further research in Canada and better methods of implementation 

need to be developed.   

 

Agricultural areas are a mosaic of croplands, shelterbelts, woodlands, wetlands, roads, buildings, 

pastures, and grasslands. These different land uses provide many soil-derived functions and 

differ in their capacity to provide each function depending on their management and soil 

properties (Schulte et al., 2014; Coyle et al., 2016). A specific example is that annual cropping 

systems have significantly less belowground plant matter than natural grassland systems (Fuller, 

2010). Certain soil properties are important or key to the different soil functions. For crop yield 

management the most considered soil properties are: electrical conductivity (measure of salinity 

[Scudiero et al., 2016]), texture, topography, organic matter, carbon, phosphorus, potassium, and 

nitrogen. Out of these, texture and organic carbon content have been highlighted as the most 

important (Gozdowski et al., 2014). Water storage, purification, and regulation have been linked 

to soil organic matter, organic carbon, bulk density, texture, and topography (Biswas and Si, 

2011; Birgé et al., 2016; Greiner et al., 2017). Soil pH, nitrogen, carbon, phosphorus, salinity, 

and topography are all key to microbial activity and biodiversity (Birgé et al., 2016; Wickings et 

al., 2016; Xue et al., 2018). Carbon sequestration and nutrient provision are soil functions 

inherent to soil properties and can be directly measured, but these functions are both influenced 

by topography (Guo et al., 2011; Miller, 2016). The importance of soil organic carbon and 

topography is well-established in the literature (Table 4.1), as is the pattern that increasing soil 

carbon tends to increase soil N and P stocks as well as other nutrients (Milne et al., 2015). The 

interrelation among soil function and properties means that the key soil properties for multiple 

soil functions overlap making simultaneous management of these functions possible.  
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Table 4.1. Summary of soil properties most relevant to soil functions and references. 

Soil Function Key Soil Properties  Reference(s) 

Carbon Sequestration Organic Carbon, Total Carbon, 

Topography 

Guo et al., (2011) 

Water Storage, 

Cycling, and 

Purification 

Bulk Density, Organic Carbon, 

Organic Matter, Salinity, Texture, 

Topography 

Biswas and Si, (2011); Birgé 

et al., (2016); Greiner et al., 

(2017) 

Habitat for Microbial 

Biodiversity 

Carbon, Nitrogen, pH, Phosphorus, 

Salinity, Topography 

Birgé et al., (2016; Wickings 

et al., (2016); Xue et al., 

(2018) 

Nutrient Cycling Carbon, Nitrogen, pH, Phosphorus, 

Topography 

Guo et al., (2011); Miller, 

(2016) 

Plant Productivity Carbon, Electrical Conductivity, 

Nitrogen, Organic Matter, 

Phosphorus, Potassium, Texture, 

Topography  

Gozdowski et al., (2014) 

 

Precision Agriculture (PA) is heralded as a key direction for sustainable agricultural 

development (Moral et al., 2010; Zhang et al., 2014). Management zones are the basic unit with 

which PA is applied. These homogenous sub-field units allow for the rate of application of inputs 

like fertilizer, herbicides, and pesticides to be adjusted for what each zone specifically requires. 

Not only does this reduce chemical costs but it also reduces the risk of environmental 

contamination; reducing the amount of chemicals applied reduces the potential for contamination 

via runoff or drift (Mulla, 2013). Management zone delineation methods are often centered 

around soil properties and their measurement (Gozdowski et al., 2014). When used to delineate 

management zones, soil properties are typically only considered in their relation to crop yield. 

 

Since management zones have been focused on crop productivity, management zones are 

primarily implemented in cropland. Previous research has also been conducted on the 

implementation of management zones in grassland and while it can be successful (Pena-

Yewtukhiw et al., 2017) there are multiple constraints limiting its application (Schellberg et al., 

2008; Cicore et al., 2016). The soil function primarily considered in these studies was plant 

productivity but grazing was a limiting factor. In the absence of grazing, grassland management 

zones could better capture variability. The overall value of cropland and grassland could be 
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calculated by applying a management zone method that focusses on the key soil properties for 

multiple soil functions allowing for the ability of the soil to provide these functions to be 

estimated.  

 

The objectives of this study were to: 1) develop a method for delineating management zones that 

is indicative of multiple soil functions; and 2) assess the ability of a management zone 

delineation method based on organic carbon and slope position to capture spatial variation of key 

soil properties and plant growth in both annual cropland and perennial grassland.  

 

4.4 Materials and Methods 

4.4.1 Study Sites 

This study was conducted at two sites in central Saskatchewan (see Fig. 4.1): the St. Denis 

National Wildlife Area (SDNWA) and the Conservation Learning Centre (CLC). The SDNWA 

is located 40 km east of Saskatoon, in the Moist Mixed Grassland ecoregion (HABISask, 2018). 

The soils are mapped as part of the Weyburn association (University of Saskatchewan, 2018) and 

were primarily found to be Dark Brown Chernozems at upper slope positions and Black 

Chernozems at lower slope positions. The CLC is located 23 km south of Prince Albert, in the 

Boreal Transition ecoregion (HABISask, 2018). The soils are a part of the Blaine Lake and 

Hamlin soil associations (University of Saskatchewan, 2018) and were primarily found to be 

Black Chernozems [Soil classifications for a subset of the sample points can be found in 

Appendix A]. Both sites feature hummocky topography and contain perennial grassland (hayed 

tame forage; grass mix- primarily brome) as well as annual cropland. Both sites were seeded in 

May; barley at the SDNWA and wheat at the CLC. Both sites had fertilizer applied in May after 

soil sampling. At the SDNWA granular fertilizer was applied at a rate of 95 kg/ha actual N, 37 

kg/ha actual P, and 17 kg/ha actual S. At the CLC liquid fertilizer was applied at a rate of 90 

kg/ha actual N and 28 kg/ha actual P.  

 

4.4.2 Sampling design 

Sampling points were selected via random stratification based on slope position. Both sites were 

segmented into four slope classes using the Miller method (Miller and Schaetzl, 2015) and 40 

points were selected for both grassland and annual cropland at both sites (see Fig. 4.2 and 4.3). 
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Figure 4.1. Map showing the location of the study sites within Saskatchewan. 



32 
 

 

 

 
 

F
ig

u
r
e
 4

.2
. 
M

a
p

 o
f 

th
e 

C
o
n

se
r
v
a
ti

o
n

 L
e
a

r
n

in
g

 C
e
n

tr
e
 s

tu
d

y
 s

it
e 

sh
o
w

in
g

 t
h

e 
sl

o
p

e
 p

o
si

ti
o
n

 d
e
li

n
e
a
ti

o
n

 o
f 

th
e
 s

it
e 

a
n

d
 t

h
e
 s

a
m

p
le

 

p
o
in

t 
lo

c
a
ti

o
n

s.
 

 



33 
 

 
Figure 4.3. Map of the St. Denis National Wildlife Area study site showing the slope position delineation of 

the site and the sample point locations. The space between B01, B02, B04, and B07 is occupied by a large 

wetland which prevents accurate sensing of the elevation.  
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4.4.3 Soil analysis 

This study focused on soil properties to a depth of 15 cm. This shallow depth allows for quicker 

measurement and the potential to be tied to reflected radiation measured from a remote piloted 

air system (RPAS). The RPAS sensors do not sense radiation from beneath the soil surface. Soil 

samples were collected from all sampling points using E-365 edelmen augers (Eijkelkamp Soil 

& Water, Gelderland, the Netherlands) in both the spring of 2017 and 2018. Samples were sealed 

in bags and stored in a 4°C fridge between collection and subsampling for soil moisture analysis 

(began day after collection). The remaining soil was subsequently air-dried and ground. Further 

subsampling occurred for the purposes of ball-grinding. All samples were analyzed for 

gravimetric soil moisture, total and organic carbon, total and organic nitrogen, pH, electrical 

conductivity (EC), phosphorus (P), and texture. Soil organic carbon (SOC), total soil carbon 

(TC) and total soil nitrogen (TN) were analyzed via dry combustion. SOC and TC were 

measured using a LECO C632 elemental analyzer (LECO, Michigan, U.S.A.): SOC at a furnace 

temperature of 840°C (Wang and Anderson, 2000) and TC at a furnace temp of 1100°C 

(Skjemstad and Baldock, 2007). A LECO TruMac CNS analyzer (LECO, Michigan, U.S.A.) was 

used to measure TN at a furnace temp of 1350°C (Rutherford et al., 2007). Mineral nitrogen 

(MN) -nitrate and ammonium- were measured via KCl extraction (Houba et al., 2000) and 

colorimetry using an AutoAnalyzer (SEAL, Wisconsin, U.S.A.). Organic nitrogen (ON) was 

then calculated by subtracting the combined values of nitrate and ammonium from TN. The EC 

and pH were measured via water extraction and pH/conductivity meter (Miller and Curtin, 

2007). A modified Kelowna extraction (Qian et al., 1994) and colorimetry using an 

AutoAnalyzer (SEAL, Wisconsin, U.S.A.) was used to measure P. Hand texturing was 

completed for all sampled points and particle size analysis using a pipette method (Indorante et 

al., 1990) was completed for a subset of the samples. Additionally, in the fall of 2018 soil cores 

were collected from a subset of the sampling points to a depth of 1 m. Bulk density (BD) was 

calculated for the subset using the 0-15 cm segment of their cores. The remainder of the sample 

points had their BD interpolated using kriging.   

 

4.4.4 Reducing key soil properties 

To develop a delineation method based on all ten of the sampled properties would be counter-

productive as the goal of this research is for this method to be quick and efficient method. It was 
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necessary for a reduction in the number of soil properties considered in the method. Only carbon 

and topography were relevant to all the considered soil functions. Therefore it was decided that 

organic carbon and topography (slope position) would be the key properties considered in the 

delineation of functional land management zones (FLMZ). To corroborate the merits of this 

decision, once soil analyses were completed principal component analysis using R (R Core 

Team, 2018) was performed on the dataset to look at the relationships between the full set of 

measured soil properties.  

 

4.4.5 Remotely piloted air system operation  

In 2018, RPAS flights were conducted at the SDNWA on June 28 and July 27 and at the CLC on 

July 5 and 31. Flight days were chosen based on crop growth stages. The first flight was meant to 

coincide with stem elongation and the second flight was meant to coincide with heading (just 

before ripening). All flights were conducted using a DJI Phantom 4 (DJI, Shenzhen, China) with 

an attached Parrot Sequoia (Parrot Drones SAS, Paris, France) multi-spectral camera and sun 

sensor. The sun sensor corrects for any changes in sunlight occurring during flights. The DJI 

Phantom 4 internal camera captured RGB (Red, Green, Blue; standard colour) imagery while the 

Parrot Sequoia captured Red, Green, and Near-infrared (NIR) imagery. Flights were 

programmed using the DroneDeploy app (DroneDeploy, California, U.S.A). Flight parameters 

were consistent with a flight height of 90 m and speed of 10 m·s-1. All flights had 75% frontlap 

(top and bottom image overlap) and 75% sidelap (left and right image overlap). Before and after 

each flight imagery of a calibration panel (white card) was collected and those reflectance values 

were used to correct flight imagery during processing. Imagery captured by the DJI Phantom 4 

Pro camera had a pixel size of 3.78 cm and imagery captured by the Parrot Sequoia had a pixel 

size of 9.11 cm. Flights were all flown within two hours of solar noon. 

 

4.4.6 Ground control points 

Both sites had ground control points (GCPs) installed for geo-correction and geo-rectification. 

These GCPs consisted of orange five gallon pail lids with a black ‘x’ painted on them, mounted 

on wooden stakes to prevent them from becoming covered by vegetation. GCPs were installed in 

a rough ‘x’ pattern across each study area (10 GCPs at SDNWA, 20 GCPs at CLC). The location 
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of GCPs was recorded using a Trimble GeoExplorer 2005 series GeoXT GPS (Trimble, 

California, U.S.A.) with an accuracy of up to 0.43 meters.   

 

4.4.7 Processing imagery 

The imagery from both the DJI Phantom 4 camera and Parrot Sequoia were processed using the 

Pix4D Desktop (2018). This software mosaicked together the captured images and geo-rectified 

them using the GCPs during processing. The outputs of Pix4D were an orthomosaic (colour 

image), digital surface model, and reflectance maps of the bands captured by the Parrot Sequoia 

Camera. Pix4D can also output a digital terrain model but its quality was poor when compared to 

knowledge of the site. In order to create a more accurate digital terrain model the Pix4D DSM 

was taken into SAGA GIS (Conrad et al., 2015) where the DTM filter (slope-based) tool was 

used to create a DTM. Both a visual inspection and a GIS comparison to previous LIDAR-based 

DEM for SDNWA proved the final product of this method to be a more accurate representation 

of the site compared to the Pix4D produced DTM.  

 

4.4.8 Quantifying productivity  

The reflectance maps were used to calculate the plant productivity index Chlorophyll Index-

Green (CIG) (Peng and Gitelson, 2012) within Pix4D and maps of this index were created for 

each site. This index was used to quantify crop and plant productivity when assessing the 

performance of the FLMZs. 20 points for each cover type at each site (except for SDNWA as the 

crop was reaped prior to sampling) were subsampled for yield. At each point a quadrat (1-m2 for 

cropland and 0.5-m2 for grassland) was laid out and the contained plant/crop was harvested. 

Samples were air dried then the grass samples were weighed for dry matter yield and the crop 

samples were weighed and threshed to determine grain yield. These results were used to confirm 

and calculate the relationship between CIG and productivity (Fig. 4.4). For cropland a change in 

CIG of 1 was equivalent to approximately 1.4 t/ha dry matter yield and in grassland a change in 

CIG of 1 was equivalent to approximately 1.3 t/ha dry matter yield.  
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Formula 4.1: Chlorophyll Index-Green 

CIG=
NIR

Green
 – 1 

NIR= Near-infrared reflectance 

Green= Green reflectance 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C: CLC Grass 

A: CLC Wheat B: CLC Wheat 

r2=0.645 

Figure 4.4. Plots showing: A) the linear relationship between Chlorophyll Index-Green (CIG) and the dry 

matter yield of wheat at the Conservation Learning Centre (CLC); B) the linear relationship between 

grain yield and the dry matter yield of wheat at the CLC; C) the linear relationship between Chlorophyll 

Index-Green (CIG) and dry matter yield of the grassland at the CLC and; D) the linear relationship 

between Chlorophyll Index-Green (CIG) and dry matter yield of the grassland at the St. Denis National 

Wildlife Area. 

p<0.01 p<0.01 

p<0.01 p<0.01 

D: SDNWA Grass r2=0.756 

r2=0.813 r2=0.596 
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4.4.9 Digital soil mapping  

A selection of elevation related co-variates based on previous DSM research were chosen for the 

digital soil modelling of soil organic carbon (Chapter 3: Table 3.1). These elevation co-variates 

were all created using SAGA GIS tools based on the DTM produced in SAGA. An additional co-

variate was the surficial (0-15 cm) organic carbon data collected from the random stratified 

sampling. The same co-variates were used for both cover types at both sites. However, for each 

site, only the organic carbon data for the matching cover type was used for modelling; separate 

models were created for each cover type at each site. Of the 40 sampling points for each cover 

type and site, 75% were randomly selected to train the model and the remaining 25% were used 

to test the model. After the best models were selected, the models were tested again using all 

corresponding sampling points, including samples collected by other groups in the project. For 

the purposes of management zone delineation, all models were broken into three classes of 

relative SOC using Jenks natural breaks optimization (in ArcGIS): high, medium, and low SOC. 

These classifications were then compared to the sample data to check for significant differences 

between the groups at p<0.1. The CLC crop, SDNWA crop and SDNWA grass models were all 

left as three classes while the CLC grass model was reduced to two classes (high and low SOC). 

 

4.4.10 Slope position classification 

A slope position classification was performed based on a 3-m resolution DTM created for the 

sites using the Miller method (Miller and Schaetzl, 2015). The Miller method requires the 

software ArcGIS (ESRI, 2017) and GRASS (GRASS Development Team, 2017). In this method 

there are three steps performed to classify a site into five slope positions (see Fig. 4.5). Once the 

classification was performed for each site, slope position classes were used to choose sampling 

points (summit and shoulder were combined into ‘upper slope’). Once the points were selected 

the Miller method classes were ground-truthed to test the model. When broken into four slope 

classes the models were close to 63% accurate. When footslope and toeslope classes were 

combined the models were close to 74% accurate. Therefore, three slope classes were used 

moving forward. 
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Figure 4.5. Flow chart showing breakpoints for slope position classification using the Miller method (Miller 

and Schaetzl, 2015).  

4.4.11 Delineating functional land management zones 

Once the digital soil modelling and slope classification were completed, the functional land 

management zones were delineated based on the three slope classes and the 2-3 organic carbon 

classes (see Fig. 4.6). In ArcGIS a 3-m grid was overlain on each cover type at both sites to form 

a basis for the FLMZ. Each 3x3 block within the grids were then attributed the slope and carbon 

class values covering its position. The SOC classes were numbered 3-1 (HighC, MediumC, 

LowC) or 2-1 (HighC, LowC). The slope classes were numbered 1-3 (Upper, Backslope, Lower). 

The resulting Table was then brought into Management Zone Analyst software (Fridgen et al., 

2004) which performs fuzzy classification to create zones of similar clusters. The analysis was 

performed using the carbon classes and slope classifications. The number of zones tested were 

from 3-9 zones (9 zones being maximum number of zones possible with two factors with three 

levels each and the analytical capacity of the program) and whichever number of zones had the 

smallest entropy and best fuzzy performance index were selected. This resulted in the SDNWA 

cropland being delineated into seven zones, the CLC cropland and SDNWA grassland into five 
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zones, and the CLC grassland into four zones [A summary of the FLMZ methodology can be 

found in Appendix B]. 

 

4.4.12 Functional land management zone comparison 

Statistical analysis of the FLMZs was completed using R (R Core Team, 2018). Tukey tests were 

applied to compare soil properties and productivity between zones. The threshold for 

significance was p<0.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



41 
 

 

 

 

 

 

F
ig

u
r
e
 4

.6
. 
M

a
p

 s
h

o
w

in
g

 t
h

e 
fa

c
to

r
s 

in
te

r
se

c
te

d
 t

o
 c

r
ea

te
 t

h
e
 f

u
n

c
ti

o
n

a
l 

la
n

d
 m

a
n

a
g

e
m

e
n

t 
z
o
n

e
s 

a
n

d
 t

h
e
 i

n
it

ia
l 

z
o
n

e
s 

cr
ea

te
d

. 

S
o
il

 o
r
g
a
n

ic
 c

a
r
b

o
n

 w
a
s 

p
re

d
ic

te
d

 u
si

n
g

 d
ig

it
a
l 

so
il

 m
a

p
p

in
g

. 
S

lo
p

e
 p

o
si

ti
o
n

s 
w

e
re

 d
ef

in
e
d

 u
si

n
g
 t

h
e
 M

il
le

r 
m

e
th

o
d

 (
M

il
le

r
 a

n
d

 

S
c
h

a
e
tz

l,
 2

0
1
5
).

 



42 
 

A B 

C D 

4.5 Results 

4.5.1 Soil property relationships 

In the cropland, carbon, moisture, and many of the nutrients were positively correlated, and these 

properties had a negative correlation with bulk density (Fig. 4.7). The grasslands shared these 

correlations but the correlations were weaker and P and moisture were less correlated with OC 

and the other nutrients (especially at the Conservation Learning Centre). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.7. Plots showing the results of principal component analysis of soil properties in cropland at the: A) 

St. Denis National Wildlife Area and B) Conservation Learning Centre; and in grassland at C) St. Denis 

National Wildlife Area and D) Conservation Learning Centre. contrib= ranking form high to low of how 

much each variable contributes to the variance of the data. BD= bulk density, EC= electrical conductivity, 

Moist= gravimetric soil moisture, OC= organic carbon, ON= organic nitrogen, TC= total carbon, TN= total 

nitrogen.  
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4.5.2 SDNWA cropland 

In the cropland at the SDNWA the FLMZ method was successful at highlighting spatial 

differences in crop productivity. However, there was high variation in the results (Fig. 4.8). The 

end output for the FLMZ method in the cropland at the SDNWA is shown in Fig. 4.9 for crop 

productivity [Delineation maps for the grassland at the SDNWA and both cover types at the CLC 

can be found in Appendix C]. Crop productivity was highest in the Lower_MedHighC zones and 

lowest in the LowerBack_LowC zones. Organic carbon was higher in the Back_HighC, 

Lower_MedHighC, and Upper_HighC zones and lower in the Back_MedC, LowerBack_LowC, 

and Upper_LowC zones (Fig. 4.10). This is expected as organic carbon is one of the factors used 

in the FLMZ method. Total carbon, organic nitrogen, and moisture tended to be higher in the 

Back_HighC, Lower_MedHighC, and Upper_HighC zones and lower in the Back_MedC and 

LowerBack_LowC zones (Table 4.2). Mineral nitrogen tended to be higher in “HighC” zones 

(except for Lower_MedHighC zones). Phosphorus tended to be higher in the Upper_HighC 

zones and lower in the Back_MedC zones but the difference was not significant. Generally when 

organic carbon was higher so were the other soil nutrients and moisture but this trend was 

weaker when it came to crop productivity. The notable exceptions were that Back_HighC zones 

had more productivity than Back_MedC zones and the Upper_MedC zones had more 

productivity than Upper_HighC zones. 

 
Figure 4.8. Boxplot showing crop productivity indicated by Chlorophyll Index-Green compared to the 

functional land management zones in the cropland at the St. Denis National Wildlife Area. 
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Figure 4.9. Final delineation of functional land management zones in the cropland at the St. Denis National 

Wildlife Area based on fuzzy clustering of soil organic carbon and slope position. Zones are ranked based on 

the crop productivity (as shown by Chlorophyll Index-Green).  
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Figure 4.10. Boxplot showing soil organic carbon compared to the functional land management zones in the 

cropland at the St. Denis National Wildlife Area. 

4.5.3 CLC cropland 

In the cropland at the CLC spatial variation was highlighted and statistical differences between 

the different FLMZs were found but practically there was little difference between the zones 

(Fig. 4.11). Crop productivity was highest in the Upper_MedHighC zones and lowest in the 

LowerBack_HighC zones. As expected, organic carbon was highest in the LowerBack_HighC 

zones and lowest in the Lower_MedLowC and UpperBack_LowC zones (Fig. 4.12).  The 

LowerBack_High zone also had the highest total carbon, organic nitrogen, moisture, and tended 

to have higher phosphorus (Table 4.2). The “Lower” zones had the highest salinity and tended to 

have lower mineral nitrogen. The UpperBack_LowC zones had the lowest total carbon, organic 

nitrogen, moisture, and among the lowest salinity with the Upper_MedHighC, 

UpperBack_LowC, and Back_MedC zones. The Back_MedC zones tended to have the lowest 

phosphorus. The CLC cropland zones had strong trends when it came to soil properties. The 

Lower_MedHighC zones had higher soil nutrients and moisture. This did not match up as well 

with crop productivity since the Lower_MedHighC zones had the lowest productivity but the 

Upper_MedHighC zones did have the highest productivity (Table 4.2). 
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Figure 4.11. Boxplot showing crop productivity indicated by Chlorophyll Index-Green compared to the 

functional land management zones in the cropland at the Conservation Learning Centre. 

 

 
Figure 4.12. Boxplot showing soil organic carbon compared to the functional land management zones in the 

cropland at the Conservation Learning Centre.



 

 

Total 

Carbon 

 
Mineral 

Nitrogen 

 
Organic 

Nitrogen 

 
P 

 
Moisture 

 
pH 

 
EC 

 

 
µg/g SE µg/g SE µg/g SE µg/g SE g/g SE 

 
SE µS/cm SE 

SDNWA Crop FLMZ               

Lower_MedHighC 34000a 2277 13.1a 4.31 3139a 200 8.32a 2.73 0.30a 0.02 - - - - 

Upper_MedC 28500ab 2801 24.9a 3.99 2474ab 256 9.86a 2.61 0.23bcd 0.01 - - - - 

Upper_HighC 34300ab 13786 24.2a 0.98 3148a 904 18.1a 14.0 0.30abc 0.07 - - - - 

Back_MedC 14050c 2895 14.1a 4.22 1463b 243 5.17a 4.01 0.15d 0.01 - - - - 

Back_HighC 34250ab 3835 17.2a 5.55 2653a 436 7.74a 14.2 0.24ab 0.04 - - - - 

Upper_LowC 33200ab 9823 12.7a 2.73 2069ab 182 4.79a 0.86 0.22abcd 0.06 - - - - 

LowerBack_LowC 21550bc 2151 11.4a 3.97 2535ab 682 6.64a 2.01 0.16cd 0.02 - - - - 

               

CLC Crop FLMZ               

Upper_MedHighC 29000b 3343 17.5a 4.06 2603b 371 6.51a 0.97 0.23b 0.02 6.48a 0.18 120c 370 

UpperBack_LowC 21700c 3781 22.3a 4.06 1805c 372 7.61a 0.95 0.20b 0.01 6.95a 0.19 156bc 369 

Lower_MedLowC 31450bc 2258 11.6a 4.08 2662abc 280 6.29a 0.45 0.27b 0.01 6.87a 0.19 940ab 275 

Back_MedC 30200b 1709 17.7a 3.91 2700b 214 5.32a 0.43 0.25b 0.01 6.38a 0.20 141bc 75 

LowerBack_HighC 45050a 2504 12.6a 3.64 3933a 346 9.15a 0.80 0.34a 0.01 6.52a 0.18 641a 275 

               

CLC Grass FLMZ               

LowerBack_HighC 46200ab 3548 7.07a 0.50 3648a 413 4.88a 0.71 0.34a 0.05 7.33a 0.36 463a 214 

Upper_HighC 49500a 3408 6.12a 0.49 4108a 413 3.87a 0.40 0.38a 0.04 6.66a 0.33 474a 169 

LowerBack_LowC 33950b 3455 8.70a 0.50 2424b 404 4.12a 0.72 0.28a 0.05 7.04a 0.33 334a 221 

Upper_LowC 41500b 4184 6.05a 0.54 3093ab 438 3.29a 0.40 0.31a 0.05 7.36a 0.32 682a 115 

               

SDNWA Grass FLMZ               

Lower_MedHighC 40250a 2595 7.82a 1.41 3417a 137 3.61a 0.19 0.30a 0.02 7.29a 0.11 277a 14 

Back_MedC 34500a 2591 9.22a 1.35 2382b 137 3.43a 0.23 0.21a 0.02 7.57a 0.09 289a 21 

Upper_LowMedC 37600a 3042 10.7a 1.53 2466b 237 2.86a 0.17 0.21a 0.03 7.80a 0.15 237a 274 

UpperBack_HighC 41100a 3071 7.79a 1.53 3279a 247 3.34a 0.19 0.26a 0.03 7.38a 0.15 275a 278 

LowerBack_LowC 37250a 2870 7.40a 1.55 2376b 183 2.59a 0.18 0.21a 0.03 7.35a 0.16 280a 258 

Table 4.2. Summary of key soil properties within each management zone showing medians and standard error. Listed in order from highest to lowest 

productivity as indicated by the Chlorophyll Index-Green. Highest values are bolded and lowest values are italicized.  
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4.5.4 CLC grassland 

The FLMZ method performed best at the CLC Grassland. It successfully highlighted spatial 

variation in plant productivity and each zone was different (Fig. 4.13). As expected, organic 

carbon was highest in the Upper_HighC zones and lowest in the LowerBack_LowC and 

Upper_LowC zones (Fig. 4.14). The “HighC” zones had the highest total carbon and organic 

nitrogen (Table 4.2). The LowerBack_HighC zones tended to have the highest phosphorus while 

the Upper_HighC zones tended to have the highest moisture. The LowerBack_LowC and 

Upper_LowC zones had the lowest total carbon and organic nitrogen. These zones also tended to 

have the lowest moisture. The Upper_LowC zones tended to have lower phosphorus and higher 

salinity. All zones had similar levels of mineral nitrogen but the “LowerBack” zones tended to 

have more. The CLC grassland had the strongest trends with soil nutrients (except for mineral 

nitrogen) and moisture and crop productivity all being higher in the same zones. 

 
Figure 4.13. Boxplot showing crop productivity indicated by Chlorophyll Index-Green compared to the 

functional land management zones in the grassland at the Conservation Learning Centre. 
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Figure 4.14. Boxplot showing soil organic carbon compared to the functional land management zones in the 

grassland at the Conservation Learning Centre. 

4.5.5 SDNWA grassland 

In the SDNWA Grassland, the FLMZ method highlighted spatial trends in crop productivity but 

there were fewer differences and again there was a lot of variation (Fig. 4.15). Crop productivity 

was highest in the Lower_MedHighC zones and lowest in the UpperBack_HighC and 

LowerBack_LowC zones. As expected, organic carbon was highest in the LowerMed_HighC 

and UpperBack_HighC zones and lowest in the remaining zones (Fig 4.16). Organic nitrogen 

had the same pattern whilst mineral nitrogen had no pattern. There was no differences in the 

other soil properties but moisture and Phosphorus tended to be higher in the Lower_MedHighC 

zones (Table 4.2). Except for mineral nitrogen, the trend for crop productivity, organic carbon, 

nutrients, and moisture was that in the zones where one of these measures was higher, the rest 

were high, and where one of these measures were lower, the rest were low.   
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Figure 4.15. Boxplot showing crop productivity indicated by Chlorophyll Index-Green compared to the 

functional land management zones in the grassland at the St. Denis National Wildlife Area. 

 
Figure 4.16. Boxplot showing soil organic carbon compared to the functional land management zones in the 

grassland at the St. Denis National Wildlife Area. 
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4.6 Discussion 

Overall, the management zone methodology did successfully highlight spatial differences in 

plant productivity in both cropland and grassland. However, zones that were best in terms of key 

soil properties were not always best when it came to plant productivity (although, they were 

usually amongst the best). While the zones could be found to be different statistically in terms of 

productivity, it did not always translate into measurable practicable differences. For instance in 

the cropland at CLC the two top performing zones were found to be statistically different but in 

terms of yield the difference amounts to <0.15 t/ha. Also, the consistent presence of many 

outliers likely means factors affecting crop growth at both sites were not always captured by the 

method or reflect an error in the modelling of SOC and/or classification of slope position. This 

method also essentially uses two topography-based factors which likely reduced its ability to 

highlight soil variation in the landscape if the factors had strong inter-correlation. Including a 

supplemental soil factor in the method such as soil texture may have improved the final zonation 

especially since topography is such an important aspect of SOC distribution in hummocky 

landscapes and texture is important to predicting plant productivity. An added benefit to 

including soil texture would be increased insight into the soil’s capability to store and cycle 

water. Increasing the resolution of the DEM or scale of analysis for slope delineation (<3m) 

could increase the accuracy of classification by decreasing but this would require further testing. 

 

Lower slope (“Lower”) zones combined with higher carbon (“MedC” to “HighC”) zones tended 

to have higher soil nutrients and moisture. However mineral nitrogen tended to be lower at lower 

slope positions regardless of organic carbon levels (except for the CLC grassland). These zones 

also had the greatest productivity except for the cropland at the CLC. The “LowerBack_HighC” 

and the “Lower_MedLowC” zones in the cropland at the CLC had higher EC than the other 

zones and were moderately saline so this could have affected productivity. The agricultural 

capability rating for the CLC indicated that salinity could have a slight effect (University of 

Saskatchewan, 2018). The “Lower_MedLowC” zones were additionally affected by lower soil 

nutrient levels. Both sites have most of the lower slope areas being dominated by wetlands and 

wetland vegetation. These areas were avoided as much as possible for analysis, but between the 

wetland vegetation and the planted cropland there was often an area with little crop growth. 

Seeding could have occurred close enough to the wetland to be negatively impacted by the 
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amount of moisture; the “LowerBack_HighC” zones had the highest moisture. This effect may 

have been more pronounced at the CLC due to the site being relatively flatter than the SDNWA. 

Steeper basins could better contain the wetland influence.  

 

Other than the CLC cropland, “LowerBack_LowC” zones had amongst the least productivity. 

These zones were also amongst the lowest in terms of soil nutrients (except for mineral nitrogen 

at the CLC grassland). Competition with wetland species and too much moisture are also 

possible driving factors for this result. The agricultural capability rating of both sites indicated 

that excess water could be an issue (University of Saskatchewan, 2018).  

 

Backslope zones (“Back”) were the most varied in terms of their plant productivity and mineral 

nitrogen. When paired with higher levels of OC (“HighC”) plant productivity was usually higher. 

These zones had higher organic carbon, organic nitrogen, phosphorus, and moisture as well. 

When independent of other slope positions the same was true for mineral nitrogen. The 

exceptions were the aforementioned “LowerBack_HighC” zones in the CLC cropland, and the 

“UpperBack_HighC” zones in the grassland at the SDNWA. These “UpperBack_HighC” zones 

primarily occur on a large backslope surrounding a pond at the site. This backslope is 

particularly rocky and not an ideal medium for plant growth. While the nutrients for these zones 

were higher, due to the sampling density being insufficient to represent site variability, most of 

the sampling points for these zones were not on this backslope so they do not reflect this feature. 

This area being defined as “HighC” is likely a result of the biases inherent in the digital soil 

mapping model. The model uses mostly slope based co-variates and it tends to assume that areas 

with higher carbon occur lower in the landscape with converging micro-topography and this 

backslope has those features. 

 

Tillage erosion is a major controlling factor in the distribution of SOC in hummocky agricultural 

landscapes. Past tillage results in soil and nutrient removal from upper slopes (especially those 

near backslopes) and accumulation at the bottom of slopes (Pennock et al., 2011). This study was 

reflective of this, except for mineral nitrogen. At the study sites the effect of tillage was most 

apparent in the “Upper” slope zones; they either had amongst the highest or lowest productivity. 

The exception was the aforementioned “UpperBack_HighC” zones at the SDNWA.  Their 
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productivity was dependent on whether they were “MedC” to “HighC”, or “LowC”; the higher 

the SOC class the greater the productivity. Upperslope areas near the edge of slopes (shoulders), 

especially steeper slopes, would be the most eroded and have more water runoff and thus have 

amongst the lowest SOC and nutrients. The potential for moisture limitations is mentioned in the 

agricultural capability rating of both sites (University of Saskatchewan, 2018). Larger and more 

stable upperslope areas would just have local infilling of micro-topography with tillage and 

would be able to build up larger SOC stores resulting in more available nutrients (Pennock, 

2003). The effect of tillage and soil redistribution is less apparent at the CLC than the SDNWA 

as the CLC is relatively flatter. The agricultural capability rating for the SDNWA indicates that 

erosion and topography could be limiting factors while the rating for the CLC does not 

(University of Saskatchewan, 2018). Practices such as no-till and conservation till are likely 

already benefitting overall soil function through improved carbon sequestration and decreased 

soil disturbance. 

 

Patterns in key soil properties were more consistent between sites and land use. Zones with 

higher OC (“HighC”) usually had the highest amount of soil nutrients and moisture and “LowC” 

zones the lowest amount. In terms of nutrients the exception was mineral nitrogen, which were 

generally lower at lower slope positions. As for zones, the exception was “Back_MedC” in both 

land uses at the SDNWA. These had amongst the lowest amounts of nutrients and moisture. In 

the grassland at the SDNWA many of the sampling points in these zones fell in the 

aforementioned backslope category, so these points captured the poor soil quality. The likely 

possibilities why the “Back_MedC” zones in the cropland had such low soil nutrients are: 

sampling bias, poor slope classification, or both. With a low sample number the sampling points 

ended up in spots with poor soil quality, and or with, rocky backslopes. When inspecting the 

zone delineation it appears that some of the areas classified as backslope are in locations that 

should be classified as upper (shoulder specifically) slope positions. Although ground-truthing 

was performed, sample points were left as classified by the model in order for the results to 

reflect how the FLMZ delineation method performed without modification.  

 

Mineral N is the plant available form of nitrogen and is important for crop yield (Barker, 1999). 

However, its spatial and temporal variability makes it difficult to measure and manage for 
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(Vagstad et al., 1997). Mineral N availability is influenced by all factors which impact microbial 

activity as soil microbes are responsible for the mineralization of N (Barker, 1999). These factors 

include: soil moisture, temperature, texture, pore space, and compaction as well as residue inputs 

and management practices (Walley, 2011). A further complication to this study was that mineral 

N was applied as fertilizer in the cropland at both sites after sampling occurred. Therefore, 

mineral N was likely not a limiting factor to crop growth at the study sites. Measured mineral N 

levels for the grasslands were potentially more reflective of actual availability, but no statistical 

differences were found between the different FLMZs in either site or land use. It is unknown 

what the mineral N availability was at the time when required by the grasses and crops at the 

study sites.  

 

Since the FLMZ method deals primarily with SOC, it is best suited for informing the application 

of management practices that affect and increase SOC. Conservation tillage is one management 

practice that can be adopted to improve SOC and as of 2014, 75% of cropland in the Canadian 

Prairies is under some form of conservation tillage (Awada et al., 2014). Not only does 

Conservation tillage increase SOC stocks but it can contribute to reductions in all forms of land 

degradation and increase soil microbial activity (Sharma et al., 2013; Awada et al., 2014). 

Another management practice that can be implemented is the use of green manure. The 

incorporation of green manure has shown to increase both carbon sequestration and soil structure 

(Garcia-Franco et al., 2015). Changing the type of fertilizer applied to cropland can also be 

beneficial in regards to SOC. The use of animal manure as fertilizer can both help to conserve 

and improve SOC (Fließbach et al., 2007; Chirinda et al., 2010; Ren et al., 2014).    

 

4.7 Conclusion 

The FLMZ method successfully identified much of the differences in plant productivity in both 

grassland and cropland, however, when fields have unique limiting factors to growth they are not 

well-served by a blanket method such as this and the differences in plant productivity between 

zones is not always practicably different. The FLMZ method performed best when estimating the 

other soil functions. For example patterns of water storage, organic nitrogen and phosphorus 

cycling, carbon storage, and habitat for biodiversity more consistently corresponded with the 

FLMZs. The FLMZ method was less effective at indicating patterns of mineral N. Zones with 
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higher SOC and zones at lower slopes or stable upper slopes were more likely to have higher 

plant productivity, organic carbon, organic nitrogen, phosphorus, and moisture. Lower slopes 

have benefitted from the accumulation of soil and soil nutrients and stable upper slopes have 

retained soil and nutrients due to reduced erosion.  

 

The potential of the FLMZ method was best demonstrated in the grassland at the CLC. The 

patterns of plant productivity and estimates of the other soil functions were consistent. This 

illustrates that through the FLMZ the ability of soil to perform multiple functions can be 

estimated simultaneously. The FLMZ methods works best to inform the adoption of management 

practices that improve SOC and the soil function of carbon storage. Any functions improved by 

increasing the quantity and quality of SOC will also benefit. Furthermore, this method 

demonstrates that land uses other than cropping can be managed for multiple soil functions as 

well. Topography and SOC are already commonly used as factors for delineating management 

zones in crop areas. Land users already have the tools and techniques needed to adopt the 

methodology. Management practices that improve SOC storage (and in turn other soil functions) 

also already exist. This highlights the importance of education; land users need to learn this so 

that the management of multiple soil functions in both cropland and grassland can incorporated 

into mainstream agriculture. 
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Chapter 5.0 

SYNTHESIS AND CONCLUSIONS 

Remote sensing can provide a wealth of information about landscapes that is useful for 

estimating the soil function of sites. This is especially beneficial when it comes to the remote 

sensing of soil organic carbon (SOC). Traditional methods of collecting spatial SOC data (such 

as grid sampling) can be replaced and/or supplemented with the use of remote sensing. 

Significantly less soil sampling needs to occur when using remote sensing data indices; they can 

be used to choose ideal sampling locations and/or provide an estimate of SOC. Although, an 

overall reduction in management practices like intensive tillage and summer fallow has 

decreased the feasibility of using bare-soil dependent remote sensing indices. However, with the 

emergence of digital soil mapping (DSM) remote sensing remains an asset for SOC estimation. 

DSM is not reliant on a bare soil surface so conservation tillage does not prevent remote sensing 

from being effective at reducing soil sampling or estimating SOC. While soil sampling is a 

requirement of DSM only enough soil samples to train the models are necessary. DSM estimates 

SOC through the use of soil sampling, environmental co-variates, and modelling. Many or all of 

the co-variates can be either topography based and/or vegetative index based. Digital terrain 

models and vegetation indices are outputs of remote sensing. DSM does have error but its 

accuracy is sufficient for agricultural practices such as delineating management zones.  

 

Management zone delineation methods often use spatial soil and landscape information as a 

basis. Two such properties, SOC and topography, are key for multiple soil functions including: 

plant productivity, water storage and cycling, nutrient cycling, carbon sequestration, and habitat 

for biodiversity. By using these key properties to create a management zone delineation method 

it is possible to estimate multiple soil functions in both cropland and grassland. The functional 

land management zone (FLMZ) method tested in this study combined slope classification, the 

DSM of SOC, and fuzzy clustering, to delineate management zones in annual cropland and 

hayed grassland fields with hummocky topography. These FLMZs successfully captured spatial 

variation and patterns in plant productivity and multiple soil properties including soil organic 

carbon, organic nitrogen, phosphorus, and moisture. This indicates that the FLMZ method can be 

successfully implemented for estimating multiple soil functions simultaneously. 
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The FLMZ method was developed utilizing data collected by a remotely piloted air system 

(RPAS). RPAS has a few major advantages over the other main remote sensing platforms 

(aircraft and satellite). These advantages are: greater control over flight timing, being able to fly 

under clouds (which can block or reduce the quality of imaging), and increased spatial 

resolution. However, the latter was not a factor as the resolutions required for analysis (two 

meters- DSM, three meters- slope classification) and the resolution of the FLMZs (three meters) 

is achievable using all the main remote sensing platforms. Also, with technological advances the 

gap in spatial resolution is decreasing. The main disadvantage of using an RPAS is scalability. 

The area you can efficiently cover using a rotary wing RPAS is only a single field. Rotary wing 

RPAS are relatively slow, requiring more time to cover large areas and increasing flight time 

means more batteries are required. Being that a focus of the FLMZ method is time efficiency, 

when applying it at large scales it would be better to use a remote sensing platform that can cover 

greater spatial extents more efficiently. A fixed wing RPAS would be able to cover larger areas 

in less time and with fewer batteries. However, satellite and aircraft are better suited for this 

purpose. The FLMZ method does not require the use of an RPAS, as long as the right data 

(point-cloud or light detection and ranging) is available at a sufficient resolution then the DSM 

and slope classification can be completed.  

 

The FLMZ method is beneficial not only from an agricultural perspective but also from an 

environmental perspective. The FLMZ method facilitates sustainable agricultural intensification; 

precision agriculture can be practiced while maintaining soil health. Management zones are an 

essential part of the framework for the precision agriculture. Working within the framework of 

an established practice makes adopting and implementing the method easier for agricultural land 

managers. The FLMZ method can be used to simultaneously estimate multiple soil functions 

quickly, efficiently, and with limited soil sampling giving land managers the information 

necessary to manage for these soil functions. Land managers can increase the overall value of 

their cropland and grassland by introducing practices that increase crop productivity and increase 

or preserve other soil functions as well. Managing soils for SOC increases the ability of soil to 

provide multiple functions. Modern agricultural practices such as conservation tillage already 

consider SOC and where practiced overall soil function is increasing. The ability of the FLMZ 
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method to be rapidly applied also makes it ideal for gaining a soil function baseline and tracking 

changes in SOC. This is important in light of issues like climate change and agricultural 

intensification. Both are occurring now and the rates at which they are or will change is 

increasing. Being able to gauge and monitor a soil’s response to these pressures allows land 

managers to react accordingly.  

  

The FLMZ method works best where there are not site-unique limiting factors to plant growth in 

a field as the zones which are best for different soil functions are more consistent in this scenario. 

In this regard the FLMZ method could be improved by including soil texture as an additional soil 

factor. This addition would also increase the effectiveness of the method at estimating water 

cycling and storage. The tradeoff is that this inclusion could increase the amount of soil sampling 

required and would increase the amount of soil analysis required. This would both complicate 

the method and increase the time needed to perform it.  

 

The FLMZ method could be a valuable tool for ensuring global food security while facing the 

pressures of climate change, but further evaluation is required. While this study consistently 

found patterns in key soil properties, due to a low sample size, differences in property values 

between FLMZ were often indiscernible statistically. Future research could better assess the 

method by increasing the sampling density. This would also improve the chances of more sample 

points falling within each management zone class, allowing for better statistical comparisons. 

Future research could further compare measurements of the soil functions focused on in this 

study to the FLMZs and further define the relationships between the functions and the method’s 

factors (topography, SOC, possibly soil texture) to improve the estimation capability of the 

method. Future research could test if the FLMZ method enables better prediction of management 

effects (e.g. fertilizer and seeding rates, grazing regimes). The FLMZ method could be made 

more effective by finding more management practices (ideally that benefit multiple soil 

functions) that can be implemented based on the information provided by the method. Future 

research could also explore the inclusion of other soil factors like soil texture in the method. The 

impact of these inclusions on the performance and efficiency of the method could be measured. 

Lastly, future research could also derive remote sensing data from satellite and/or aircraft in 

order to compare the costs/benefits of the different platforms for this application. 
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Appendix A  

SAMPLE POINT CLASSIFICATION SHEETS AND ANALYSIS DATA 

The following information was obtained from soil cores and mimics the format of the soil classification sheets 

used to classify the samples. These sample points are a subset of the data. Ten points were chosen per site per 

land use. 

  

SDNWA Cropland  

Sample 

Name 

Sub 

Group 

Great Group Order Slope Position   

A01 Gleyed Dark Brown Chernozem Backslope   

       

Horizon Horizon 

Thickness 

(cm) 

Texture 

Class 

Matrix 

Colour 

Mottles Efferve

scence 

(0-3) 

Comment 

Ap 0-11 Sandy Clay 

Loam 

10YR 3/3  0  

Bm 11-30 Sandy Clay 

Loam 

10YR 4/6  0  

Ccagj 30-81+ Clay Loam 

 

10YR 5/3 10YR 5/6 

Few, distinct, 

fine 

2  

 

Sample 

Name 

Sub 

Group 

Great Group Order Slope Position   

A03 Orthic Black Chernozem Back/Foot   

       

Horizon Horizon 

Thickness 

(cm) 

Texture 

Class 

Matrix 

Colour 

(moist) 

Mottles Efferve

scence 

(0-3) 

Comment 

Ap 0-20 Clay 10YR 2/1  0  

AB 20-42 Clay 10YR 3/3  0  

Bm 42-100 Clay Loam 

 

10YR 4/6  0 rocks 

Cca 100-106+ Sandy Clay 

Loam 

10YR 5/3  2 rocks 
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Sample 

Name 

Sub 

Group 

Great Group Order Slope Position   

A06 Gleyed Dark Brown Chernozem Backslope   

       

Horizon Horizon 

Thickness 

(cm) 

Texture 

Class 

Matrix 

Colour 

(moist) 

Mottles Efferve

scence 

(0-3) 

Comment 

Ap 0-14 Sandy Clay 

Loam 

10YR 2/2  0 rocks 

Bm 14-35 Sandy Clay 

Loam 

10YR 4/6  0 rocks, clay 

skins 

Ck 35-98+ Clay Loam 

 

10YR 5/4  1 rocks 

 
Sample 

Name 

Sub 

Group 

Great Group Order Slope Position   

A10 Rego Dark Brown Chernozem Upper/Back   

       

Horizon Horizon 

Thickness 

(cm) 

Texture 

Class 

Matrix 

Colour 

(moist) 

Mottles Efferve

scence 

(0-3) 

Comment 

Ap 0-19 Sandy Clay 

Loam 

10YR 3/3  0 rocks 

ACk 19-38 Sandy Clay 

Loam 

10YR 4/4  1.5 rocks 

Ck 38-73+ Sandy Clay 

Loam 

 

10YR 5/4  1.5 rocks 

 

Sample 

Name 

Sub 

Group 

Great Group Order Slope Position   

A13 Orthic Black Chernozem Foot/Back   

       

Horizon Horizon 

Thickness 

(cm) 

Texture 

Class 

Matrix 

Colour 

(moist) 

Mottles Efferve

scence 

(0-3) 

Comment 

Ap 0-28 Sandy Clay 

Loam 

10YR 2/1  0  

Bm 28-59 Sandy Clay 

Loam 

10YR 3/3  0  

Cgj 59-102+ Sandy Clay 

Loam 

 

10YR 5/6 very faint 0 sandy, 

rocks 
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Sample 

Name 

Sub 

Group 

Great Group Order Slope Position   

A15 Orthic Black Chernozem Footslope   

       

Horizon Horizon 

Thickness 

(cm) 

Texture 

Class 

Matrix 

Colour 

(moist) 

Mottles Efferve

scence 

(0-3) 

Comment 

Ap 0-24 Clay 10YR 2/1  0  

Bm 24-50 Clay 10YR 4/4  0  

Apbk 50-77 Clay Loam 10YR 3/3  0.5 potential 

buried Ah 

horizon 

Cca 77-105+ Clay Loam 10YR 4/4  2  

 
Sample 

Name 

Sub 

Group 

Great Group Order Slope Position   

A17 Orthic Black Chernozem Depression   

       

Horizon Horizon 

Thickness 

(cm) 

Texture 

Class 

Matrix 

Colour 

(moist) 

Mottles Efferve

scence 

(0-3) 

Comment 

Ap 0-21 Clay Loam 10YR 2/1  0  

Bm 21-30 Sandy Clay 10YR 4/2  0 clay skins 

C 30-85 Silty Clay 10YR 4/1  0  

Cgj 85-99+ Silty Clay 10YR 5/2 10YR 6/8 

common, faint, 

fine 

0  

 

Sample 

Name 

Sub 

Group 

Great Group Order Slope Position   

A27 Orthic  Regosol Upperslope   

       

Horizon Horizon 

Thickness 

(cm) 

Texture 

Class 

Matrix 

Colour 

(moist) 

Mottles Efferve

scence 

(0-3) 

Comment 

Ap 0-6 Sandy Clay 10YR 2/1  0  

AC 6-19 Sandy Clay 10YR 4/4  0  

Ck1 19-43 Silty Clay 10YR 3/3  1  

Ck2 43-103+ Silty Clay 10YR 4/4  1  
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Sample 

Name 

Sub 

Group 

Great Group Order Slope Position   

A36 Gleyed Black Chernozem Depression   

       

Horizon Horizon 

Thickness 

(cm) 

Texture 

Class 

Matrix 

Colour 

(moist) 

Mottles Efferve

scence 

(0-3) 

Comment 

Ap 0-33 Clay 10YR 2/1  0  

Bmgj 33-66 Silty Clay 10YR 4/3 7.5YR 5/6  

few, faint, fine 

0  

Cgj 66-86 Silty Clay 10YR 6/2 7.5YR 5/6  

few, faint, med 

0 sandy 

Ckgj 86-110+ Clay Loam 10YR 5/2 7.5 YR 6/4 

few, distinct, 

med 

0.5  

 

Sample 

Name 

Sub Group Great 

Group 

Order Slope Position   

A37 Gleyed 

Calcareous 

Black Chernozem Depression   

       

Horizon Horizon 

Thickness 

(cm) 

Texture 

Class 

Matrix 

Colour 

(moist) 

Mottles Efferve

scence 

(0-3) 

Comment 

Ap 0-9 Sandy Clay 10YR 2/1  0  

Bm 9-33+ Sandy Clay 10YR 4/3 few, faint, fine 2 very 

rocky, 

sandy 
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CLC Cropland 

Sample 

Name 

Sub 

Group 

Great Group Order Slope Position   

C02 Orthic Black Chernozem Backslope   

       

Horizon Horizon 

Thickness 

(cm) 

Texture 

Class 

Matrix 

Colour 

(moist) 

Mottles Efferve

scence 

(0-3) 

Comment 

Ap 0-9 Sandy Clay 

Loam 

10 YR 2/1  0  

AB 9-21 Sandy Clay 

Loam 

10 YR 3/2.5  0  

Bm 21-65 Sandy Clay 

Loam 

10 YR 4/6  0 faint 

mottles 

C 65-94 Sandy Loam 10 YR 5/3  0 faint 

mottles 

IICkgj 94-100+ Silty Clay 10 YR 5/3 10 YR 4.5/2 

distinct 

1  

 

Sample 

Name 

Sub 

Group 

Great Group Order Slope Position   

C04 Orthic Black Chernozem Backslope   

       

Horizon Horizon 

Thickness 

(cm) 

Texture 

Class 

Matrix 

Colour 

(dry) 

Mottles Efferve

scence 

(0-3) 

Comment 

Ap 0-13 Sandy Clay  10 YR 2/1.5  0  

Bm 13-40 Sandy Clay  10 YR 4/4  0  

Ck 40-75 Sandy Loam 10 YR 5.5/4  1  

Cca 75-100+ Sandy Clay 10 YR 6/4  2 clay skins, 

some grey 

chunks 
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Sample 

Name 

Sub 

Group 

Great Group Order Slope Position   

C12 Gleyed Black Chernozem Footslope   

       

Horizon Horizon 

Thickness 

(cm) 

Texture 

Class 

Matrix 

Colour 

(moist) 

Mottles Efferve

scence 

(0-3) 

Comment 

Ap1 0-21 Sandy Clay 

Loam 

10 YR 2/1  0  

Ap2 21-36 Sandy Clay 10 YR 3/3  0  

Bgj 36-68 Sandy Clay 

Loam 

10 YR 4/3 10 YR 6/6 

many, distinct, 

fine-med 

0  

Ccagj 68-92+ Sandy Clay 

Loam 

10 YR 7/1 10 YR 6/6 

many, distinct, 

med 

2  

 

Sample 

Name 

Sub 

Group 

Great Group Order Slope Position   

C13 Orthic Black Chernozem Footslope   

       

Horizon Horizon 

Thickness 

(cm) 

Texture 

Class 

Matrix 

Colour 

(moist) 

Mottles Efferve

scence 

(0-3) 

Comment 

Ap 0-44 Clay 10 YR 2/1  0  

Bm 44-60 Sandy Clay 

Loam 

10 YR 4.5/4  0  

Cca 60-70+ Clay 10 YR 

5.5/3.5 

 1  

 

Sample 

Name 

Sub 

Group 

Great Group Order Slope Position   

C19 Orthic Black Chernozem Upperslope   

       

Horizon Horizon 

Thickness 

(cm) 

Texture 

Class 

Matrix 

Colour 

(dry) 

Mottles Efferve

scence 

(0-3) 

Comment 

Ap1 0-12 Sandy Clay 10 YR 2/1  0  

Ap2 12-22 Sandy Clay  10 YR 2.5/2  0  

Bm 22-58 Sandy Clay 10 YR 4/4  0  

Ccagj 58-100+ Silty Clay 10 YR 5/3 10 YR 4/4.5 

few, faint 

2.5 grey, white, 

orange 

mottling 
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Sample 

Name 

Sub 

Group 

Great Group Order Slope Position   

C21 Orthic Black Chernozem Backslope   

       

Horizon Horizon 

Thickness 

(cm) 

Texture 

Class 

Matrix 

Colour 

(moist) 

Mottles Efferve

scence 

(0-3) 

Comment 

Ap1 0-7 Clay Loam 10 YR 2/1  0 salts 

present 

Ap2 7-24 Clay Loam 10 YR 3/2  0  

Bm 24-50 Sandy Clay 

Loam 

10 YR 4/6  0  

Ccag 50-90 Clay 10 YR 4/2 Gley 2 5/10B 

many, 

prominent, 

med 

2 grey, 

white, 

orange 

Ckg 90-95+ Clay 10 YR 4/4 7.5 YR 5/8 

common, 

prominent 

fine-med 

1.5 grey, 

white, 

orange 

 

Sample 

Name 

Sub 

Group 

Great Group Order Slope Position   

C24 Orthic  Regosol Upperslope   

       

Horizon Horizon 

Thickness 

(cm) 

Texture 

Class 

Matrix 

Colour 

(dry) 

Mottles Efferve

scence 

(0-3) 

Comment 

Apk 0-7 Loamy Sand 10 YR 2/2  2  

ACk 7-18 Sand 10 YR 4/4  3  

Ck1 18-51 Sand 10 YR 4/6  1 faint 

mottles 

Cca 51-63 Sandy Loam 10 YR 5/3  2 clay lense 

mix of 

light and 

dark 

Ck2 63-80+ Loamy Sand 10 YR 5/3  1  
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Sample 

Name 

Sub 

Group 

Great Group Order Slope Position   

C33 Gleyed Black Chernozem Footslope   

       

Horizon Horizon 

Thickness 

(cm) 

Texture 

Class 

Matrix 

Colour 

(moist) 

Mottles Efferve

scence 

(0-3) 

Comment 

Ap 0-36 Clay 10 YR 2/1  0  

Bgj 36-59+ Sandy Clay  10 YR 4.5/2 10 YR 5/6 

common, 

distinct, fine 

0  

 

Sample 

Name 

Sub 

Group 

Great Group Order Slope Position   

C36 Eluviated Black Chernozem Depression   

       

Horizon Horizon 

Thickness 

(cm) 

Texture 

Class 

Matrix 

Colour 

(moist) 

Mottles Efferve

scence 

(0-3) 

Comment 

Ap 0-23 Sandy Clay  10 YR 2/1  0  

Aej 23-36 Clay 10 YR 4/2  0  

Bm 36-56 Clay 10 YR 3.5/3  0  

Cgj 56-88+ Sandy Clay 

Loam 

10 YR 4/3 7.5 YR 4/6 

many, distinct, 

med 

0  

 

Sample 

Name 

Sub 

Group 

Great Group Order Slope Position   

C40 Orthic Black Chernozem Upperslope   

       

Horizon Horizon 

Thickness 

(cm) 

Texture 

Class 

Matrix 

Colour 

(moist) 

Mottles Efferve

scence 

(0-3) 

Comment 

Ap 0-5 Sandy Clay  10 YR 3/1  0  

Bm1 5-30 Silty Clay  10 YR 4/2  0  

Apb 30-50 Sandy Clay  10 YR 3/1  0  

Bm2 50-60 Sandy Clay 10 YR 5/3  0  

Ck 60-98+ Silty Clay 10 YR 3.5/3  1  
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CLC Grassland 

Sample 

Name 

Sub 

Group 

Great 

Group 

Order Slope Position   

D01 Calcareous Black Chernozem Footslope   

       

Horizon Horizon 

Thickness 

(cm) 

Texture 

Class 

Matrix 

Colour 

(dry) 

Mottles Efferve

scence 

(0-3) 

Comment 

Ah1 0-30 Clay 10 YR 2/1.5  0  

Ah2 30-38 Clay  10 YR 3/2.5  0  

Cca 38-68+ Clay 10 YR 5/4 

(moist) 

 2  

 

Sample 

Name 

Sub 

Group 

Great Group Order Slope Position   

D06 Orthic Black Chernozem Footslope   

       

Horizon Horizon 

Thickness 

(cm) 

Texture 

Class 

Matrix 

Colour 

(moist) 

Mottles Efferve

scence 

(0-3) 

Comment 

Ah1 0-15 Sandy Clay 

Loam 

10 YR 2/2  0  

Ah2 15-31 Sandy Clay 

Loam 

10 YR 

3.5/3.5 

 0  

Bm 31-77 Sandy Clay 

Loam 

10 YR 4/6  0 faint 

mottles 

Ccagj 77-86 Sandy Clay 

Loam 

10 YR 6/1 10 YR 6/8 

common, 

distinct, fine 

2.5  

Ckgj 86-97+ Sandy Clay 

Loam 

10 YR 5/5 10 YR 

common, 

distinct, fine 

2  
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Sample 

Name 

Sub 

Group 

Great 

Group 

Order Slope Position   

D12 Calcareous Black Chernozem Footslope   

       

Horizon Horizon 

Thickness 

(cm) 

Texture 

Class 

Matrix 

Colour 

(moist) 

Mottles Efferve

scence 

(0-3) 

Comment 

Ah 0-27 Sandy Clay 10 YR 2/1  0  

Bmk 27-47+ Silty Clay 10 YR 

4.5/2.5 

 1  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample 

Name 

Sub 

Group 

Great Group Order Slope Position   

D11 Orthic Humic Gleysol Depression   

       

Horizon Horizon 

Thickness 

(cm) 

Texture 

Class 

Matrix 

Colour 

(moist) 

Mottles Efferve

scence 

(0-3) 

Comment 

LFH 2-0      

Ah 0-14 Sandy Loam 10 YR 2/1  0  

Aegk 14-21 Sandy Clay 

Loam 

10 YR 4/2 5 YR 5/8 few, 

prominent, fine 

1  

Ahk 21-46 Sandy Clay 

Loam 

10 YR 3/1  1  

Bgk 46-60 Sandy Clay 

Loam 

10 YR 5/2 7.5 YR 5/8 

few, 

prominent, fine 

1  

Cgk 60-80+ Sandy Loam 10 YR 5/3 Gley 1 4/N 

med, 

prominent, 

common 

1  
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Sample 

Name 

Sub 

Group 

Great Group Order Slope Position   

D15 Orthic Black Chernozem Backslope   

       

Horizon Horizon 

Thickness 

(cm) 

Texture 

Class 

Matrix 

Colour 

(moist) 

Mottles Efferve

scence 

(0-3) 

Comment 

Ah1 0-16 Clay Loam 10 YR 2/1  0  

Ah2 16-33 Sandy Clay 

Loam 

10 YR 3/2.5  0  

Bm 33-64 Sandy Clay 

Loam 

10 YR 4/6  0  

Ccagj1 64-76 Sandy Clay 

Loam 

10 YR 4/3.5 7.5 YR 4/6 

common, 

distinct, med 

2  

Ccagj2 76-94+ Sandy Clay 

Loam 

10 YR 5/3 7.5 YR 4/6 

common, 

distinct, med 

2  

 

Sample 

Name 

Sub 

Group 

Great Group Order Slope Position   

D16 Orthic Black Chernozem Backslope   

       

Horizon Horizon 

Thickness 

(cm) 

Texture 

Class 

Matrix 

Colour 

(dry) 

Mottles Efferve

scence 

(0-3) 

Comment 

Ah 0-39 Clay Loam 10 YR 2/2  0  

Bm 39-67 Clay 10 YR 3/2  0  

Cca 67-100+ Silty Clay 10 YR 4.5/3  2  

 

Sample 

Name 

Sub 

Group 

Great Group Order Slope Position   

D25 Rego Black Chernozem Upperslope   

       

Horizon Horizon 

Thickness 

(cm) 

Texture 

Class 

Matrix 

Colour 

(dry) 

Mottles Efferve

scence 

(0-3) 

Comment 

Ah1 0-12 Clay 10 YR 2/1.5  0  

Ah2 12-39 Sandy Clay 10 YR 3/2  0  

Cca 39-84+ Clay 10 YR 

4.5/3.5 

(moist) 

 2  
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Sample 

Name 

Sub 

Group 

Great Group Order Slope Position   

D27 Orthic Black Chernozem Upperslope   

       

Horizon Horizon 

Thickness 

(cm) 

Texture 

Class 

Matrix 

Colour 

(moist) 

Mottles Efferve

scence 

(0-3) 

Comment 

Ah 0-17 Clay Loam 10 YR 2/1  0  

Bm 17-36 Clay 10 YR 3.5/2  0  

Cca 36-69+ Clay Loam 10 YR 6/4  2  

 

Sample 

Name 

Sub 

Group 

Great Group Order Slope Position   

D42 Orthic Black Chernozem Backslope   

       

Horizon Horizon 

Thickness 

(cm) 

Texture 

Class 

Matrix 

Colour 

(moist) 

Mottles Efferve

scence 

(0-3) 

Comment 

Ah 0-27 Clay Loam 10 YR 2/1  0  

Bm 27-54 Sandy Clay 

Loam 

10 YR 4.5/6  0  

Cca 54-93+ Silty Clay 10 YR 6/4  2  

 

SDNWA Grassland 

Sample 

Name 

Sub 

Group 

Great Group Order Slope Position   

B04 Gleyed Humic Regosol Backslope   

       

Horizon Horizon 

Thickness 

(cm) 

Texture 

Class 

Matrix 

Colour 

(moist) 

Mottles Efferve

scence 

(0-3) 

Comment 

Ah 0-23 Clay Loam 10YR 2/2  0  

ACk 23-32 Sandy Clay 

Loam 

10YR 3/3  0.5 sandy, 

some 

rocks 

Ckgj 32-81+ Sandy Clay 

Loam 

10YR 5/4 10YR 5/6 

faint, common, 

fine 

2 sandy, 

pockets of 

darker 

material 
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Sample 

Name 

Sub 

Group 

Great Group Order Slope Position   

B06 Gleyed Humic Regosol Backslope   

       

Horizon Horizon 

Thickness 

(cm) 

Texture 

Class 

Matrix 

Colour 

(moist) 

Mottles Efferve

scence 

(0-3) 

Comment 

Ahk 0-15 Clay Loam 10YR 2/2  0.5  

ACk 15-30 Clay Loam 10YR 4/3  2  

Ckgj 30-90+ Clay Loam 10YR 6/4 10YR 5/8 

faint, few, fine 

2 Rocks 

 

Sample 

Name 

Sub 

Group 

Great Group Order Slope Position   

B07 Gleyed Black Chernozem Back/Upper   

       

Horizon Horizon 

Thickness 

(cm) 

Texture 

Class 

Matrix 

Colour 

(moist) 

Mottles Efferve

scence 

(0-3) 

Comment 

Ah 0-19 Clay 10YR 2/1  0  

AB 19-30 Clay 10YR 4/3  0  

Bm 30-43 Clay 10YR 4/4  0  

Ccagj 43-80+ Clay Loam 10YR 5/4 10YR 5/6  

few, faint, fine 

2 very faint 

mottles 

 
Sample 

Name 

Sub Group Great Group Order Slope Position   

B10 Gleyed 

Calcareous 

Dark Brown Chernozem Backslope   

       

Horizon Horizon 

Thickness 

(cm) 

Texture Class Matrix 

Colour 

(moist) 

Mottles Efferve

scence 

(0-3) 

Comment 

Ahk 0-16 Sandy Clay 

Loam 

10YR 3/3  1.5 rocks 

Bmk 16-46 Sandy Clay 

Loam 

10YR 4/4  2 rocks 

Ckgj 46-89+ Sandy Clay 

Loam 

10YR 5/2 10YR 5/8  

few, faint, fine 

2 rocks 
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Sample 

Name 

Sub Group Great Group Order Slope Position   

B14 Gleyed 

Calcareous 

Black Chernozem Footslope   

       

Horizon Horizon 

Thickness 

(cm) 

Texture Class Matrix 

Colour 

(moist) 

Mottles Efferve

scence 

(0-3) 

Comment 

Ah 0-14 Sandy Clay  10YR 2/1  0  

Bkgj1 14-28 Clay 10YR 3/2 7.5 YR 4/4 

common, 

distinct, med 

2  

Bkgj2 28-50 Clay Loam 10YR 4/2 7.5 YR 5/6 

common, 

distinct, med 

2  

Ckgj 50-70+ Clay Loam 10YR 5/2 7.5 YR 6/6 

many, distinct, 

coarse 

2 matrix 

mostly 

orange 

 

Sample 

Name 

Sub 

Group 

Great Group Order Slope Position   

B16 

(B13?) 

Orthic Black Chernozem Footslope   

       

Horizon Horizon 

Thickness 

(cm) 

Texture 

Class 

Matrix 

Colour 

(moist) 

Mottles Efferve

scence 

(0-3) 

Comment 

Ah 0-16 Clay Loam 10YR 2/2  0  

Bm 16-29 Clay Loam 10YR 3/3  0  

C 29-45 Silty Clay 

Loam 

10YR 4/2  0  

Cca1 45-70 Silty Clay 

Loam 

10YR 5/1  1.5 very faint 

mottles 

Cca2 70-78 Silty Clay 

Loam 

10 YR 5/2  2  

Ccag 78-102+ Silty Clay 

Loam 

10 YR 5/2 10 YR 6/8 

many, coarse, 

prominent 

2.5 mostly 

orange 

mottles 
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Sample 

Name 

Sub 

Group 

Great 

Group 

Order Slope Position   

B18 Gleyed 

Calcareous 

Black Chernozem Depression/Foot   

       

Horizon Horizon 

Thickness 

(cm) 

Texture 

Class 

Matrix 

Colour 

(moist) 

Mottles Efferve

scence 

(0-3) 

Comment 

Ahk 0-16 Sandy Clay 

Loam 

10YR 2/2  0.5  

Bkgj 16-39 Clay Loam 10YR 4/3 7.5 YR 5/4 

common, 

distinct, med 

2  

Ckgj 39-79+ Clay Loam 10YR 5/2 10 YR 7/6 

common, faint, 

med 

2  

 

Sample 

Name 

Sub 

Group 

Great 

Group 

Order Slope Position   

B36 Gleyed 

Calcareous 

Black Chernozem Depression   

       

Horizon Horizon 

Thickness 

(cm) 

Texture 

Class 

Matrix 

Colour 

(moist) 

Mottles Efferve

scence 

(0-3) 

Comment 

Ah 0-14 Sandy Clay 

Loam 

10 YR 2/2  0  

Bkgj 14-63 Clay 10 YR 4/2 10 YR 5/6  

few, fine, faint 

0.5  

Ccagj 63-100+ Silty Clay 

Loam 

10 YR 5/1 10 YR 6/8 

common, med, 

distinct 

2  

 

Sample 

Name 

Sub 

Group 

Great Group Order Slope Position   

B37 Orthic Black Chernozem Depression   

       

Horizon Horizon 

Thickness 

(cm) 

Texture 

Class 

Matrix 

Colour 

(moist) 

Mottles Efferve

scence 

(0-3) 

Comment 

Ah 0-18 Clay Loam 10 YR 2/1  0  

AB 18-30 Clay Loam 10 YR 3/3  0  

Bm 30-70 Clay 10 YR 4/4  0 clay skins 

Cca 70-100+ Clay Loam 10 YR 5/4  2  
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Sample 

Name 

Sub Group Great 

Group 

Order Slope Position   

B40 Calcareous Black Chernozem Upper/Back   

       

Horizon Horizon 

Thickness 

(cm) 

Texture 

Class 

Matrix 

Colour 

(moist) 

Mottles Efferve

scence 

(0-3) 

Comment 

Ap 0-25 Clay Loam 10 YR 2/1  0  

Bmk 25-33 Silty Clay 10 YR 3/3  1.5  

Ahb 33-45 Clay Loam 10 YR 3/2  0.5  

Ck1 45-69 Clay Loam 10 YR 5/4  2  

Ck2 69-107+ Sandy Clay 

Loam 

10 YR 5/3 10 YR 6/6  

few, fine, faint 

2 salts/carbon

ates visible 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

Point A 

Horiz. 

Depth 

Depth 

to 

Gley 

Depth 

to 

CaCO3 

BD OC TC Moist pH EC TN MN P Hand 

Texture 

Sand Silt Clay 

 
cm cm cm g/cm3 µg/g µg/g g/g 

 
µS/cm µg/g µg/g µg/g 

 
% % % 

SDNWA Crop                

A01 24 - 0 2.01 11580 12600 0.14 7.81 222 1495 15.8 6.08 SaCL 54 28 18 

A02 17 - 0 1.81 20650 22900 0.16 N/A N/A 1465 17.8 3.83 SaCL N/A N/A N/A 

A03 38 - - 1.86 28120 28900 0.25 7.29 217 2472 14.8 8.64 C 40 39 21 

A04 17 - 68 1.81 27340 21100 0.19 N/A N/A 1978 18.3 6.84 SaCL N/A N/A N/A 

A05 21 - - 1.81 22360 11100 0.16 N/A N/A 1707 12.5 4.58 SaCL 40 32 28 

A06 10 - 0 1.80 25080 26000 0.20 7.68 350 2455 21.7 9.52 SaCL 43 35 22 

A07 13 - 0 1.81 31810 35100 0.23 N/A N/A 2890 41.4 3.76 CL N/A N/A N/A 

A08 21 - 19 1.81 37930 36000 0.24 N/A N/A 2459 32.8 11.8 SaCL N/A N/A N/A 

A09 18 - 19 1.81 34850 33400 0.23 N/A N/A 2441 28.3 4.98 SaCL N/A N/A N/A 

A10 8 - 0 1.57 19080 21600 0.13 7.55 306 1515 9.1 3.42 SaCL 59 26 15 

A11 25 - 0 1.62 30820 42100 0.32 N/A N/A 3188 48.5 5.71 SaCL N/A N/A N/A 

A12 26 - 55 1.62 34240 32600 0.28 N/A N/A 3167 21.2 5.72 SiC 29 46 25 

A13 10 - 76 1.44 26750 24800 0.23 6.64 164.6 2378 11.2 8.32 C 36 43 21 

A14 33 22 46 1.62 41670 42600 0.39 N/A N/A 4278 13.5 61.4 CL N/A N/A N/A 

A15 33 83 - 1.83 25790 28400 0.29 7.27 278 3317 24.0 4.71 C 44 34 22 

A16 33 - 0 1.62 33210 49600 0.35 N/A N/A 3728 3.8 5.65 C N/A N/A N/A 

A17 16 80 - 1.60 34720 33600 0.28 7.71 544 3254 19.2 27.6 CL 32 40 28 

A18 >65 0 60 1.60 35740 40600 0.52 N/A N/A 2998 3.5 10.8 SaC N/A N/A N/A 

A19 17 18 0 1.60 28860 35300 0.30 N/A N/A 2117 7.1 8.04 C N/A N/A N/A 

A20 26 0 0 1.60 32640 36400 0.39 N/A N/A 3772 10.6 16.9 CL N/A N/A N/A 

A21 15 - 59 1.80 26220 27700 0.22 N/A N/A 2546 24.6 8.63 SiC N/A N/A N/A 

A22 29 - 30 1.80 18990 21100 0.18 N/A N/A 2082 12.7 6.14 SaCL N/A N/A N/A 

A23 11 - 50 1.80 24670 23300 0.25 N/A N/A 2450 23.4 6.97 SaC N/A N/A N/A 

A24 14 - 42 1.80 24950 24700 0.20 N/A N/A 2385 11.5 9.63 SaCL N/A N/A N/A 

A25 15 50 77 1.80 28920 27300 0.27 N/A N/A 3794 24.2 12.3 CL N/A N/A N/A 

A26 27 75 - 1.80 40610 45300 0.36 N/A N/A 3894 25.0 29.3 CL 19 52 29 

Table A.1. Results of soil sample data to a depth of 15 cm in the cropland at the St. Denis National Wildlife Area. 
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A27 7 - 0 1.80 9650 33200 0.22 8.06 376 1840 17.6 4.79 SaC 28 40 32 

A28 7 - 0 1.80 23180 48200 0.33 N/A N/A 2335 10.2 3.77 SaCL N/A N/A N/A 

A29 12 - - 1.80 35520 35200 0.29 N/A N/A 2693 13.1 10.8 SaCL N/A N/A N/A 

A30 19 - 58 1.80 23460 21600 0.19 N/A N/A 2235 31.5 23.7 SaC N/A N/A N/A 

A31 15 - 0 1.81 14400 15500 0.15 N/A N/A 1285 11.4 3.16 SaCL N/A N/A N/A 

A32 15 - - 1.81 17000 21500 0.14 N/A N/A 4142 7.7 4.18 SaCL N/A N/A N/A 

A33 - - 0 1.81 9460 9150 0.13 N/A N/A 769 8.0 5.76 SaC 52 31 17 

A34 17 - - 1.62 38400 38100 0.35 N/A N/A 3589 16.1 57.9 C 30 43 27 

A35 19 - 63 1.62 26500 25600 0.23 N/A N/A 2663 31.0 10.1 CL N/A N/A N/A 

A36 28 - 0 1.68 29900 33400 0.30 7.93 506 2955 26.2 27.6 C 36 35 29 

A37 29 57 0 1.45 23300 34000 0.31 8.08 641 2104 7.3 6.74 SaC 56 25 18 

A38 9 - 9 1.80 18600 17600 0.19 N/A N/A 2651 13.8 9.11 SaC N/A N/A N/A 

A39 13 - 38 1.80 28650 29300 0.24 N/A N/A 2652 25.3 19.2 SaCL N/A N/A N/A 

A40 10 - 0 1.80 16420 37800 0.24 N/A N/A 1339 19.8 3.52 SaC N/A N/A N/A 

 

 

Point A 
Horiz. 

Depth 

Depth 
to 

Gley 

Depth 
to 

CaCO3 

BD OC TC Moist pH EC TN MN P Hand 
Texture 

Sand Silt Clay 

 cm cm cm g/cm3 µg/g µg/g g/g  µS/cm µg/g µg/g µg/g  % % % 

CLC Crop                

C01 10 45 30 1.68 30540 30200 0.23 5.81 103 2684 19.3 4.08 SaCL 53 30 17 

C02 9 94 94 1.65 33900 29900 0.25 6.84 165 1564 10.5 5.18 SaCL 49 26 25 

C03 5 20 28 1.72 17860 14800 0.18 5.92 72 1776 11.7 7.97 SaC N/A N/A N/A 

C04 13 - 40 1.79 19710 18600 0.18 6.42 115 1698 38.4 11.3 SaC 51 26 23 

C05 20 50 31 1.68 39070 38400 0.31 6.98 175 2830 6.5 5.32 CL N/A N/A N/A 

C06 9 - 9 1.68 16380 15100 0.14 7.55 187 1092 34.2 5.79 SaL N/A N/A N/A 

C07 12 55 55 1.68 26790 25500 0.27 6.91 184 2834 19.9 11.8 CL N/A N/A N/A 

C08 15 40 51 1.68 32910 30200 0.24 6.43 101 2715 14.8 6.11 C 39 39 22 

C09 8 - 34 1.72 21930 22800 0.23 6.96 1700 1671 10.5 3.90 C N/A N/A N/A 

C10 18 80 65 1.68 29470 27300 0.23 6.12 124 2589 18.3 4.06 CL N/A N/A N/A 

Table A.2. Results of soil sample data to a depth of 15 cm in the cropland at the Conservation Learning Centre. 85
 

Table A.1. (con’t). 



 
 

C11 15 54 73 1.68 35310 32200 0.25 5.88 141 3014 33.5 5.99 C N/A N/A N/A 

C12 36 36 68 1.71 31420 29700 0.26 6.61 220 3213 13.0 5.74 SaCL N/A N/A N/A 

C13 44 - 60 1.64 31220 28300 0.26 6.52 125 2621 17.5 5.23 C 47 33 19 

C14 20 34 34 1.64 37630 40100 0.30 6.77 179 3676 12.8 8.69 SaC 51 30 19 

C15 15 55 29 1.72 36630 28100 0.28 6.82 319 2783 12.9 6.51 C N/A N/A N/A 

C16 29 29 74 1.60 52040 42500 0.31 6.39 1921 3397 7.3 8.59 C N/A N/A N/A 

C17 18 32 32 1.60 45440 43900 0.29 5.97 146 2546 12.8 4.30 C N/A N/A N/A 

C18 N/A N/A N/A 1.72 37750 35000 0.23 6.48 120 2123 23.6 7.72 CL N/A N/A N/A 

C19 12 58 58 1.63 54960 29000 0.23 6.85 121 2770 16.0 11.7 SaC 48 26 26 

C20 8 28 28 1.72 27740 26900 0.21 6.22 140 2642 24.7 7.25 SC 34 36 31 

C21 24 50 60 1.70 28000 27200 0.21 6.06 63 2596 10.8 5.48 CL 60 21 19 

C22 6 30 30 1.72 24760 23100 0.22 7.34 198 1749 14.1 4.38 CL N/A N/A N/A 

C23 9 45 16 1.72 17720 14400 0.18 6.98 145 1930 13.2 3.24 SaC 75 12 13 

C24 7 - 0 1.77 11660 21200 0.15 7.71 324 908 8.5 4.69 LSa N/A N/A N/A 

C25 8 - 8 1.72 38940 36400 0.26 6.52 145 2619 25.0 5.67 SaCL N/A N/A N/A 

C26 11 40 40 1.72 24220 22200 0.21 8.45 147 2734 70.2 8.31 CL N/A N/A N/A 

C27 8 - 40 1.68 18290 17300 0.23 6.32 92 1965 16.8 5.83 SaC N/A N/A N/A 

C28 15 - 37 1.72 25170 23700 0.23 7.36 90 2277 23.1 23.6 SaC N/A N/A N/A 

C29 10 45 55 1.72 38450 32600 0.28 5.81 150 3435 22.1 9.13 C N/A N/A N/A 

C30 11 59 59 1.72 32820 30500 0.23 6.04 113 2794 13.8 4.89 SaC N/A N/A N/A 

C31 7 - 32 1.68 24960 19300 0.20 6.28 103 2322 57.4 11.6 SaL N/A N/A N/A 

C32 20 - 34 1.68 31530 28700 0.27 6.38 547 1789 17.7 4.31 C N/A N/A N/A 

C33 36 36 N/A 1.52 42490 43700 0.34 5.82 931 4010 21.6 8.77 C 29 38 34 

C34 9 30 32 1.64 40550 44700 0.33 5.67 95 3215 70.9 20.6 C N/A N/A N/A 

C35 15 15 53 1.64 37220 36900 0.33 6.94 307 2959 12.6 8.40 C N/A N/A N/A 

C36 36 56 N/A 1.67 49980 46200 0.34 7.6 240 4352 12.7 11.3 SaC 38 39 23 

C37 31 45 66 1.60 45550 49300 0.42 6.12 350 4060 17.2 13.0 CL N/A N/A N/A 

C38 28 28 49 1.60 54210 59800 0.39 6.64 2040 4686 9.6 9.54 C N/A N/A N/A 

C39 42 42 N/A 1.60 52570 52600 0.42 7.46 1126 3890 11.8 14.3 CL N/A N/A N/A 

C40 5 - 60 1.68 26040 25700 0.30 7.79 288 1879 33.5 9.46 SaC 29 34 38 
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Table A.2. (con’t). 



 
 

Point A 

Horiz. 

Depth 

Depth 

to 

Gley 

Depth 

to 

CaCO3 

BD OC TC Moist pH EC TN MN P Hand 

Texture 

Sand Silt Clay 

 cm cm cm g/cm3 µg/g µg/g g/g  µS/cm µg/g µg/g µg/g  % % % 

CLC Grass                

D01 38 - 63 1.35 57250 60700 0.53 6.34 1656 4723 4.9 5.55 C 37 37 26 

D02 30 30 45 1.54 53260 58300 0.41 8.34 1107 3898 6.1 3.79 CL N/A N/A N/A 

D03 62 74 61 1.54 51880 56800 0.34 8.43 836 4360 7.2 5.73 SaC N/A N/A N/A 

D04 45 45 80 1.54 55990 57800 0.46 6.66 474 5121 13.5 6.73 C N/A N/A N/A 

D05 60 - 40 1.54 44480 43200 0.37 7.65 3480 3932 14.9 8.97 SaCL N/A N/A N/A 

D06 31 77 77 1.58 43960 43300 0.35 6.94 303 3003 5.9 4.53 SaCL 63 19 18 

D07 38 80 55 1.54 38950 38400 0.34 7.11 259 2834 14.2 3.87 CL N/A N/A N/A 

D08 71 0 - 1.54 57440 52000 0.47 6.72 1752 4644 6.2 9.61 SaC N/A N/A N/A 

D09 39 47 77 1.28 39530 38200 0.38 7.02 1137 3465 6.6 6.14 C 35 35 30 

D11 46 14 14 1.27 52420 53600 0.53 6.68 1490 4627 7.1 4.99 SaL 44 29 27 

D12 27 - 27 1.62 44110 39300 0.42 6.75 331 2238 6.6 4.38 SaC 46 25 29 

D13 38 10 - 1.28 40030 40400 0.50 6.49 294 3624 5.8 6.26 C N/A N/A N/A 

D14 19 N/A 26 1.51 30340 34200 0.31 7.06 887 2514 5.0 4.01 SC N/A N/A N/A 

D15 33 64 70 1.50 45350 43600 0.27 8.29 384 3312 7.1 4.42 CL 54 23 23 

D16 39 - 67 1.42 44160 41200 0.30 7.93 260 3613 8.9 5.43 CL 47 25 28 

D17 N/A N/A N/A 1.51 22570 21300 0.15 7.06 158 1473 8.4 4.12 SaCL N/A N/A N/A 

D18 18 - - 1.51 42980 39900 0.29 6.43 221 2627 9.0 4.13 L 23 36 41 

D19 30 - 66 1.51 46190 48800 0.27 6.32 154 3686 7.5 3.46 C N/A N/A N/A 

D20 26 26 26 1.51 32350 31500 0.31 8.41 477 3303 10.0 3.14 SaC N/A N/A N/A 

D21 19 5 40 1.51 49410 56300 0.51 8.18 4340 2139 9.2 5.48 SaC 21 47 32 

D22 33 - 25 1.28 47760 48100 0.38 8.43 1634 2897 4.6 2.56 SC 16 38 46 

D23 20 - 48 1.36 36110 33100 0.25 7.85 164 2244 3.6 2.73 SaC N/A N/A N/A 

D24 56 - 90 1.36 43360 44400 0.36 6.3 1234 3398 3.8 3.22 CL N/A N/A N/A 

D25 39 - 39 1.43 76020 48700 0.37 6.47 417 4114 6.4 3.41 C 25 32 42 

D26 59 - - 1.36 25570 26200 0.28 7.48 355 2765 11.1 3.38 C N/A N/A N/A 

D27 17 - 36 1.32 39920 42000 0.30 6.43 344 3063 4.9 3.00 CL 34 31 35 

D28 63 75 - 1.36 30520 29700 0.27 7.54 337 2710 11.0 3.19 CL N/A N/A N/A 

Table A.3. Results of soil sample data to a depth of 15 cm in the grassland at the Conservation Learning Centre. 
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D29 27 - 0 1.36 31410 21700 0.16 6.99 184 1618 3.7 2.32 SaCL N/A N/A N/A 

D30 12 - 31 1.36 32790 34700 0.26 6.64 126 2761 7.6 3.07 C N/A N/A N/A 

D31 20 21 67 1.54 61470 58300 0.42 5.33 2470 4988 4.2 3.52 C N/A N/A N/A 

D32 25 60 72 1.54 70390 62700 0.49 8.06 524 5165 7.4 4.64 C N/A N/A N/A 

D34 34 20 26 1.28 48450 45100 0.38 7.05 602 3396 6.1 3.23 SaCL 61 22 17 

D35 32 - - 1.30 85940 49500 0.25 6.61 222 4147 7.0 5.90 CL 51 28 21 

D36 12 - 27 1.51 34920 33000 0.22 8.34 401 2657 6.5 4.76 CL N/A N/A N/A 

D38 46 - - 1.51 45600 48300 0.39 8.21 1507 4070 5.5 3.70 CL N/A N/A N/A 

D39 44 - 68 1.36 38160 41000 0.30 7.72 3730 2761 6.6 4.84 CL N/A N/A N/A 

D40 24 - - 1.36 55020 58200 0.39 6.01 229 4777 11.2 5.81 C N/A N/A N/A 

D41 42 78 - 1.36 41580 38500 0.27 6.76 167 3135 7.2 3.36 SaC N/A N/A N/A 

D42 27 - 54 1.50 44040 42100 0.34 6.38 617 1653 4.1 3.19 CL 54 23 23 

 

 

Point A 

Horiz. 

Depth 

Depth 

to 

Gley 

Depth 

to 

CaCO3 

BD OC TC Moist pH EC TN MN P Hand 

Texture 

Sand Silt Clay 

 cm cm cm g/cm3 µg/g µg/g g/g  µS/cm µg/g µg/g µg/g  % % % 

SDNWA Grass                

B01 18 28 25 1.61 33710 31500 0.22 7.34 218 3287 7.8 3.34 SaCL N/A N/A N/A 

B02 15 - 13 1.61 35540 46500 0.26 8.1 275 2777 7.1 3.05 SaCL N/A N/A N/A 

B03 18 - 28 1.61 24670 31900 0.21 7.6 378 2672 10.6 4.01 SaCL N/A N/A N/A 

B04 10 - 21 1.69 27500 34700 0.20 7.7 241 2185 5.9 2.75 CL 45 33 22 

B05 18 - 24 1.61 21930 31800 0.16 7.75 233 2110 9.1 3.51 SaC N/A N/A N/A 

B06 23 - 23 1.50 32840 34600 0.23 7.57 271 2458 10.2 3.32 CL 38 40 22 

B07 20 - 40 1.39 36470 35000 0.25 7.72 278 3371 11.5 3.86 C 24 45 31 

B08 16 30 0 1.61 36010 48300 0.32 8.1 214 2757 5.7 4.77 SaCL N/A N/A N/A 

B09 25 - 30 1.61 38840 40200 0.21 7.2 319 2254 9.4 3.35 SaCL N/A N/A N/A 

B10 14 - 0 1.64 21980 38500 0.16 7.52 303 2290 14.6 3.54 SaCL 47 33 20 

B11 11 - 0 1.41 26710 40300 0.22 7.89 228 2421 7.4 3.23 SaCL N/A N/A N/A 

B12 15 35 29 1.41 29750 31800 0.27 7.11 280 2171 5.2 3.00 SaC 41 34 25 

Table A.4. Results of soil sample data to a depth of 15 cm in the grassland at the St. Denis National Wildlife Area. 
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Table A.3. (con’t). 



 
 

B13 22 - 37 1.41 46490 44000 0.39 6.75 1927 3229 3.6 2.94 C N/A N/A N/A 

B14 8 8 8 1.55 38070 43000 0.48 7.32 527 3185 5.4 3.85 SaC 27 51 22 

B15 14 - 43 1.41 31140 29000 0.29 7.02 1181 3660 7.3 3.06 SaC N/A N/A N/A 

B16 12 80 87 1.21 38820 41000 0.31 7.21 194 3488 9.5 3.64 CL 23 53 25 

B17 15 95 105 1.48 42500 45800 0.36 6.91 239 3362 8.0 4.98 C N/A N/A N/A 

B18 17 16 19 1.61 29980 37600 0.47 7.2 847 2914 6.6 3.83 SaCL 34 44 22 

B19 18 0 0 1.48 40260 45800 0.82 7.2 841 3528 5.3 9.13 SaC N/A N/A N/A 

B20 20 - - 1.48 37930 38000 0.29 7.45 256 3301 6.0 20.8 CL N/A N/A N/A 

B21 17 50 76 1.38 23330 44100 0.29 7.64 292 3542 11.5 3.57 SCL 21 55 24 

B22 23 - 36 1.38 30390 28700 0.21 7.53 268 3020 5.7 3.56 C N/A N/A N/A 

B23 16 - 18 1.38 30760 32500 0.21 7.8 222 2554 13.8 2.85 SaCL N/A N/A N/A 

B24 28 - - 1.38 43520 45600 0.27 7.05 198 3523 19.1 5.02 SaCL 31 43 27 

B25 11 - 15 1.38 23380 23900 0.20 7.86 244 2250 8.3 2.91 C N/A N/A N/A 

B26 16 - 0 1.38 31150 47100 0.27 7.83 275 2638 5.7 2.69 SaC N/A N/A N/A 

B27 18 - 0 1.38 27610 40300 0.16 7.37 326 2477 10.7 2.45 SaCL N/A N/A N/A 

B28 14 - 25 1.38 28870 29200 0.19 7.24 294 2619 9.1 2.39 SaCL N/A N/A N/A 

B29 10 - 0 1.38 25910 36200 0.18 7.46 279 2332 7.4 2.54 SaCL N/A N/A N/A 

B30 12 - 0 1.38 21750 42900 0.15 7.89 230 1907 11.0 2.21 SaCL N/A N/A N/A 

B31 10 - 18 1.61 34290 41100 0.27 7.39 325 3393 5.8 2.86 C N/A N/A N/A 

B32 24 - 62 1.61 34140 27900 0.25 7.38 275 2457 14.5 2.75 SaCL N/A N/A N/A 

B33 20 - 21 1.61 29980 34300 0.18 7.39 308 2497 9.3 2.51 SaCL N/A N/A N/A 

B34 18 - 45 1.41 35220 41800 0.31 7.53 273 3647 9.4 9.14 C N/A N/A N/A 

B35 15 20 20 1.41 25860 38500 0.32 7.05 2200 2316 1.9 2.64 SaC N/A N/A N/A 

B36 16 20 96 1.61 22720 24800 0.39 6.98 182 2504 9.9 24.0 SaCL 14 61 26 

B37 22 - 75 1.29 35350 38200 0.30 7.37 228 3108 7.6 3.76 CL 24 49 27 

B38 12 - 0 1.38 17070 38300 0.19 7.55 281 2346 7.0 2.40 SaCL N/A N/A N/A 

B39 27 - 68 1.41 31790 29300 0.23 7.17 237 2282 11.5 2.86 CL N/A N/A N/A 

B40 18 - 12 1.12 36720 39500 0.26 7.65 319 3738 8.8 3.38 CL 27 48 25 
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Table A.4. (con’t). 
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Point MidCIG MidNDVI LateCIG LateNDVI FLMZ 

 June 28 June 28 July 27 July 27  

A01 3.57 0.81 2.17 0.59 Back_MedC 

A02 1.37 0.58 1.30 0.80 Back_MedC 

A03 3.63 0.86 3.44 0.76 Back_HighC 

A04 4.01 0.87 1.52 0.67 Back_HighC 

A05 2.81 0.78 2.08 0.40 Back_MedC 

A06 4.22 0.88 2.58 0.70 LowerBack_LowC 

A07 4.13 0.88 2.96 0.71 Back_HighC 

A08 3.41 0.83 1.82 0.77 Upper_MedC 

A09 3.88 0.86 1.49 0.58 Back_HighC 

A10 2.92 0.78 1.58 0.78 LowerBack_LowC 

A11 3.62 0.85 2.82 0.66 Lower_MedHighC 

A12 4.23 0.88 2.46 0.67 Lower_MedHighC 

A13 4.13 0.87 1.97 0.63 Lower_MedHighC 

A14 4.89 0.89 4.04 0.56 Back_HighC 

A15 5.24 0.90 2.67 0.57 Lower_MedHighC 

A16 1.06 0.39 2.71 0.75 Lower_MedHighC 

A17 3.22 0.84 5.71 0.62 Lower_MedHighC 

A18 2.21 0.69 4.08 0.84 Lower_MedHighC 

A19 1.77 0.67 3.18 0.84 Lower_MedHighC 

A20 4.33 0.88 1.72 0.79 Lower_MedHighC 

A21 3.43 0.84 2.27 0.53 Upper_MedC 

A22 3.52 0.83 2.58 0.82 Upper_LowC 

A23 3.93 0.87 2.98 0.72 Upper_HighC 

A24 5.96 0.91 2.27 0.38 Upper_MedC 

A25 4.07 0.88 3.62 0.78 Lower_MedHighC 

A26 6.79 0.92 4.16 0.83 Upper_HighC 

A27 3.82 0.86 2.38 0.56 Upper_LowC 

A28 3.65 0.85 2.89 0.65 Upper_LowC 

A29 4.15 0.88 1.44 0.42 Lower_MedHighC 

A30 4.65 0.88 1.75 0.44 Back_MedC 

A31 4.31 0.86 2.50 0.58 Back_MedC 

A32 2.90 0.77 2.54 0.44 LowerBack_LowC 

A33 3.33 0.80 2.36 0.81 Back_MedC 

A34 3.90 0.89 3.57 0.50 Back_HighC 

A35 4.48 0.87 3.17 0.73 Upper_MedC 

A36 4.72 0.91 3.59 0.73 Lower_MedHighC 

A37 1.89 0.62 1.84 0.74 Lower_MedHighC 

A38 3.42 0.83 3.05 0.90 LowerBack_LowC 

A39 4.78 0.89 1.92 0.77 Upper_MedC 

A40 2.43 0.71 2.14 0.57 Upper_MedC 

Table A.5. Final zone delineation and remote sensing vegetation indices for 

sample points in the cropland at the St. Denis National Wildlife Area. NDVI= 

Normalized Difference Vegetation Index, CIG=Chlorophyll Index-Green. 
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Point Dry 

Weight 

Grain 

Weight 

Yield MidCIG MidNDVI LateCIG LateNDVI FLMZ 

 
g g bu/ac July 5 July 5 July 31 July 31 

 

C01 961 382.0 56.8 3.35 0.86 6.30 0.89 Back_MedC 

C02 633 257.4 38.3 N/A N/A N/A N/A UpperBack_LowC 

C03 755 312.2 46.4 1.82 0.66 4.34 0.80 UpperBack_LowC 

C04 918 391.4 58.2 1.54 0.63 4.55 0.84 UpperBack_LowC 

C05 902 374.5 55.7 N/A N/A N/A N/A Back_MedC 

C06 N/A N/A N/A 1.04 0.48 2.44 0.61 UpperBack_LowC 

C07 821 285.8 42.5 N/A N/A N/A N/A UpperBack_LowC 

C08 N/A N/A N/A 1.57 0.59 5.51 0.86 Back_MedC 

C09 N/A N/A N/A 3.03 0.84 5.57 0.87 Lower_MedLowC 

C10 N/A N/A N/A 2.96 0.82 3.70 0.80 Back_MedC 

C11 N/A N/A N/A 2.80 0.81 6.94 0.89 Back_MedC 

C12 825 315.2 46.9 N/A N/A N/A N/A Back_MedC 

C13 806 280.8 41.7 2.39 0.75 4.79 0.85 Upper_MedHighC 

C14 N/A N/A N/A 4.88 0.88 7.05 0.90 Lower_MedLowC 

C15 N/A N/A N/A N/A N/A N/A N/A Upper_MedHighC 

C16 492 167.7 24.9 1.96 0.67 3.19 0.79 LowerBack_HighC 

C17 N/A N/A N/A 1.81 0.69 6.63 0.89 LowerBack_HighC 

C18 N/A N/A N/A N/A N/A N/A N/A Upper_MedHighC 

C19 620 258.2 38.4 1.61 0.61 4.23 0.82 Upper_MedHighC 

C20 1063 453.9 67.5 3.39 0.86 4.36 0.84 UpperBack_LowC 

C21 N/A N/A N/A 0.42 0.20 1.48 0.47 Upper_MedHighC 

C22 N/A N/A N/A 1.57 0.61 3.95 0.79 UpperBack_LowC 

C23 N/A N/A N/A 1.90 0.64 5.95 0.87 UpperBack_LowC 

C24 329 128.0 19.0 N/A N/A N/A N/A UpperBack_LowC 

C25 N/A N/A N/A 2.59 0.75 4.56 0.84 Upper_MedHighC 

C26 N/A N/A N/A 0.78 0.22 4.15 0.84 UpperBack_LowC 

C27 N/A N/A N/A 2.24 0.73 5.45 0.86 Upper_MedHighC 

C28 N/A N/A N/A 2.15 0.65 6.02 0.88 Upper_MedHighC 

C29 N/A N/A N/A 2.80 0.80 5.42 0.88 Upper_MedHighC 

C30 N/A N/A N/A 0.63 0.30 2.06 0.62 Upper_MedHighC 

C31 827 293.2 43.6 2.01 0.69 6.16 0.89 UpperBack_LowC 

C32 N/A N/A N/A 1.63 0.62 1.70 0.48 Back_MedC 

C33 589 292.7 43.5 N/A N/A N/A N/A LowerBack_HighC 

C34 778 311.6 46.3 2.41 0.65 5.70 0.87 Upper_MedHighC 

C35 N/A N/A N/A 0.74 0.24 3.20 0.77 LowerBack_HighC 

C36 829 320.3 47.6 2.84 0.84 4.66 0.87 LowerBack_HighC 

C37 857 223.2 33.2 1.70 0.58 6.20 0.88 LowerBack_HighC 

C38 378 116.4 17.3 1.00 0.39 2.70 0.71 LowerBack_HighC 

C39 942 325.2 48.3 N/A N/A N/A N/A LowerBack_HighC 

C40 957 405.3 60.3 N/A N/A N/A N/A UpperBack_LowC 

Table A.6. Final zone delineation, yield data, and remote sensing vegetation indices for sample points 

in the cropland at the Conservation Learning Centre. NDVI= Normalized Difference Vegetation 

Index, CIG=Chlorophyll Index-Green. 
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Point FreshWeight DryWeight MidCIG MidNDVI LateCIG LateNDVI FLMZ 
 

g g July 5 July 5 July 31 July 31 
 

D01 236.5 89.5 1.79 0.65 2.35 0.66 Upper_High 

D02 350.9 105.9 1.55 0.75 1.98 0.74 Upper_High 

D03 N/A N/A N/A N/A N/A N/A LowerBack_High 

D04 597.7 181.2 0.72 0.35 2.62 0.74 Upper_High 

D05 N/A N/A 2.15 0.74 2.45 0.72 Upper_Low 

D06 279.2 101.4 2.45 0.77 2.93 0.76 Upper_High 

D07 N/A N/A 1.31 0.50 1.69 0.51 Upper_High 

D08 N/A N/A 2.17 0.73 3.06 0.78 LowerBack_High 

D09 322.8 110.0 N/A N/A N/A N/A LowerBack_Low 

D11 274.7 87.6 1.95 0.68 3.28 0.84 LowerBack_High 

D12 266.7 91.8 2.93 0.76 2.81 0.73 LowerBack_Low 

D13 247.2 104.1 2.20 0.77 2.45 0.73 LowerBack_High 

D14 N/A N/A 1.08 0.51 1.73 0.60 Upper_Low 

D15 126.3 66.8 N/A N/A N/A N/A LowerBack_High 

D16 156.7 75.5 1.68 0.64 2.00 0.72 LowerBack_High 

D17 N/A N/A 1.23 0.54 2.03 0.70 LowerBack_Low 

D18 117.2 54.6 1.82 0.66 2.16 0.72 LowerBack_Low 

D19 N/A N/A 2.39 0.73 3.00 0.79 LowerBack_High 

D20 N/A N/A 1.89 0.71 2.52 0.71 Upper_Low 

D21 421.5 139.2 2.46 0.81 2.70 0.79 LowerBack_Low 

D22 N/A N/A N/A N/A N/A N/A Upper_Low 

D23 N/A N/A N/A N/A N/A N/A Upper_Low 

D24 N/A N/A 1.97 0.73 2.35 0.69 Upper_Low 

D25 180.3 59.2 1.14 0.52 1.96 0.67 Upper_High 

D26 N/A N/A 0.77 0.40 1.74 0.64 LowerBack_Low 

D27 101.7 47.8 1.50 0.62 2.38 0.74 Upper_Low 

D28 N/A N/A N/A N/A N/A N/A LowerBack_Low 

D29 N/A N/A 1.76 0.65 2.51 0.70 LowerBack_Low 

D30 269.5 106.9 2.12 0.76 2.74 0.75 Upper_Low 

D31 N/A N/A 1.64 0.66 2.19 0.62 Upper_High 

D32 N/A N/A 2.12 0.70 2.88 0.77 LowerBack_High 

D34 257.9 93.5 2.37 0.78 2.56 0.79 Upper_High 

D35 155.5 56.1 1.72 0.65 3.39 0.81 Upper_High 

D36 N/A N/A 2.17 0.69 3.33 0.81 LowerBack_High 

D38 N/A N/A 0.84 0.42 1.56 0.54 Upper_Low 

D39 297.5 93.4 N/A N/A N/A N/A Upper_Low 

D40 N/A N/A N/A N/A N/A N/A Upper_Low 

D41 97.1 41.6 N/A N/A N/A N/A Upper_Low 

D42 219.5 82.9 1.50 0.57 2.31 0.69 LowerBack_High 

Table A.7. Final zone delineation, yield data, and remote sensing vegetation indices for sample points in 

the grassland at the Conservation Learning Centre. NDVI= Normalized Difference Vegetation Index, 

CIG=Chlorophyll Index-Green. 
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Point FreshWeight DryWeight MidCIG MidNDVI LateCIG LateNDVI FLMZ 
 

g g 
     

B01 92.9 37.7 1.86 0.63 1.51 0.52 UpperBack_High 

B02 115.5 61.8 2.61 0.77 1.98 0.63 UpperBack_High 

B03 N/A N/A 1.75 0.61 1.52 0.55 Back_Med 

B04 N/A N/A 1.50 0.56 1.21 0.48 Back_Med 

B05 N/A N/A 1.69 0.60 1.27 0.52 Back_Med 

B06 N/A N/A 2.18 0.69 1.50 0.53 UpperBack_High 

B07 N/A N/A 2.11 0.69 1.88 0.63 UpperBack_High 

B08 N/A N/A 2.22 0.78 1.94 0.70 Upper_LowMed 

B09 79.5 43.2 3.34 0.81 1.54 0.52 Back_Med 

B10 N/A N/A 1.29 0.52 1.15 0.47 Back_Med 

B11 N/A N/A 1.58 0.61 1.29 0.55 LowerBack_Low 

B12 197.2 65.9 2.48 0.75 2.19 0.69 Lower_MedHigh 

B13 127.0 45.9 1.93 0.69 1.40 0.62 Lower_MedHigh 

B14 167.4 71.0 2.70 0.81 2.83 0.82 UpperBack_High 

B15 N/A N/A 2.07 0.68 2.23 0.68 Lower_MedHigh 

B16 N/A N/A 2.00 0.71 2.00 0.64 Lower_MedHigh 

B17 N/A N/A 1.85 0.69 1.87 0.67 Lower_MedHigh 

B18 223.9 90.2 2.46 0.78 2.46 0.79 Upper_LowMed 

B19 338.9 151.2 3.10 0.80 3.56 0.87 UpperBack_High 

B20 120.4 61.1 1.43 0.59 1.33 0.52 Lower_MedHigh 

B21 115.7 49.8 2.61 0.77 1.90 0.64 Lower_MedHigh 

B22 N/A N/A 1.99 0.67 1.78 0.60 Back_Med 

B23 108.7 55.0 1.85 0.61 1.69 0.54 Upper_LowMed 

B24 125.6 65.6 2.05 0.72 1.94 0.69 UpperBack_High 

B25 78.1 42.3 1.96 0.68 1.67 0.59 Upper_LowMed 

B26 N/A N/A 1.74 0.62 1.00 0.41 Back_Med 

B27 N/A N/A 2.29 0.71 1.48 0.52 Upper_LowMed 

B28 N/A N/A 1.64 0.60 1.40 0.53 LowerBack_Low 

B29 82.3 43.3 1.84 0.65 1.50 0.56 LowerBack_Low 

B30 N/A N/A 2.68 0.74 1.70 0.57 Upper_LowMed 

B31 N/A N/A 1.40 0.57 1.34 0.48 UpperBack_High 

B32 N/A N/A 2.24 0.67 1.72 0.58 UpperBack_High 

B33 80.4 43.8 2.31 0.71 2.16 0.63 Back_Med 

B34 N/A N/A 1.57 0.58 1.57 0.55 Lower_MedHigh 

B35 N/A N/A 1.77 0.66 1.61 0.62 LowerBack_Low 

B36 216.4 105.8 3.00 0.85 2.17 0.75 LowerBack_Low 

B37 115.1 56.2 1.85 0.70 1.81 0.67 Lower_MedHigh 

B38 77.6 43.9 1.74 0.62 1.57 0.55 LowerBack_Low 

B39 81.7 44.9 2.65 0.76 1.86 0.61 Upper_LowMed 

B40 91.5 41.7 2.29 0.74 2.02 0.67 Lower_MedHigh 

Table A.8. Final zone delineation, yield data, and remote sensing vegetation indices for sample points in the 

grassland at the St. Denis National Wildlife Area. NDVI= Normalized Difference Vegetation Index, 

CIG=Chlorophyll Index-Green. 
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Appendix B 

THE FUNCTIONAL LAND MANAGEMENT ZONE DELINEATION METHOD 

Software Needed: 

ArcGIS (This method outline assumes prior experience with ArcMap) 

ArcGIS- Relief Analysis Toolbox: https://www.geographer-miller.com/relief-analysis-toolbox/ 

GRASS: https://grass.osgeo.org/ 

Management Zone Analyst: 

https://www.ars.usda.gov/research/software/download/?softwareid=24&modecode=50-70-10-00 

R: https://www.r-project.org/ 

SAGA: http://www.saga-gis.org/en/index.html 

 

Data Needed: 

DTM/DEM raster (3 m ≥ resolution) 

SOC measurements and UTM co-ordinates for ≥20 points 

*CIG raster 

*NDVI raster 

 

*not required but can improve DSM results  

 

Step One: Slope Classification 

1. Load a 3 m DTM/DEM into ArcMap or load a higher resolution DEM/DTM and use the 

‘resample’ tool (select ‘bilinear’ as the resampling technique parameter) to convert it to a 3 m 

resolution. 

 

2. Follow the “Relief Analysis Instructions” included in the download for the Relief Analysis 

Toolbox. Those unfamiliar with GRASS will also need to follow the “Profile Curvature in 

Grass” instructions found at https://www.geographer-miller.com/relief-analysis-toolbox/ . 

 

3. Once Hillslope position classification has been completed reduce the classes to three by 

combining “Summit” slope positions with “Shoulder” slope positions (1 and 2) and “Footslope” 

positions with “Toeslope” positions (4 and 5) using the ‘Reclassify’ tool, set new values to 1,2,3. 

(1 being upper slopes, 2 being backslopes and 3 being lower slopes). 

 

4. Convert the resulting raster into a polygon shapefile using the ‘Raster to Polygon’ tool. 

   

Step Two: Preparing Co-variates for Digital Soil Mapping 

1. Load a 2 m DTM/DEM (3 m should work as well) into SAGA (File>Open). 

 

2. Create selected topography based co-variates (refer to Table 3.1) by running the appropriate 

‘Terrain Analysis’ tools. Some co-variates will need to be created first to enable the creation of 

others. (Geoprocessing>Terrain Analysis>Channels/Terrain Classification/Basic Terrain 

Analysis etc.>Select the loaded DTM/DEM as the grid system and the elevation via the drop 

down menus> Okay). 

https://www.geographer-miller.com/relief-analysis-toolbox/
https://grass.osgeo.org/
https://www.ars.usda.gov/research/software/download/?softwareid=24&modecode=50-70-10-00
https://www.r-project.org/
http://www.saga-gis.org/en/index.html
https://www.geographer-miller.com/relief-analysis-toolbox/
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3. Export the co-variates as TIFFs to a sub-folder (Geoprocessing>File>Grid>Export>Export 

GeoTIFF> Select the loaded DTM/DEM as the grid system via the drop down menu, the desired 

co-variate via the interface provided after pressing ‘…’ beside ‘Grid(s)’ [must be done one at a 

time] and specify the correct folder by pressing ‘…’ beside ‘File’>Okay) 

 

4. Save any additional co-variates (such as vegetation indices) as TIFFs to the same sub-folder. 

 

ALL CO-VARIATE RASTERS AND SOC DATA MUST HAVE THE SAME SPATIAL 

EXTENT AND BE IN THE SAME CO-ORDINATE SYSTEM 

 

5. Add the SOC data as a .csv (to a folder that includes the co-variate sub-folder) in this format: 

 

Sample Point elevation x  y  SOC 

     

 

Step Three: Digital Soil Mapping 

1. Use the following R-code (credit: Jeremy Kiss, Megan Horachek) as a template for your own 

data.  

 

setwd("C:/Users/las821/Documents/Stats/SD_DSM/Crop") 

#Load libraries  

#from geostats lecture: all good in version 3.5.1 

library(sp) 

library(rgdal) 

library(maptools) 

library(gstat) 

library(rgeos) 

library(MASS) 

#from regression modeling lecture: all good in version 3.5.1 

require(GSIF) 

require(rgdal) 

require(aqp) 

require(randomForest) 

require(plyr) 

require(ggplot2) 

require(e1071) 

#from covariates lecture: good in version 3.5.1 

library(raster) 

#for CART: all good in version 3.5.1 

require(rpart) 

require(rpart.plot) 

 

 

library(MASS) 

#for random selection: all good in version 3.5.1 

library(dplyr) 
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library(caret) 

library(RSAGA) 

library(gdalUtils) 

 

#for goof? 

library(ithir) #package 'ithir' is not available (for R version 3.5.1) 

 

### give access to help files, but need to run the code for the goof function seperately to use it 

install.packages("devtools") 

 

library(devtools) 

 

install_bitbucket("brendo1001/ithir/pkg") 

 

#does not work 

#install.packages('ithir', dependencies=TRUE, repos='http://cran.rstudio.com/') 

install.packages("Goof") 

 

#Load sample Points  

pts.load <-  

read.csv("C:/Users/las821/Documents/Stats/SD_DSM/Crop/SDW_crop_spr17_pts.csv")  

 

str(pts.load) 

 

#ID X & Y coordinates 

pts.xy <- data.frame(pts.load$x, pts.load$y) 

colnames(pts.xy) <- c("x", "y") 

 

#Convert to spatial points data frame 

pts <- SpatialPointsDataFrame(pts.xy, pts.load, proj4string = CRS("+proj=utm +zone=13 

+datum=WGS84 +units=m +no_defs +ellps=WGS84 +towgs84=0,0,0")) 

 

#Clean env 

rm(pts.load, pts.xy) 

 

####LOADING COVARIATE STACKS 

____________________________________________________________________________ 

 

# tell R where our rasters are  

cov.path <- "C:/Users/las821/Documents/Stats/SD_DSM/Crop/cov2" ###Specify here what 

rasters you want to use  

 

list.files(path = cov.path, pattern = "\\.tif$", 

           full.names = TRUE) 
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#Perform raster stack without loading any into memory  

files <- list.files(path = cov.path, 

                    pattern = "\\.tif$", full.names = TRUE) 

# stack rasters 

Cov.Stack <- raster(files[1]) 

 

for (i in 2:length(files)) { 

  Cov.Stack <- stack(Cov.Stack, files[i]) 

} 

 

Cov.Stack 

 

#add coordinate ref.  

crs(Cov.Stack) <- "+proj=utm +zone=13 +datum=WGS84 +units=m +no_defs +ellps=WGS84 

+towgs84=0,0,0" 

 

#Extract raster stack values to points  

pts.cov <- extract(Cov.Stack, pts  , #########<<<<--- need to specify which points and change 

the name of the pts.cov to the appropriate site  

                   sp = 1,    method = "simple") 

 

pts.cov 

 

###Split into a training and test set  

 

set.seed(108888) #set random seed  

 

training <- sample(nrow(pts.cov), 0.75 * nrow(pts.cov)) 

train.pts <- pts.cov[training, ] 

test.pts <- pts.cov[-training, ] 

 

training 

#save points 

setwd<-("C:/Users/las821/Documents/Stats/SD_DSM/Crop") 

save(train.pts, file = "train.pts.rda") 

save(test.pts, file = "test.pts.rda") 

 

#convert to data.frame  

train.pts <- train.pts@data 

test.pts <- test.pts@data 

 

#### A Depth Models 

 

#set wd 

setwd("C:/Users/las821/Documents/Stats/SD_DSM/Crop") 
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#convert SOC from int to num 

train.pts[,5] <- as.numeric(train.pts[,5]) 

test.pts[,5] <- as.numeric(test.pts[,5]) 

 

str(train.pts) 

test.pts 

 

##Random Forest  

 

rf.SOC.model <- train(x = train.pts[, 6:29], y = train.pts$Mg_SOC_ha,  

                            method = "rf", ntree =1000, importance = T, 

                            tuneLength = 5,trControl = trainControl(method = "repeatedcv", number = 5, 

repeats = 10)) 

 

rf.SOC.model  

 

#Variable importance  

varImp(rf.SOC.model) 

 

save(rf.SOC.model , file = "rf.SOC.model.rda") 

load(file = "rf.SOC.model.rda") 

rf.SOC.model 

 

#### Accuracy metrics for test set 

 

#predict classes 

test_pred <- predict(rf.SOC.model, newdata = test.pts[,6:29] )  

 

#compare predictions with observations  

test.goof <- goof(observed = test.pts[,5], predicted= test_pred) 

 

test.goof  

 

#Create list of outputs  

GOOF.rf.list <- c( "rf", test.goof$R2, test.goof$concordance, test.goof$RMSE, test.goof$bias) 

                

### CART  

 

rpart.SOC.model <- train(x = train.pts[, 6:29], y = train.pts$Mg_SOC_ha,   

                              method = "rpart",  

                              tuneLength = 50, 

                              trControl = trainControl(method = "repeatedcv",  

                                                       number = 5, repeats = 10)) 

 

rpart.SOC.model  
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save(rpart.SOC.model , file = "rpart.SOC.model.rda") 

load(file = "rpart.SOC.model.rda") 

rpart.SOC.model 

 

#### Accuracy metrics for test set 

 

#predict classes 

test_pred <- predict(rpart.SOC.model, newdata = test.pts[,6:29] )  

 

#compare predictions with observations  

test.goof <- goof(observed = test.pts$Mg_SOC_ha, predicted= test_pred) 

 

test.goof  

 

#Create list of outputs  

GOOF.rpart.list <- c( "rpart", test.goof$R2, test.goof$concordance, test.goof$RMSE, 

test.goof$bias) 

 

### CART with bagging  

 

treebag.SOC.model <- train(x = train.pts[, 6:29], y = train.pts$Mg_SOC_ha,    

                           method = "treebag", tuneLength = 2, 

                           importance = T, 

                           trControl = trainControl(method = "repeatedcv",  

                                                    number = 5, repeats = 20), 

                           nbagg= 1000) 

 

treebag.SOC.model 

 

save(treebag.SOC.model , file = "treebag.SOC.model.rda") 

load(file = "treebag.SOC.model.rda") 

treebag.SOC.model 

#### Accuracy metrics for test set 

 

#predict classes 

test_pred <- predict(treebag.SOC.model, newdata = test.pts[,6:29] )  

 

#compare predictions with observations  

test.goof <- goof(observed = test.pts$g_SOC_kg, predicted= test_pred) 

 

test.goof  

 

#Create list of outputs  

GOOF.treebag.list <- c( "treebag", test.goof$R2, test.goof$concordance, test.goof$RMSE, 

test.goof$bias) 
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### Creat GOOF table from each list  

 

GOOF.table <- rbind(GOOF.rf.list, GOOF.rpart.list, GOOF.treebag.list) 

GOOF.table <- as.data.frame(GOOF.table) 

colnames(GOOF.table) <- c("Model", "R2", "concordance", "RMSE", "bias") 

 

write.csv(GOOF.table, file = "") 

 

 

2. Using the goof tables or summary(insert model here) select the most accurate model. 

 

3. Save the selected model as a raster using the following code as a template (credit: Jeremy Kiss 

Megan Horachek) 

 

############## MAPPING 

 

#parallel processing  

install.packages("doParallel") 

library(doParallel)  

cl <- makeCluster(detectCores() -2, type='PSOCK') 

registerDoParallel(cl) 

 

####LOADING COVARIATE STACKS 

____________________________________________________________________________ 

 

###########Loading in Covariate Stack -  

# tell R where our rasters are  

cov.path <- "C:/Users/las821/Documents/Stats/SD_DSM/Crop/cov2" ###Specify here what 

rasters you want to use  

 

list.files(path = cov.path, pattern = "\\.tif$", 

           full.names = TRUE) 

 

#Perform raster stack without loading any into memory  

files <- list.files(path = cov.path, 

                    pattern = "\\.tif$", full.names = TRUE) 

# stack rasters 

Cov.Stack <- raster(files[1]) 

 

for (i in 2:length(files)) { 

  Cov.Stack <- stack(Cov.Stack, files[i]) 

} 

 

Cov.Stack 

 

#add coordinate ref.  
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crs(Cov.Stack) <- "+proj=utm +zone=13 +datum=WGS84 +units=m +no_defs +ellps=WGS84 

+towgs84=0,0,0" 

 

####%%% set work directory to where you want to save outputs  

setwd("C:/Users/las821/Documents/Stats/SD_DSM/Crop") 

 

#List of models  

rf.SOC.model 

rpart.SOC.model 

treebag.SOC.model 

 

###  apply the model directly to the raster stack 

#Need to apply model and set the name you want to save 

 

SOC.pr.map <- predict(Cov.Stack, treebag.SOC.model, filename = "treebag_SOC.tif",  

                      format = "GTiff", datatype = "FLT4S", overwrite = TRUE  ) 

 

SOC.pr.map2 <- predict(Cov.Stack, rf.SOC.model, filename = "randomf_SOC.tif",  

                      format = "GTiff", datatype = "FLT4S", overwrite = TRUE  ) 

 

 

SOC.pr.map3 <- predict(Cov.Stack, rpart.SOC.model, filename = "rpart_SOC.tif",  

                      format = "GTiff", datatype = "FLT4S", overwrite = TRUE  ) 

 

 

Step Four: Preparing Data for Fuzzy Classification 

1. Load selected DSM model raster into ArcMap.  

 

2. Change the symbology of the DSM raster to three classes by using ‘Natural Breaks (Jenks)’ 

under ‘Classified’. 

 

3. Use the tool ‘Reclassify’ to change from the old values (SOC estimate) to new values (from 1-

3, 1 being lower SOC, 2 being medium SOC, 3 being higher SOC). 

 

4. Convert the reclassified raster to a polygon shapefile using the ‘Raster to Polygon’ tool. 

 

5. Use the ‘Intersect’ tool to combine the SOC class polygon and the previously completed slope 

classification polygon into a new shapefile (it may be helpful to edit the resulting table to make 

the column for both of the factors easy to identify). 

 

6. Export the table for the resulting shapefile as a .txt file. 

 

Step Five: Fuzzy Classification 

1. Launch the Management Zone Analyst software and open the previously created .txt file. 

(View>Start>Choose File…) 
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2. Move the SOC classes and slope position classes into the ‘Selected Variables’ box using the 

arrows. Click ‘Next’.  

 

3. Click next (computing statistics is optional). In the ‘Delineate Zones’ window leave all options 

as default, and select the maximum and minimum number of zones you wish to perform fuzzy 

classification on*. Click ‘Classify’. Choose the output file location and name, click ‘Save’. Once 

the analysis has been completed click ‘Next’ 

 

*This study used 3 and 9 as the maximum and minimum, respectively. It may be best to move in 

overlapping sets of 3 and 4, repeating this step as necessary to complete the analysis for the 

desired number of zones. The software often crashes if more than 9 zones are set as the 

maximum. It also often crashes if there is too large of gap between the minimum and maximum 

number of zones.  

 

4. Save the performance indices to a file. Click ‘Next’. Using the ‘Post Classification Analysis’ 

window as well as the saved performance indices find the number of zones that has the lowest 

‘Normalized Classification Entropy’ and ‘Fuzziness Performance Index’. This zone delineation 

will provide you with zones that are the most different. 

 

5. Bring the data from file you created and saved that includes the number of zones with the best 

performance indices in step 3 into excel. Save the file into a format you can use in ArcMap (.csv, 

.txt, etc.) 

 

6. Bring the file you created in step 5 into ArcMap. 

 

Step Six: Creating a FLMZ Map 

1. Use the ‘Join’ function to add the results from the Management Zone Analyst software (the 

file that was created in excel) to your intersected polygon shapefile. 

 

2. Export the polygon as a new feature class to save the join. 

 

3. Use the ‘Dissolve’ tool to create a new shapefile with a reduced number of polygons by using 

the column containing the desired number of zones as the ‘Dissolve_Field’. 

 

4. Decipher what each zone number represents based on the SOC class and slope class from the 

feature created in step 2. Add a column to the table of the shapefile created in step 3 and use the 

edit function to name each feature accordingly.  

 

5. Change the symbology of the shapefile to ‘Categories’ based on the added column (choose the 

added column as the ‘Value Field’). 
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Appendix C 

FUNCTIONAL LAND MANAGEMENT ZONE MAPS 
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Figure C.3. Final delineation of functional land management zones in the grassland at the St. Denis National 

Wildlife Area based on fuzzy clustering of soil organic carbon and slope position. Zones are ranked based on 

the crop productivity (as shown by Chlorophyll  Index -Green). 


