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ABSTRACT 

 

RECONCILING ENERGY AND CARBON EMISSION PERFORMANCE FOR 

SUSTAINABILITY 

 

Keserci, Ebru 

Master of Economics 

Supervisor: Assoc. Prof. Dr. Bahar Çelikkol Erbaş 

 

July 2016 

 

 

The concepts of energy and environmental efficiency, with creating less or no 

pollution in production processes, help to redefine efficiency in general and serve to 

attain a sustainable future. The relevant literature is underprovided in analyzing 

environmental efficiency and thus performance measures for countries over time. 

This study models energy and CO2 emission performance in electricity 

generation from the production efficiency point of view. It uses a non-radial 

directional distance function and constructs energy, environmental and energy-

environmental performance indices for 112 countries over the period of 1988-2011. 

The models are run in GAMS 23.5 with IEA data 2013. The countries are grouped 

firstly with respect to their use of combined heat and power (CHP) technology to 

construct best practice frontier. The second group is G20 countries, which allows 

investigation of the tradeoffs amongst energy and environmental performances of top 

20 countries in the world. The last group is UNFCCC Annex I countries, consisting 

of Turkey. The study shows that the majority of the countries still have room for 

improvement for energy and the environment. For the most current year in the 

dataset, 2011, for all the indices, the following countries are the best performers; 

Switzerland and Sweden in the group of countries with CHP technology, Brazil for 

the non-CHP countries, Brazil and United Kingdom among G20 countries, and 

Belarus and Slovak Republic in Annex I. Consistent with the literature, Turkey has 

better energy and environmental performance compared to the major polluters as it 

performs around the medians of sample countries in UNFCCC Annex I. 

 

Keywords: Energy efficiency, Environmental efficiency, CO2 emission 

performance, Electricity Generation, Directional distance function, Data 

envelopment analysis. 
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ÖZET 
 

SÜRDÜRÜLEBİLİRLİK İÇİN ENERJİ VE KARBON EMİSYON 

PERFORMANSININ DEĞERLENDİRİLMESİ  

 

Keserci, Ebru 

Yüksek Lisans, İktisat Bölümü 

Tez/Proje Yöneticisi: Doç. Dr. Bahar Çelikkol Erbaş 

 

Temmuz 2016 

 

 

Enerji ve çevresel verimlilik kavramları üretim süreci esnasında çok az ya da 

hiç kirlilik açığa çıkmamasını sağlayarak verimliliği yeniden tanımlar ve 

sürdürülebilir bir geleceğe erişimi sağlar. Konuyla ilgili literatür ülkelerin çevresel 

verimlilik ve performans ölçümlerinin sağlanması konusunda yeterli değildir. 

Bu çalışma, elektrik enerjisi üretiminde enerji ve CO2 salımı performansını 

üretim verimliliği açısından modeller. Bu çalışmada radyal olmayan mesafe 

fonksiyonu kullanılmış; enerji, çevre ve enerji-çevre performans indisleri 112 ülke 

için ve 1988-2011 periyotlarını kapsayacak şekilde oluşturulmuştur. Model IEA 

2013 datasını kullanarak GAMS 23.5 programında çözülmüştür. Ülkeler, ilk etapta 

birleşik ısı ve güç üretim (CHP) teknolojisini kullanımlarına göre gruplanmış ve en 

iyi üretim sınır eğrisi oluşturulmuştur. İkinci grup ise G20 ülkelerinden oluşmakta 

olup, bu gruplama dünyadaki 20 majör ülkenin enerji, çevre ve enerji-çevre 

performanslarının karşılaştırılmasını sağlamaktadır. Son grup ise Türkiye’nin de 

içinde bulunduğu Birleşmiş Milletler İklim Değişikliği Çerçeve Sözleşmesi 
(UNFCCC) Ek I ülkelerinden oluşmaktadır. Data setteki en son yıl olan 2011 yılı için 

tüm performans indislerinde en iyi performans gösteren ülkeler şunlardır: CHP 

teknolojisini kullanan ülkeler arasında İsviçre ve İsveç; CHP teknolojisini 

kullanmayan ülkeler arasında Brezilya; G20 ülkeleri arasında Brezilya ve İngiltere; 

Ek I ülkeleri arasında ise Beyaz Rusya ve Slovak Cumhuriyeti. Literatürle uyumlu 

olarak Türkiye, kirliliğe sebep olan ana ülkelere göre daha iyi enerji ve çevresel 

performans sergilemiş olup, Ek I örneklem ülkeleri arasında ise medyanda yer 

almaktadır.  

 

Anahtar Kelimeler: Enerji Verimliliği, Çevresel Verimlilik, CO2 Salım 

Performansı, Elektrik Üretimi, Yönsel Mesafe Fonksiyonu, Veri Zarflama Analizi 
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CHAPTER ONE 

 

 

INTRODUCTION 

 

 

Sustainability, the collection of policies and strategies employed by various 

institutions at micro and macro levels to minimize their environmental impact on 

future generations, is a great concern in economics. More recently, sustainability 

regained importance and has been becoming the focus of attention not only in policy 

design but also in theory building. Efficient use of all resources, specifically natural 

resources, with creating less or no pollution and environmental damage in production 

processes helps to attain a sustainable future. Traditional efficiency measures and 

approaches in economics could not capture fully the efficient use of natural 

resources, ecological services and the environment. Traditional efficiency measures 

treat desirable and undesirable outputs asymmetrically, by valuing desirables and 

ignoring undesirables (Fare et al., 1989). However, the concepts of environmental 

efficiency and eco-efficiency help to redefine efficiency in general and serve to attain 

sustainability on the supply side. Because of this, economic - ecological efficiency is 

a matter of concern since 1990s as an approach to sustainability among politicians, 

researchers and decision makers in business world. 
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For the monetary gains, firm managers must minimize costs, maximize revenues, or 

maximize profits. If market structures are not pareto efficient, then these monetary 

objectives may drive firm managers to produce products with detrimental impact on 

environment. The relationship between environmental goals and monetary objectives 

has a tradeoff between social benefits and monetary costs. Social equilibrium is 

different than the market equilibrium due to the failure of markets and other 

institutions to take into account the effect of supply and demand decision on the 

environment and the ecosystem. The balancing of society’s desire and economic 

goals is important issue (Porter and Linde, 1995). For this reason, measuring 

environmental and ecological efficiency in addition to economic and technical 

efficiency is required to develop sustainability. Therefore, researchers should provide 

methodology to measure and improve environmental and ecological efficiencies and 

facilitate the design of environmental policies. 

Industrialization, high population growth, and urbanization cause the misuse and 

overuse (not use optimally) of natural resources in the long run and thus raise 

numerous environmental problems. As a depletion of natural resources, fossil fuel 

consumption results in the increase of greenhouse gas (GHG) emissions in the 

atmosphere. Climate scientists have observed that the concentration of atmospheric 

CO2, which is the major GHG, have been increasing significantly. The 2012 CO2 

concentration (394 ppmv) was about 40% higher than the concentration in the mid-

1800. The average growth is 2 ppmv/year in last ten years (CO2 Emissions 

Overview, IEA 2013). Thus, stabilizing CO2 concentrations is very important. Even 

after stabilization of the atmospheric concentration of CO2, global warming and sea 

level rise would continue due to the time scales related with climate processes and 

feedbacks. Large reductions of global CO2 emissions are required for stabilizing 
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concentrations of GHG or CO2 in the atmosphere. For this purpose, the United 

Nations Framework Convention on Climate Change (UNFCCC) is negotiated (CO2 

Emissions Overview, IEA 2013). The major aim of the convention is to stabilize 

GHG concentration in the atmosphere at a level that would prevent dangerous 

anthropogenic interference with the climate system (UNFCCC, 1992). 

The use of energy represents obviously the largest share of GHG emissions, which is 

83% for UNFCCC Annex I countries. CO2 emissions from energy represent 60% 

global emissions (CO2 Emissions Overview, IEA 2013). CO2 emissions from 

combustions dominate the total GHG emissions in the energy sector. Because of 

growing world energy demand from fossil fuels, CO2 emissions has upward trend, 

annual CO2 emissions from fuel combustion increased from near zero to over 31 

GtCO2 in 2011 (CO2 Emissions Overview, IEA 2013). This trend is the most obvious 

for the electricity generation industry. Two-thirds of global CO2 emissions in 2011 

are produced because of electricity and heat generation. Electricity and heat 

generation that relies on coal is the most carbon – intensive fossil fuel. According to 

World Economic Outlook (WEO) 2013 projects, by 2035, the demand for electricity 

will be 70% higher than current demand because of the rapid growth in population 

and income in developing countries, by the continuing increase in the number of 

electrical devices used, and by growth in the electrically driven industrial processes 

(CO2 Emissions Overview, IEA 2013). Therefore, it is important to analyze 

environmental and ecological performance in addition to energy performance in 

electricity generation.  

Many recent approaches for developing energy and environmental performance have 

been using especially nonparametric data envelopment analysis (DEA) from a 

production point of view (Sueyoshi and Goto, 2012). DEA is a linear programming 
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(LP) based technique for evaluating the relative efficiency of decision making units 

(DMUs) with observed quantities of the inputs and outputs (Ramanathan, 2003). It is 

a non-parametric method: we don't need an explicit speciation of the functional 

relationship between inputs and outputs.  The literature that applies DEA to measure 

environmental performance, first defines undesirable outputs, and then calculates the 

environmental efficiencies. DEA uses linear programming to construct the 

technology and best practice frontier from the data sample. Simultaneously, it 

estimates the distance to the best practice frontier for each observation. One of the 

most popular approaches for estimating the distance is directional distance function 

(DDF) approach. 

The directional distance function is developed by Chambers et al. (1996). This 

approach is seeking to expand the desirable outputs and reduce the undesirable 

outputs and inputs directionally. Electricity production from fossil fuel combustions 

inevitably produces undesirable outputs also, such as CO2 emissions. As there has 

been growing importance of CO2 emissions reduction, in the literature, there are 

most current studies using DDF approaches for evaluating the impact of CO2 

emissions on the environment. 

Previous studies presented a non-radial directional distance function approach to 

modeling of the performance of electricity generation within a joint – production 

framework. For instance, Zhou et al. (2012) proposes the use of non-radial 

directional distance function and several performance indexes are developed to 

model energy and CO2 emission performance in electricity generation. Similarly, this 

study also contributes to the modeling of the performance of electricity with several 

standardized indexes. Nevertheless, this study differs from previous studies in the 

following aspects. First, this study demonstrates performance changes over time for 
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over one hundred countries while previous studies in the literature are based only the 

data for a single year. In the case of energy sectors, there is continuously changing 

demand and supply conditions. Thus, for this sector, there is generally an increasing 

concern in investigating their productivity change over time. This study measures 

relative efficiency over time. Second, this study contributes to modelling Group of 

Twenty (G20) countries’ energy and environmental performances to investigate 

differences in preferences over energy and environmental tradeoffs among top 20 

countries in the world. G20 countries represent close to 80% of this energy related 

CO2 emissions. The G20 group is therefore presented with an important opportunity 

to make collective progress towards the objective of developing energy and 

environmental efficiency (G20 Clean Energy, And Energy Efficiency Deployment 

and Policy Progress, 2011). This study measures how far each member country 

might be from their potential objective as a group. Third, this study also investigates 

Turkey’s energy and environmental performances in electricity generation among 

UNFCCC Annex-I countries. It is important to investigate Turkey’s performance as 

Turkey has been tracking of its GHG emissions as a member of UNFCCC and Kyoto 

Protocol. As a member of UNFCCC Annex-I countries, Turkey plans to limit future 

GHG emissions. Given Turkey’s environmental goals, Turkey’s energy and 

environmental performance comparison with Annex-I members is significant to 

evaluate its performance in comparison to its peers.  

In this study, CO2 emission performance is used to represent the environmental 

performance. Thus, in this thesis, the term “environmental performance” is used and 

it captures “CO2 emission performance”. Environmental performance is a broader 

measure that includes not only CO2 emissions but also performances related to other 

emissions as well as performances related to water and solid and hazardous waste. 
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Due to restrictions on data availability, in this thesis, the term “environmental 

performance” captures solely CO2 emissions. The organization of this study as 

follows. In the next chapter, the literature on the directional distance functions is 

reviewed. In chapter 3, methods for measuring energy and ecological performances 

are explained. Results are provided and discussed in chapter 4.  In the last chapter, 

the study is concluded. 
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CHAPTER TWO 

 

  

LITERATURE REVIEW 

 

 

Environmental performance is a matter of concern since beginning of the UNFCCC 

negotiation in the early 1990s as an approach to sustainability among policy analysts 

and decision makers due to the fact that global warming and climate change is the 

major policy issue in the world. OECD defines eco- efficiency as the efficiency with 

ecological resources that are used to meet human needs at the end of the 1990s 

(OECD, 1998). Then, the notion was popularized by the World Business Council for 

Sustainable Development as a practical approach to encourage companies to become 

more environmentally responsible and more competitive (WBCSD, 2000). As a 

result of this concern, a growing literature has arisen to relate to environmental issues 

into traditional production theory. Figure 1 shows the general structure of literature 

on energy and environmental issues as well as types of DEA which will be discussed 

in the next sections. 
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Figure 1 General Structure of Literature 

 

2.1. Data Envelopment Analysis and Directional Distance Functions  

 

Production of desirable outputs often produced jointly by–products that have harmful 

effects on the environment. When evaluating the environmental performance, it 

makes sense to implement a performance measure of production technology which 

has some outputs that are desirable and some others that are not, and the undesirable 

outputs may not be freely disposable. Three categories, which are inputs, desirable 

outputs and undesirable output, are taken into account in the scope of the theory of 

productive efficiency. Traditional efficiency measures and production theory treat 
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desirable and undesirable outputs asymmetrically, by valuing desirable and ignoring 

undesirable.  

A pioneer paper, Fare et al. (1989) developed and implemented a new performance 

measure by modifying Farrell (1957) measure of technical efficiency which has 

permitted an asymmetric treatment of inputs, desirable outputs and undesirable 

outputs. Farrell (1957) estimated a radial measure of technical efficiency by 

constructing a piece-wise linear technology representing the best practice methods of 

production and using linear programming (LP). Then, Data Envelopment Analysis 

(DEA) is named by Charnes et al. (1978) and Banker et al. (1984) who extended a 

popularized Farrell’s method. In economic literature, model developed by Charnes et 

al. (1978) has relation with the activity analysis model introduced by Von Neumann 

(1945) and Koopmans (1951) and the input distance function introduced by Shephard 

(1970). 

DEA has been a well-established nonparametric methodology to evaluate the relative 

performance of decision making units (DMUs) with multiple inputs and outputs. 

Seiford and Thrall (1990) mentioned advantages of DEA and main advantage is that 

it is a nonparametric approach not needing to functional relationships between inputs 

and outputs. Considering these methodological advantages, DEA has rapidly grown 

in operations research and management science (Forsund and Sarafoglou, 2002, 

2005). Among the current studies, presentation of introductory materials can be 

found in Ramanathan (2003), Cooper et al. (2006) documented more comprehensive 

study about DEA. 

There are mainly two methods which incorporates undesirable outputs into DEA 

models. One is based on the original data with the concept of weak disposability 
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proposed by Fare et al. (1989). The other is based on data translation and the 

utilization of traditional DEA models such as the one in Seiford and Zhu (2002). 

The optimal solution called radial efficiency of DMU that reveals existence of 

excessive uses of inputs and shortfalls in production of outputs (slacks). There are 

two types of efficiency measure in DEA, namely radial and non-radial. Some studies 

used radial measures which adjust inputs or outputs proportionally, e.g. Tyteca 

(1996, 1997) and Fare et al. (2004). Radial measures overestimate technical 

efficiency when there exist non-zero slacks. Fare and Lovell (1978) constructed 

alternative efficiency measures that minimize input slacks while allowing slack in 

output constraints. In the scope of defining inefficiency based on the slacks, Fare et 

al. (1985), Torgersen et al. (1996), Cooper and Tone (1997), Pastor et al. (1999), and 

Tone (1999) proposed several methods. 

Fare et al. (1985) used DEA on electricity generation plants by assuming both strong 

and weak disposability of inputs to measure the performance. Torgersen et al. (1996) 

developed the radial measures of Farrell type to include slacks and applied to a 

typical multidimensional small-sample data set for Norwegian employment offices. 

Cooper and Tone (1997) detailed the studies in developing scalar measures of 

inefficiency including non-zero slacks. Pastor et al. (1999) proposed a new Global 

Efficiency Measures (GEM) inspired by the Russell Graph Measure of Technical 

Efficiency to avoid the computational and explanatory difficulties. Tone (1999) 

proposed a slack-based measure (SBM) of efficiency which deals with the input 

excesses and the outputs shortfalls of DMU concerned in DEA model. 

Generalized measure of technical inefficiency with accounting for all slacks in input 

and output constraints is related to directional distance function of Chambers et al. 
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(1996). The concept of directional distance function, dual of profit function, was 

developed by Luenberger (1992, 1995) as a shortage function in production theory 

and as a benefit function in consumer theory. The directional distance function seeks 

increase in desirable outputs and decrease in inputs and undesirable outputs for a 

given directional vector. 

Several studies have introduced the directional distance function technology by 

incorporating slacks into the measurement of efficiency. Chung et al. (1997) and Ball 

et al. (2001) used directional distance functions for modeling production in the 

existence of undesirable outputs. Picazo-Tadeo et al. (2005) used directional distance 

functions to measure of efficiency while increasing desirable outputs and decreasing 

inputs with no change in the undesirable outputs. These measures permit free 

disposal of residuals. 

Recently, Fukuyama and Weber (2009) developed a generalized measure of technical 

inefficiency which also accounts for all slacks in input and output constraints. 

However, Färe and Grosskopf (2010) also proposed a generalization of the slack 

based measure of efficiency on the directional distance function. This measure of 

efficiency could tell level of excess inputs and outputs short of an efficient level 

regarding the sum of directional distance function. Some studies such as Barros et al. 

(2012) developed directional slacks based inefficiency measures by incorporating 

undesirable outputs. Barros et al. (2012) analyzed technical efficiency of the 

Japanese banks from 2000 to 2007. Based on the Russell directional distance 

function which considers desirable and undesirable outputs simultaneously, the 

model used non-performing loans (NPLs) in form of undesirable outputs. 
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2.2. DEA and DDF Methods Literature on Environmental Issues 

 

In recent years, DEA techniques have been used to address environmental issues by 

finding importance of desirable and undesirable output separation. After separating 

outputs, DEA can measure both economic efficiency on desirable outputs and 

environmental efficiency on undesirable outputs. Considering both economic and 

environmental goals, DEA is one of the multiple criteria decision analysis (MCDA) 

methods (Stewart, 1996). Thus, the studies on MCDA about energy and environment 

are DEA-related studies such as Huang et al. (1995) and Zhou et al. (2006a, 2006b). 

DEA research with environmental dimension included are Cooper et al. (1996), 

Bevilacqua and Braglia (2002), Korhonen and Luptacik (2004), Triantis and Otis 

(2004), Zaim (2004), Kousmanen (2005), Pasurka (2006).  

Cooper et al. (1996) surveyed the literature by employing mathematical 

programming approaches to air pollution management. Bevilacqua and Braglia 

(2002) described a DEA model to measure the environmental performance of seven 

oil refineries in Italy from 1993 to 1996 relatively. Korhonen and Luptacik (2004) 

measured technical and ecological efficiency of 24 power plants in European 

country. Triantis and Otis (2004) defined dominance-based DEA with data from 

manufacturing facility to consider environmental performance. Zaim (2004) used a 

variant of Malmquist quantity index to measure the aggregate pollution intensity and 

defined pollution intensity as pollution per unit of manufacturing output. This index 

provides method for comparing performance of DMUs over time by solving several 

DEA type models. Kousmanen (2005) identified confusion about weak disposability 

in nonparametric production analysis. This study has provided new directions for 
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future research. Pasurka (2006) established a linkage between DEA and index 

decomposition analysis. 

DEA is widely used to model regional/national carbon dioxide emissions result of 

the growing concern on climate change due to CO2 emissions in recent years such as 

Zaim and Taskin (2000a, 2000b), Zofio and Prieto (2001), Ramanathan (2002, 

2005), Fare et al. (2004) and Zhou et al. (2006b, 2008, 2010). Ramanathan (2005) 

applied DEA to forecast energy consumption and CO2 emissions. Zhou et al. (2010) 

introduced a Malmquist CO2 emission performance index (MCPI) by solving several 

DEA models to measure changes in total factor carbon emission performance over 

time. The index is used for the emission performance of world’s 18 top CO2 emitters 

from 1997 to 2004. 

Directional distance function (DDF) is alternative approach to estimate distance from 

best practice frontier for each observation. The concept of this approach is expanding 

desirable outputs and reducing undesirable outputs simultaneously for a given 

direction vector (Chung et al. 1997). Since most environmental problems arise from 

undesirable outputs when desirable outputs are produced, there are many studies 

using DDF approach while evaluating environmental performance such as Picazo-

Tadeo et al. (2005), Kumar (2006), Färe et al. (2007). Some studies such as 

Fukuyama and Weber (2009, 2010), Färe and Grosskopf (2010), and Mahlberg and 

Sahoo (2011), expanded directional distance function into a more general form that is 

non-radial DEA models for identifying and incorporate slacks as much as possible. 

Picazo-Tadeo et al. (2005) used DDF as a nonparametric approach to evaluate the 

impact of environmental regulations on the performance of Spanish producers of 

ceramic pavements when some outputs are undesirable. 
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Kumar (2006) examined total factor productivity in 41 countries over the period of 

1971 to 1992 according to environmental performance. The study used directional 

distance function to derive Malmquist–Luenberger (ML) productivity index. 

Fukuyama and Weber (2009) proposed a directional slacks-based measure of 

technical inefficiency to examine the financial services provided by Japanese 

cooperative Shinkin banks during the period 2002–2005. Fukuyama and Weber 

(2010) also modeled the performance of Japanese banks using a two-stage network 

model allowing non-radial scaling of outputs and inputs. 

Färe and Grosskopf (2010) constructed Environmental Performance Index (EPI) to 

measure the electric power plants performance that produce both desirable and 

undesirable outputs. In this study, Malmquist Quantity Index is also derived by 

extending EPI to include an index of multiple bad outputs. Then, the data is 

assembled for the period 1998 to 2005. 

Mahlberg and Sahoo (2011) developed the non-radial Luenberger indicator used on 

the directional Russell measure of inefficiency to analyze the eco-productivity 

performance behavior of the 22 OECD countries during the period 1995–2004. 

 

2.3. DEA and DDF Methods on Energy Efficiency 

 

Energy efficiency is considered to be indispensable solutions to control GHG 

emissions (Özbuğday and Erbaş, 2015). DEA plays an important role in energy 

efficiency studies by considering the ability of DEA in combining multiple factors. 

Recently, there are several studies investigated energy efficiency by using DEA 
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approach in the literature. Ramanathan (2000) used DEA to measure energy 

efficiencies of alternative transport modes. Boyd and Pang (2000) examined the 

relationship between energy intensity and productivity while more recent studies, Hu 

and Wang (2006) and Hu and Kao (2007) applied DEA to develop total - factor 

energy efficiency index which provides a useful alternative to aggregated energy 

intensity measure. 

Zhou and Ang (2008) presented several DEA-type linear programming models for 

energy efficiency performance. The model considered a joint production framework 

of both desirable and undesirable outputs and different inputs with different energy 

sources. Thus, changes in energy mix accounted to measure energy performances of 

21 OECD countries. 

Barros and Peypoch (2008) estimated technical efficiency of Portuguese 

thermoelectric power generating plants with DEA for period 1996-2004. Zhou et al. 

(2008) summarized the main features of 100 publications on the application of DEA 

to environmental and energy studies in a literature survey. 

Liu et al. (2010) analyzed carbon emissions changes during 1997-2007 based on the 

index decomposition analysis method in 582 base-load Chinese coal-fired power 

plants in 2002. Yang and Pollitt (2010) proposed a model that distinguishes weak 

and strong disposability assumptions among various undesirable outputs based on 

their respective technical features. 

Sueyoshi and Goto (2011) proposed a new approach which incorporates energy and 

non-energy input separation in addition to desirable and undesirable output 

separation for Japanese fossil fuel power generation within a computational 

framework of DEA non-radial measurement. 
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Jaraite and Maria (2012) investigated environmental efficiency and productivity 

enhancing performance of the European Union's CO2 Emissions Trading Scheme 

(EU ETS) in EU public power generating sector over the 1996–2007 period. 

 

2.4. DEA and DDF Methods on Electricity Generation Sector 

 

Energy is important for economic and social development and improved quality of 

life in all countries. World primary energy demand is increasing rapidly and fossil 

fuels will continue to dominate (77% of global primary energy comes from fossil 

fuels) global energy use. However, fossil fuel energy consumption cause ecosystem 

disruptions and climate change. Climate change can be prevented by stabilization of 

the concentration of green-house gases (GHGs). The greenhouse gas emissions that 

cause climate change are emitted mainly from burning fossil fuels such as coal, oil 

and natural gas. The natural greenhouse gas, carbon dioxide (CO2), is the biggest 

human supplied gas to the greenhouse effect (about 70%). The largest global sources 

of CO2 are electricity and heat generation (32%) (Bilen et al, 2008). 

Electricity production from fossil fuel combustions produces CO2 emissions as 

undesirable output. Directional distance function is recent approach to measure of 

energy and environmental performance that can increase desirable outputs (e.g. 

electricity) and reduce undesirable outputs (e.g. CO2 emissions). Many studies have 

used DEA to measure the energy performance of DMUs electricity generation. Färe 

et al. (1996) were the first to include a pollution variable in their DEA methodology 

for the electrical energy industry. In their paper, environmental performance 

indicator is introduced by the use of data from U.S. fossil-fuel-fired electric utilities. 
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The indicator is based on the decomposition of overall factor productivity into a 

pollution index and an input-output efficiency index. 

More recent DEA studies of energy efficiency that address pollution include. Chang 

and Hu (2010) and Mukherjee (2010). Chang and Hu (2010) used non-radial 

directional distance function to evaluate the energy productivity change of Chinese 

provinces. Mukherjee (2010) aimed to achieve joint goals of energy conservation and 

economic growth with the use of directional distance function. However, these 

studies did not consider undesirable outputs in their modeling framework. Sozen et 

al. (2010) conducted DEA for efficiency analyses of the eleven lignite-fired, one 

hard coal fired and three natural gas-fired state-owned thermal power plants used for 

electricity generation in Turkey. Operational and environmental performances were 

defined and the relationship between efficiency scores and input/output factors was 

investigated. Sueyoshi and Goto (2012) reviewed weak and strong disposability and 

compared weak/strong disposability to natural/managerial disposability in terms of 

conceptual and methodological implications. The study is applied Japanese electric 

power firms and manufacturing firms. 

Only few studies have used to directional distance function to measure performance 

of electricity generation. Färe et al. (2007) employs the directional distance function 

to measure the environmental efficiency of coal-fired plants in the U.S. Choi et al. 

(2012) presented a slacks-based measure of efficiency incorporating CO2 emissions. 

Recently, non-radial directional distance function approach described in Zhou et al. 

(2012) defines total-factor energy efficiency and energy productivity indexes by 

considering CO2 emissions, The conventional non-radial measures asses the level of 

efficiency by slacks. Zhou et al. (2012) assesses energy and CO2 emission 
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performance in electricity generation with non-radial directional distance function 

and DEA models. However, Zhou et al. (2012) and this study is different that the 

amount of slack is replaced by an efficiency score related to each production factor 

(i.e., inputs, desirable and undesirable outputs). Thus, these researches document a 

new type of non-radial measure. 
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CHAPTER THREE 

 

 

METHODOLOGY 

 

 

In this study, non-radial directional distance function approach is used to investigate 

the energy, environmental and economic performance of countries in electricity 

generation. The possible environmental pressure indicator data is associated with 

emissions in general and CO2 in particular. To compare countries’ performance, 

environmental production technologies for countries are constructed with production 

efficiency point of view. The environmental production technology in this study is 

the production technology which takes into account undesirable output in addition to 

desirable output. The model construction is customized for countries with and 

without combined heat and power (CHP) plants and the countries in the analysis are 

grouped accordingly.  

 

3.1. Combine Heat and Power (CHP) Technologies 

 

Combined heat and power (CHP) is an efficient and clean approach to generating 

electric power and useful thermal energy from a single fuel source as a series of 

proven, reliable and cost-effective technologies. These technologies have been 
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making an important contribution to meeting global heat and increasing electricity 

demand. Since these technologies provide utilization of waste heat and low-carbon 

renewable energy resources, CHP is a strategy for national and regional GHG 

emissions reduction strategies (IEA 2008, Combined Heat and Power Report). 

CHP plants have been using the heat output from the electricity generation for 

heating or other industrial applications. By doing these, CHP plants generally convert 

75-80% of the fuel source into useful energy, while conventional generation 

processes’ (separate heat and power generation) efficiency ratio are 40-50%. (IPCC, 

2007). Figure 2 shows efficiency gains of CHP with one example (IEA 2008, 

Combined Heat and Power Report). 

 

Figure 2 Efficiency Gains of CHP 

 

Considering this efficiency gains, some countries have been able to achieve 

constructing these technologies to electricity generation plants. However, most 

countries have not been successful. This study analyzes performance of countries 
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with different technologies separately to discriminate CHP technologies 

environmental benefits. 

 

3.2. Dataset 

 

The data set is obtained from International Energy Agency 2013 (IEA) Energy and 

Energy Balance Statistics. These statistics includes CO2 emissions from fuel 

combustions, Energy Balance Statistics of non-OECD and OECD countries (fossil 

fuel consumption because of electricity generation statistics), Energy Statistics of 

non-OECD and non-OECD countries (electricity and heat generation from fossil fuel 

consumption statistics). Table 1 shows CHP and non-CHP counties used in the 

dataset. Excluding countries with incomplete data, the final dataset consist of 72 non-

CHP countries (Albania, Congo, Democratic Republic of Congo, Georgia, Nepal, 

Paraguay are excluded from the dataset because of incomplete data in selected 

years). Bahrain, Kuwait, Oman, Qatar, Saudi Arabia, United Arab Emirates (the six 

Gulf Cooperation Council (GCC) member countries) are excluded because it is not 

possible to give reasonable estimates of the electricity generation efficiencies of 

these countries. Some of them operated combined water and power (CWP) plants 

where desalination and electricity are generated simultaneously using fossil fuels 

(Ang et al., 2011). Armenia, Kazakhstan, Kyrgyzstan, Latvia, Lithuania, Tajikistan, 

Turkmenistan are excluded from dataset because of incomplete data. Poland is 

excluded because it hasn’t reported any CO2 emission data in selected countries. 

Final dataset includes 40 CHP countries. Non-CHP countries have single input which 

is fossil fuel consumption for electricity generation. The input of the model is fossil 
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fuel (coal and coal products, peat, crude, natural gas liquids (NGL) and feedstocks, 

oil products, natural gas) consumption in generation of electricity and it is denoted 

by F (unit:ktoe). The other energy sources (nuclear, hydro, geothermal, solar, wind, 

biofuels, etc.) are not included consumption data because this study used the model 

which only includes fossil fuel consumption because of electricity generation. The 

undesirable output is CO2 emissions from electricity generation processes and 

presented by C (unit: Mt). The desirable output is electricity generation from fossil 

combustions and it is denoted by E (unit: GWh). For the countries with CHP plants, 

there is one more desirable output that is heat generation and it is represented by H 

(unit: TJ). Therefore, two different production functions should be described, one is 

for countries without CHP plants, and other is for countries with CHP plants.  

The yearly data is available from 1970 to 2011. However, this study covers 5 year 

periods between 1988 and 2011. This time period is chosen to be consistent with 

Kyoto Protocol’s time frame and to understand how countries evolve in regard to 

energy and environmental performance during this time frame. The start year 1988 

captures performance of countries before Kyoto Protocol base year (1990). In order 

to capture the most recent year in the data set, the last period has the length of three 

years instead of five and thus the end year represent the performances of countries in 

2011. 
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Table 1 CHP and non-CHP Countries in the Dataset 

Country Technology Country Technology 

Albania non-CHP Armenia CHP 

Algeria non-CHP Azerbaijan CHP 

Angola non-CHP Belarus CHP 

Argentina non-CHP Bosnia and Herzegovina CHP 

Bahrain non-CHP Bulgaria CHP 

Bangladesh non-CHP 
People's Republic of 
China 

CHP 

Benin non-CHP Croatia CHP 

Bolivia non-CHP Kazakhstan CHP 

Botswana non-CHP Kosovo CHP 

Brazil non-CHP Kyrgyzstan CHP 

Brunei Darussalam non-CHP Latvia CHP 

Cambodia non-CHP Lithuania CHP 

Cameroon non-CHP 
Former Yugoslav Republic 
of Macedonia 

CHP 

Chinese Taipei non-CHP Republic of Moldova CHP 

Colombia non-CHP Mongolia CHP 

Congo non-CHP Romania CHP 

Democratic Republic 
of Congo 

non-CHP Russian Federation CHP 

Costa Rica non-CHP Serbia CHP 

Côte d'Ivoire non-CHP Tajikistan CHP 

Cuba non-CHP Turkmenistan CHP 

Cyprus non-CHP Ukraine CHP 

Dominican Republic non-CHP Uzbekistan CHP 

Ecuador non-CHP Austria CHP 

Egypt non-CHP Belgium CHP 

El Salvador non-CHP Canada CHP 

Eritrea non-CHP Czech Republic CHP 

Ethiopia non-CHP Denmark CHP 

Gabon non-CHP Estonia CHP 

Georgia non-CHP Finland CHP 

Ghana non-CHP France CHP 

Gibraltar non-CHP Germany CHP 

Guatemala non-CHP Greece CHP 

Haiti non-CHP Hungary CHP 

Honduras non-CHP Italy CHP 

Hong Kong, China non-CHP Japan CHP 

India non-CHP Korea CHP 

Indonesia non-CHP Luxembourg CHP 

Islamic Republic of 
Iran 

non-CHP Netherlands CHP 
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Country Technology Country Technology 

Iraq non-CHP Norway CHP 

Jamaica non-CHP Poland CHP 

Jordan non-CHP Portugal CHP 

Kenya non-CHP Slovak Republic CHP 

Dem. People's Rep. 
of Korea 

non-CHP Slovenia CHP 

Kuwait non-CHP Sweden CHP 

Lebanon non-CHP Switzerland CHP 

Libya non-CHP Turkey CHP 

Malaysia non-CHP United Kingdom CHP 

Malta non-CHP United States CHP 

Montenegro non-CHP Singapore non-CHP 

Morocco non-CHP South Africa non-CHP 

Mozambique non-CHP Sri Lanka non-CHP 

Myanmar non-CHP Sudan non-CHP 

Namibia non-CHP Syrian Arab Republic non-CHP 

Nepal non-CHP 
United Republic of 
Tanzania 

non-CHP 

Netherlands Antilles non-CHP Thailand non-CHP 

Nicaragua non-CHP Togo non-CHP 

Nigeria non-CHP Trinidad and Tobago non-CHP 

Oman non-CHP Tunisia non-CHP 

Pakistan non-CHP United Arab Emirates non-CHP 

Panama non-CHP Uruguay non-CHP 

Paraguay non-CHP Venezuela non-CHP 

Peru non-CHP Vietnam non-CHP 

Philippines non-CHP Yemen non-CHP 

Qatar non-CHP Zambia non-CHP 

Saudi Arabia non-CHP Zimbabwe non-CHP 

Senegal non-CHP Australia non-CHP 

 

3.3. Modeling Environmental Production Technology with Desirable 

and Undesirable Outputs 

 

The concept of joint production is known as one of the conceptual foundations of 

ecological economics. The theory of multiple-input and multiple-output production 

technologies are established also in mainstream economics. Most of the production 
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process of ecological problems generates undesirable and desirable outputs. For 

instance, CO2 emissions are inevitable when electricity is generated by fossil fuel 

consumption. Joint production framework allows analyzing both energy and CO2 

emission performance simultaneously.  

In relatively recent literature, the energy and environmental performance of countries 

are modeled with data envelopment analysis (DEA) (Zhou et al., 2008). DEA is a 

linear programming based technique for evaluating the relative efficiency of 

Decision Making Units (DMU's). DEA facilitates the construction of a non-

parametric piece-wise frontier over the existing data by using linear programming. 

There is a separate linear programming problem for each observation. 

Simultaneously, it estimates the distance to the best practice frontier for each 

observation. All points on the frontier represent technically efficient combinations of 

inputs and outputs, and all points to the interior of the frontier represent inefficient 

combinations of inputs and outputs. Figure 3 provides a simple graphical illustration 

of the best practice frontier and the directional distance technology. In this figure, for 

simplicity, only desirable and undesirable output is considered (two dimensional 

graph). The desirable output is electricity generation from fossil combustions and it 

is denoted by E. The undesirable output is CO2 emissions from electricity generation 

processes and presented by C. Point A in the figure represent inefficient input-output 

combination. Efficiency measures have been determined by examining distances 

between observed input and output combinations and frontier input and output 

combinations. The method seeks to determine the maximal radial contraction or 

expansion of inputs or outputs, while still remaining with the feasible input or output 

set (Coelli et al., 2005). 
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Figure 3 Graphical Illustration of Directional Distance Technology 

 

This study employs the model developed by Zhou et al. (2012). Figure 4 shows 

general structure and flow chart of methodology used in this study. First, 

environmental DEA technology is constructed. Second, non – radial directional 

distance function is defined and the model is developed in GAMS Program. After 

finding optimum values, EPI, CPI and ECPI are calculated. 

 

 

Figure 4 Flow Chart of Methodology 
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In this study, only energy related input is considered which is similar to the earlier 

researches by Zhou and Ang (2008) and Zhou et al. (2012) as this study aims to 

assess the energy and CO2 emission performance of electricity generation at the 

economy level. Modeling energy inputs only are adequate to assess environmental 

performance when there is pollution as an undesirable output  For the simplicity, 

similar to Zhou et al. (2012), this study only the fossil fuels used in the model as an 

input. Figure 5 shows three dimensional graph which also includes fossil fuel 

consumption in the form of input. In this figure, a simple graphical illustration of the 

best practice frontier and the directional distance technology is illustrated. 

 

Figure 5 Graphical Illustration of Directional Distance Function of Model 
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3.3.1. Environmental Production Technology without CHP Plants 

 

The production technology for the countries without CHP plants can be characterized 

as 

T1 = {(F, E, C): F can produce (E, C)}                (3.1)                                                   

The production technology can be described via the environmental output set 

P1 (F) = {(E, C): F can produce (E, C)}                (3.2)                                                                                  

P1 (F) is a bounded and closed set and satisfies the following properties: 

P1
1
. Undesirable output is weak disposable, i.e., if (E, C) ∈ P1 (F) and 0 ≤ θ ≤ 1, then 

(θE, θC) ∈ P1 (F). 

P1
1
 states that proportional reduction of electricity generation (desirable output) and 

CO2 emission (undesirable output) is feasible (the reduction of undesirable is costly). 

P2
1
. Outputs are null-joint, i.e., if (E, C) ∈ P1 (F) and C=0, then E=0. 

P2
1
 states that CO2 emissions in electricity generation from fossil-fuel combustions 

are inevitable. The only way to eliminate undesirable output is to end the production 

process. 

P3
1
. Desirable output is freely (strongly) disposable, i.e., (E, C) ∈ P1 (F) and E′ ≤

E imply (E′, C) ∈ P1 (F). 

P4
1
. Input is freely disposable, i.e., (F, E, C) ∈ T1 and F′ ≥ F imply (F′, E, C) ∈ T1 . 

The environmental production technology T1 can be formulated with a 

nonparametric piecewise linear representation to employ efficiency measurement. 
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The environmental Data Envelopment Analysis (DEA) Technology under constant 

returns to scale (CRS) is represented by 

T1 = {(F, E, C): ∑ 𝑧1𝑛
𝑁
𝑛=1 𝐹1𝑛 ≤ 𝐹 

                             ∑ 𝑧1𝑛

𝑁

𝑛=1

𝐸1𝑛 ≥ 𝐸 

                             ∑ 𝑧1𝑛

𝑁

𝑛=1

𝐶1𝑛 = 𝐶 

           𝑧1𝑛 ≥ 0 , n=1,2,…,N}               (3.4) 

N represents number of countries without CHP plants in selected years. 

Therefore, 𝐹1𝑛 is fossil fuel input, 𝐸1𝑛 electricity output and 𝐶1𝑛 is CO2 emission 

vectors of country n. 

𝑧1𝑛 is intensity variable, which will be used to construct the best practice frontier. 

In the CRS case, the sum of intensity variables is unrestricted. Imposing additional 

axioms on returns to scale implies less restrictive constraints for the intensity 

weights, which leads to the expansion of the estimated production possibility set 

(Kuosmanen et al. 2009). 

It can be shown that disposability and null-jointness assumptions are satisfied with 

equation (3.4). The inequality constraints for input and desirable output allow a 

feasible vertical extension, implying the strong disposability. The equality constraint 

indicate that an increase in undesirable output decreases the vector of desirable 

outputs (weak disposability) (Sueyoshi and Goto 2012). The proofs can be found in 

Zhou et al. (2012). 
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3.3.2. Environmental Production Technology with CHP Plants 

 

The production technology for the countries with CHP plants can be characterized as 

T2
 
= {(F, E, H, C): F can produce (E, H, C)}               (3.3)                                                         

The environmental production technology implies that above properties (P1, P2, P3, 

P4) still holds. 

P1
2
. Undesirable output is weak disposable, i.e., if (E, H, C) ∈ P1 (F) and 0 ≤ θ ≤ 1, 

then (θE, θH, θC) ∈ P1 (F). 

P2
2
. Outputs are null-joint, i.e., if (E, H, C) ∈ P1 (F) and C=0, then E=H=0. 

P3
2
. Desirable outputs are freely (strongly) disposable, i.e., (E, H, C) ∈ P1 (F) and 

H′ ≤ H imply (E, H′, C) ∈ P1 (F). 

P4
2
. Input is freely disposable, i.e., (F, E, C) ∈ T1 and F′ ≥ F imply (F′, E, C) ∈ T2. 

Say that, there are M countries with CHP plants in selected years. Therefore, 𝐹2𝑚 is 

fossil fuel input,  𝐸1𝑚 electricity output and 𝐶1𝑚 is CO2 emission vectors. 

T2 = {(F, E, H, C): ∑ 𝑧2𝑚
𝑀
𝑚=1 𝐹2𝑚 ≤ 𝐹 

                                  ∑ 𝑧2𝑚

𝑀

𝑚=1

𝐸2𝑚 ≥ 𝐸 

                                  ∑ 𝑧2𝑚

𝑀

𝑚=1

𝐻2𝑚 ≥ 𝐻 

                                 ∑ 𝑧2𝑚

𝑀

𝑚=1

𝐶2𝑚 = 𝐶 
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 𝑧2𝑚 ≥ 0 , m=1,2,…,M}                      (3.5) 

𝑧2𝑚 is intensity variable, which will be used to construct the best practice frontier. 

 

3.4. Non-radial Directional Distance Function 

 

Efficiency is an important concept for production to indicate metrically input-output 

ratio. Distance functions are one way of measuring efficiency. Moreover, distance 

functions can be used to describe multi-input, multi-output technology. A directional 

distance function permits the simultaneous contraction of input/undesirable outputs 

and expansion of desirable outputs (Fare and Grosskopf, 2004).  However, radial 

directional distance function which is characterized by Chambers et al. (1996, 1998) 

tries to look for the extension of desirable outputs and reduction of undesirable 

outputs and inputs at the same rate. However, this same rate maybe inappropriate for 

each input-output bundle. In this study, in order to measure full eco-efficiency, non-

radial directional distance functions are defined upon earlier works by Fukuyama et 

al. (2011), Barros et al. (2012) and Zhou et al. (2012).  The advantage of non-radial 

directional distance function approach is adjusting inputs and outputs freely. 
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3.4.1. Non-radial Directional Distance Function for the countries 

without CHP Plants 

 

Denote the directional distance function as 

D⃗⃗ 1 (F, E, C; g1) = sup {w1
T : ((F, E, C) + g1 . diag(β1)) ∈ T1 } 

g1 = (g1F, g1E, g1C) is directional vector (direction of change) 

w1 = (w1F, w1E, w1C)T  represents normalized weight vector . The numbers of inputs 

and outputs of model characterizes the weight vector. 

β1= (β1F, β1E, β1C)>0 is the vector of scaling factors 

𝑧1𝑛 decision variable 

The DEA type model formulation adopted from Fare and Grosskopf (2010) is as 

follows: 

D⃗⃗ 1 (F, E, C; g1) = max w1F β1F + w1E β1E + w1C β1C 

          s.t.   ∑ 𝑧1𝑛
𝑁
𝑛=1 𝐹1𝑛 ≤ 𝐹 + β1F g1F-- 

                                      ∑ 𝑧1𝑛
𝑁
𝑛=1 𝐸1𝑛 ≥ 𝐸 + β1E g1E 

                                      ∑ 𝑧1𝑛
𝑁
𝑛=1 𝐶1𝑛 = 𝐶 + β1C g1C 

   𝑧1𝑛 ≥ 0 , n=1,2,…,N,    β1F, β1E, β1C ≥0               (3.6) 

Likewise radial distance function, non-radial distance function also satisfies 

following basic properties: 
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(1) The translation property: D⃗⃗ 1 (F + α g1F, E + α g1E, C + α g1C ; g1) = D⃗⃗ 1 (F, E, 

C; g1) –α , α ∈ ℛ. 

(2) Homogeneous of degree -1: D⃗⃗ 1 (F, E, C; αg1) = α-1 D⃗⃗ 1 (F, E, C; g1), α > 0. 

(3) Homogeneous of degree +1 : D⃗⃗ 1 (αF, αE, αC; g1) = α D⃗⃗ 1 (F, E, C; g1), α > 0 ( 

as the technology exhibits constant returns to scale). 

 

3.4.2. Non-radial Directional Distance Function for the countries 

with CHP Plants 

 

We can also define non-radial directional function regarding T2: 

D⃗⃗ 2 (F, E, H, C; g2) = sup {w2
T : ((F, E, H, C) + g2. diag(β2)) ∈ T2 } 

G2 = (g2F, g2E, g2H, g1C) is directional vector. 

W2 = (w2F, w2E, w2H w2C)T  represents normalized weight vector. 

β2= (β2F, β2E, β2H, β2C )>0 is the vector of scaling factors. 

D⃗⃗ 2 (F, E, H, C; g2) can be modeled by solving following model: 

D⃗⃗ 2 (F, E, H, C; g2) = max w2F β2F + w2E β2E + w2H β2H + w1C β1C 

s.t.   ∑ 𝑧2𝑚
𝑀
𝑚=1 𝐹2𝑚 ≤ 𝐹 + β2F g2F 

      ∑ 𝑧2𝑚
𝑀
𝑚=1 𝐸2𝑚 ≥ 𝐸 + β2E g2E 

      ∑ 𝑧2𝑚
𝑀
𝑚=1 𝐻2𝑚 ≥ 𝐻 + β2E g2E 

     ∑ 𝑧2𝑚
𝑀
𝑚=1 𝐶2𝑚 = 𝐶 + β2C g2C 
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     𝑧2𝑛 ≥ 0 , n=1,2,…,N,    β2F, β2E, β2H,  β2C ≥0  (3.7) 

Similar to D⃗⃗ 1 (F, E, C; g1),  D⃗⃗ 2 (F, E, H, C; g2) satisfies the basic properties of 

directional distance function mentioned above. 

 

3.5. GAMS 

 

The linear programming model of problem is solved in GAMS 23.5 (Generalized 

Algebraic Modeling System). This modeling system has own programming language 

syntax which allows to write mathematical optimization problem. Thus, the first step 

of solving an optimization problem under GAMS is the creation of an accurate 

GAMS model of a mathematical problem. GAMS modeling language has been used 

in variety of linear, non-linear, and mixed-integer programming models, general 

equilibrium models, and network models. GAMS is used for formulating, solving, 

and analyzing a small and simple optimization problem. These problems are related 

with policy or sector analysis.  

The linear optimization programming in GAMS is efficient modeling system 

regarding below properties (Geletu, 2008): 

 Providing a high-level language for the compact representation of large and 

complex models 

 Allowing changes to be made in model speciation simply and safely 

 Allowing unambiguous statements of algebraic relationships 

 Permitting model descriptions that are independent of solution algorithms 

Some of DEA studies in the literature have used GAMS. To illustrate, Olesen and 

Petersen (1996), Walden and Kirkley (2000). Olesen and Petersen (1996) have 
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provided GAMS programming code for DEA. Walden and Kirkley (2000) have 

developed several GAMS programming for modelling production efficiency and 

fishing capacity in marine fisheries. Productivity Commission (1999) has used DEA 

for assessing the performance of Australian Railways. 
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CHAPTER FOUR 

 

 

RESULTS AND DISCUSSIONS 

 

 

In this chapter, the results of DEA type model formulation and indexes of energy 

performance and CO2 emission performance are presented. In this study, the non-

radial directional distance function model is constructed and it is developed in 

GAMS program. The results are produced by using GAMS. 

There are many studies on performance measurement models with undesirable 

outputs. Some studies give us radial-measure of efficiency, for instance model 

developed by Chambers et al. (1996, 1998). Some other studies give us non-radial 

efficiency measures, illustratively, Fukuyama and Weber (2009, 2010), Fare and 

Grosskopf (2010), Mahlberg and Sahoo (2011), Barros et al. (2012), and Zhou et al. 

(2012). Non-radial measure of efficiency is more effective as it gives more realistic 

result when there exist non-zero slacks. The directional distance function model used 

in this study is developed by Zhou at al. (2012) and it is very similar to the model 

described in Barros et al. (2012). 
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4.1. Results for Countries without CHP Plants 

 

In order to model energy and ecological performance of countries without CHP 

plants, Model (3.6) is constructed. Model (3.6) examines the measurement of 

efficiency as a distance from the observed input-output vector of the evaluated 

decision making unit (DMU) to the efficient boundary of the benchmark technology 

in some pre-assigned direction g1 = (g1F, g1E, g1C).  Thus, D⃗⃗ 1 (F, E, C; g1) is non-

radial measure of inefficiency.  D⃗⃗ 1 (F, E, C; g1) =0 indicates full efficiency in the g1 

direction and it means that evaluated DMU is located at the best practice frontier. 

D⃗⃗ 1 (F, E, C; g1) >0 means that the evaluated DMU is inefficient. g1 = (g1F, g1E, g1C) 

indicates the direction of expansion or contraction. If the value of the directional 

vector is set equal to the observed values of the desirable and undesirable outputs 

(i.e. g1E =E, g1C =C), β1E and β1C indicates the proportionate expansion in desirable 

outputs and contraction in undesirable outputs. By specifying various directional 

vectors in the Model (3.6), energy and CO2 emission performance can be modeled 

and measured. 

 

4.1.1. Energy Performance Index (EPI) for the Countries without 

CHP Plants 

 

In the Model (3.6), g1 is set as (-F, E, 0) and thus there are two scaling factors; fossil 

fuel consumption and energy generation. The normalized weight vector could be 

(1/2, 1/2, 0) as it is relevant to the numbers of inputs and outputs that can be 

decreased (increased) for each observation (Färe and Grosskopf, 2010). Since there 
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are two scaling factors, the model tries to contract fossil fuel consumption and 

expand electricity generation. 

The measurement of energy performance = 
actual energy efficiency

potential energy efficiency
             (4.1) 

Energy efficiency means that the ratio of energy output to fossil fuel input. Potential 

energy efficiency indicates that the ratio of potential electricity output to fossil fuel 

input. When Model (3.6) is solved, the result of the model gives us potential fossil 

fuel input and potential electricity output (optimal values). 

EPI1 =  
𝐸

𝐹⁄

(𝐸+𝛽1𝐸 
∗ 𝐸)

(𝐹−𝛽1𝐹 
∗ 𝐹)

⁄
 = 

1−𝛽1𝐹 
∗

1+𝛽1𝐸 
∗                      (4.2)                                                                                       

𝛽1𝐸 
∗

 and  𝛽1𝐹 
∗

 are the optimal solutions of the model with the (-F, E, 0) direction. 

When 𝛽1𝐸 
∗  and 𝛽1𝐹 

∗  equals to 0, then EPI1 =1. This means that the country evaluated 

has the best energy performance in the regarding direction. 

Appendix A presents the energy performance index (EPI) ranking of selected 

countries calculated for selected years. The latest year in the data set is 2011. Thus, 

for the year 2011, Haiti, Montenegro and Brazil have the highest EPI. However, 

Montenegro has no data for the other selected years, making it difficult to compare to 

other countries and observe its performance in other years. Thus, Montenegro can be 

omitted while comparing the countries in the sample. Haiti has very little electricity 

generation data comparing to other selected countries. To illustrate, Haiti’s electricity 

generation from fuel combustions is 567 GWh while mean of non – CHP countries is 

80030 GWh. Thus, Haiti also can be omitted from the sample. According to results, 

Brazil has the highest electricity generation per unit of fossil fuel consumption.  
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4.1.2. Carbon Performance Index (CPI) for the Countries without 

CHP Plants 

 

In order to calculate the carbon efficiency or carbon performance index, g1 is set as 

(0, E, -C), where two scaling factors are carbon emission and electricity generation. 

Thus, Model (3.6) seeks to reduce CO2 emissions and expand electricity generation. 

The normalized weight vector could be (0, 1/2, 1/2). 𝛽1𝐸 
∗

 and  𝛽1𝐶 
∗

 are the optimal 

solutions of the model with the (0, E, -C) direction. 

carbon performance index (CPI) = 
potential carbon intensity

actual carbon intensity
               (4.3)                                                         

CPI1 =  

(𝐶−𝛽1𝐶 
∗ 𝐶)

(𝐸+𝛽1𝐸 
∗ 𝐸)

⁄

𝐶
𝐸⁄

 = 
1−𝛽1𝐶 

∗

1+𝛽1𝐸 
∗                    (4.4)                                                                                         

Larger CPI1 means that better CO2 emission performance with the (0, E, -C) 

direction. Similar to EPI1, When 𝛽1𝐶 
∗  and 𝛽1𝐸 

∗  equal to 0, then CPI1 =1. If CPI1 is 

equal to unity, it means that regarding country has the best carbon emission 

performance in electricity production. 

For the selected years and countries, CPI results are calculated. CPI results and 

ranking of the countries in each selected year are presented in Appendix B. 

According to 2011 year, Brazil, Brunei Darussalam and Haiti have the highest CPI 

score. The 2011 data also says that, Brazil has the best carbon emission and energy 

performance in electricity generation. GHG emissions of Brazil heavily come from 

agriculture, land use and forestry activities. Therefore, Brazil’s energy matrix is 

known as one of the cleanest in the world and CO2 emissions from fuel combustion 

are small which is 1.3% of global CO2 emissions (2011 CO2 Emission Overview, 
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IEA) whereas BRICS (Brazil, Russian Federation, India, China and South Africa) 

countries represented 39% of global CO2 emissions from fuel combustion. However, 

Korea is one of the lowest CPI. Among selected countries, it is not surprising that 

Korea has the lowest CPI, as Korea is a major CO2 emitter and among OECD 

countries, Korea has the highest CO2 emissions growth rate since 1990 (BP, 2012). 

As Korea’s fossil fuel power plants are dominated in electricity generation, one third 

of total CO2 emissions are result of electricity generation (Park and Lim, 2009). 

It is interesting that both highest and lowest indexes are belongs to member of G20 

countries. G20 countries are the top 20 countries in the world according to their 

economic performance. Thus, it is interesting to investigate to how and to what 

extent the G20 countries’ energy and environmental performances differ from one 

another. As these differences might point us to the differences in the paths chosen in 

energy efficiency and environmental performances of these countries which in turn 

helps us to provide information on their preferences over energy, environmental and 

ecological tradeoffs. Therefore, this study measures the G20 countries’ energy and 

environmental performance indexes and map the differences across the countries in 

section 4.3. 

 

4.1.3. Environmental Efficiency (Energy – Carbon Performance 

Index - ECPI) For the Countries without CHP Plants 

 

To model energy and CO2 emission performance at the same time, g1 is set as (-F, E, 

-C). There are three scaling factors, so Model (3.6) seeks to reduce both CO2 
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emission and fossil fuel consumption to expand electricity generation. Since there are 

three scaling factors, the normalized weight vector could be (1/3, 1/3, 1/3). 

ECPI1 =  

1

2 
 ((1−𝛽1𝐹   

∗ )+(1−𝛽1𝐶 
∗ ))

1+𝛽1𝐸 
∗  = 

1−
1

2
 (𝛽1𝐹 

∗ +𝛽1𝐶 
∗  )

1+𝛽1𝐸 
∗                     (4.5)                                                                   

𝛽1𝐹 
∗  , 𝛽1𝐸 

∗
 and  𝛽1𝐶 

∗
 are the optimal solutions of the model with the (-F, E, -C) 

direction. 

Larger ECPI1 represents better mixed energy - CO2 emission performance with the (-

F, E, -C) direction since the numerator represents fossil fuel consumption and CO2 

emission reduction proportion while the denominator captures electricity generation 

expansion. Similar to other indexes, when 𝛽1𝐹 
∗  , 𝛽1𝐸 

∗
 and  𝛽1𝐶 

∗  equals to 0, then ECPI1 

=1. If ECPI1 is equals to unity, it means that evaluated country has the best mixed 

energy - carbon emission performance in electricity production. 

ECPI results are calculated for the selected years and countries. ECPI results and 

ranking of the countries in regarding year are presented in Appendix C. Haiti is 

excluded from data as explained in Section 4.1. According to the data in year 2011, 

Brazil, Mozambique, Cuba have the highest ECPI score (The scores are 1). 

According to data, Brazil has the best energy performance, carbon emission 

performance and energy - carbon performance, thus it might mean that these 

countries focusing on both energy and carbon performance while choosing their 

energy and environmental policy, as they leverage their electricity production with 

relatively less carbon intensive energy resources. Mozambique and Cuba are the best 

practice according to ECPI score whereas these countries are not best practice for 

other performance indices. This means that, when countries are aim to choose their 
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direction towards sustainable energy production, they can choose reducing carbon 

emission and decreasing the use of fossil fuel inputs at the same time. 

 

4.2. Results for the Countries with CHP Plants 

 

Model (3.7) is developed to model energy and ecological performance of countries 

with CHP plants. The model tries to find the measurement of efficiency as a distance 

from the observed input-output vector of the evaluated decision making unit (DMU) 

to the efficient boundary of the benchmark technology in some pre-assigned 

direction g2 = (g2F, g2E, g2C, g2H). Thus, D⃗⃗ 2 (F, E, C, H; g2) is non-radial measure of 

inefficiency and D⃗⃗ 2 (F, E, C, H; g2) =0 indicates full efficiency in the g2 direction. 

This means that evaluated DMU is located at the best practice frontier. D⃗⃗ 2 (F, E, C, H; 

g2) >0 means that evaluated DMU is inefficient. At the Model (3.7), w2 = (w2F, w2E, 

w2C, w2H) T represents the normalized weigh vector which is determined by the 

numbers of input and outputs. There is one more desirable output, so there should be 

one more weight for the output side. β2= (β2F, β2E, β2C, β2H) is the vector of the 

scaling factor with an additional scaling factor for the heat output. 

By setting different directional vectors in the Model (3.7), energy and CO2 emission 

performance scores can be calculated. 
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4.2.1. Energy Performance Index (EPI) for the Countries with CHP 

Plants 

 

To calculate the energy performance or energy efficiency index, g2 is set as (-F, E, 0, 

H) in the Model (3.7), then the model tires to reduce fossil fuel consumption and 

expand energy generation and heat output. There is no change in CO2 emission. 

Thus, the normalized weight vector could be (1/2, 1/4, 1/4, 0) as there are two output 

and one input. 

Similar to (4.1), EPI for the countries with CHP plants is defined below: 

EPI2 = 
1−𝛽2𝐹 

∗

1+ 1/2(𝛽2𝐸
∗ +𝛽2𝐻  

∗ )
                                   (4.6)                                                                                          

𝛽2𝐸 
∗ ,  𝛽2𝐻 

∗ ,  and 𝛽2𝐹 
∗

 are the optimal solutions of the model with the (-F, E, 0, H) 

direction. When 𝛽2𝐸 
∗ , 𝛽2𝐻 

∗ ,  and 𝛽2𝐹 
∗  equal to 0, then EPI2 =1. This means that the 

country evaluated has the best energy performance in the regarding direction. 

Appendix D presents the energy performance index (EPI) ranking of CHP countries 

calculated for selected years. According to 2011 data; Denmark, Switzerland, 

Sweden, Ukraine and Macedonia have the highest EPI among CHP countries. 

Denmark is at the best practice frontier for almost all selected years (except 1993). It 

is not surprising that Denmark is one of the efficient countries, as the country has 

some of the most efficient coal-fired power plants in the world, including a new 

generation of pulverized coal supercritical plants that were introduced in the 1990s 

(IEA, 2007). 
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4.2.2. Carbon Performance Index (CPI) for the Countries with CHP 

Plants 

 

As the aim is to measure the carbon efficiency index, g2 is set as (0, E, -C, H) in the 

Model (3.7) which seeks to reduce CO2 emissions while expands electricity 

generation and heat output. The normalized weight vector could be (0, 1/4, 1/2, 1/4). 

We can use Model (3.7) and above defined parameters to estimate the ratio of CO2 

emission reduction while electricity and heat outputs are increased and the fossil fuel 

consumption is steady. This ratio is defined as follows: 

CPI2 = 
1−𝛽2𝐶 

∗

1+
1

2
∗(𝛽2𝐸 

∗ +𝛽2𝐻 
∗ )

                               (4.7)                                                                                                

𝛽2𝐸 
∗ ,  𝛽2𝐻 

∗ , and 𝛽2𝐶 
∗

 are the optimal solutions of the model with the g2 direction. 

Appendix E shows the carbon performance index (CPI) ranking calculated for the 

selected years and the CHP countries in the data set. According to 2011 data, 

Denmark, Switzerland, Sweden, have the highest CPI among CHP countries. The 

results are similar to Section 4.2.1. 

 

4.2.3. Environmental Efficiency (Energy - Carbon Performance 

Index - ECPI) for the Countries with CHP Plants 

 

Energy – Carbon performance index or ecological efficiency index is measured by 

relying on the performance of the countries on both energy efficiency and efficiency 

in carbon emission reduction. The direction vector g2 is set as (-F, E, -C, H) to model 
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energy and CO2 emission performance at the same time. Model (3.7) tries to reduce 

CO2 emission and fossil fuel consumption to expand electricity generation and heat 

output. The normalized weight vector could be (1/3, 1/6, 1/3, 1/6). 

ECPI2 = 
1−

1

2
 (𝛽2𝐹 

∗ +𝛽2𝐶 
∗  )

1+
1

2
(𝛽2𝐸 

∗ +𝛽2𝐻 
∗ )

                                            (4.8)                                                                            

Energy – carbon performance of electricity generation for the countries with CHP 

plants is defined in equation (4.6). 𝛽2𝐹 
∗ , 𝛽2𝐸 

∗ , 𝛽2𝐶 
∗  and  𝛽2𝐻 

∗  are the optimal solutions 

of the model with the (-F, E, -C, H) direction. We can use Model (3.7) and above 

defined parameters to estimate the ratio of reduction of CO2 emission and fossil fuel 

consumption while electricity and heat outputs are increased. 

ECPI results are calculated for the selected years and CHP countries. ECPI results 

and ranking of the countries in regarding year are presented in Appendix F. 

According to 2011 year data, Switzerland and Sweden have the highest ECPI score 

(The scores are 1). According to data, these two countries have the best carbon 

emission performance and energy performance for 2011 data. Thus, their energy - 

carbon performance is also at the best practice frontier. 

 

4.3. Results for G20 Countries 

 

G20 (The Group of Twenty) is an international forum for the governments and 

central bank governors from 20 major economies representing about two-thirds of 

the world’s population, 85 percent of global gross domestic product and over 75 

percent of global trade. There are no specific criteria for G20 membership. However, 
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countries which have significance for the international financial system are included. 

Some aspects such as geographical balance and population representation have been 

effectual in determining G20 membership. There are 19 members of these forum;  

Argentina, Australia, Brazil, Canada, China, France, Germany, India, Indonesia, 

Italy, Japan, South Korea, Mexico, Russia, Saudi Arabia, South Africa, Turkey, the 

United States - along with the European Union (EU). The countries meet annually to 

discuss ways to strengthen the global economy, reform international financial 

institutions improve financial regulation and implement the key economic reforms 

that are needed in each member economy (http://g20.org.tr/about-g20/g20-members). 

In this study, in order to evaluate G20 countries’ energy and environmental 

performance, the new model which only includes G20 countries is developed and 

run. The new model develops the best practice frontier of G20 countries and 

measures their performances. Among G20 countries, there are both CHP and non-

CHP countries, so heat output produced from CHP plants has to be converted to its 

electricity equivalent for analyzing efficiency scores. This could be done by 

converting useful heat to its electricity equivalent. Therefore, when CHP plants are 

included the electricity generation, conversion of useful heat to electricity equivalent 

is given by below equation (Ang et al. 2011): 

𝑌 = 𝐸 + 𝐻𝑠                                (4.9)                                                                                                        

E is the electricity production from electricity plants and CHP plants, H is the useful 

heat output from CHP plants, and s is the conversion factor from heat to electricity. 

Previous studies show that s varies between 0.15 and 0.20 (Phylipsen et al. (1998) 

and IEA (2008)). In this study, it assumed to be 0.175 as in Ang et al. 2011. EP, CP 

and ECPI results are calculated for the selected years of G20 countries. Russian 
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https://en.wikipedia.org/wiki/China
https://en.wikipedia.org/wiki/France
https://en.wikipedia.org/wiki/Germany
https://en.wikipedia.org/wiki/India
https://en.wikipedia.org/wiki/Indonesia
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https://en.wikipedia.org/wiki/Japan
https://en.wikipedia.org/wiki/South_Korea
https://en.wikipedia.org/wiki/Mexico
https://en.wikipedia.org/wiki/Russia
https://en.wikipedia.org/wiki/Saudi_Arabia
https://en.wikipedia.org/wiki/South_Africa
https://en.wikipedia.org/wiki/Turkey
https://en.wikipedia.org/wiki/United_States
https://en.wikipedia.org/wiki/European_Union
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Federation and Italy are excluded from our dataset as they have declared very little 

CO2 emission data (e.g. Russia CO2 emission data for 2011 is 7.4 ktoe, whereas the 

mean of G20 coutries is 470.6 ktoe). Thus, all indices for all years for these countries 

are 1 and these results are not reliable. G20 countries’ input and outputs are 

presented in Table 2. According to Table 2, Brazil has reported the lowest CO2 

emission data in 2011 and CO2 emission intensity which is given by the total CO2 

emissions from electricity production divided by the electricity produced is 

computed.  Brazil has also lowest CO2 emissions intensity and United Kingdom has 

lowest CO2 emissions intensity among G20 countries with CHP plants. The 

performance results for these countries are also parallel to these emission intensity 

calculations. 

Table 2 G20 Countries’ Input and Outputs 

Countries 

Electricity output 
(GWh) 

Heat output 
(GWh) 

CO2 (Mt) F (ktoe) 

Brazil 52270 0 19,67 10974 

United Kingdom 260103 15877 149,93 50106 

Japan 808436 4107 510,48 156404 

Korea 356866 49068 241,16 79610 

China 3854151 871339 3560,36 918912 

South Africa 243609 0 225,69 58155 

Mexico 238784 0 133,14 46515 

Turkey 171169 14041 104,63 34455 

Germany 362103 105593 253,87 79862 

United States 2960191 129485 2051,94 634289 

Argentina 88807 0 50,55 19191 

Canada 145006 6121 101,7 32781 

Australia 227052 0 201,47 56350 

Indonesia 160395 0 137,62 40483 

France 47504 35985 28,72 13241 

India 835711 0 900,63 241401 

Saudi Arabia 250077 0 188,66 68598 
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Results for 2011 year data are presented in Table 3. According to 2011 year data, 

Brazil and United Kingdom have the highest performance scores for three indexes 

(The scores are 1). As it is presented in section 4.1.2, agriculture, land use and 

forestry activities are responsible from Brazil’s GHG emissions rather than the 

energy sector. Moreover, World Bank’s Partnership for Market Readiness, provides 

funding and technical assistance to developing countries for capacity building toward 

the development and piloting of market-based instruments for GHG reduction. The 

developing countries which have implemented these instruments are Brazil, Chile, 

China, Columbia, Costa Rica, India, Indonesia, Mexico, Morocco, Peru, South 

Africa, Thailand, Turkey, Ukraine and Vietnam (2011 CO2 Emission Overview, 

IEA). China is also one of these countries which has the best performance score 

according to EPI for 2011 year data. The main reason for this result might be China’s 

policy strategy. Chinese government has been trying to control its energy 

consumption and GHG emissions especially CO2 emissions after increasing concern 

on climate change. To illustrate, in China’s Eleventh Five – Year Plan, presents the 

target of decreasing energy use per unit GDP by 20% with 2005 (Wang et al., 2013). 

According to Table 3, United Kingdom has the best performance score for three 

indices. United Kingdom government’s approach about climate change is cutting 

GHG emissions by at least 34% by 2020 and 80% by 2050 below the 1990 levels. 

The fourth Carbon Budget was set in law in June 2011, committing reductions of 

50% from 1990 (Energy Policies of IEA Countries, 2012). According to Table 3, 

Japan has the best performance for EPI scores. As a member of Kyoto Annex-II 

countries, Japan has offered not only 25% reduction target but also more aid to help 

developing countries in dealing with the global warming and climate change 

(Sueyoshi, and Goto, 2012). 
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Table 3 G20 Countries’ Performance Indices in 2011 

G20 Countries EPI CPI ECPI 

Brazil 1 1 1 

United Kingdom 1 1 1 

Japan 1 0.86 0.93 

Korea 1 0.57 0.77 

China 1 0.43 0.67 

South Africa 1 0.40 0.65 

Mexico 0.98 0.95 0.98 

Turkey 0.97 0.82 0.91 

Germany 0.92 0.57 0.79 

United States 0.91 0.55 0.77 

Argentina 0.88 0.66 0.82 

Canada 0.86 0.54 0.74 

Australia 0.86 0.42 0.64 

Indonesia 0.8 0.44 0.64 

France 0.79 0.7 0.78 

India 0.78 0.35 0.54 

Saudi Arabia 0.7 0.49 0.64 

 

According to index results, some countries have high EPI scores while some 

countries have high CPI scores. Figure 6 shows that CPI and EPI scores positioned as 

“x” and “y” axes, respectively. This representation enables the reader to visually 

compare the countries more easily with respect to their relative performance on 



 50 
 

energy and carbon efficiencies. The crossing lines represents median of G20 

countries. The median of CPI indices is 0.57 and the median of EPI indices is 0.92. 

This means that G20 countries mainly focus on improving their energy performance 

rather than carbon performance. As shown in Figure 6, Canada, Germany, United 

States and Australia are located around the median lines. 

G20 countries are tracked in years according to their efficiency index, Appendix 7 

shows countries’ path in years. According to Appendix G, Brazil and United 

Kingdom have the best performance scores for the most recent years. 

 

 

Figure 6 CPI vs. EPI for G20 Countries (2011 data) 

 

It is interesting that Brazil has the highest CPI while this country is known as 

destroying Amazon forests. However, in this study, only CO2 emissions because of 
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electricity generation are considered while measuring environmental performance as 

this study captures energy and environmental performance of countries because of 

electricity generation from fuel combustions. Environmental performance is not only 

related with CO2 emissions, there are also many polluting factors and pollution 

because of other industries. This study and used dataset is not aligning with 

measuring all environmental factors. When all environmental factors are available, 

Brazil’s polluting effect on Amazon forests can be presented using the same 

methods. 

 

4.4. Turkey’s Energy and Ecological Performance 

 

Turkey has been tracking of its GHG emissions since 2006 as a member of UNFCCC 

and Kyoto Protocol (Ari and Koksal, 2011). Turkey declined to make any 

commitment to reduce GHG emissions because of historically low GHG emissions. 

Nonetheless Turkey plans to limit future GHG emissions that will not compromise 

its sustainable development. Turkey also projects that GHG emissions will be 21% 

lower by 2030 (Turkey's Sixth National Communication under UNFCCC). The 

Country’s GDP has increased 139% while GHG emissions have increased 47.7% 

between 2000 and 2013. GHG emission per person is 3.96 tone of CO2 emission 

equivalent in 1990 and 6.04 tone of CO2 emission equivalent in 2013. However, this 

value is lower than the mean of OECD countries which is 12.47 tone of CO2 

emission equivalent per person in 2012, while it is higher than its CO2 emission 

equivalent per person in 2012, i.e. 4.88 tone (Turkey's Sixth National 

Communication under UNFCCC). According to the national GHG emissions 
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inventory of Turkey, GHG emissions have increased by 95%, CO2 emissions 

increased by 210% and CO2 emissions from electricity generation have increased by 

234% between 1990 and 2008 (UNFCCC, 2010). Thus, given its economic and 

environmental goals, it is important to investigate Turkey’s energy and 

environmental performances in electricity generation. 

Turkey is a member of UNFCCC Annex-I countries which are responsible to lead the 

mitigation of GHG emissions responsibilities such as providing financial resources 

and technology transfer to developing countries called Annex-II countries 

(UNFCCC, 1992). Thus, in this study, in order to evaluate Turkey’s energy and 

environmental performance, the new model which only includes UNFCCC Annex-I 

countries is developed and run. UNFCCC Annex-I countries are Belarus, Bulgaria, 

Croatia, Czech Republic, Estonia, Hungary, Latvia, Liechtenstein, Lithuanian, 

Monaca, Poland, Romania, Russian Federation, Slovak Republic, Slovenia, Turkey, 

and Ukraine. However, in the model, Liechtenstein and Monaca are excluded as they 

are not included IEA dataset. In addition, Latvia, Lithuanian and Poland have not 

been included as they have not recorded CO2 emissions data in regarding years. 

Russian Federation has been dropped from the sample and in the model as Russia’s 

data does not seem to be reliable as it is explained in section 4.3. Remaining 

countries in the model are Economies in Transition (EITs) which are those countries 

in Annex-I that are undergoing the process of transition to a market economy. 

Among these countries, there are both CHP and non-CHP countries, so heat output 

produced from CHP plants has been converted to its electricity equivalent for 

analyzing efficiency scores. The conversion method has been detailed in section 4.3. 
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EP, CP and ECPI results are calculated for the selected countries in selected years. 

Results for 2011 year are presented in Table 4. According to the results for 2011, 

Belarus and Slovak Republic have the highest performance scores for three indexes 

(The scores are 1). Policies in Belarus are expected to result in a 24-30% decrease 

from 1990 levels while the country has guaranteed to reduce its emissions by 8% 

relative to 1990 levels by 2020 (The 2015 Global Climate Legislation Study). Slovak 

Republic has significant electricity production from natural gas. As the overall 

efficiency of fossil fuel-fired electricity production is strongly influenced by the mix 

of fuels used, countries with a large share of natural gas generally have much higher 

average efficiencies than countries that mainly rely on coal and oil. Thus, higher 

efficiency score for Slovak Republic is owed to large share of the natural gas in 

electricity production in the country. 

 

Table 4 Turkey and EITs Countries’ Performance Indexes for 2011 Data 

Annex 1 Countries EPI CPI ECPI 

Belarus 1 1 1 

Slovak Republic 1 1 1 

Ukraine 1 0.18 0.59 

Estonia 1 0.04 0.34 

Hungary 0.87 0.11 0.53 

Turkey 0.83 0.06 0.43 

Croatia 0.83 0.12 0.52 

Bulgaria 0.78 0.05 0.38 

Romania 0.73 0.09 0.44 

Czech Republic 0.68 0.07 0.41 

Slovenia 0.34 0.64 0.55 
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According to index results, some countries have high EPI scores while some 

countries have high CPI scores. Figure 7 shows that CPI and EPI scores positioned as 

“x” and “y” axes, respectively. The crossing lines represents median of these indices 

for these countries. The median of CPI indices is 0.11 and the median of EPI indices 

is 0.83. As shown in Figure 7, Hungary, Turkey and Croatia are located around the 

median lines. 

 

 

Figure 7 CP vs. EPI for Turkey and EITs Countries (2011 data) 

 

These countries are tracked in years according to their efficiency index, Figure 8 

shows Turkey’s performance path in years. According to Figure 8, generally Turkey 

has decreasing CPI path, while EPI and ECPI are increasing. This means that, 

Turkey has increasing energy performance while the carbon performance is 
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decreasing relatively. However, both performance indices are around median lines.  

From 1990 to 2009, there was an increase by 110.65% in greenhouse gas emissions 

from the energy sector in Turkey. Figure 8 shows that CO2 emission performance 

among UNFCC countries has also been decreasing between these years due to 

economic development and population growth trend in Turkey. 

 

 

Figure 8 Turkey’s Performance Path among UNFCCC Annex-I Countries 

 

Appendix H shows countries’ path in years. According to Appendix H, Belarus has 

the best efficiency scores for all indices and for all selected years. However, Slovak 

Republic has increased their scores in years and reached 1 for the most recent years. 

In addition, Ukraine’s EPI scores is 1 for all selected years and it means that this 

country is trying to fix its energy performance (the best practice 1) and decreasing its 

carbon performance. 
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CHAPTER FIVE 

 

 

CONCLUSION 

 

 

One of the biggest challenges for humans is global warming and the only way to 

prevent global warming is to reduce GHG emissions. Efficient use of natural 

resources helps to reduce GHG emissions, specifically CO2 emissions that are 

supplied by humans through use of fossil fuels in energy production. However, the 

efficient use of natural resources has not been fully captured by traditional efficiency 

measures in the literature. Recently, DEA and directional distance function 

approaches are provided by researchers for constructing energy efficiency measures 

and developing energy and environmental performance indices of various types of 

decision making units. Because of growing electricity demand and demand for fossil 

fuels, these methods are applied to measure performances of decision making units in 

electricity generation and CO2 emission. Efficiency and performance analysis in 

electricity generation and CO2 emission reduction will help efforts to tackle global 

warming. 

In this study, non-radial directional distance function is used and three performance 

indices are created to measure energy and CO2 emission performance of three 

different groups of countries in electricity generation. Firstly, for each group, the 

environmental production technology is defined and constructed. First group is 
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constructed by categorizing the countries with respect their use of CHP technology, 

i.e. countries with CHP plants and without CHP plants. Second group is G20 

countries which are 20 major economies of the world. The other group is UNFCCC 

Annex-1 countries which have responsibilities similar to Turkey in terms of GHG 

emissions. Since the method used in the study presents relative performance of a 

country in reference to the best practice frontier constructed for the group, this three-

types of grouping allows comparison of energy and CO2 emission performance of 

countries in a more consistent and plausible way. The environmental production 

technology in this study is constructed within joint production framework of 

desirable and undesirable outputs. This framework specifies electricity generation, in 

the form of desirable output, and CO2 emission, in the form of undesirable output, 

and thus allows analyzing both energy and environmental performance of countries 

separately as well as interactively when it is referred as energy-carbon performance 

or environmental performance. The other desirable output for countries with CHP 

plants is heat energy. For the first set of analysis consist of two groups of countries: 

CHP and non-CHP countries. Since in these groups, each country has the same 

electricity production technology as the others, the heat energy produced from CHP 

plants does not need to be converted to its electricity equivalent. For the other two 

sets of analysis, the groups consist of countries with electricity output as well as 

countries with different electricity production technology. Therefore, for the 

countries with CHP technology, the heat output has to be converted to its electricity 

equivalent and useful heat and electricity generation summed to one output, as useful 

energy. 

Environmental production technology is represented by DEA models. DEA 

facilitates a non-parametric piece-wise frontier over the existing data by using linear 
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programming to evaluate the relative efficiency of countries among the same group. 

The relative efficiency is determined by maximal contraction or expansion of inputs 

or outputs. Distance functions are used to measure efficiency in terms of 

simultaneous contraction of input/undesirable outputs and expansion of desirable 

outputs. In this study, non-radial distance function approach is used for calculating 

inefficiency scores and this approach allows for the adjustments of inputs and 

outputs non-proportionally. 

The DEA type directional distance function model is applied to evaluate electricity 

generation and CO2 emission performance of 72 non-CHP countries and 40 CHP 

countries over 5 years period from 1988 to 2011. Three performance indices named 

energy performance index, carbon performance index and energy-carbon index 

(alternatively called ecological performance index in the literature) are calculated for 

countries to measure environmental performance. 

Among countries without CHP plants (mainly 72 countries), Brazil has the highest 

EPI for the latest years. Energy performance index is electricity generation per unit 

of fossil fuel consumption. Since Brazil has low share of fossil fuel consumption in 

electricity generation, the highest EPI is expected from Brazil among non-CHP 

countries. Carbon performance indices are also calculated in this study. Brazil has 

the highest performance score among non-CHP countries not surprisingly as this 

country’s energy matrix is known as one of the cleanest in the world.  

Among the CHP countries (mainly 40 countries), Denmark, Switzerland, Sweden, 

Ukraine, Macedonia appear in the best practice frontier for the latest year EPI 

performance. Denmark, Switzerland, Sweden also have the highest CPI. These 

countries have success fully expanded the use of CHP and over the past two decades, 
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the countries’ GHG emissions have been declined in parallel to growth of CHP 

technology (IEA 2008, Combined Heat and Power Report).  

CHP technology provides lower-carbon, more efficient, lower-cost and reliable 

energy future. This technology investment’s payback period is lower than six years 

and project lifetime is around 25 years. Therefore, this technology investment is 

reimbursable and countries should adopt this technology. The studies and reports 

about CHP show that CHP can reduce CO2 emissions from new generation in 2030 

by more than 10%. Therefore, CHP can make a meaningful contribution about 

emission stabilization to avoid major climate disruption. CHP technology can also 

reduce need for transmission and distribution network investments by 7% of total 

projected power sector investment over the period 2005-2030. Moreover, CHP 

technology can reduce the delivered costs of electricity to end consumers. Therefore, 

CHP technology offers an important opportunity to tackle global warming. However, 

reduction potential based on CHP technology depends on different national 

circumstances and opportunities such as renewable energy sources, nuclear energy 

technology, clean fossil fuel mixture with carbon dioxide capture and storage (IEA 

2008, Combined Heat and Power Report). Therefore, it is seen that energy and 

environmental performance are affected by not only technology used, they are also 

affected by countries energy sources and fossil fuel mixture used while generating 

electricity. 

The CHP and non-CHP countries’ result for the year 2005 is consistent with the 

result obtained from Zhou et al. (2012) as the methodology used is the same. 

Different than Zhou et al. (2012), this study runs analysis for different time periods 

to allow for cross country comparison in selected time periods as well as 

comparisons of individual performance of countries across different time periods. It 



 60 
 

is important to study relative efficiency changes over time as there is continuously 

changing demand and supply conditions in energy sectors. This study has 

investigated 6 different years from 1988 to 2011 consistent with Kyoto Protocol’s 

time frame and to understand how countries evolve in regard to energy and 

environmental performance.  

Among the G20 countries, Brazil and United Kingdom appear in the best practice 

frontier. This result is explained by these countries’ proactive climate policy 

approach. The United Kingdom Policy Framework is set out United Kingdom 

Energy Efficiency Action Plan Update published in 2011. This framework includes 

action in the industrial sector including the Climate Change Agreements with the 

energy intensive sectors of Energy Efficiency Scheme and fiscal incentives. Brazil 

imposed global carbon budget constraints in planning processes such as National 

Energy Plan and the Ten-Year Energy Expansion Plan (G20 Clean Energy, And 

Energy Efficiency Deployment and Policy Progress, 2011). Establishing regulations 

according to countries’ path from 1988 to 2011 is important for establishing Kyoto 

targets. According to these paths, Brazil and United Kingdom are the most successful 

countries among G20 countries’ relative performance. 

G20 leaders stressed that their major objective is to strengthen the global economy 

and lay the foundation for strong, sustainable and balanced growth in June 2010 G20 

Communiqué. Then, November 2010 Seoul G20 Communiqué committed to support 

country-led green growth policies. Thus, countries agreed to take steps to develop 

clean energy technologies and policies and the countries’ practices in these policies 

should be shared among others (G20 Clean Energy, And Energy Efficiency 

Deployment and Policy Progress, 2011). 
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In this study, Turkey’s energy and environmental performance have been evaluated 

among G20 countries and UNFCCC Annex-I countries. Energy performance of 

Turkey is around median lines among both G20 countries and UNFCCC Annex-I 

countries. However, Turkey’s carbon performance is higher than median in the group 

of G20 while Turkey is located at the median line for the carbon performance among 

UNFCCC Annex-I countries. 

When we consider Turkey’s path among UNFCCC Annex-I countries, the path is 

parallel to climate change and sustainably policies steps. Figure 4 shows Turkey’s 

path among UNFCCC Annex-I countries. The first step for Turkey’s climate change 

and sustainability policies is Turkey’s Sixth Five Year Development Plan (1990-

1994). Figure 9 shows that Turkey’s performance indices are increasing after this 

step (year 1994). 

 

 

Figure 9 Turkey’s Performance Path among G20 Countries 
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It should be pointed out that this study demonstrates energy, environmental and 

ecological performance changes over time. However, further research may present 

using time series data observed over a longer time horizon.  In addition, the future 

research might include incorporation of time dependent nature of dynamic efficiency 

and performances of these dimensions. Moreover, the empirical study can also be 

applied to plant level data for balancing society's desire for environmental protection 

with the economic burden on industry. This study captures only energy related input 

and output with country-level data, the non-radial directional distance function can 

also be applied in cases, when non-energy data is available. In addition, this study 

incorporates CO2 emissions in the form of undesirable output into the empirical 

analysis. In this regard, future research should demonstrate wider range of pollutants, 

such as SO2 (sulfur dioxide), CH4 (methane), N2O (nitrous oxide), NOX (nitrogen 

oxides) to better asses the energy and emission performance of electricity generation 

if all emission data needed are available.  

This study provides important clues for energy and environmental efficiency for 

various groups of countries and compares their respective performances with respect 

to each other and over time. Modeling only energy inputs are adequate to assess 

environmental performance when there is pollution as an undesirable output. The 

production technology specified in some earlier studies on examining the 

performance of electricity generation at the plant level may include non-energy 

inputs such as capital stock, labor, and generation capacity. However, including these 

inputs require gathering large amount of data from different sources which does not 

align with the data sets used in the study.  Incorporation of other non-energy inputs 

in the production process could be done in a future study. 
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Due to the fact that the breakdown of fossil fuel data is not matching the breakdown 

of CO2 data, it was not possible to calculate energy and carbon efficiency of 

electricity generation for electricity facilities which run by different fossil fuel inputs.  

In addition, if there is sufficiently recorded data on renewable resources for almost 

all countries for longer periods of time, an interesting future study would be to 

incorporate the energy generation activities of countries from renewable resources 

into the model to have more complete understanding of environmental performance. 
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Appendix A EPI Ranking of non-CHP Countries 

Year 2011 2008 2003 1998 1993 1988 

non-CHP Countries EPI Ranking EPI Ranking EPI Ranking EPI Ranking EPI Ranking EPI Ranking 

Haiti 1 1 1 1 0.91 7 0.06 16 0.44 41 0.24 61 

Brazil 1 2 1 2 0.83 16 0.05 42 0.5 21 0.42 35 

Montenegro 1 3 0.13 72                 

South Africa 0.99 4 0.28 69 1 3 0.05 31 0.52 16 0.53 13 

Philippines 0.87 5 0.63 30 0.93 6 0.06 12 0.59 5 0.55 7 

Honduras 0.86 6 0.76 12 1 1 1 2 0.18 69 0.53 12 

Hong Kong 0.86 7 0.61 33 0.93 5 0.07 3 0.56 10 0.57 6 

Tunisia 0.84 8 0.96 5 0.89 8 0.05 28 0.51 19 0.45 27 

Morocco 0.81 9 0.49 52 0.87 12 0.05 26 0.45 36 0.45 26 

Australia 0.8 10 0.37 64 0.88 11 0.05 24 0.52 15 0.5 19 

Thailand 0.79 11 0.89 7 0.86 14 0.06 11 0.57 8 0.57 4 

Singapore 0.79 12 0.97 4 0.84 15 0.05 23 0.37 60 0.53 10 

Guatemala 0.78 13 0.44 57 0.77 30 0.04 56 1 2 0.41 40 

Jamaica 0.77 14 0.76 13 0.69 43 0.05 43 0.41 54 0.43 33 

Vietnam 0.77 15 0.78 11 0.78 25 0.04 49 0.43 47 0.29 58 

Egypt 0.76 16 0.93 6 1 2 0.06 7 0.54 12 0.5 18 

Netherlands Antilles 0.76 17 0.67 22 0.83 17 0.06 13 0.56 9 0.54 9 

Panama 0.76 18 0.63 31 0.79 22 0.04 47 0.46 30 0.34 55 

India 0.75 19 0.13 71 0.76 31 0.04 52 0.42 52 0.41 39 

El Salvador 0.75 20 0.63 32 0.75 35 0.05 27 0.44 45 0.41 42 

Nicaragua 0.75 21 0.58 39 0.79 23 0.05 41 0.45 39 1 1 

Chinese Taipei 0.74 22 0.72 18 0.81 19 0.06 9 1 1 0.52 16 

Yemen 0.74 23 0.81 10 0.65 51 0.04 54 0.51 18 0.44 30 

Trinidad and Tobago 0.73 24 0.48 54 0.6 62 0.04 53 0.39 57 0.39 46 

Gibraltar 0.72 25 0.54 42 0.78 26 0.06 20 0.53 13 0.52 14 

Korea 0.72 26 0.51 47 0.69 42 1 1 0.38 58 1 3 

Indonesia 0.72 27 0.43 58 0.78 24 0.05 21 0.47 27 0.46 25 

Argentina 0.72 28 0.86 9 0.89 9 0.05 30 0.47 28 0.39 44 

Jordan 0.72 29 0.72 17 0.82 18 0.05 35 0.45 37 0.44 29 

Sri Lanka 0.71 30 0.54 43 0.68 48 0.06 5 0.34 64 0.42 36 

Colombia 0.71 31 0.71 20 0.77 29 0.06 18 0.46 33 0.44 31 

Nigeria 0.71 32 0.88 8 0.86 13 0.06 8 0.53 14 1 2 

Uruguay 0.71 33 0.5 51 0.41 71 0.05 37 0.45 40 0.54 8 

Costa Rica 0.71 34 0.35 67 0.61 60 0.05 38 0.46 31 0.41 43 

Cyprus 0.69 35 0.56 41 0.7 41 0.05 36 0.48 23 0.47 23 
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Appendix A (Continued) 

Year 2011 2008 2003 1998 1993 1988 

non-CHP Countries EPI Ranking EPI Ranking EPI Ranking EPI Ranking EPI Ranking EPI Ranking 

Pakistan 0.69 36 0.65 26 0.81 20 0.06 10 0.58 6 0.42 38 

Iran 0.68 37 0.74 15 0.81 21 0.06 19 0.5 22 0.48 20 

Lebanon 0.67 38 0.59 37 0.75 36 0.05 39 0.48 25 0.48 21 

Libya 0.67 39 0.6 35 1 4 0.04 66 0.54 11 0.37 50 

Malaysia 0.67 40 0.6 36 0.88 10 0.06 6 0.51 17 0.52 17 

Benin 0.66 41 0.65 28 0.74 39 0.06 14 0.45 38 0.35 53 

Senegal 0.66 42 0.65 29 0.68 46 0.05 45 0.41 53 0.39 48 

Algeria 0.66 43 0.67 23 0.71 40 0.05 40 0.58 7 0.39 47 

Zimbabwe 0.66 44 1 3 0.69 44 0.04 60 0.42 51 0.42 37 

Tanzania 0.66 45 0.75 14 0.55 65 0.04 67 0.37 61 0.22 62 

Bangladesh 0.65 46 0.69 21 0.78 27 0.05 33 0.48 26 0.18 66 

Syrian Arab Republic 0.65 47 0.66 24 0.75 34 0.06 17 0.51 20 0.52 15 

Sudan 0.63 48 0.45 56 0.62 57 0.04 55 0.37 63 0.35 51 

Cambodia 0.62 49 0.41 61 0.68 45 0.05 32         

Togo 0.61 50 0.56 40 0.76 32 0.04 64 0.47 29 0.34 56 

Malta 0.61 51 0.42 59 0.61 59 0.05 46 0.4 56 0.29 59 

Gabon 0.6 52 0.59 38 0.63 55 0.04 62 0.44 43 0.35 52 

Ghana 0.6 53 0.41 63                 

CotedIvoire 0.59 54 0.51 48 0.75 37 0.04 59 0.83 4     

Eritrea 0.58 55 0.47 55 0.6 63 0.03 69 0.26 67     

Dominican Republic 0.58 56 0.32 68 0.61 61 0.04 48 0.42 50 0.21 63 

Cameroon 0.58 57 0.65 27 0.78 28 0.04 50 0.45 34 0.43 32 

Peru 0.57 58 0.74 16 0.67 49 0.05 34 0.43 49 0.42 34 

Ecuador 0.57 59 0.51 49 0.29 72 0.06 15 0.44 44 0.45 28 

Venezuela 0.57 60 0.5 50 0.66 50 0.04 51 0.41 55 0.37 49 

Kenya 0.56 61 0.35 66 0.64 54 0.04 63 0.29 66 0.2 64 

Zambia 0.56 62 0 73 0.65 52 0.04 65 0.37 62 0.27 60 

Bolivia 0.54 63 0.61 34 0.75 33 0.04 61 0.43 48 0.47 22 

Brunei Darussalam 0.51 64 0.54 44 0.55 67 0.06 4 0.46 32 0.41 41 

Botswana 0.51 65 0.35 65 0.44 68 0.04 58 0.38 59 0.33 57 

Myanmar 0.5 66 0.41 62 0.63 56 0.04 57 0.48 24 0.34 54 

Cuba 0.48 67 0.52 46 0.65 53 0.05 29 0.44 42 0.46 24 

Mozambique 0.48 68 0.66 25 0.61 58 0.05 25 0.44 46 0.16 67 

Namibia 0.48 69 0.48 53 0.56 64 0.03 71 0.45 35     

Iraq 0.46 70 0.53 45 0.55 66 0.04 68 0.31 65 0.53 11 
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Appendix A (Continued) 

Year 2011 2008 2003 1998 1993 1988 

non-CHP Countries EPI Ranking EPI Ranking EPI Ranking EPI Ranking EPI Ranking EPI Ranking 

Ethiopia 0.45 71 0.27 70 0.74 38 0.05 44 1 3 0.39 45 

Angola 0.37 72 0.42 60 0.42 69 0.03 72 0.25 68 0.19 65 
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Appendix B CPI Ranking of non–CHP Countries 

Year 2011 2008 2003 1998 1993 1988 

non-CHP Countries CPI Ranking CPI Ranking CPI Ranking CPI Ranking CPI Ranking CPI Ranking 

Brazil 1 1 1 1 0.96 4 0.07 11 0.83 4 0.54 15 

Brunei Darussalam 1 2 0.63 32 0.65 28 0.09 3 0.54 43 0.41 44 

Haiti 1 3 1 2 0.77 15 0.06 21 0.56 32 0.24 59 

Tunisia 0.87 4 0.95 5 0.93 5 0.07 8 0.73 13 0.55 12 

Singapore 0.77 5 0.96 4 0.76 16 0.06 26 0.51 48 0.58 9 

Egypt 0.76 6 0.91 6 1 1 0.07 6 0.78 8 0.34 52 

Trinidad and Tobago 0.75 7 0.63 33 0.61 34 0.06 24 0.65 20 0.52 18 

Thailand 0.7 8 0.86 7 0.8 10 0.06 13 0.75 11 0.46 38 

Nigeria 0.69 9 0.84 8 0.88 7 0.08 4 0.79 6 1 1 

Algeria 0.67 10 0.74 15 0.72 19 0.06 12 0.83 5 0.51 22 

Tanzania 0.66 11 0.78 10 0.39 67 0.03 67 0.37 61 0.22 60 

Argentina 0.66 12 0.83 9 0.89 6 0.06 16 0.71 16 0.47 34 

Bangladesh 0.65 13 0.74 16 0.78 12 0.07 9 0.77 9 0.11 65 

Chinese Taipei 0.65 14 0.7 21 0.74 17 0.06 18 1 1 0.55 13 

Vietnam 0.63 15 0.74 13 0.65 24 0.04 54 0.49 50 0.29 57 

Iran 0.62 16 0.74 12 0.81 8 0.07 7 0.75 10 0.58 10 

Colombia 0.62 17 0.66 26 0.65 26 0.06 19 0.59 28 0.5 26 

CotedIvoire 0.61 18 0.65 29 0.77 14 0.05 34 0.86 3 0 67 

Senegal 0.6 19 0.63 34 0.55 48 0.05 48 0.53 45 0.43 41 

Sri Lanka 0.6 20 0.58 46 0.54 51 0.06 17 0.34 64 0.48 32 

Cameroon 0.6 21 0.66 27 0.66 23 0.04 53 0.5 49 0.52 19 

Yemen 0.59 22 0.78 11 0.52 53 0.04 55 0.65 22 0.49 28 

Pakistan 0.59 23 0.67 24 0.81 9 0.07 10 0.79 7 0.53 16 

Honduras 0.59 24 0.72 18 1 2 1 1 0.18 69 0.59 8 

Libya 0.59 25 0.64 31 1 3 0.04 60 0.69 19 0.41 47 

Morocco 0.59 26 0.53 55 0.49 59 0.05 47 0.54 44 0.49 30 

Jordan 0.59 27 0.74 14 0.68 21 0.05 37 0.58 31 0.5 27 

Syrian Arab Republic 0.58 28 0.66 25 0.68 22 0.06 20 0.71 17 0.6 4 

Ecuador 0.58 29 0.58 47 0.65 25 0.06 23 0.56 33 0.5 24 

Sudan 0.57 30 0.54 54 0.5 58 0.04 56 0.37 63 0.39 48 

Eritrea 0.57 31 0.55 53 0.49 60 0.03 66 0.26 67 0 68 

Ghana 0.57 32 0.52 56 0.57 43 0.04 59 0.55 39 0 69 

Dominican Republic 0.57 33 0.48 65 0.46 63 0.04 52 0.53 46 0.21 61 

Cambodia 0.56 34 0.52 59 0.55 49 0.05 39 0 71 0 70 

Philippines 0.56 35 0.61 40 0.69 20 0.05 29 0.72 15 0.6 5 
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Appendix B (Continued) 

Year 2011 2008 2003 1998 1993 1988 

non-CHP Countries CPI Ranking CPI Ranking CPI Ranking CPI Ranking CPI Ranking CPI Ranking 

Indonesia 0.56 36 0.51 60 0.56 45 0.05 28 0.58 30 0.49 29 

Bolivia 0.55 37 0.7 22 0.77 13 0.05 31 0.73 12 0.31 55 

Jamaica 0.55 38 0.71 20 0.55 47 0.05 45 0.41 58 0.47 35 

Malta 0.55 39 0.52 58 0.49 61 0.04 50 0.4 59 0.29 56 

Guatemala 0.55 40 0.52 57 0.55 50 0.04 58 0.02 70 0.47 36 

Peru 0.55 41 0.73 17 0.56 44 0.05 32 0.55 38 0.49 31 

Togo 0.54 42 0.67 23 0.6 35 0.04 62 0.47 52 0.43 42 

Uruguay 0.54 43 0.57 50 0.51 56 0.05 41 0.59 27 0.61 3 

Gabon 0.54 44 0.65 30 0.58 40 0.05 46 0.47 51 0.35 50 

Australia 0.53 45 0.48 64 0.5 57 0.04 51 0.55 40 0.5 25 

Netherlands Antilles 0.53 46 0.63 35 0.65 27 0.06 22 0.7 18 0.6 6 

Myanmar 0.53 47 0.56 52 0.59 39 0.05 33 0.55 41 0.34 51 

El Salvador 0.53 48 0.62 38 0.6 37 0.05 36 0.55 37 0.45 39 

Nicaragua 0.53 49 0.59 44 0.62 31 0.05 44 0.55 36 0.08 66 

Kenya 0.53 50 0.49 62 0.52 54 0.04 61 0.29 66 0.2 62 

Benin 0.52 51 0.63 36 0.6 36 0.06 15 0.45 55 0.41 45 

Costa Rica 0.52 52 0.5 61 0.48 62 0.05 38 0.59 26 0.48 33 

South Africa 0.52 53 0.44 69 0.51 55 0.04 57 0.54 42 0.52 21 

Lebanon 0.51 54 0.61 41 0.61 33 0.05 42 0.73 14 0.6 7 

Malaysia 0.51 55 0.63 37 0.8 11 0.07 5 0.6 25 0.53 17 

Venezuela 0.5 56 0.6 42 0.59 38 0.06 27 0.65 21 0.47 37 

Zambia 0.5 57 0.44 68 0.39 66 0.04 63 0.37 62 0.27 58 

Cyprus 0.5 58 0.58 45 0.55 46 0.05 43 0.6 24 0.52 20 

Panama 0.5 59 0.61 39 0.63 29 0.04 49 0.46 54 0.34 53 

Gibraltar 0.49 60 0.57 51 0.62 32 0.05 30 0.64 23 0.55 14 

Cuba 0.48 61 0.58 49 0.54 52 0.05 35 0.56 34 0.51 23 

Mozambique 0.48 62 0.65 28 0.57 42 0.06 25 0.44 56 0.16 64 

Iraq 0.48 63 0.6 43 0.46 64 0.04 65 0.31 65 0.37 49 

India 0.44 64 0.39 72 0.44 65 0.04 64 0.52 47 0.41 43 

Namibia 0.41 65 0.43 70 0.32 71 0.02 71 0.56 35 0 71 

Montenegro 0.4 66 0.48 63 0 73 0 0 0 72 0 72 

Ethiopia 0.39 67 0.46 66 0.74 18 0.05 40 1 2 0.44 40 

Korea 0.39 68 0.46 67 0.38 68 1 2 0.46 53 1 2 

Angola 0.36 69 0.42 71 0.34 70 0.03 70 0.25 68 0.19 63 

Zimbabwe 0.34 70 1 3 0.35 69 0.03 69 0.42 57 0.41 46 
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Appendix B (Continued) 

Year 2011 2008 2003 1998 1993 1988 

non-CHP Countries CPI Ranking CPI Ranking CPI Ranking CPI Ranking CPI Ranking CPI Ranking 

Botswana 0.27 71 0.35 73 0.23 72 0.03 68 0.38 60 0.33 54 

Hong Kong 0.06 72 0.58 48 0.58 41 0.06 14 0.58 29 0.56 11 
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Appendix C ECPI Ranking of non–CHP Countries 

Year 2011 2008 2003 1998 1993 1988 

non-CHP Countries ECPI Ranking ECPI Ranking ECPI Ranking ECPI Ranking ECPI Ranking ECPI Ranking 

Brazil 1 1 1 1 0.9 12 0.99 69 0.73 36 0.53 58 

Haiti 1 2 1 2 0.87 16 1 30 0.6 55 1 1 

Mozambique 1 3 0.82 23 0.6 63 1 37 1 1 1 2 

Cuba 1 4 0.72 49 0.61 59 1 1 0.6 56 0.5 65 

Angola 1 5 1 3 0.95 5 1 20 1 2 1 3 

Hong Kong 1 6 0.79 33 0.72 36 1 42 0.67 43 0.56 54 

Ethiopia 0.99 7 0.58 69 0.74 30 1 38 1 3 0.96 27 

Iraq 0.99 8 0.72 46 0.52 71 1 32 1 4 0.6 43 

Namibia 0.99 9 0.95 9 0.91 9 1 49 0.55 66 0 67 

Botswana 0.96 10 1 4 0.93 6 1 54 1 5 1 4 

Zimbabwe 0.95 11 1 5 0.89 14 1 53 1 6 1 19 

India 0.95 12 0.54 70 0.56 69 1 51 0.51 68 1 5 

Korea 0.95 13 0.52 71 0.89 13 1 2 0.93 22 1 6 

Montenegro 0.93 14 0 72 0 72 0 72 0 70 0 68 

Tunisia 0.92 15 0.98 7 0.92 8 0.99 65 0.74 32 0.54 57 

Singapore 0.86 16 0.98 6 0.83 20 1 29 0.51 69 0.58 51 

Egypt 0.85 17 0.96 8 1 1 0.99 57 0.76 29 0.59 47 

Trinidad and Tobago 0.83 18 0.68 58 0.61 60 0.99 67 0.61 53 0.51 62 

Thailand 0.82 19 0.93 10 0.85 18 1 43 0.78 25 0.66 42 

Nigeria 0.8 20 0.92 11 0.89 15 0.99 70 0.75 30 1 7 

Argentina 0.78 21 0.92 12 0.9 11 0.99 59 0.7 40 0.93 38 

Chinese Taipei 0.78 22 0.83 20 0.8 24 1 39 1 7 0.55 55 

Vietnam 0.78 23 0.87 14 0.74 31 1 36 0.55 65 1 18 

Algeria 0.76 24 0.8 28 0.72 37 0.99 68 0.77 27 0.5 66 

Tanzania 0.75 25 0.85 17 0.92 7 1 41 1 8 1 8 

Honduras 0.75 26 0.86 15 1 2 1 3 1 9 0.58 52 

Colombia 0.75 27 0.83 21 0.73 34 1 48 0.62 51 0.95 34 

Bangladesh 0.75 28 0.81 24 0.78 25 0.99 66 0.72 38 0.95 33 

Yemen 0.74 29 0.89 13 0.61 61 1 17 0.69 41 0.96 28 

Iran 0.73 30 0.84 18 0.83 19 0.99 63 0.73 34 0.57 53 

Jordan 0.73 31 0.82 22 0.78 26 1 28 0.61 54 0.96 29 

Philippines 0.73 32 0.79 30 0.82 22 1 46 0.77 28 0.59 46 

Pakistan 0.72 33 0.79 34 0.83 21 1 47 0.78 26 0.52 61 

Jamaica 0.72 34 0.86 16 0.64 49 1 26 1 10 0.96 26 

Libya 0.71 35 0.76 38 1 3 1 34 0.73 35 0.97 23 
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Appendix C (Continued) 

Year 2011 2008 2003 1998 1993 1988 

non-CHP Countries ECPI Ranking ECPI Ranking ECPI Ranking ECPI Ranking ECPI Ranking ECPI Ranking 

Netherlands Antilles 0.69 36 0.81 25 0.75 29 1 21 0.75 31 0.59 48 

Syrian Arab Republic 0.69 37 0.8 29 0.73 35 1 44 0.73 37 0.59 49 

El Salvador 0.69 38 0.79 31 0.7 42 1 19 0.59 59 0.96 24 

Nicaragua 0.69 39 0.76 39 0.72 38 1 18 0.59 57 0.82 41 

Uruguay 0.69 40 0.71 50 0.95 4 1 4 0.62 52 0.6 44 

CotedIvoire 0.68 41 0.69 53 0.76 27 0.99 61 0.92 23 0 69 

Costa Rica 0.67 42 0.63 65 0.56 67 1 33 0.63 48 0.94 37 

Benin 0.66 43 0.8 26 0.69 43 1 45 1 11 0.94 36 

Ghana 0.66 44 0.66 62 0.64 50 1 31 0 71 0 70 

Panama 0.66 45 0.78 36 0.74 32 1 5 1 12 1 9 

Gibraltar 0.65 46 0.74 44 0.72 39 1 35 0.7 39 0.55 56 

Malaysia 0.65 47 0.77 37 0.87 17 0.99 60 0.74 33 0.58 50 

Lebanon 0.65 48 0.76 40 0.7 40 1 6 0.64 45 0.52 59 

Cyprus 0.65 49 0.75 42 0.65 47 1 27 0.65 44 0.51 63 

Gabon 0.64 50 0.75 43 0.62 57 1 50 0.99 20 1 10 

Peru 0.63 51 0.84 19 0.63 53 1 40 0.58 61 0.95 35 

Morocco 0.63 52 0.72 47 0.63 55 1 52 0.58 60 0.97 20 

Brunei Darussalam 0.63 53 0.64 63 0.6 62 0.99 71 0.96 21 1 11 

Sri Lanka 0.63 54 0.74 45 0.63 56 1 22 1 13 0.95 32 

Senegal 0.62 55 0.8 27 0.64 51 1 7 0.57 63 0.96 25 

Bolivia 0.62 56 0.76 41 0.76 28 0.99 64 0.68 42 0.6 45 

Venezuela 0.61 57 0.69 54 0.63 54 0.99 58 0.62 50 0.91 40 

Cameroon 0.6 58 0.79 32 0.73 33 1 23 0.56 64 0.51 64 

Zambia 0.6 59 0.78 35 0.9 10 1 14 1 14 1 12 

Guatemala 0.59 60 0.69 55 0.66 46 1 15 0.79 24 0.95 31 

Sudan 0.59 61 0.69 56 0.58 65 1 16 1 15 0.97 22 

Indonesia 0.59 62 0.69 57 0.67 44 1 8 0.63 49 0.97 21 

Australia 0.59 63 0.66 61 0.65 48 1 56 0.64 46 1 13 

Cambodia 0.58 64 0.67 59 0.64 52 1 9 0 72 0 71 

South Africa 0.58 65 0.63 66 0.67 45 1 55 0.63 47 0.52 60 

Ecuador 0.58 66 0.71 51 0.81 23 1 10 0.59 58 0.96 30 

Eritrea 0.58 67 0.7 52 0.56 68 1 11 1 16 0 72 

Dominican Republic 0.57 68 0.61 68 0.54 70 1 24 0.57 62 1 14 

Malta 0.56 69 0.67 60 0.57 66 1 25 1 17 1 15 

Togo 0.56 70 0.72 48 0.7 41 1 12 1 18 0.92 39 



 81 
 

Appendix C (Continued) 

Year 2011 2008 2003 1998 1993 1988 

non-CHP Countries ECPI Ranking ECPI Ranking ECPI Ranking ECPI Ranking ECPI Ranking ECPI Ranking 

Kenya 0.54 71 0.62 67 0.6 64 1 13 1 19 1 16 

Myanmar 0.53 72 0.64 64 0.62 58 0.99 62 0.52 67 1 17 
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Appendix D EPI Ranking of CHP Countries 

Year 2011 2008 2003 1998 1993 1988 

CHP Countries EPI Ranking EPI Ranking EPI Ranking EPI Ranking EPI Ranking EPI Ranking 

Denmark 1 1 1 1 1 1 1 1 0.82 12 1 1 

Switzerland 1 2 1 2 1 2 0.69 7 1 3 0 0 

Sweden 1 3 1 3 0.95 7 1 5 1 1 1 2 

Ukraine 1 4 1 4 0.55 10 1 6 1 2 0 0 

Macedonia 1 5 1 5 0.18 25 0.28 22 1 6 0 0 

Russia 0.87 6 1 6 1 3 0 0 1 9 0 0 

Belarus 0.78 7 0.67 13 1 6 1 4 0.95 11 0 0 

Finland 0.77 8 0.65 14 0.47 11 0.61 8 1 4 1 3 

Slovak Republic 0.68 9 0.7 11 0.68 8 0.44 11 0.47 20 0.08 13 

Austria 0.68 10 0.51 15 0.33 17 0.36 15 0.49 19 0.41 8 

Mongolia 0.64 11 0.69 12 0.67 9 0.56 10 0.44 21 1 5 

Hungary 0.63 12 0.43 20 0.34 16 0.39 13 0.58 17 0.67 6 

France 0.56 13 0.43 19 0.38 12 0 0 0 0 0 0 

Croatia 0.55 14 0.35 23 0.28 22 0.33 17 0 0 0 0 

Romania 0.53 15 0.36 22 0.38 13 0.61 9 0.7 14 0 0 

Belgium 0.52 16 0.3 27 0.14 27 0.12 25 0.26 26 0.17 12 

Bulgaria 0.52 17 0.43 18 0.28 23 0.33 18 0.76 13 0.36 9 

Netherlands 0.51 18 0.34 24 0.37 14 0.35 16 1 5 0 0 

Moldova 0.5 19 0.05 38 0.18 26 0.3 20 0.32 23 0 0 

Estonia 0.48 20 1 7 0.29 21 0.42 12 0 0 0 0 

Czech Republic 0.48 21 0.38 21 0.32 18 0.39 14 0.56 18 1 4 

Germany 0.45 22 0.44 17 0.24 24 0.22 23 0.6 15 0.31 10 

Uzbekistan 0.41 23 0.34 25 0.31 20 0.33 19 0.29 24 0 0 

China 0.39 24 0.72 10 1 5 1 3 0.6 16 0.51 7 

Serbia 0.38 25 0.24 29 0.11 29 0.13 24 1 7 0 0 

Norway 0.37 26 1 8 1 4 1 2 0.95 10 0.27 11 

Slovenia 0.34 27 0.31 26 0.31 19 0.3 21 0.29 25 0 0 

Portugal 0.34 28 0.18 31 0.07 30 0.04 29 0.1 29 0.08 14 

Italy 0.32 29 0.19 30 0 0 0 0 0 0 0 0 

Korea 0.23 30 0.28 28 0.14 28 0.07 26 0 0 0 0 

Bosnia and Herzegovina 0.2 31 0.44 16 0.03 35 0.06 27 0 0 0 0 

Luxembourg 0.2 32 0.13 33 0.07 31 0 0 0 0 0 0 

Turkey 0.17 33 0.14 32 0.04 34 0 0 0 0 0 0 

United Kingdom 0.13 34 0.11 35 0.06 32 0 0 0 0 0 0 

Azerbaijan 0.09 35 0.08 37 0.37 15 0 0 0.35 22 0 0 
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Appendix D (Continued) 

Year 2011 2008 2003 1998 1993 1988 

CHP Countries EPI Ranking EPI Ranking EPI Ranking EPI Ranking EPI Ranking EPI Ranking 

United States 0.09 36 0.1 36 0.01 37 0.03 30 0.13 28 0 0 

Canada 0.08 37 0.12 34 0.05 33 0.05 28 0.18 27 0.03 15 

Greece 0.02 38 0.01 40 0.01 38 0.01 31 0 0 0 0 

Kosovo 0.02 39 1 9 0.01 36 0 0 0 0 0 0 

Japan 0.01 40 0.02 39 0 39 0.01 32 1 8 0.01 16 
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Appendix E CPI Ranking of CHP Countries 

Year 2011 2008 2003 1998 1993 1988 

CHP Countries CPI Ranking CPI Ranking CPI Ranking CPI Ranking CPI Ranking CPI Ranking 

Sweden 1 2 1 2 0.88 8 1 5 1 1 1 1 

Denmark 1 1 1 1 1 1 1 1 0.12 8 1 4 

Switzerland 1 3 1 3 1 2 0.45 6 0.06 11 0 0 

Russia 0.59 4 1 4 1 3 0 0 1 5 0 0 

Ukraine 0.14 5 0.32 6 0.27 13 0.36 7 0.03 14 0 0 

Mongolia 0.13 6 0.19 16 0.1 28 0.17 15 0.17 7 1 3 

Netherlands 0.11 7 0.26 11 0.17 17 0.22 11 1 3 0 0 

Finland 0.11 8 0.3 8 0.3 10 0.3 8 1 2 1 2 

Slovak Republic 0.07 9 0.06 30 0.05 33 0.01 26 0.01 27 0.08 8 

Slovenia 0.07 10 0.19 17 0.17 18 0.01 24 0.06 10 0 0 

Belgium 0.06 11 0.14 20 0.14 22 0.04 20 0.07 9 0.02 13 

Austria 0.06 12 0.26 10 0.17 19 0.09 17 0.05 13 0.36 6 

Norway 0.06 13 0.33 5 1 5 1 2 0.03 16 0.07 10 

Croatia 0.05 14 0.24 13 0.16 20 0.24 10 0 0 0 0 

Hungary 0.05 15 0.3 7 0.2 14 0.21 12 0.01 21 0.07 9 

Italy 0.04 16 0.16 19 0 0 0 0 0 0 0 0 

Luxembourg 0.03 17 0.1 24 0.07 31 0 0 0 0 0 0 

Portugal 0.03 18 0.07 29 0.07 30 0.01 27 0.01 22 0.01 14 

Belarus 0.03 19 0.1 23 1 6 1 3 0.06 12 0 0 

Moldova 0.03 20 0.05 31 0.13 25 0.26 9 0.01 24 0 0 

Germany 0.02 21 0.12 22 0.09 29 0.07 19 0.03 15 0.05 11 

Serbia 0.02 22 0.24 14 0.11 26 0.04 21 0 29 0 0 

France 0.02 23 0.25 12 0.19 15 0 0 0 0 0 0 

Macedonia 0.01 24 0.07 28 0.16 21 0.08 18 0.01 25 0 0 

Azerbaijan 0.01 25 0.08 26 0.37 9 0 0 0.29 6 0 0 

Korea 0.01 26 0.08 25 0.14 23 0.02 23 0 0 0 0 

Romania 0.01 27 0.29 9 0.28 12 0.02 22 0.02 17 0 0 

Turkey 0.01 28 0.04 32 0.04 35 0 0 0 0 0 0 

China 0.01 29 0.07 27 1 7 1 4 0.01 28 0.03 12 

United Kingdom 0.01 30 0.03 35 0.06 32 0 0 0 0 0 0 

Czech Republic 0.01 31 0.22 15 0.17 16 0.21 13 0.01 20 0.12 7 

Uzbekistan 0.01 32 0.04 33 0.29 11 0.01 29 0.01 23 0 0 

Bulgaria 0.01 33 0.18 18 0.13 24 0.17 14 0.02 18 0.36 5 

United States 0 34 0.02 37 0.01 37 0.01 30 0.02 19 0 0 

Canada 0 35 0.02 36 0.05 34 0.01 25 0.01 26 0 15 
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Appendix E (Continued) 

Year 2011 2008 2003 1998 1993 1988 

CHP Countries CPI Ranking CPI Ranking CPI Ranking CPI Ranking CPI Ranking CPI Ranking 

Estonia 0 36 0.13 21 0.11 27 0.16 16 0 0 0 0 

Bosnia and Herzegovina 0 37 0.03 34 0.03 36 0.01 28 0 0 0 0 

Greece 0 38 0 38 0.01 38 0 32 0 0 0 0 

Japan 0 39 0 39 0 39 0 31 1 4 0 16 
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Appendix F ECPI Ranking of CHP Countries 

Year 2011 2008 2003 1998 1993 1988 

CHP Countries ECPI Ranking ECPI Ranking ECPI Ranking ECPI Ranking ECPI Ranking ECPI Ranking 

Sweden 1 2 0.61 3 0.02 4 0.65 6 1 1 1 1 

Switzerland 1 1 1 1 0.03 3 0.68 5 0.91 5 0 0 

Finland 0.71 3 0.6 4 0.01 5 0.55 7 1 2 1 2 

Belarus 0.7 4 0.56 5 0.01 11 1 3 0.9 6 0 0 

Russia 0.67 5 0.55 6 0.01 13 0 0 1 4 0 0 

Denmark 0.63 6 0.46 9 0.01 8 0.42 9 0.68 11 0.52 3 

Ukraine 0.61 7 0.54 7 0.01 6 0.7 4 0.85 7 0 0 

Slovak Republic 0.59 8 0.51 8 0.01 12 0.41 10 0.44 16 0.08 13 

Hungary 0.53 9 0.38 12 0.01 14 0.37 11 0.49 14 0.5 4 

Austria 0.52 10 0.39 11 0.01 10 0.36 13 0.46 15 0.4 7 

Mongolia 0.48 11 0.42 10 0.01 25 0.36 15 0.42 17 0.49 5 

Croatia 0.48 12 0.31 18 0.01 17 0.32 17 0 0 0 0 

France 0.46 13 0.36 13 0.01 9 0 0 0 0 0 0 

Netherlands 0.45 14 0.32 15 0.01 7 0.34 16 0.84 8 0 0 

Romania 0.44 15 0.34 14 0.01 19 0.48 8 0.68 12 0 0 

Moldova 0.43 16 0.03 37 0.01 27 0.3 20 0.28 22 0 0 

Czech Republic 0.39 17 0.31 16 0.01 16 0.36 14 0.49 13 0.44 6 

Uzbekistan 0.38 18 0.31 17 0.01 21 0.31 18 0.28 21 0 0 

Belgium 0.38 19 0.22 24 0.01 26 0.1 25 0.14 25 0.09 12 

Bulgaria 0.36 20 0.3 20 0.01 22 0.31 19 0.69 10 0.21 8 

Slovenia 0.33 21 0.25 21 0.01 20 0.25 21 0.28 20 0 0 

Serbia 0.32 22 0.24 22 0.01 29 0.11 24 0.14 26 0 0 

Germany 0.31 23 0.23 23 0.01 18 0.2 23 0.26 23 0.2 9 

Estonia 0.27 24 0.3 19 0.01 15 0.37 12 0 0 0 0 

Italy 0.27 25 0.18 25 0 0 0 0 0 0 0 0 

Norway 0.26 26 0.64 2 0.03 2 1 2 0.74 9 0.18 10 

Portugal 0.25 27 0.12 29 0 30 0.03 29 0.03 28 0.04 14 

China 0.24 28 0.17 27 1 1 1 1 0.25 24 0.18 11 

Macedonia 0.2 29 0.18 26 0.01 23 0.22 22 0.34 19 0 0 

Luxembourg 0.16 30 0.11 30 0 31 0 0 0 0 0 0 

Korea 0.15 31 0.15 28 0.01 28 0.06 26 0 0 0 0 

Bosnia and Herzegovina 0.11 32 0.08 31 0 35 0.05 27 0 0 0 0 

Turkey 0.1 33 0.07 32 0 34 0 0 0 0 0 0 

United Kingdom 0.08 34 0.06 34 0 32 0 0 0 0 0 0 

Azerbaijan 0.08 35 0.07 33 0.01 24 0 0 0.35 18 0 0 
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Appendix F (Continued) 

Year 2011 2008 2003 1998 1993 1988 

CHP Countries ECPI Ranking ECPI Ranking ECPI Ranking ECPI Ranking ECPI Ranking ECPI Ranking 

United States 0.05 36 0.04 36 0 36 0.03 30 0.05 27 0 0 

Canada 0.05 37 0.05 35 0 33 0.04 28 0.03 29 0.01 15 

Greece 0.01 38 0.01 38 0 37 0.01 31 0 0 0 0 

Japan 0.01 39 0.01 39 0 38 0.01 32 1 3 0 16 
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Appendix G EPI, CPI and ECPI Scores for G20 Countries in Years 

    

                                       Figure G.1 Brazil      Figure G.2 China 

    

                                       Figure G.3 Argentina                  Figure G.4 India 
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Appendix G (Continued) 

    

         Figure G.5 Indonesia              Figure G.6 Saudia Arabia 

      

  Figure G.7 South Africa              Figure G.8 Australia 
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Appendix G (Continued) 

    

        Figure G.9 Canada        Figure G.10 France 

    

    Figure G.11 Germany                Figure G.12 Japan 
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Appendix G (Continued) 

    

   Figure G.13 Korea                     Figure G.14 Mexico 

    

             Figure G.15 Turkey        Figure G.16 United Kingdom 
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Appendix G (Continued) 

 

Figure G.17 United States 
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Appendix H CPI, EPI and ECPI Scores for EITs Countries in Years 

    

             Figure H.1 Belarus        Figure H.2 Slovak Republic 

    

        Figure H.3 Ukraine         Figure H.4 Estonia 
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Appendix H (Continued) 

    

       Figure H.5 Hungary        Figure H.6 Croatia 

    

Figure H.7 Bulgaria        Figure H.8 Romania 
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Appendix H (Continued) 

    

  Figure H.9 Czech Republic             Figure H.10 Slovenia 
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