
TOBB UNIVERSITY OF ECONOMICS AND TECHNOLOGY
INSTITUTE OF NATURAL AND APPLIED SCIENCES

REDUCING DRAM ACCESS LATENCY BY EXPLOITING DRAM LEAKAGE
CHARACTERISTICS AND COMMON ACCESS PATTERNS

MASTERS THESIS

Hasan HASSAN

Department of Computer Engineering

Supervisor: Assoc. Prof. Oguz ERGIN

AUGUST 2016

Approval of the Institute of Natural and Applied Sciences

.....................................
Prof. Osman EROGUL

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master
of Science.

.....................................
Assoc. Prof. Oguz ERGIN
Deputy Head of Department

This thesis entitled "REDUCING DRAM ACCESS LATENCY BY
EXPLOITING DRAM LEAKAGE CHARACTERISTICS AND COMMON
ACCESS PATTERNS" has been prepared and submitted in partial fulfillment of the
requirements for the degree of Master of Science in Computer Enginnering by
Hasan HASSAN, who is a graduate student at TOBB University of Economics
and Technology, Institute of Natural and Applied Sciences with student number
131111040. The thesis has been examined in AUGUST 11, 2016 by the thesis
committee below and is recommended for approval and acceptance.

Supervisor:
Assoc. Prof. Oguz ERGIN
TOBB University of Economics and Technology

Commitee Members:
Prof. Mehmet Onder EFE (Chair)
Hacettepe University

Assoc. Prof. Ali BOZBEY
TOBB University of Economics and Technology

iii

TEZ BİLDİRİMİ

Tez içindeki bütün bilgilerin etik davranış ve akademik kurallar çerçevesinde elde
edilerek sunulduğunu, alıntı yapılan kaynaklara eksiksiz atıf yapıldığını, referansların
tam olarak belirtildiğini ve ayrıca bu tezin TOBB ETÜ Fen Bilimleri Enstitüsü tez
yazım kurallarına uygun olarak hazırlandığını bildiririm.

DECLARATION

I hereby declare that all the information provided in this thesis has been obtained with
rules of ethical and academic conduct and has been written in accordance with thesis
format regulations. I also declare that, as required by these rules and conduct, I have
fully cited and referenced all material and results that are not original to this work.

Hasan HASSAN

v

ABSTRACT

Master of Science

REDUCING DRAM ACCESS LATENCY BY EXPLOITING DRAM LEAKAGE
CHARACTERISTICS AND COMMON ACCESS PATTERNS

Hasan HASSAN

TOBB University of Economics and Technology
Institute of Natural and Applied Sciences

Department of Computer Engineering

Supervisor: Assoc. Prof. Oguz ERGIN

Date: AUGUST 2016

DRAM-based memory is a critical factor that creates a bottleneck on the system
performance since the processor speed largely outperforms the DRAM latency.
In this thesis, we develop a low-cost mechanism, called ChargeCache, which enables
faster access to recently-accessed rows in DRAM, with no modifications to DRAM
chips. Our mechanism is based on the key observation that a recently-accessed row has
more charge and thus the following access to the same row can be performed faster. To
exploit this observation, we propose to track the addresses of recently-accessed rows
in a table in the memory controller. If a later DRAM request hits in that table, the
memory controller uses lower timing parameters, leading to reduced DRAM latency.
Row addresses are removed from the table after a specified duration to ensure rows
that have leaked too much charge are not accessed with lower latency. We evaluate
ChargeCache on a wide variety of workloads and show that it provides significant
performance and energy benefits for both single-core and multi-core systems.

Keywords: Dynamic Random Access Memory (DRAM), Memory systems.

vii

ÖZET

Yüksek Lisans Tezi

DRAM SIZMA KARAKTERİSTİKLERİ VE OLAĞAN ERİŞİM
ÖRÜNTÜSÜNDEN FAYDALANARAK DRAM ERİŞİM GECİKMESİNİN

AZALTILMASI

Hasan HASSAN

TOBB Ekonomi ve Teknoloji Üniversitesi
Fen Bilimleri Enstitüsü

Bilgisayar Mühendisliği Anabilim Dalı

Supervisor: Doç. Dr. Oğuz ERGİN

Tarih: AĞUSTOS 2016

DRAM tabanlı bellek, bilgisayar sisteminde darboğaz oluşturarak sistemin başarımı
sınırlayan en önemli bileşendir. Bunun sebebi işlemcilerin hız bakımından
DRAM’lerin çok önünde olmasıdır. Bu tezde, ChargeCache ismini verdiğimiz,
DRAM’lerin erişim gecikmesini azaltan bir yöntem geliştirdik. Bu yöntem,
piyasadaki DRAM yongalarının mimarisinde bir değişiklik gerektirmediği gibi,
bellek denetimcisinde de düşük donanım maliyeti olan ek birimlere ihtiyaç
duymaktadır. ChargeCache, yeni erişilmiş DRAM satırlarının kısa bir süre sonra
tekrar erişileceği gözlemine dayanmaktadır. Yeni erişilmiş satırlardaki DRAM
hücreleri yüksek miktarda yük içerdiğinden, bunlara hızlı bir şekilde erişilebilir. Bu
gözlemden faydalanmak için yeni erişilen satırların adreslerini bellek denetimcisi
içerisinde bir tabloda tutmayı öneriyoruz. Sonraki erişim isteklerinin bu tablodaki
satırlara erişmek istemesi durumunda, bellek denetimcisi yük miktarı yüksek
hücrelerin erişilmek üzere olduğunu bileceğinden, DRAM erişim değiştirgelerini
ayarlayarak erişimin düşük gecikmeyle tamamlanmasını sağlayabilir. Belirli bir süre
sonra tablodaki satır adresleri silinerek, zaman içerisinde çok fazla yük kaybedip hızlı
erişilebilme özelliğini yitirmiş satırların bu tablodan çıkarılması sağlanır. Önerdiğimiz
yöntemi hem tek çekirdekli hem de çok çekirdekli mimarilerde benzetim ortamında
deneyerek, yöntemin başarım ve enerji kullanımı açısından sistem üzerinde sağladığı
iyileştirmeleri inceledik.

Anahtar Kelimeler: Devingen Rastgele Erişimli Bellek, Bellek sistemleri.

ix

ACKNOWLEDGMENTS

I would like to thank my advisor Oguz Ergin for supporting me in every aspect through
my undergraduate and graduate education in TOBB University of Economics and
Technology. I would not have succeed without the priceless knowledge I acquired
by working with him. I would also like to thank Onur Mutlu and SAFARI for for
all the feedback and comments which greatly enhanced my research, KASIRGA for
creating a stimulating working environment, and TOBB University of Economics and
Technology for funding me during my education.

xi

TABLE OF CONTENTS
Page

ABSTRACT . vii
ÖZET . ix
ACKNOWLEDGMENTS . xi
TABLE OF CONTENTS . xiii
LIST OF FIGURES . xv
LIST OF TABLES . xvii
ABBREVIATIONS . xix
1. INTRODUCTION . 1
2. BACKGROUND ON MAIN MEMORY 5

2.1 DRAM Organization . 6
2.1.1 Channel . 6
2.1.2 Rank . 7
2.1.3 Bank . 7
2.1.4 Subarray and row . 9
2.1.5 Cell . 9

2.2 DRAM Standards . 10
2.2.1 Double data rate type 3 (DDR3) 10

2.3 DDR3 Operation . 10
2.4 Memory Controller . 12

3. MOTIVATION . 15
4. CHARGECACHE . 19

4.1 High-level Overview . 19
4.2 Detailed Design . 19

4.2.1 Inserting rows into HCRAC 20
4.2.2 Employing lowered DRAM timing constraints 21
4.2.3 Invalidating stale rows from HCRAC 21

4.3 Reduction in DRAM Timing Parameters 21
5. METHODOLOGY . 23
6. EVALUATION . 25

6.1 Impact on Performance . 26
6.2 Impact on DRAM Energy . 26
6.3 Area and Power Consumption Overhead 28
6.4 Sensitivity Studies . 29

6.4.1 ChargeCache capacity . 29
6.4.2 Caching duration . 29

7. DISCUSSION . 33
7.1 Temperature Independence . 33
7.2 Applicability to Other DRAM Standards 33

8. RELATED WORK . 35
9. CONCLUSION . 37

xiii

REFERENCES . 38
CURRICULUM VITAE . 47

xiv

LIST OF FIGURES

Page
Figure2.1: Memory system of a modern computer. 5
Figure2.2: Layers of the DRAM hierarchy. 6
Figure2.3: View of a system with two channels. 7
Figure2.4: A channel which has two ranks that share data, command, and

address buses. 8
Figure2.5: The internal structure of a rank which has 8 banks. 8
Figure2.6: The internal structure of a bank. 9
Figure2.7: Commands that are used to read data from DRAM and the timing

parameters associated with them 11
Figure2.8: Overview of a typical memory controller. 13
Figure3.1: Fraction of row activations that happen 8ms after precharge

(8ms-RLTL) or refresh of the row ((a) Single-core workloads, (b)
Eight-core workloads). 16

Figure3.2: RLTL for various time intervals ((a) Single-core workloads, (b)
Eight-core workloads). 18

Figure4.1: Components of the ChargeCache Mechanism 20
Figure4.2: Effect of initial cell charge on bitline voltage. 22
Figure6.1: Speedup with ChargeCache, NUAT and Low-Latency DRAM for

single-core and eight-core workloads ((a) Single-core workloads,
(b) Eight-core workloads). 27

Figure6.2: DRAM energy reduction of ChargeCache. 28
Figure6.3: ChargeCache hit rate for single-core and eight-core systems at 1ms

caching duration. 30
Figure6.4: Speedup versus ChargeCache capacity. 31
Figure6.5: Speedup and ChargeCache hit rate for different caching durations . 31

xv

LIST OF TABLES

Page
Table5.1: Simulated system configuration . 23
Table6.1: tRCD and tRAS for different caching durations (determined via

SPICE simulations) . 30

xvii

ABBREVIATIONS

DRAM : Dynamic Random-Access Memory
SRAM : Static Random-access Memory
DDR : Double Data-rate
LLC : Last-level Cache
RLTL : Row-level Temporal Locality
CMOS : Complementary Metal Oxide Semiconductor
PCB : Printed Circuit Board
I/O : Input/Output
HCRAC : Highly-charged Row Address Cache

xix

1. INTRODUCTION

In the last few decades, new microarchitectural techniques successfully delivered
significant performance improvement to the microprocessors. At the same time,
advances in the manufacturing technology, which shrinked the transistor size,
provided additional processing power mainly by enabling more transistors to fit
to the same die area. On the other hand, capacity of the memories also increased
dramatically but the improvement in the speed of the memory was not high enough to
catch up with the processors. The disparity between the performance of the processors
and memory devices introduced a system-level bottleneck problem which is typically
known as the "memory wall" [94, 95]. In todays multi-core era, that bottleneck is
even exagerrated by the increased bandwidth requirements due to the simultaneously
operating processor cores where each of them generate a significant amount of
memory accesses.

DRAM technology is commonly used as the main memory of modern computer
systems. This is because DRAM is at a more favorable point in the trade-off spectrum
of density (cost-per-bit) and access latency compared to other technologies like
SRAM or flash. However, commodity DRAM devices are heavily optimized to
maximize cost-per-bit. In fact, the latency of commodity DRAM has not reduced
significantly in the past decade [48, 65].

To mitigate the negative effects of long DRAM access latency, existing systems rely
on several major approaches. First, they employ large on-chip caches to exploit the
temporal and spatial locality of memory accesses. However, cache capacity is limited
by chip area. Even caches as large as tens of megabytes may not be effective for
some applications due to very large working sets and memory access characteristics
that are not amenable to caching [35, 53, 69, 72, 74]. Second, systems employ
aggressive prefetching techniques to preload data from memory before it is
needed [2, 10, 86]. However, prefetching is inefficient for many irregular access
patterns and it increases the bandwidth requirements and interference in the memory
system [18, 20, 21, 43]. Third, systems employ multithreading [83, 91]. However, this
approach increases contention in the memory system [14, 19, 58, 63] and does
not aid single-thread performance [36, 90]. Fourth, systems exploit memory
level parallelism [13, 25, 61, 63, 64]. The DRAM architecture provides various
levels of parallelism that can be exploited to simultaneously process multiple
memory requests generated by modern processor architectures [45, 64, 70, 92].
While prior works [15, 33, 45, 63, 68] proposed techniques to better utilize the
available parallelism, the benefits of these techniques are limited due to 1) address
dependencies among instructions in the programs [3, 22, 60], and 2) resource conflicts
in the memory subsystem [41, 75]. Unfortunately, none of these four approaches
fundamentally reduce memory latency at its source and the DRAM latency continues
to be a performance bottleneck in many systems.

1

The latency of DRAM is heavily dependent on the design of the DRAM chip
architecture, specifically the length of a wire called bitline. A DRAM chip consists of
millions of DRAM cells. Each cell is composed of a transistor-capacitor pair. To
access data from a cell, DRAM uses a component called sense amplifier. Each cell is
connected to a sense amplifier using a bitline. To amortize the large cost of the sense
amplifier, hundreds of DRAM cells are connected to the same bitline [48]. Longer
bitlines lead to increase in resistance and parasitic capacitance on the path between
the DRAM cell and the sense amplifier. As a result, longer bitlines result in higher
DRAM access latency [47, 48, 85].

One simple approach to reduce DRAM latency is to use shorter bitlines. In fact,
some specialized DRAM chips [26, 77, 101] offer lower latency by using shorter
bitlines compared to commodity DRAM chips. Unfortunately, such chips come at a
significantly higher cost as they reduce the overall density of the device because they
require more sense amplifiers, which occupy significant area [48]. Therefore, such
specialized chips are usually not desirable for systems that require high memory
capacity [11]. Prior works have proposed several heterogeneous DRAM architectures
(e.g., segmented bitlines [48], asymmetric bank organizations [85]) that divide
DRAM into two regions: one with low latency, and another with slightly higher
latency. Such schemes propose to map frequently accessed data to the low-latency
region, thereby achieving lower average memory access latency. However, such
schemes require 1) non-negligible changes to the cost-sensitive DRAM design, and
2) mechanisms to identify, map, and migrate frequently-accessed data to low-latency
regions. As a result, even though they reduce the latency for some portions of the
DRAM chip, they may be difficult to adopt.

Our goal in this work is to design a mechanism to reduce the average DRAM access
latency without modifying the existing DRAM chips. We achieve this goal by
exploiting two major observations we make in this thesis.

Observation 1. We find that, due to DRAM bank conflicts [41, 75], many applications
tend to access rows that were recently closed (i.e., closed within a very short time
interval). We refer to this form of temporal locality where certain rows are closed
and opened again frequently as Row Level Temporal Locality (RLTL). An important
outcome of this observation is that a DRAM row remains in a highly-charged state
when accessed for the second time within a short interval after the prior access. This is
because accessing the DRAM row inherently replenishes the charge within the DRAM
cells (just like a refresh operation does) [9, 24, 50, 51, 66, 82].

Observation 2. The amount of charge in DRAM cells determines the required latency
for a DRAM access. If the amount of charge in the cell is low, the sense amplifier
completes its operation in longer time. Therefore, DRAM access latency increases.
A DRAM cell loses its charge over time and the charge is replenished by a refresh
operation or an access to the row. The access latency of a cell whose charge has been
replenished recently can thus be significantly lower than the access latency of a cell
that has less charge.

We propose a new mechanism, called ChargeCache [29], that reduces average DRAM
access latency by exploiting these two observations. The key idea is to track the
addresses of recently-accessed (i.e., highly-charged) DRAM rows and serve accesses

2

to such rows with lower latency. Based on our observation that workloads typically
exhibit significant Row-Level Temporal Locality (see Section 3), our experimental
results on multi-programmed applications show that, on average, ChargeCache can
reduce the latency of 67% of all DRAM row activations.

The operation of ChargeCache is straightforward. The memory controller maintains
a small table that contains the addresses of a set of recently-accessed DRAM rows.
When a row is evicted from the row-buffer, the address of that row, which contains
highly-charged cells due to its recent access, is inserted into the table.

Before accessing a new row, the memory controller checks the table to determine if
the row address is present in the table. If so, the row is accessed with low latency.
Otherwise, the row is accessed with normal latency. As cells leak charge over
time, ChargeCache requires a mechanism to periodically invalidate entries from
the table such that only highly-charged rows remain in it. Section 4 describes the
implementation of ChargeCache in detail.

Our evaluations show that ChargeCache significantly improves performance over
commodity DRAM for a variety of workloads. For 8-core workloads, ChargeCache
improves average workload performance by 8.6% with a hardware cost of only 5.4KB
and by 10.6% with a hardware cost of 43KB. As ChargeCache can only reduce the
latency of certain accesses, it does not degrade performance compared to commodity
DRAM. Moreover, ChargeCache can be combined with other DRAM architectures
that offer low latency (e.g., [9, 12, 41, 47, 48, 67, 78, 79, 85]) to provide even higher
performance. Our estimates show that the hardware area overhead of ChargeCache is
only 0.24% of a 4MB cache. Our mechanism requires no changes to DRAM chips or
the DRAM interface. Section 6 describes our experimental results.

We make the following contributions.

• We observe that, due to bank conflicts, many applications exhibit a form of locality
where recently-closed DRAM rows are accessed frequently. We refer to this as Row
Level Temporal Locality (RLTL)(see Section 3).

• We propose an efficient mechanism, ChargeCache [29], which exploits RLTL to
reduce the average DRAM access latency by requiring changes only to the memory
controller. ChargeCache maintains a table of recently-accessed row addresses and
lowers the latency of the subsequent accesses that hit in this table within a short
time interval (see Section 4).

• We comprehensively evaluate the performance, energy efficiency, and area overhead
of ChargeCache. Our experiments show that ChargeCache significantly improves
performance and energy efficiency across a wide variety of systems and workloads
with negligible hardware overhead (see Section 6).

3

4

2. BACKGROUND ON MAIN MEMORY

Memories are fundamental components used in various parts of the computer systems
(e.g., register, cache, buffers, main memory, etc.). A memory system consists of
multiple layers of memory units where each of these units is optimized to achieve
a specific goal to converge to the ideal memory which utopically has unlimited
bandwidth, zero access latency, infinite capacity, and no cost. Figure 2.1 illustrates a
typical memory system that is implemented in modern computer systems. Each
memory unit in scaled to indicate its actual capacity and access latency. In general,
low capacity memory has lower latency compared to a memory unit with higher
capacity. For example, a very limited memory resource, the register file, can typically
be accessed within a single cycle. Whereas, accessing shared caches may take up to
few tens of cycles to complete.

Core

Processor

Off-chip
Bus

Main Memory
(DRAM)

Register
File

Private
Cache
(L1)

Shared
Cache
(L2)

Shared
Cache
(L3)

Figure 2.1: Memory system of a modern computer.

In this thesis, we mainly focus on the main memory which incurs the highest access
latency in the memory system. DRAM (Dynamic Random Access Memory)
technology is predominantly used as a main memory of modern system. That is
because DRAM is at the most faurable point in the capacity-latency trade-off
spectrum among the memory technologies that are available today. DRAM requires a
special manufacturing process to benefit from its entire potential. Adapting DRAM
to the common CMOS manufacturing technology, which is used to produce the
processor chip (i.e, eDRAM [55]), results in higher area-per-bit usage and higher
access latency compared to a custom-process DRAM. Thus, in modern systems,
DRAM-based main memories are typically available as separate chip which
communicates with the processor via off-chip links. Such a link imposes additional
DRAM access latency.

In this section, we provide the necessary basics on DRAM organization and operation.

5

2.1 DRAM Organization

DRAM-based main memories are composed of units arranged in hierarchy of several
levels (Figure 2.2). Next, we explain each level of the hierarchy in detail.

Cell

Row

Subarray

Bank

Rank

Channel

Figure 2.2: Layers of the DRAM hierarchy.

2.1.1 Channel

A DRAM channel is the top-level layer of the main memory hierarchy. Each channel
has its own command, address, and data buses. The memory controller, a logic
unit which resides inside the processor chip in modern architectures, handles the
communication with the channel by issuing a set of DRAM commands to access
data in the desired location (i.e., address). Figure 2.3 shows a system configuration
with two memory controllers which manage a single DRAM channel each. In that
particular system, the workloads running on the processor generate memory requests.
A requests goes to one of the memory controller depending on the address that it
targets. The address space of the system is typically spread between the two channels.
Once a memory controller receives a request, it issues necessary DRAM commands
to the channel to perform the access.

Several DRAM chips are put together to form a DRAM channel. In general-purpose
systems (e.g., desktop computers, laptops, workstations) the chips that create a channel
are solered into a separate PCB (Printed Circuit Board) apart from the motherboard.
These PCBs are called memory modules. A memory module can be directly plugged
to the motherboard through the memory slots. A single channel may support one or
more modules (as in Figure 2.3). If more than one modules are connected to a single
channel, each module operates as a DRAM Rank which we explain next. Said that, a
channel may contain one or more ranks (typically up to 4 ranks). On the other hand,
in embedded systems (e.g., smartphones, single-board computers), DRAM chips are
generally soldered to the motherboard along with other chips of the system.

6

Processor

Memory
Controller

Channel

Channel

Figure 2.3: View of a system with two channels.

2.1.2 Rank

Different from channels, ranks do not operate in complete isolation from each other.
Ranks that constitute the same channel share the address, data, and command buses
(Figure 2.4). Therefore, the ranks operate in lock-step (i.e., the ranks of the same
channel are time multiplexed) and do not offer pure memory access parallelism as
the channels do. However, the ranks offer parallelism in lower levels of the DRAM
hierarchy.

Ranks are composed of multiple DRAM chips. The number of chips depend on the data
I/O width of the used chips and the width of the memory controller bus. In typicaly
systems, the memory controller data bus is 64-bits wide. To reach the data bus width,
multiple chips operate concurrently in a rank. For example, 4 DRAM chips with 16
data I/O pins each are required to form a rank.

2.1.3 Bank

In each rank, there are typically 8 banks available which mostly operate independently
of each other. As shown in Figure 2.5 banks share the same I/O interface. They utilize
that interface in lock-step fashion. The memory controller, which is on the other side
of the I/O bus, can read/write to/from only one bank at once. Similarly, a data access
command mostly targets a single bank. Some commands (used to initiate operations
such as refresh and precharge) may apply to the all banks in a rank.

Each memory cycle, only a single bank can receive a data access command. However,
since the access operation takes more than one cycle, issuing access commands to
different banks consecutively enables utilization of multiple banks. For example,
assume that an access takes 10 cycles to complete. After issuing an access command
to the first bank, in the next cycle the memory controller may issue command to serve
a request whose data is in different bank. This way, the latency of two accesses
can be overlapped. Overlapping the access time of multiple requests that go to

7

64

16 161616

1616 16 16

data

address

command

Figure 2.4: A channel which has two ranks that share data, command, and address
buses.

different banks is called Bank-Level Parallelism. It is critical to exploit the bank-level
paralelism to achieve high throughput [15, 33, 39, 40, 45, 63].

Bank Bank Bank Bank

Bank Bank Bank Bank

I/
O

 B
u

ff
er

s

Figure 2.5: The internal structure of a rank which has 8 banks.

8

Bank

Local
Row-buffer

Local
Row-buffer

Local
Row-buffer

Local
Row-buffer

R
o

w
s

Global
Row-buffer

Mat

Subarray

Figure 2.6: The internal structure of a bank.

2.1.4 Subarray and row

Figure 2.6 depics a DRAM bank. A bank is composed of several subarrays and a global
row-buffer. Each subarray has hundreds of DRAM rows and a local row-buffer. Rows
are connected to the local row-buffers via local bitlines. Similarly, local row-buffers are
wired to the global row-buffer via global bitlines. The rows in a bank are grouped into
subarrays to keep bitlines shorter and improve access latency by mitigating parasitic
bitline capacitance. Subarrays do not provide any parallelism in current commercially
available architectures. However, recent work proposes an efficient way to enable
additional level of DRAM parallelism by exploiting subarray structure [41].

To perform a data access, the row that corresponds to the accessed address must be
first opened by copying that row to the local row-buffer. After the data is put to the
local row-buffer, the data is transferred to the global row-buffer. Opening a row is also
called Activation. Once the data arrives the global row-buffer, the memory controller
can fetch or modify a needed chunk, called column, of the global row-buffer using a
single read or write command. The width of the column depends on the data I/O width
of the DRAM chip.

2.1.5 Cell

A DRAM cell consists of a single transistor-capacitor pair. The capacitor stores a single
bit of data depending on its charge level. Asserting the wordline enables the transistor
(i.e., access transistor) which couples up the capacitor and bitline. Such an operation
is necessary to access a DRAM cell.

9

Due to the One-Transistor One-Capacitor (1T1C) architecture, a DRAM cell faces a
critical leakage problem. Both the transistor and capacitor continuously leak significant
amount of current which causes the DRAM cell to lose its data in milisecond-long
time. As a workaround, the memory controller periodically initiates a refresh operation
which restores the charge level of the cells.

2.2 DRAM Standards

Joint Electron Device Engineering Council (JEDEC) [100] defines standards for
manufacturing a wide-range of electronic devides. JEDEC standards also involve
DRAM-based memories. For example, Double Data Rate (DDR) [56] and its
derivatives (such as DDR2, DDR3, DDR4) are the most widely adopted standards
in DRAM memory devices. Other standards such as High Bandwidth Memory
(HBM) [32], Wide I/O DRAM [17], Low-power DDR (LPDDR) [34], and Reduced
Latency DRAM (RLDRAM) [101] are also available. As an example for a DRAM
standard, we briefly explain the DDR3 specification which we use to evaluate our
mechanism.

2.2.1 Double data rate type 3 (DDR3)

DDR3 standard defines a pin-interface which supports a set of commands that the
memory controller uses to access (e.g., ACT, PRE, READ, WRITE) and manage (e.g.,
REF) the memory in a way we explain in Section 2.3.

DDR commands are transmitted to the DRAM module across the memory command
bus. Each command is encoded using five output signals (CKE, CS, RAS, CAS, and WE).
Enabling/disabling these signals corresponds to specific commands (as defined by the
DDR standard). First, the CKE signal (clock enable) determines whether the DRAM is
in “standby mode” (ready to be accessed) or “power-down mode”. Second, the CS
(chip selection) signal specifies the chip that should receive the issued command.
Third, the RAS (row address strobe)/CAS (column address strobe) signal is used to
generating commands related to DRAM row/column operations. Fourth, the WE signal
(write enable) in combination with RAS and CAS, generates the specific row/column
command. For example, enabling CAS and WE together generates a WRITE command,
while only enabling CAS indicates a READ command.

2.3 DDR3 Operation

DDR3 provides a set of commands which are used to perform a read/write access or
other operations such as refresh. The memory controller issues these commands in
specific order with certain amount of delay in between to complete the intended
operation. The timing delay that must be respected between certain command is
referred to as DRAM Timing Parameters. We explain the commands and timing
parameters used to perform a typical read/write operation.

Figure 2.7 shows the different sub-steps involved in transferring the data from a DRAM
cell to the sense amplifier and their mapping to DRAM commands. Each sub-step takes
some time, thereby imposing some constraints (i.e., timing parameters) on when the

10

A
C

T
R

EA
D

PR
E

ti
m

e
Ti

m
in

g

P
ar

am
et

er
s:

Co
m

m
a

nd
s:

Ce
ll

st
a

te
:

B
it

lin
e

V
o

lt
ag

e:
V

d
d/

2

W
o

rd
lin

e P
re

ch
a

rg
ed

C
h

a
rg

e
-S

h
a

ri
n

g

V
d

d/
2+
δ

Se
n

si
ng

3V
d

d/
4

V
d

d/
2+
δ

V
d

d

R
e

st
o

re
d

V
d

d

3V
d

d/
4

P
re

ch
a

rg
ed

V
d

d

V
d

d/
2

1
2

4
5

3

P
re

ch
a

rg
ed

V
d

d/
2

6

C
ha

rg
e

Le
ak

ag
e

0
V

V
h

V
h

V
h

0
V

0
V

Fi
gu

re
2.

7:
C

om
m

an
ds

th
at

ar
e

us
ed

to
re

ad
da

ta
fr

om
D

R
A

M
an

d
th

e
tim

in
g

pa
ra

m
et

er
s

as
so

ci
at

ed
w

ith
th

em

11

memory controller can issue different commands. The figure also shows the major
timing parameters that govern regular DRAM operation.

In the initial precharged state 1 , the bitline is precharged to a voltage level of Vdd/2.
The wordline is lowered (i.e., at 0V) and hence, the bitline is not connected to the
capacitor. An access to the cell is triggered by the ACT command to the corresponding
row. This command first raises the wordline (to voltage level Vh), thereby connecting
the capacitor to the bitline. Since the capacitor (in this example) is at a higher voltage
level than the bitline, charge flows from the capacitor to the bitline, thereby raising the
voltage level on the bitline to Vdd/2+δ 2 . This phase is called charge sharing. After
the charge sharing phase, the sense amplifier is enabled and it detects the deviation on
the bitline, and amplifies the deviation. This process, known as sense amplification,
drives the bitline and the cell to the voltage level corresponding to the original state of
the cell (Vdd in this example). Once the sense amplification has sufficiently progressed
3 , the memory controller can issue a READ or WRITE command to access the data
from the cell. The time taken by the cell to reach this state 3 after the ACT command
is specified by the timing constraint tRCD. Once the sense amplification process is
complete 4 , the bitline and the cell are both at a voltage level of Vdd. In other words,
the original charge level of the cell is fully-restored. The time taken for the cell to
reach this state 4 after the ACT is specified by the timing constraint tRAS. In this
state, the bitline can be precharged using the PRE command to prepare it for accessing
a different row. This process first lowers the wordline, thereby disconnecting the cell
from the bitline. It then precharges the bitline to a voltage level of Vdd/2 5 . The time
taken for the precharge operation is specified by the timing constraint tRP.

DRAM Charge Leakage and Refresh. As DRAM cells are not ideal, they leak charge
after the precharge operation [50, 51]. This is represented in state 6 of Figure 2.7. As
described in the previous section, an access to a DRAM cell fully restores the charge
on the cell (see states 4 and 5). However, if a cell is not accessed for a sufficiently
long time, it may lose too much charge that its last cell state may be flipped. To avoid
such cases, DRAM cells are periodically refreshed by the memory controller using the
refresh (REF) command. The interval at which DRAM cells should be refreshed by
the controller is referred to as the refresh interval.

2.4 Memory Controller

The Memory Controller sits betweens the Last-level Cache (LLC) and the DRAM.
Today, the memory controller is typically employed in the same chip with the processor
logic, as show in Figure 2.8.

The memory controller is mainly responsible for handling the load/store requests
generated by the LLC. The bottom part of Figure 2.8 shows an illustration of
functional building block of a memory controller. Due to cache misses or dirty data
evictions, LLC generates load/store requests. Once received, the memory controller
stores these requests in the Request Buffer. Then the scheduling logic decides which
request from the request buffer to serve first. The scheduling logic (or simply
scheduler) makes this decision based on a set of heuristics which may improve
average request serving time (latency), fairness, or throughput. Once the scheduler
makes its decision, based on the state of the target bank, the Command Generator

12

Last-
level

Cache
(LLC)

Load/Store
Requests

Memory
Controller

DRAM
Commands

DRAM Channel

Request Buffer
Request

Scheduling
Logic

Processor Chip

Off-chip Link

Command
Generator

Command Bus

Data Bus

Response Buffer

Figure 2.8: Overview of a typical memory controller.

cracks the request into appropriate DRAM commands. For instance, if the target bank
has an open row and the address of that row is the same as the target row of the
requests, then the command generator only issues a READ or WRITE command to
the target bank. Whereas, if we have row conflict (i.e., if the address of the target
row is different from the open row address) the memory controller first issues a
PRE command to close the conflicting row. Then, by issuing an ACT, the memory
controller activates the target row of the request that is being serviced. Thus, the
output of the command generator not only depends on the decision of the scheduler,
but also on the internal state of the DRAM. The memory controller also receives data
from the DRAM and forwards it to the LLC to respond to the load request.

A memory controller employs smart scheduling algorithms to (i) reduce
access latency, (ii) improve throuput, or (iii) provide better quality of
service (QoS) among concurrently running workloads. A large number
of prior work studiues scheduling algorithms to improve these three
aspects [1, 9, 11, 16, 19, 31, 33, 37, 39–41, 63, 66, 76, 97].

13

14

3. MOTIVATION

The key takeaway from DRAM operation that we exploit in this work is the fact that
cells closer to the fully-charged state can be accessed with lower activation latency
(i.e., lower tRCD and tRAS) than standard DRAM specification. A recent work [82]
exploits this observation to access rows, that were recently recharged via a refresh
operation, with lower latency. Specifically, when a row needs to be activated, the
memory controller determines when the row was last refreshed. If the row was
refreshed recently (e.g., within 8ms), the controller uses a lower tRCD and tRAS for
the activation.

However, this refresh-based approach for lowering latency has two shortcomings.
First, with the standard refresh mechanism, the refresh schedule used by the
memory controller has no correlation with the memory access characteristics of the
application. Therefore, depending on the point when the program begins execution, a
particular row activation, due to a memory access initiated by the program, may or
may not be to a recently-refreshed row. Therefore, a mechanism that reduces latency
to recently-refreshed rows cannot provide consistent performance improvement.
Second, if we use only the time from the last refresh to identify rows that can be
accessed with low latency (i.e., highly-charged rows), we find that only 12% of all
memory accesses benefit from low latency (see Figure 3.1). However, as we show
next, a much greater number of rows can actually be accessed with low latency.

As we described in Section 2.3, an access to a row fully recovers the charge of its cells.
Therefore, if a row is activated twice in a short interval, the second activate can be
served with lower latency as the cells of that row would still be highly charged. We
refer to this notion of row activation locality as Row-Level Temporal Locality (RLTL).
We define t-RLTL of an application for a given time interval t as the fraction of row
activations in which the activation occurs within the time interval t after a previous
precharge to the same row. (Recall that, a row starts leaking charge only after the
precharge operation as shown in Section 2.3).

To this end, we would like to understand what fraction of rows exhibit RLTL, and
thus can be accessed with low latency after a precharge operation to the row due to
program behavior versus what fraction of rows are accessed soon after a refresh to the
row and thus can be accessed with low latency due to a recent preceding refresh.
Figure 3.1a compares the fraction of row activations of that happen within 8ms after
the corresponding row is refreshed to the 8ms-RLTL of various applications. As
shown in the figure, with the exception of hmmer1, the 8ms-RLTL (86% on average)
is significantly higher than the fraction of row activations within 8ms after the refresh
of the row (12% on average). Figure 3.1b plots the corresponding values on an
8-core system that executes 20 multiprogrammed workloads, with randomly chosen

1hmmer effectively uses the on-chip cache hierarchy. Therefore, we do not observe any requests to
the main memory.

15

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
0
%

Fraction of Activations
A

cc
es

se
d

 8
m

s
af

te
r

P
re

ch
ar

g
e

(8
m

s-
R

L
T

L
)

A
cc

es
se

d
 8

m
s

af
te

r
R

ef
re

sh

(a
)

0
%

2
0

%

4
0
%

6
0
%

8
0
%

1
0

0
%

w
1

w
2

w
3

w
4

w
5

w
6

w
7

w
8

w
9

w
1

0
w

1
1

w
1

2
w

1
3

w
1

4
w

1
5

w
1

6
w

1
7

w
1

8
w

1
9

w
2

0
A

V
G

Fraction of Activations

A
cc

es
se

d
 8

m
s

af
te

r
P

re
ch

ar
g

e
(8

m
s-

R
L

T
L

)
A

cc
es

se
d

 8
m

s
af

te
r

R
ef

re
sh

(b
)

Fi
gu

re
3.

1:
Fr

ac
tio

n
of

ro
w

ac
tiv

at
io

ns
th

at
ha

pp
en

8m
sa

ft
er

pr
ec

ha
rg

e
(8

m
s-

R
LT

L
)o

rr
ef

re
sh

of
th

e
ro

w
((

a)
Si

ng
le

-c
or

e
w

or
kl

oa
ds

,(
b)

E
ig

ht
-c

or
e

w
or

kl
oa

ds
).

16

applications for each workload. As shown, the fraction of row activations within 8ms
after refresh is almost the same as that of the single-core workloads. This is because
the refresh schedule has no correlation with the application access pattern. On the
other hand, the 8ms-RLTL for the 8-core workloads is much higher than that of the
single-core workloads. This is because, in multi-core systems, the exacerbated
bank-level contention [40, 45, 59, 62, 63, 97] results in row conflicts, which in turn
results in rows getting closed and activated within shorter time intervals, leading to a
high RLTL.

Figure 3.2 shows the RLTL for different single-core and 8-core workloads with five
different time intervals (from 0.125ms to 32ms) as a stacked bar and two different
DRAM row management policies, namely, open-row and closed-row [1, 39]. For each
workload, the first bar represents the results for the open-row policy, and the second
bar represents the results for the closed-row policy. The open-row policy prioritizes
row-buffer hits by keeping the row open until a request to another row is scheduled
(bank conflict). In contrast, the closed-row policy proactively closes the active row
after servicing all row-hit requests in the request buffer.

For single-core workloads (Figure 3.2a), regardless of the row-buffer policy, even
the average 0.125ms-RLTL is 66%. In other words, 66% of all the row activations
occur within 0.125ms after the row was previously precharged. For 8-core workloads
(Figure 3.2b), due to the additional bank conflicts, the average 0.125ms-RLTL is 77%,
significantly higher than that for the single-core workloads. Similar to the single-core
workloads, the row-buffer policy does not have a significant impact on the RLTL for
the 8-core workloads.

Key Observation and Our Goal. We observe that many applications exhibit high
row-level temporal locality. In other words, for many applications, a significant
fraction of the row activations occur within a small interval after the corresponding
rows are precharged. As a result, such row activations can be served with lower
activation latency than specified by the DRAM standard. Our goal in this work is to
exploit this observation to reduce the effective DRAM access latency by tracking
recently-accessed DRAM rows in the memory controller and reducing the latency for
their next access(es). To this end, we propose an efficient mechanism, ChargeCache,
which we describe in the next section.

17

tpc
h6

ap
ac

he
20 Gem

sF
DTD

mcf
sp

hin
x3

tpc
h2

ast
ar

hm
mer

milc
bw

av
es

lbm
om

ne
tpp

ton
to

bz
ip2

les
lie

3d
sje

ng
tpc

c6
4 ca

ctu
sA

DM lib
qu

an
tum

so
ple

x
tpc

h1
7

STREAM
co

py

AVG

0%20
%

40
%

60
%

80
%

10
0%

RLTL

Open-Row
Closed-Row

(a
)

w1

w2

w3

w4

w5

w6

w7

w8

w9

w10

w11

w12

w13

w14

w15

w16

w17

w18

w19

w20

AVG

0%20
%

40
%

60
%

80
%

10
0%

RLTL

[0
.1

25
m

s-
R

LT
L

]
[0

.2
5m

s-
R

LT
L

]
[0

.5
m

s-
R

LT
L

]
[1

m
s-

R
LT

L
]

[3
2m

s-
R

LT
L

]

Open-Row
Closed-Row

(b
)

Fi
gu

re
3.

2:
R

LT
L

fo
rv

ar
io

us
tim

e
in

te
rv

al
s

((
a)

Si
ng

le
-c

or
e

w
or

kl
oa

ds
,(

b)
E

ig
ht

-c
or

e
w

or
kl

oa
ds

).

18

4. CHARGECACHE

ChargeCache is based on three observations: 1) rows that are highly-charged can be
accessed with lower activation latency, 2) activating a row refreshes the charge on
the cells of that row and the cells start leaking only after the following precharge
command, and 3) many applications exhibit high row-level temporal locality, i.e.,
recently-activated rows are more likely to be activated again. Based on these
observations, ChargeCache tracks rows that are recently activated, and serves future
activates to such rows with lower latency by lowering the DRAM timing parameters
for such activations.

4.1 High-level Overview

At a high level, ChargeCache adds a small table (or cache) to the memory controller
that tracks the addresses of recently-accessed DRAM rows, i.e., highly-charged rows.
ChargeCache performs three operations. First, when a precharge command is issued
to a bank, ChargeCache inserts the address of the row that was activated in the
corresponding bank to the table (Section 4.2.1). Second, when an activate command
is issued, ChargeCache checks if the corresponding row address is present in the
table. If the address is not present, then ChargeCache uses the standard DRAM
timing parameters to issue subsequent commands to the bank. However, if the
address of the activated row is present in the table, ChargeCache employs reduced
timing parameters for subsequent commands to that bank (Section 4.2.2). Third,
ChargeCache invalidates entries from the table to ensure that rows corresponding to
valid entries can indeed be accessed with lower access latency (Section 4.2.3).

We named the mechanism ChargeCache as it provides a cache-like benefit, i.e., latency
reduction based on a locality property (i.e., RLTL), and does so by taking advantage of
the charge level stored in a recently-activated row. The mechanism could potentially
be used with current and emerging DRAM-based memories where the stored charge
level leads to different access latencies. We explain how ChargeCache can be applied
to other DRAM standards in Section 7.2.

In the following section, we describe the different components and operation of
ChargeCache in more detail. In Section 4.3, we present the results of our SPICE
simulation that analyzes the potential latency reduction that can be obtained using
ChargeCache.

4.2 Detailed Design

ChargeCache adds two main components to the memory controller. Figure 4.1
highlights these components. The first component is a tag-only cache that stores
the addresses of a subset of highly-charged DRAM rows. We call this cache the

19

Highly-Charged Row
Address Cache (HCRAC)

Invalidation
Interval

Counter (IIC)

Entry
Counter (EC)

Invalidate

3

[ACT]
Lookup

Per-Bank
Timing State

2Per-Bank
Row State

[PRE]
Insert 1

Figure 4.1: Components of the ChargeCache Mechanism

Highly-Charged Row Address Cache (HCRAC). We organize HCRAC as a
set-associative structure similar to the processor caches. The second component is a
set of two counters that ChargeCache uses to invalidate entries from the HCRAC that
can potentially point to rows that are no longer highly-charged. As described in the
previous section, there are three specific operations with respect to ChargeCache:
1) insert, 2) lookup, and 3) invalidate. We now describe these operations in more
detail.

4.2.1 Inserting rows into HCRAC

When a PRE command is issued to a bank, ChargeCache inserts the address of the row
that was activated in the corresponding bank into the HCRAC 1 . Although the PRE
command itself is associated only with the bank address, the memory controller has to
maintain the address of the row that is activated in each bank (if any row is activated)
so that it can issue appropriate commands when a bank receives a memory request.
ChargeCache obtains the necessary row address information directly from the memory
controller. Some DRAM interfaces [56] allow the memory controller to precharge all
banks with a single command. In such cases, ChargeCache inserts the addresses of the
activated rows across all the banks into the HCRAC.

Just like any other cache, HCRAC contains a limited number of entries. As a result,
when a new row address is inserted, ChargeCache may have to evict an already
valid entry from the HCRAC. While such evictions can potentially result in wasted
opportunity to reduce DRAM latency for some row activations, our evaluations
show that even with a small HCRAC (e.g., 128-entries), ChargeCache can provide
significant performance improvement (see Section 6).

20

4.2.2 Employing lowered DRAM timing constraints

To employ lower latency for highly-charged rows, the memory controller maintains
two sets of timing constraints, one for regular DRAM rows, and another for
highly-charged DRAM rows. While we evaluate the potential reduction in timing
constraints that can be enabled by ChargeCache, we expect the lowered timing
constraints for highly-charged rows to be part of the standard DRAM specification.

On each ACT command, ChargeCache looks up the corresponding row address
in the HCRAC 2 . Upon a hit, ChargeCache employs lower tRCD and tRAS for
the subsequent READ/WRITE and PRE operations, respectively. Upon a miss,
ChargeCache employs the default timing constraints for the subsequent commands.

4.2.3 Invalidating stale rows from HCRAC

Unlike conventional caches, where an entry can stay valid as long as it is not explicitly
evicted, entries in HCRAC have to be invalidated after a specific time interval. This is
because as DRAM cells continuously leak charge, a highly-charged row will no longer
be highly-charged after a specific time interval.

One simple way to invalidate stale entries would be to use a clock to track time and
associate each entry with an expiration time. Upon a hit in the HCRAC, ChargeCache
can check if the entry is past the expiration time to determine which set of timing
parameters to use for the corresponding row. However, this scheme increases the
storage cost and complexity of implementing ChargeCache.

We propose a simpler, periodic invalidation scheme that is similar to how the memory
controller issues refresh commands [51]. Our mechanism uses two counters, namely,
the Invalidation Interval Counter (IIC) and the Entry Counter (EC). We assume that
the HCRAC contains k entries and the number of processor cycles for which a DRAM
row stays highly-charged after a precharge is C. IIC cyclically counts up to C/k, and
EC cyclically counts up to k. Initially, both IIC and EC are initialized to zero. IIC
is incremented every cycle. Whenever IIC reaches C/k, 1) the entry in the HCRAC
pointed to by EC is invalidated, 2) EC is incremented, and 3) IIC is cleared. Whenever
EC reaches k, it is cleared. This mechanism invalidates every entry in the HCRAC once
every C processor cycles. Therefore, it ensures that any valid entry in the HCRAC
indeed corresponds to a highly-charged row. While our mechanism can prematurely
invalidate an entry, our evaluations show that the loss in performance benefit due to
such premature evictions is negligible.

4.3 Reduction in DRAM Timing Parameters

We evaluate the potential reduction in tRCD and tRAS for ChargeCache using
circuit-level SPICE simulations. We implement the DRAM sense amplifier
circuit using 55nm DDR3 model parameters [103] and PTM low-power transistor
models [98, 102]. Figure 4.2 plots the variation in bitline voltage level during cell
activation for different initial charge amounts of the cell.

21

Vdd/2
0 10 20 30 40

Vdd

tRAS
Reduction

(9.6 ns)tRCD
Reduction

(4.5 ns)

Time (ns)

B
it

lin
e

V
o

lt
ag

e

Fully
Charged

Cell

Partially
Charged

Cell

Ready-to-access
Voltage Level

Figure 4.2: Effect of initial cell charge on bitline voltage.

Depending on the initial charge (i.e., voltage level) of the cell, the bitline voltage
increases at different speeds. When the cell is fully-charged, the sense amplifier is able
to drive the bitline voltage to the ready-to-access voltage level in only 10ns. However,
a partially-charged cell (i.e., one that has not been accessed for 64ms) brings the bitline
voltage up slower. Specifically, the bitline connected to such a partially-charged cell
reaches the ready-to-access voltage level in 14.5ns. Since DRAM timing parameters
are dictated by this worst-case partially-charged state right before the refresh interval,
we can achieve 4.5ns reduction in tRCD for a fully-charged cell. Similarly, the charge
of the cell capacitor is restored at different times depending on the initial voltage of the
cell. For a fully-charged cell, this results in 9.6ns reduction in tRAS.

In practice, we expect the DRAM manufacturers to identify the lowered timing
constraints for different caching durations. Today, DRAM manufacturers test each
DRAM chip to determine if it meets the timing specifications. Similarly, we expect
the manufacturers would also test each chip to determine if it meets the ChargeCache
timing constraints.

Caching duration (i.e., how long a row address stays in ChargeCache) provides a
trade-off between ChargeCache hit-rate and the DRAM access latency reduction. A
longer caching duration leads to a longer Invalidation Interval. Thus, a row address
stays a longer time in ChargeCache. This creates an opportunity to increase
ChargeCache hit-rate. On the other hand, with a longer caching duration, the amount
of charge that remains in DRAM cells at the end of the duration decreases.
Consequently, the room for reducing tRCD and tRAS shrinks. As Figure 3.1 indicates
a very high RLTL even with a 0.125ms duration, we believe sacrificing ChargeCache
hit-rate for DRAM access latency is a reasonable design choice. Therefore, we
assume a 1ms caching duration and a corresponding 4/8 cycle reduction in
tRCD/tRAS (determined using SPICE simulations) for a DRAM bus clocked at 800
MHz frequency. To support our design decision, we also analyze the effect of various
caching durations in Section 6.4.2.

22

5. METHODOLOGY

To evaluate the performance of ChargeCache, we use a cycle-accurate DRAM
simulator, Ramulator [42, 104], in CPU-trace-driven mode. CPU traces are collected
using a Pintool [54]. Table 5.1 lists the configuration of the evaluated systems. We
implement the HCRAC similarly to a 2-way associative cache that uses the LRU
policy.

Table 5.1: Simulated system configuration

Processor
1-8 cores, 4GHz clock frequency, 3-wide issue, 8
MSHRs/core, 128-entry instruction window

Last-level Cache 64B cache-line, 16-way associative, 4MB cache size

Memory
Controller

64-entry read/write request queues, FR-FCFS
scheduling policy [76, 99], open/closed row
policy [39, 40] for single/multi core

DRAM

DDR3-1600 [56], 800MHz bus frequency, 1/2
channels, 1 rank/channel, 8 banks/rank, 64K
rows/bank, 8KB row-buffer size, tRCD/tRAS 11/28
cycles

ChargeCache
128-entry (672 bytes)/core, 2-way associativity,
LRU replacement policy, 1ms caching duration,
tRCD/tRAS reduction 4/8 cycles

For area, power, and energy measurements, we modify McPAT [49] to implement
ChargeCache using 22nm process technology. We also use DRAMPower [7] to obtain
power/energy results of the off-chip main memory subsystem. We feed DRAMPower
with DRAM command traces obtained from our simulations using Ramulator.

We run 22 workloads from SPEC CPU2006 [105], TPC [107] and STREAM [106]
benchmark suites. We use SimPoint [28] to obtain traces from representative phases
of each application. For single-core evaluations, unless stated otherwise, we run
each workload for 1 billion instructions. For multi-core evaluations, we use 20
multi-programmed workloads by assigning a randomly-chosen application to each
core. We evaluate each configuration with its best performing row-buffer management
policy. Specifically, we use the open-row policy for single-core and closed-row policy
for multi-core configurations. We simulate the benchmarks until each core executes at
least 1 billion instructions. For both single and multi-core configurations, we first
warm up the caches and ChargeCache by fast-forwarding 200 million cycles.

We measure performance improvement for single-core workloads using the
Intructions per Cycle (IPC) metric. We measure multi-core performance using the

23

weighted speedup [84] metric. Prior work has shown that weighted speedup is a
measure of system throughput [23].

24

6. EVALUATION

We experimentally evaluate the following mechanisms: 1) ChargeCache [29], 2)
NUAT [82], which accesses only rows that are recently-refreshed at lower latency
than the DRAM standard, 3) ChargeCache + NUAT, which is a combination
of ChargeCache and NUAT [82] mechanisms, and 4) Low-Latency DRAM
(LL-DRAM) [26], which is an idealized comparison point where we assume all
rows in DRAM can be accessed with low latency, compared to our baseline
DDR3-1600 [56] memory, at any time, regardless of when they are accessed or
refreshed.

We primarily use a 128-entry ChargeCache, which provides an effective trade-off
between performance and hardware overhead. We analyze sensitivity to ChargeCache
capacity in Section 6.4.1. We evaluate LL-DRAM to show the upper limit of
performance improvement that can be achieved by reducing tRCD and tRAS.
LL-DRAM uses, for all DRAM accesses, the same reduced values for these timing
parameters as we use for ChargeCache hits. In other words, LL-DRAM is the same as
ChargeCache with a 100% hit rate.

We compare the performance of our mechanism against the most closely related
previous work, NUAT [82], and also show the benefit of using both ChargeCache
and NUAT together. The key idea of NUAT is to access recently-refreshed rows at
low latency, because these rows are already highly-charged. Thus, NUAT does not
usually access rows that are recently-accessed at low latency, and hence it does not
exploit existing RLTL (Row-Level Temporal Locality) present in many applications.
As we show in Section 3, the fraction of activations that are to rows that are
recently-accessed by the application is much higher than the fraction of activations
that are to rows that are recently-refreshed. In other words, many workloads have very
high RLTL, which is not exploited by NUAT. As a result, we expect ChargeCache to
significantly outperform NUAT since it can reduce DRAM latency for a much greater
fraction of DRAM accesses than NUAT. To quantitatively prove our expectation that
ChargeCache should widely outperform NUAT, we implement NUAT in Ramulator
using the default 5PB configuration used in [82].

Note that NUAT bins the rows into different latency categories based on how recently
they were refreshed. For instance, NUAT accesses rows that were refreshed between
0− 6ms ago with different tRCD and tRAS parameters than rows that were refreshed
between 6 − 16ms ago. We determined the different timing parameters of different
NUAT bins using SPICE simulations. Although ChargeCache can implement a similar
approach to NUAT by using multiple caching durations, our RLTL results motivate
a single caching duration since a row is typically accessed within 1ms (as shown in
Section 3). A row that hits in ChargeCache is always accessed with reduced timings
(Section 4.3).

25

6.1 Impact on Performance

Figure 6.1 shows the performance of single-core and eight-core workloads. The figure
also includes the number of row misses per kilo-cycles (RMPKC) to show row
activation intensity, which provides insight into the RLTL of the workload.

Single-core. Figure 6.1a shows the performance improvement over the baseline system
for single-core workloads. These workloads are sorted in ascending order of RMPKC.
ChargeCache achieves up to 9.3% (an average of 2.1%) speedup.

Our mechanism outperforms NUAT and achieves a speedup close to LL-DRAM
with a few exceptions. Applications that have a wide gap in performance between
ChargeCache and LL-DRAM (such as mcf, omnetpp) access a large number of
DRAM rows and exhibit high row-reuse distance [37]. A high row-reuse distance
indicates that there is large number of accesses to other rows between two accesses
to the same row. Due to this reason, ChargeCache cannot retain the addresses of
highly-charged rows until the next access to that row. Increasing the number of
ChargeCache entries or employing cache management policies aware of reuse
distance or thrashing [16, 72, 81] may improve the performance of ChargeCache
for such applications. We leave the evaluation of these methods for future work.
We conclude that ChargeCache significantly reduces execution time for most
high-RMPKC workloads and outperforms NUAT for all but few workloads.

Eight-core. Figure 6.1b shows the speedup on eight-core multiprogrammed
workloads. On average, ChargeCache and NUAT improve performance by 8.6% and
2.5%, respectively. Employing ChargeCache in combination with NUAT achieves
a 9.6% speedup, which is only 3.8% less than the improvement obtained using
LL-DRAM. Although the multiprogrammed workloads are composed of the same
applications as in single-core evaluations, we observe much higher performance
improvements among eight-core workloads. The reason is twofold.

First, since multiple cores share a limited capacity LLC, simultaneously running
applications compete for the LLC. Thus, individual applications access main memory
more often, which leads to higher RMPKC. This makes the workload performance
more sensitive to main memory latency [5, 31, 41]. Second, the memory controllers
receive memory requests from multiple simultaneously-running applications to a
limited number of memory banks. Such requests are likely to target different rows
since they use separate memory regions and these regions map to separate rows.
Therefore, applications running concurrently exacerbate the bank-conflict rate and
increase the number of row activations that hit in ChargeCache.

Overall, ChargeCache improves performance by up to 8.1% (11.3%) and 2.1% (8.6%)
on average for single-core (eight-core) workloads. It outperforms NUAT for most of
the applications and using NUAT in combination with ChargeCache improves the
performance slightly further.

6.2 Impact on DRAM Energy

ChargeCache incurs negligible area and power overheads (Section 6.3). Because
it reduces execution time with negligible overhead, it leads to significant energy

26

051
0

1
5

2
0

0
%

2
%

4
%

6
%

8
%

1
0

%
1

2
%

1
4

%
1

6
%

RMPKC

Speedup

N
U

A
T

C
h

ar
ge

C
ac

h
e

C
h

ar
ge

C
ac

h
e

 +
 N

U
A

T
Lo

w
-L

at
en

cy
 D

R
A

M

R
M

P
K

C
 (

R
o

w
 M

is
se

s
p

er
 K

ilo
-c

yc
le

)

(a
)

1
0

1
5

2
0

2
5

3
0

0
%

2
%

4
%

6
%

8
%

1
0
%

1
2
%

1
4
%

1
6
%

w
5

w
2

w
1
6

w
1

w
2
0

w
1
9

w
1
4

w
4

w
7

w
1
0

w
3

w
1
8

w
1
2

w
9

w
1
3

w
1
5

w
8

w
6

w
1
1

w
1
7

A
V
G

RMPKC

Speedup

(b
)

Fi
gu

re
6.

1:
Sp

ee
du

p
w

ith
C

ha
rg

eC
ac

he
,N

U
A

T
an

d
L

ow
-L

at
en

cy
D

R
A

M
fo

rs
in

gl
e-

co
re

an
d

ei
gh

t-
co

re
w

or
kl

oa
ds

((
a)

Si
ng

le
-c

or
e

w
or

kl
oa

ds
,(

b)
E

ig
ht

-c
or

e
w

or
kl

oa
ds

).

27

savings. Even though ChargeCache increases the energy efficiency of the entire
system, we quantitatively evaluate the energy savings only for the DRAM subsystem
since Ramulator [42] does not have a detailed CPU model.

Figure 6.2 shows the average and maximum DRAM energy savings for single-core
and eight-core workloads. ChargeCache reduces energy consumption by up to 6.9%
(14.1%) and on average 1.8% (7.9%) for single-core (eight-core) workloads. We
conclude that ChargeCache is effective at improving the energy efficiency of the
DRAM subsystem, as well as the entire system.

0%

5%

10%

15%

Single-core Eight-core

D
R

A
M

 E
n

er
gy

R

ed
u

ct
io

n

Average Maximum

Figure 6.2: DRAM energy reduction of ChargeCache.

6.3 Area and Power Consumption Overhead

HCRAC (Highly-Charged Row Address Cache) is the most area/power demanding
component of ChargeCache. The overhead of EC and IIC is negligible since they are
just two simple counters. As we replicate ChargeCache on a per-core and per-memory
channel basis, the total area and power overhead ChargeCache introduces depends on
the number of cores and memory channels.2 The total storage requirement is given
by Equation 6.1, where C are MC are the number of cores and memory channels,
respectively. LRUbits depends on ChargeCache associativity. EntrySize is calculated
using Equation 6.2, where R, B, and Ro are the number of ranks, banks, and rows in
DRAM, respectively.

Storagebits =C ∗MC ∗Entries∗ (EntrySizebits +LRUbits) (6.1)

EntrySizebits = log2(R)+ log2(B)+ log2(Ro)+1 (6.2)

Area. Our eight-core configuration has two memory channels. This introduces a total
of 5376 bytes in storage requirement for a 128-entry ChargeCache, corresponding to
an area of 0.022 mm2. This overhead is only 0.24% of the 4MB LLC.

2Note that sharing ChargeCache across cores can result in even lower overheads. We leave the
exploration of such designs to future work.

28

Power Consumption. ChargeCache is accessed on every activate and precharge
command issued by the memory controller. On an activate command, ChargeCache is
searched for the corresponding row address. On a precharge command, the address
of the precharged row is inserted into ChargeCache. ChargeCache entries are
periodically invalidated to ensure they do not exceed a specified caching duration.
These three operations increase dynamic power consumption in the memory
controller, and the ChargeCache storage increases static power consumption. Our
analysis indicates that ChargeCache consumes 0.149 mW on average. This is only
0.23% of the average power consumption of the entire 4MB LLC. Note that we
include the effect of this additional power consumption in our DRAM energy
evaluations in Section 6.2. We conclude that ChargeCache incurs almost negligible
chip area and power consumption overheads.

6.4 Sensitivity Studies

ChargeCache performance depends mainly on two variables: HCRAC capacity
and caching duration. We observed that associativity has a negligible effect on
ChargeCache performance. In our experiments, increasing the associativity of
HCRAC from two to full-associativity improved the hit rate by only 2%. We analyze
the hit rate and performance impact of capacity and caching duration in more detail.

6.4.1 ChargeCache capacity

Figure 6.3 shows the average hit rate versus capacity of ChargeCache for single-core
and eight-core systems. The horizontal dashed lines indicate the maximum hit rate
achievable with an unlimited-capacity ChargeCache. We observe that 128 entries is a
sweet spot between hit rate and storage overhead. Such a configuration yields 38%
and 66% hit rate for single-core and eight-core systems, respectively. The storage
requirement for a 128-entry ChargeCache is only 672 bytes per core assuming our
two-channel main memory (see Section 6.3).

Figure 6.4 shows the speedup with various ChargeCache capacities. Larger capacities
provide higher performance thanks to the higher ChargeCache hit rate. However, they
also incur higher hardware overhead. For a 128-entry capacity (672 bytes per-core),
ChargeCache provides 8.8% performance improvement, and for a 1024-entry capacity
(5376 bytes per-core) it provides 10.6% performance improvement. We conclude that
ChargeCache is effective at various sizes, but its benefits start to diminish at higher
capacities.

6.4.2 Caching duration

Increasing the caching duration may improve the hit rate by decreasing the number
of invalidated entries. We evaluate several caching durations to determine the duration
value that provides favorable performance. For each caching duration, Table 6.1 shows
the tRCD and tRAS values which we obtain from our circuit-level SPICE simulations.
We also provide the default timing parameters used as a baseline in the first row of the
table.

29

0%

20%

40%

60%

80%

100%

C
h

ar
ge

C
ac

h
e

H
it

-R
at

e

Number of ChargeCache Entries

Single-core
Eight-core
Single-core (Unlimited Size)
Eight-core (Unlimited Size)

Figure 6.3: ChargeCache hit rate for single-core and eight-core systems at 1ms
caching duration.

Table 6.1: tRCD and tRAS for different caching durations (determined via SPICE
simulations)

Caching Duration
(ms) tRCD (ns) tRAS (ns)

N/A (Baseline) 13.75 35
1 8 22
4 9 24
16 11 28

30

0%

5%

10%

15%

Sp
ee

d
u

p

Number of ChargeCache Entries

Single-core Eight-core

Figure 6.4: Speedup versus ChargeCache capacity.

0%

20%

40%

60%

80%

100%

0%

3%

6%

9%

12%

15%

1ms 4ms 8ms 16ms 1ms 4ms 8ms 16ms

Single-core Eight-core

H
it

 R
at

e

Sp
ee

d
u

p

Speedup ChargeCache Hit-Rate

Figure 6.5: Speedup and ChargeCache hit rate for different caching durations

Figure 6.5 shows how ChargeCache speedup and ChargeCache hit rate vary with
different caching durations. We make two observations. First, increasing the caching
duration negatively affects the performance improvement of ChargeCache. This is
because a longer caching duration leads to lower reductions in tRCD and tRAS
(as Table 6.1 shows), thereby reducing the benefit of a ChargeCache hit. Second,
ChargeCache hit rate increases slightly (by about 2%) for the single-core system but
remains almost constant for the eight-core system when caching duration increases.
The latter is due to the large number of bank conflicts in the 8-core system, as we
explained in Section 3. With many bank conflicts, the aggregate number of precharge
commands is high and ChargeCache evicts entries very frequently even with a 1ms
caching duration. Thus, a longer caching duration does not have much effect on hit
rate.

We conclude that, with a longer caching duration, the improvement in ChargeCache
hit rate does not make up for the loss in the reduction of the timing parameters.
We conclude that ChargeCache is effective for various caching durations, yet the
empirically best caching duration is 1ms, which leads to the highest performance
improvement.

31

32

7. DISCUSSION

7.1 Temperature Independence

Charge leakage rate of DRAM cells approximately doubles for every 10◦C increase in
the temperature [38, 47, 50, 57, 73]. This observation can be exploited to lower the
DRAM latency when operating at low temperatures. A previous study, Adaptive
Latency DRAM (AL-DRAM) [47], proposes a mechanism to improve system
performance by reducing the DRAM timing parameters at low operating temperature.
It is based on the premise that DRAM typically does not operate at temperatures close
to the worst-case temperature (85◦ C) even when it is heavily accessed. However, new
3D-stacked DRAM technologies such as HMC [30], HBM [32], WideIO [17] may
operate at significantly higher temperatures due to tight integration of multiple stack
layers [4, 46, 71]. Therefore, dynamic latency scaling techniques such as AL-DRAM
may be less useful in these scenarios.

ChargeCache is not based on the charge difference that occurs due to temperature
dependence. Rather, we exploit the high level of charge in recently-precharged rows
to reduce timing parameters during later accesses to such rows. After conducting tests
to determine the reduction in timing parameters (for ChargeCache hits) at worst-case
temperatures, we find that these timing parameters can be reduced independently of
the operating temperature. Dynamic latency scaling can still be used in conjunction
with ChargeCache at low temperatures to reduce the access latency even further.

7.2 Applicability to Other DRAM Standards

Although we evaluate only DDR3-based main memory within the scope of this thesis,
implementing ChargeCache for other DRAM standards is straightforward. In theory,
ChargeCache is applicable to any memory technology where cells are volatile (leak
charge over time). However, the memory interface can prevent the implementation
of ChargeCache entirely in the memory controller. For example, RL-DRAM [101] is a
DRAM type incompatible with ChargeCache. In RL-DRAM, read and write operations
are directly handled by READ and WRITE commands without explicitly activating and
precharging DRAM rows. Hence, the RL-DRAM memory controller does not have
control over the activation delay of the rows and the timing parameters tRCD and tRAS
do not exist.

However, ChargeCache can be used with to a large set of specifications derived from
DDR (DDRx, GDDRx, LPDDRx, etc.) in a manner similar to the mechanism described
in this work, without modifying the DRAM architecture at all. All of these memories
require ACT and PRE commands to explicitly open and close DRAM rows. Using
ChargeCache with 3D-stacked memories [46, 52] such as WideIO [17], HBM [32]
and HMC [30] is also straightforward. The difference is that the DRAM controller,

33

and hence ChargeCache, may be implemented in the logic layer of the 3D-stacked
memory chip instead of the processor chip.

34

8. RELATED WORK

To our knowledge, this work is the first to (i) show that applications typically exhibit
significant Row-level Temporal Locality (RLTL) and (ii) exploit this locality to improve
system performance by reducing the latency of requests to recently-accessed rows.

We have already qualitatively and quantitatively (in Sections 3 and 6) compared
ChargeCache to NUAT [82], which reduces access latency to only recently-refreshed
rows. We have shown that ChargeCache can provide significantly higher average
latency reduction than NUAT because RLTL is usually high, whereas the fraction of
accesses to rows that are recently-refreshed is typically low.

Other previous works have proposed techniques to reduce performance degradation
caused by long DRAM latencies. They focused on 1) enhancing the DRAM, 2)
exploiting variations in manufacturing process and operating conditions, 3)
developing several memory scheduling policies. We briefly summarize how
ChargeCache differs from these works.

Enhancing DRAM Architecture. Lee at al. propose Tiered-Latency DRAM
(TL-DRAM) [48] which divides each subarray into near and far segments using
isolation transistors. With TL-DRAM, the memory controller accesses the near
segment with lower latency since the isolation transistor reduces bitline capacitance in
that segment. Our mechanism could be implemented on top of TL-DRAM to reduce
the access latency for both the near and far segment. Kim et al. unlock parallelism
among subarrays at low cost with SALP [41]. The goal of SALP is to reduce DRAM
latency by providing more parallelism to reduce the impact of bank conflicts. O et
al [67] propose a DRAM architecture where sense amplifiers are decoupled from
bitlines to mitigate precharge latency. Choi et al [12] propose to utilize multiple
DRAM cells to store a single bit when sufficient DRAM capacity is available. By
using multiple cells, they reduce activation, precharge and refresh latencies. Other
works [8, 9, 27, 78–80, 85, 96] also propose new DRAM architectures to lower
DRAM latency.

Unlike ChargeCache, all these works require changes to the DRAM architecture itself.
The approaches taken by these works are largely orthogonal and ChargeCache could
be implemented together with any of these mechanisms to further improve the DRAM
latency.

Exploiting Process and Operating Condition Variations. Recent studies [6, 47]
proposed methods to reduce the safety margins of the DRAM timing parameters
when operating conditions are appropriate (i.e., not worst-case). Unlike these works,
ChargeCache is largely independent of operating conditions like temperature, as
discussed in Section 7.1, and is orthogonal to these latency reduction mechanisms.

Memory Request Scheduling Policies. Memory request scheduling policies

35

(e.g., [39, 40, 44, 62, 63, 76, 87–89, 93]) reduce the average DRAM access latency
by improving DRAM parallelism, row-buffer locality and fairness in especially
multi-core systems. ChargeCache can be employed in conjunction with the
scheduling policy that best suits the application and the underlying architecture.

36

9. CONCLUSION

We introduce ChargeCache, a new, low-overhead mechanism that dynamically
reduces the DRAM timing parameters for recently-accessed DRAM rows.
ChargeCache exploits two key observations that we demonstrate in this work: 1)
a recently-accessed DRAM row has cells with high amount of charge and thus
can be accessed faster, 2) many applications repeatedly access rows that are
recently-accessed.

Our extensive evaluations of ChargeCache on both single-core and multi-core systems
show that it provides significant performance benefit and DRAM energy reduction at
very modest hardware overhead. ChargeCache requires no modifications to the existing
DRAM chips and occupies only a small area on the memory controller.

We conclude that ChargeCache is a simple yet efficient mechanism to dynamically
reduce DRAM latency, which significantly improves both the performance and energy
efficiency of modern systems.

37

38

REFERENCES

[1] Awasthi, M., Nellans, D. W., Balasubramonian, R., and Davis, A. Prediction
based DRAM row-buffer management in the many-core era. In PACT
(2011).

[2] Baer, J.-L., and Chen, T.-F. An effective on-chip preloading scheme to reduce
data access penalty. In ICS (1991).

[3] Bekerman, M., Jourdan, S., Ronen, R., Kirshenboim, G., Rappoport, L.,
Yoaz, A., and Weiser, U. Correlated load-address predictors. In ISCA
(1999).

[4] Black, B., Annavaram, M., Brekelbaum, N., DeVale, J., Jiang, L., Loh,
G. H., McCauley, D., Morrow, P., Nelson, D. W., Pantuso, D., Reed,
P., Rupley, J., Shankar, S., Shen, J., and Webb, C. Die stacking (3D)
microarchitecture. In MICRO (2006).

[5] Chandra, D., Guo, F., Kim, S., and Solihin, Y. Predicting inter-thread cache
contention on a chip multi-processor architecture. In HPCA (2005).

[6] Chandrasekar, K., Goossens, S., Weis, C., Koedam, M., Akesson, B., Wehn,
N., and Goossens, K. Exploiting expendable process-margins in
DRAMs for run-time performance optimization. In DATE (2014).

[7] Chandrasekar, K., Weis, C., Akesson, B., Wehn, N., and Goossens, K.
Towards variation-aware system-level power estimation of DRAMs:
an empirical approach. In DAC (2013).

[8] Chang, K. K.-W., et al. Low-cost inter-linked subarrays (LISA): Enabling fast
inter-subarray data movement in DRAM. In HPCA (2016).

[9] Chang, K. K.-W., Lee, D., Chishti, Z., Alameldeen, A. R., Wilkerson,
C., Kim, Y., and Mutlu, O. Improving DRAM performance by
parallelizing refreshes with accesses. In HPCA (2014).

[10] Charney, M. J., and Puzak, T. R. Prefetching and memory system behavior of
the SPEC95 benchmark suite. IBM JRD (1997).

[11] Chatterjee, N., Shevgoor, M., Balasubramonian, R., Davis, A., Fang, Z.,
Illikkal, R., and Iyer, R. Leveraging heterogeneity in DRAM main
memories to accelerate critical word access. In MICRO (2012).

39

[12] Choi, J., Shin, W., Jang, J., Suh, J., Kwon, Y., Moon, Y., and Kim, L.-S.
Multiple clone row DRAM: a low latency and area optimized DRAM.
In ISCA (2015).

[13] Chou, Y., Fahs, B., and Abraham, S. Microarchitecture optimizations for
exploiting memory-level parallelism. In ISCA (2004).

[14] Das, R., Ausavarungnirun, R., Mutlu, O., Kumar, A., and Azimi, M.
Application-to-core mapping policies to reduce memory system
interference in multi-core systems. In HPCA (2013).

[15] Ding, W., Guttman, D., and Kandemir, M. Compiler support for optimizing
memory bank-level parallelism. In MICRO (2014).

[16] Duong, N., Zhao, D., Kim, T., Cammarota, R., Valero, M., and Veidenbaum,
A. V. Improving cache management policies using dynamic reuse
distances. In MICRO (2012).

[17] Dutoit, D., Bernard, C., Cheramy, S., Clermidy, F., Thonnart, Y., Vivet,
P., Freund, C., Guerin, V., Guilhot, S., Lecomte, S., et al. A 0.9
pJ/bit, 12.8 GByte/s WideIO memory interface in a 3D-IC NoC-based
MPSoC. In VLSIT (2013).

[18] Ebrahimi, E., Lee, C. J., Mutlu, O., and Patt, Y. N. Prefetch-aware shared
resource management for multi-core systems. In ISCA (2011).

[19] Ebrahimi, E., Miftakhutdinov, R., Fallin, C., Lee, C. J., Joao, J. A., Mutlu,
O., and Patt, Y. N. Parallel application memory scheduling. In
MICRO (2011).

[20] Ebrahimi, E., Mutlu, O., Lee, C. J., and Patt, Y. N. Coordinated control of
multiple prefetchers in multi-core systems. In MICRO (2009).

[21] Ebrahimi, E., Mutlu, O., and Patt, Y. N. Techniques for bandwidth-efficient
prefetching of linked data structures in hybrid prefetching systems. In
HPCA (2009).

[22] Eickemeyer, R. J., and Vassiliadis, S. A load-instruction unit for pipelined
processors. IBM JRD (1993).

[23] Eyerman, S., and Eeckhout, L. System-level performance metrics for
multiprogram workloads. IEEE Micro (2008).

[24] Ghosh, M., and Lee, H.-H. S. Smart refresh: An enhanced memory controller
design for reducing energy in conventional and 3D die-stacked
DRAMs. In MICRO (2007).

[25] Glew, A. MLP yes! ILP no. In ASPLOS WACI (1998).

[26] GSI. Low latency DRAMs. http://www.gsitechnology.com.

[27] Gulur, N. D., Manikantan, R., Mehendale, M., and Govindarajan, R.
Multiple sub-row buffers in DRAM: unlocking performance and
energy improvement opportunities. In ICS (2012).

40

[28] Hamerly, G., Perelman, E., Lau, J., and Calder, B. Simpoint 3.0: Faster and
more flexible program phase analysis. JILP (2005).

[29] Hassan, H., Pekhimenko, G., Vijaykumar, N., Seshadri, V., Lee, D., Ergin,
O., and Mutlu, O. Chargecache: Reducing dram latency by
exploiting row access locality. In 2016 IEEE International Symposium
on High Performance Computer Architecture (HPCA) (2016), IEEE,
pp. 581–593.

[30] Hybrid Memory Cube Consortium. Hybrid memory cube specification 2.0.
Tech. rep., November 2014.

[31] Iyer, R., Zhao, L., Guo, F., Illikkal, R., Makineni, S., Newell, D., Solihin,
Y., Hsu, L., and Reinhardt, S. QoS policies and architecture for
cache/memory in CMP platforms. In SIGMETRICS (2007).

[32] JEDEC. High bandwidth memory (HBM) DRAM.

[33] Jeong, M. K., Yoon, D. H., Sunwoo, D., Sullivan, M., Lee, I., and Erez, M.
Balancing DRAM locality and parallelism in shared memory CMP
systems. In HPCA (2012).

[34] JESD209, J. S. Low power double data rate (lpddr) sdram specification. JEDEC
Solid State Technology Association 8 (2007).

[35] Jevdjic, D., Loh, G. H., Kaynak, C., and Falsafi, B. Unison cache: A scalable
and effective die-stacked DRAM cache. In MICRO (2014).

[36] Joao, J. A., Suleman, M. A., Mutlu, O., and Patt, Y. N. Bottleneck
identification and scheduling in multithreaded applications. In
ASPLOS (2012).

[37] Kandemir, M., Zhao, H., Tang, X., and Karakoy, M. Memory row reuse
distance and its role in optimizing application performance. In
SIGMETRICS (2015).

[38] Khan, S., Lee, D., Kim, Y., Alameldeen, A. R., Wilkerson, C., and Mutlu,
O. The efficacy of error mitigation techniques for DRAM retention
failures: a comparative experimental study. In SIGMETRICS (2014).

[39] Kim, Y., Han, D., Mutlu, O., and Harchol-Balter, M. ATLAS: A scalable
and high-performance scheduling algorithm for multiple memory
controllers. In HPCA (2010).

[40] Kim, Y., Papamichael, M., Mutlu, O., and Harchol-Balter, M. Thread
cluster memory scheduling: Exploiting differences in memory access
behavior. In MICRO (2010).

[41] Kim, Y., Seshadri, V., Lee, D., Liu, J., and Mutlu, O. A case for exploiting
subarray-level parallelism (SALP) in DRAM. In ISCA (2012).

[42] Kim, Y., Yang, W., and Mutlu, O. Ramulator: A fast and extensible DRAM
simulator. In CAL (2015).

41

[43] Lee, C. J., Mutlu, O., Narasiman, V., and Patt, Y. N. Prefetch-aware DRAM
controllers. In MICRO (2008).

[44] Lee, C. J., Narasiman, V., Ebrahimi, E., Mutlu, O., and Patt, Y. N.
DRAM-aware last-level cache writeback: Reducing write-caused
interference in memory systems. UT-Austin, HPS, Tech. Report
(2010).

[45] Lee, C. J., Narasiman, V., Mutlu, O., and Patt, Y. N. Improving memory
bank-level parallelism in the presence of prefetching. In MICRO
(2009).

[46] Lee, D., Ghose, S., Pekhimenko, G., Khan, S., and Mutlu, O. Simultaneous
multi-layer access: Improving 3D-stacked memory bandwidth at low
cost. TACO (2016).

[47] Lee, D., Kim, Y., Pekhimenko, G., Khan, S., Seshadri, V., Chang, K., and
Mutlu, O. Adaptive-latency DRAM: Optimizing DRAM timing for
the common-case. In HPCA (2015).

[48] Lee, D., Kim, Y., Seshadri, V., Liu, J., Subramanian, L., and Mutlu,
O. Tiered-latency DRAM: A low latency and low cost DRAM
architecture. In HPCA (2013).

[49] Li, S., Ahn, J. H., Strong, R. D., Brockman, J. B., Tullsen, D. M., and
Jouppi, N. P. McPAT: an integrated power, area, and timing modeling
framework for multicore and manycore architectures. In MICRO
(2009).

[50] Liu, J., Jaiyen, B., Kim, Y., Wilkerson, C., and Mutlu, O. An
experimental study of data retention behavior in modern DRAM
devices: Implications for retention time profiling mechanisms. In
ISCA (2013).

[51] Liu, J., Jaiyen, B., Veras, R., and Mutlu, O. RAIDR: Retention-aware
intelligent DRAM refresh. In ISCA (2012).

[52] Loh, G. H. 3D-stacked memory architectures for multi-core processors. In
ISCA (2008).

[53] Lotfi-Kamran, P., Grot, B., Ferdman, M., Volos, S., Kocberber, O., Picorel,
J., Adileh, A., Jevdjic, D., Idgunji, S., Ozer, E., et al. Scale-out
processors. In ISCA (2012).

[54] Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace,
S., Reddi, V. J., and Hazelwood, K. Pin: building customized
program analysis tools with dynamic instrumentation. In PLDI
(2005).

[55] Matick, R. E., and Schuster, S. E. Logic-based eDRAM: Origins and rationale
for use. IBM Journal of Research and Development 49, 1 (2005), 145.

[56] Micron Technology. 4Gb: x4, x8, x16 DDR3 SDRAM, 2011.

42

[57] Mori, Y., Ohyu, K., Okonogi, K., and Yamada, R.-i. The origin of variable
retention time in DRAM. In IEDM (2005).

[58] Moscibroda, T., and Mutlu, O. Memory performance attacks: Denial of
memory service in multi-core systems. In USENIX Security (2007).

[59] Muralidhara, S. P., Subramanian, L., Mutlu, O., Kandemir, M., and
Moscibroda, T. Reducing memory interference in multicore systems
via application-aware memory channel partitioning. In MICRO
(2011).

[60] Mutlu, O., Kim, H., and Patt, Y. N. Address-value delta (AVD) prediction:
Increasing the effectiveness of runahead execution by exploiting
regular memory allocation patterns. In MICRO (2005).

[61] Mutlu, O., Kim, H., and Patt, Y. N. Techniques for efficient processing in
runahead execution engines. In ISCA (2005).

[62] Mutlu, O., and Moscibroda, T. Stall-time fair memory access scheduling for
chip multiprocessors. In MICRO (2007).

[63] Mutlu, O., and Moscibroda, T. Parallelism-aware batch scheduling:
Enhancing both performance and fairness of shared DRAM systems.
In ISCA (2008).

[64] Mutlu, O., Stark, J., Wilkerson, C., and Patt, Y. N. Runahead execution:
An alternative to very large instruction windows for out-of-order
processors. In HPCA (2003).

[65] Mutlu, O., and Subramanian, L. Research problems and opportunities in
memory systems. SUPERFRI (2014).

[66] Nair, P., Chou, C.-C., and Qureshi, M. K. A case for refresh pausing in DRAM
memory systems. In HPCA (2013).

[67] O, S., Son, Y. H., Kim, N. S., and Ahn, J. H. Row-buffer decoupling: a case
for low-latency DRAM microarchitecture. In ISCA (2014).

[68] Pai, V. S., and Adve, S. Code transformations to improve memory parallelism.
In MICRO (1999).

[69] Palacharla, S., and Kessler, R. Evaluating stream buffers as a secondary cache
replacement. In ISCA (1994).

[70] Patt, Y. N., Hwu, W.-m., and Shebanow, M. HPS, a new microarchitecture:
rationale and introduction. In MICRO (1985).

[71] Puttaswamy, K., and Loh, G. H. Thermal analysis of a 3d die-stacked
high-performance microprocessor. In GLSVLSI (2006).

[72] Qureshi, M. K., Jaleel, A., Patt, Y. N., Steely, S. C., and Emer, J. Adaptive
insertion policies for high performance caching. In ISCA (2007).

43

[73] Qureshi, M. K., Kim, D.-H., Khan, S., Nair, P. J., and Mutlu, O. AVATAR: A
variable-retention-time (VRT) aware refresh for DRAM systems. In
DSN (2015).

[74] Qureshi, M. K., Suleman, M. A., and Patt, Y. N. Line distillation: Increasing
cache capacity by filtering unused words in cache lines. In HPCA
(2007).

[75] Rau, B. R. Pseudo-randomly interleaved memory. In ISCA (1991).

[76] Rixner, S., Owens, J. D., Mattson, P., Kapasi, U. J., and Dally, W. J. Memory
access scheduling. In ISCA (2000).

[77] Sato, Y., Suzuki, T., Aikawa, T., Fujioka, S., Fujieda, W., Kobayashi, H.,
Ikeda, H., Nagasawa, T., Funyu, A., Fuji, Y., et al. Fast cycle RAM
(FCRAM); a 20-ns random row access, pipe-lined operating DRAM.
In VLSI Circuits (1998).

[78] Seshadri, V., Hsieh, K., Boroumand, A., Lee, D., et al. Fast bulk bitwise AND
and OR in DRAM. In CAL (2015).

[79] Seshadri, V., Kim, Y., Fallin, C., Lee, D., Ausavarungnirun, R., Pekhimenko,
G., Luo, Y., Mutlu, O., Gibbons, P. B., Kozuch, M. A., et al.
RowClone: Fast and energy-efficient in-DRAM bulk data copy and
initialization. In MICRO (2013).

[80] Seshadri, V., Mullins, T., Boroumand, A., Mutlu, O., Gibbons, P. B.,
Kozuch, M. A., and Mowry, T. C. Gather-scatter DRAM: In-DRAM
address translation to improve the spatial locality of non-unit strided
accesses. In MICRO (2015).

[81] Seshadri, V., Mutlu, O., Kozuch, M. A., and Mowry, T. C. The
evicted-address filter: A unified mechanism to address both cache
pollution and thrashing. In PACT (2012).

[82] Shin, W., Yang, J., Choi, J., , and Kim, L.-S. NUAT: A non-uniform access
time memory controller. In HPCA (2014).

[83] Smith, B. J. A pipelined, shared resource MIMD computer. In ICPP (1978).

[84] Snavely, A., and Tullsen, D. M. Symbiotic jobscheduling for a simultaneous
mutlithreading processor. ASPLOS (2000).

[85] Son, Y. H., Seongil, O., Ro, Y., Lee, J. W., and Ahn, J. H. Reducing memory
access latency with asymmetric DRAM bank organizations. In ISCA
(2013).

[86] Srinath, S., Mutlu, O., Kim, H., and Patt, Y. N. Feedback directed
prefetching: Improving the performance and bandwidth-efficiency of
hardware prefetchers. In HPCA (2007).

[87] Subramanian, L., Lee, D., Seshadri, V., Rastogi, H., and Mutlu, O. The
blacklisting memory scheduler: Achieving high performance and
fairness at low cost. In ICCD (2014).

44

[88] Subramanian, L., Seshadri, V., Ghosh, A., Khan, S., and Mutlu, O. The
application slowdown model: Quantifying and controlling the impact
of inter-application interference at shared caches and main memory.
In MICRO (2015).

[89] Subramanian, L., Seshadri, V., Kim, Y., Jaiyen, B., and Mutlu, O. MISE:
Providing performance predictability and improving fairness in shared
main memory systems. In HPCA (2013).

[90] Suleman, M. A., Mutlu, O., Qureshi, M. K., and Patt, Y. N. Accelerating
critical section execution with asymmetric multi-core architectures.
In ASPLOS (2009).

[91] Thornton, J. E. Parallel operation in the Control Data 6600. In Fall Joint
Computer Conference (1964).

[92] Tomasulo, R. M. An efficient algorithm for exploiting multiple arithmetic units.
IBM JRD (1967).

[93] Usui, H., Subramanian, L., Chang, K. K.-W., and Mutlu, O. DASH:
Deadline-aware high-performance memory scheduler for
heterogeneous systems with hardware accelerators. TACO (2016).

[94] Wilkes, M. V. The memory gap and the future of high performance memories.
In ACM SIGARCH Computer Architecture News 29 (2001).

[95] Wulf, W. A., and McKee, S. A. Hitting the memory wall: implications of the
obvious. In ACM SIGARCH Computer Architecture News 23 (1995).

[96] Zhang, T., Chen, K., Xu, C., Sun, G., Wang, T., and Xie, Y. Half-DRAM:
a high-bandwidth and low-power DRAM architecture from the
rethinking of fine-grained activation. In ISCA (2014).

[97] Zhang, Z., Zhu, Z., and Zhang, X. A permutation-based page interleaving
scheme to reduce row-buffer conflicts and exploit data locality. In
MICRO (2000).

[98] Zhao, W., and Cao, Y. New generation of predictive technology model for
sub-45 nm early design exploration. IEEE TED (2006).

[99] Zuravleff, W. K., and Robinson, T. Controller for a synchronous dram that
maximizes throughput by allowing memory requests and commands
to be issued out of order, 1997. US Patent 5,630,096.

[100] Joint electron device engineering council (JEDEC). https://www.jedec.org.
Accessed: 2016-08-02.

[101] Micron RLDRAM 2 and 3 specifications.
http://www.micron.com/products/dram/rldram-memory.

[102] Predictive technology model (ptm). http://ptm.asu.edu/.

[103] Rambus DRAM power model (2010). http://www.rambus.com/energy.

45

[104] Ramulator (source code). https://github.com/CMU-SAFARI/ramulator.

[105] SPEC CPU 2006. http://www.spec.org/cpu2006.

[106] STREAM Benchmark. http://www.streambench.org/.

[107] TPC. http://www.tpc.org/.

46

CURRICULUM VITAE

Name-Surname : Hasan Hassan

Nationality : Turkish, Bulgarian

Birth Date and Place : July 4, 1991, Kubrat (Bulgaria)

e-mail : hasanibrahimhasan@gmail.com

EDUCATION:

• Bachelor’s Degree: 2014, TOBB University of Economics and Technology,

Engineering Faculty, Computer Engineering

EXPERIENCE:

Year Place Position

2011 Kasirga Microprocessors Research Laboratory Computer Enginnering Intern

2012 Taleworlds Entertainment Computer Engineering Intern

2013 Berlin Technical University Computer Engineering Intern

2014-2016 TOBB University of Economics and Technology Distinguished Scholar

2015 Carnegie Mellon University Research Scholar

LANGUAGES: Turkish, English, Bulgarian

RELATED PUBLICATIONS:

• Hassan, H., Pekhimenko, G., Vijaykumar, N., Seshadri, V., Lee, D., Ergin, O., and
Mutlu, O. (2016, March). ChargeCache: Reducing DRAM latency by exploiting row
access locality. In 2016 IEEE International Symposium on High Performance Computer
Architecture (HPCA) (pp. 581-593). IEEE.

• Chang, K. K., Kashyap, A., Hassan, H., Ghose, S., Hsieh, K., Lee, D., ... and Mutlu, O.
(2016, June). Understanding Latency Variation in Modern DRAM Chips: Experimental
Characterization, Analysis, and Optimization. In Proceedings of the 2016 ACM
SIGMETRICS International Conference on Measurement and Modeling of Computer
Science (pp. 323-336). ACM.

47

