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ABSTRACT 

Master of Science 

COLLABORATIVE TRUCKLOAD TRANSPORTATION PROCUREMENT 

WITH MULTIPLE COALITIONS 

Soheyl ZEHTABIYAN 

TOBB University of Economics and Technology 

Institute of Natural and Applied Sciences 

Department of Industrial Engineering 

Supervisor: Assist. Prof. Dr. Gültekin KUYZU 

Date: April 2016  

We study formation of stable coalitions given a set of shippers and their lanes 

corresponding to regularly scheduled truckload shipment. In this thesis, selecting 

participants, deciding who should participate with whom, calculating the lowest cost 

operational solution and allocating the system-wide cost to the participants stand out as 

important problems. Collaborating shippers try to identify tours which consist of 

regularly scheduled shipment with minimal empty truck movements. Then, they must 

allocate the total cost of the collaborative solution to the participated firms and 

individual lanes such that the collaborative solution remains attractive to the 

participants. 

In the literature, solving the optimization problem minimization the total cost and 

allocating the calculated minimum cost are treated as successive but distinct phases. 

The cost minimizing optimization problem is solved with well-known operation 

research methods, while cooperative game theory concepts are used for cost allocation.  
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The minimum cost solution may render finding an acceptable cost allocation 

impossible. Besides, similar works in the literature assume that the collaborating firms 

will forge a single grand coalition. However, as the collaboration grows in size, a 

single grand coalition may become impractical and also it might leave several lanes 

out of the coalition, depriving shippers of significant cost savings. 

In this study, we propose algorithm to design coalition structure which consist of 

multiple disjoint stable coalitions. Each coalition must have a minimum cost 

collaborative solution with an acceptable cost allocation. Due to the complexity of the 

task hand, we devised a heuristic to find good quality solutions to this problem. 

Keywords: Lane covering, Collaborative logistics, Cooperative game theory, 

Coalition structure, Heuristics. 
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ÖZET 

Yüksek Lisans Tezi 

ÇOK KOALİSYONLU TAM KAMYON YÜKÜ GÖNDERİCİ İŞBİRLİĞİ 

Soheyl ZEHTABIYAN 

TOBB Ekonomi ve Teknoloji Üniveritesi 

Fen Bilimleri Enstitüsü 

Endüstri Mühendisliği Anabilim Dalı 

Danışman: Yrd. Doç. Dr. Gültekin KUYZU 

Tarih: Nisan 2016 

Gönderici işbirliği, son yıllarda ortaya çıkmış yeni bir işbirliği türüdür ve tedarik zinciri 

yönetiminde kurumlar arası yatay işbirliği sınıfına girmektedir. Sert rekabet koşulları, 

kaynak yetersizliği, iklim değişimi, güvenlik sorunları ve yeni kanuni düzenlemeler 

firmalar üzerindeki baskıyı artırmış ve geleneksel düşünce kalıplarını zorlayan yeni 

çözümler aramaya itmiştir. İşbirliği; daha geniş ve bütün sistemi kapsayan bir bakış 

açısı getirmesi nedeniyle yeni fırsatlar sunan bir strateji olarak görülmektedir. 

Gönderici işbirliğinde taşıyıcı firmalardan taşımacılık hizmeti alan bir grup gönderici 

firma bir araya gelir; ve taşıyıcı firmalarla grup olarak pazarlık yaparlar. Göndericiler 

işbirliği yapmak istediklerinde; hangi göndericilerin işbirliğine dahil edileceği, hangi 

göndericilerin rotalarının arka arkaya ekleneceği, ve oluşturulan rota birleştirme 

çözümünden doğan toplam maliyetin göndericilere ve hatta her bir rotaya dağıtılması 

konularında en iyi kararları vermek durumundadırlar.  

Literatürdeki çalışmalar işbirliği yapan göndericilerin tek bir koalisyon kurduğunu 

varsaymış ve bu tek koalisyonunun kurulması, devamı ve genişletilmesi konularını ele 

almışlardır.  
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Verilen bir koalisyon ve bu koalisyon için hesaplanan en küçük maliyetli çözüm için 

adil bir maliyet paylaşımı olup olmadığını konu almışlardır. Buna ek olarak, verilen bir 

koalisyon, çözüm ve maliyet paylaşma mekanizması için koalisyona katılmak isteyen 

yeni bir göndericinin koalisyona alınıp alınmaması kararını konu alan çalışmalar da 

mevcuttur. Büyük ölçekli gönderici işbirliği ağlarında sadece tek bir koalisyona izin 

verilmesi koordinasyonu zorlaştırmakta ve kabul edilebilir maliyet dağıtımına sahip 

geniş çaplı bir çözüm bulunmasını zorlaştırmaktadır.  

Bu çalışmada birden fazla ayrışık koalisyon içerebilen tam kamyon yükü gönderici 

işbirliği ağları ele alınmıştır.  Her biri adil maliyet dağıtımına sahip, ayrık 

koalisyonlardan oluşan en düşük toplam maliyetli koalisyon yapısının bulunması 

amaçlanmıştır. Gönderici ve rota sayıları arttıkça ve operasyonel kısıtlar eklendikçe bu 

kararları en iyi biçimde vermek gittikçe zorlaşmaktadır. Gerçek hayat durumlarında 

problem boyutlarının çok büyük olması beklendiği için özellikle büyük ölçekli problem 

örneklerinin çözümüne yönelik sezgisel algoritmalar geliştirilmiştir. 

Anahtar Kelimeler: İşbirlikçi lojistik ve tedarik zinciri, Sezgisel, Maliyet dağıtımı, 

İsbirlikliçi oyun kuramı 
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1. INTRODUCTION

Nowadays, transportation service providers are under a forbidding pressure. Incre-
asing pressure of customers to transportation service providers for better service
and the extremely dynamic circumstances have made the companies find more
efficient solutions for their operations. In order to overcome the ever growing
operational issues, companies employ various methods for managing their freight
transportation networks. Firms have found horizontal collaboration as an effec-
tive way to decrease their inefficiencies. Companies with traditionally separate
supply chains increasingly seek ways to identify and exploit win-win situations
in order to improve performance. In this study, we focus on collaborative truck-
load transportation procurement (CTTP), which is one of the forms of horizontal
collaboration in the supply chain.

In CTTP, companies aim to eliminate their empty truck movements which is gene-
rally the main source of inefficiency. Consequently, a group of shippers purchasing
the service of carriers can negotiate with carriers for better rates. More specifically,
collaborating shippers offer the carriers regularly scheduled multi-company tours
with little repositioning in exchange for reduced rates. These tours are attractive to
the carriers because reduced repositioning recovers lost operational efficiency due
to empty truck movements, and the regularity of the schedules help with driver
retention, another major concern for the carriers. We can take Transplace and Nis-
tevo companies in US and also Schenker and Celexor in Europe as some examples
for companies which have used this method to reduce their transportation costs.

After forming a coalition, shippers will know their partners and they can deter-
mine their pre-specified route. Then, they can determine the synergy of their col-
laboration by measuring the total cost saving. Allocating the total cost among the
shippers will play a crucial role in maintenance of the obtained coalition. The
departure of any of the coalition members could affect the whole system and so-
metimes it could even collapse the grand coalition. That is why designing a fair
cost allocation method is one of the indispensable topics in the CTTP literature.

In the literature on collaborative logistics, participants are assumed to be given,
and solving the optimization problem which minimizes the total cost and alloca-
ting the calculated minimum cost are treated as successive phases. The method of
selecting the participants is typically left unspecified. The cost minimizing opti-
mization problem is solved with well-known operation research methods, while
cooperative game theory concepts are used for cost allocation. The minimum cost
collaborative solution may render finding a fair cost allocation impossible.
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In order to obtain a single stable coalition, a great number of the lanes may have to be
excluded from the collaboration, which would not yield a favorable result in terms of
the savings of the shippers. Due to this fact, not only forming a single coalition would
be impractical in real-world problems, but also it would cause a significant increase in
the cost of collaboration.

In the literature, as the first step, determining a grand coalition with minimum cost, has
been studied by various operation research methods. Then, they have used the obtained
solution in the first step to suggest a fair cost allocation. In order to allocate total mi-
nimized cost fairly, cooperative game theory concepts have been used frequently as a
benchmark in the second step. According to the cooperative game theory, a fair cost
allocation has three important characteristics:

• Budget balance: In a budget balanced (efficient) system, the total amount of al-
located cost among the players must be exactly equal to the whole system’s cost.
According to this feature, no deficit or surplus are allowed in a budget balanced
system.

• Stability: In a stable system, none of the collaboration’s elements can find a better
alternative, so they would prefer to stay rather than breaking away from coalition.

• Individual rationality: In an individual rationally system, each player should not
gain less profit after entering a coalition, compared to its standalone cost.

Note that, in cooperative game theory, if a cost allocation can satisfy stability and budget
balance, it would be in the core. However the core of a cooperative game might be
empty. In fact, the cores of the cost allocation games arising in CTTP are highly probable
to be empty, under practical circumstances.

It is worth to mention that similar works in the literature assume that the collaborating
firms will form a single grand coalition. However, due to the great number of shippers
in the real-world problems, it is more likely that shippers will form multiple coalitions.
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As a brief look, we can categorize some major cooperative game theory based methods
in the literature which are struggling to find an acceptable solution:

• Shapley Value: One of the most widely known cost allocation methods in coope-
rative game theory is the Shapley value [30]. The Shapley value for a player is the
weighted average of the player’s marginal contribution to each subset of the col-
laboration. It can be interpreted as the average contribution of each player if the
coalition was built by adding one player at a time [5]. Unfortunately, a non-empty
core may not include the cost allocation obtained by the Shapley value. Another
major drawback of using the Shapley value in collaborative logistics is that it re-
quires the solution of an exponential number of optimization problems due to the
need to calculate the marginal contribution of each customer to each subset.

• Nucleolus: The nucleolus [29] is another well known cost allocation concept. The
nucleolus is the unique cost allocation that lexicographically maximizes the mini-
mal gain over all of the subsets of the collaboration. The nucleolus is in the core
if the core is non-empty. It is considered to be more desirable than others when
there are multiple cost allocations in the core. The nucleolus may exist even when
the core is empty.

• Dual based methods: An alternative cost allocation approach is the use of dual
prices when the cost or gain of each coalition is given by a linear program. In
fact, linear programming duality has been used to build core and approximate
core allocations for various cooperative games. In collaborative logistics, the cost
of a coalition is usually calculated by solving a covering type integer program.
A classic theorem by Bondareva [6] and Shapley [31] implies that for covering
games in which the cost of a coalition (or sub-coalition) is given by the minimum
cost solution to a covering integer program, the core is nonempty if and only if
the linear relaxation of the cost calculation IP has no integrality gap [28]. Thus,
constructing the coalition in a way to maximize the total savings will result in
an unstable coalition in most cases of logistics collaborations. Despite the fact
that this method has been used frequently in similar studies, calculating the linear
programing and also dual solutions for large real-word problems is extremely time
consuming and impractical.
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In CTTP, the whole system’s repositioning cost can be minimized by solving a lane co-
vering problem (LCP). LCP is a covering problem which can be solved efficiently as
minimum cost circulation flow problem which determines the order of lanes in a mi-
nimized cost cycle. Even though LCP is an extremely time efficient method, it lacks
important practical constraints on the cycles, e.g., length of the tours which cover the
lanes or the maximum number of the partners each shipper can collaborate. Adding such
constraints to the LCP results in NP-Hard LCP variants [10, 11, 21]. These constraints
also complicate the cost allocation process. While the base LCP yields a non-empty
core [26], constrained LCP variants are very highly likely to yield an empty core. As an
alternative, we can eliminate some elements of the grand coalition to obtain a coalition
with a fair cost allocation at the expense of increasing the total system-wide cost. Furt-
hermore, we can optimize this trade-off by solving a MIP [25], but this approach may
leave a high number of lanes outside of the collaboration.

As mentioned before, we follow an integrated approach in this study. Given a set of
candidate shippers and lanes belonging to these shippers, our objective is to find the
minimum cost coalition structure such that each coalition in the structure ensures the
existence of a fair cost allocation. In this thesis, we assume that multiple coalitions can
be formed in the CTTP network. We focus on determining a set of CTTP coalitions such
that each coalition is core stable, i.e. has a non-empty core, and the sum of the total
cost values of the coalitions is minimized. We assume that the cost of each coalition
is obtained by solving an NP-Hard LCP variant. We extend the MIP formulation of
Öner and Kuyzu [25] to the case of multiple coalitions. Since solving this MIP requires
embedding column and row generation into the branch-and-bound tree, we propose a
heuristic approach based on repeatedly solving unconstrained LCPs, which can be used
to obtain good quality solutions efficiently.

In this study, we first provide a formal statement of the problem we are working on
(§3). Second, we provide a mathematical model and analyze the difficulty of solving
the model. Then, we present our heuristic solution approach (§4). In §5, we demonstrate
how our approach performs through computational experiments on randomly generated
instances, and we provide concluding remarks in §6.
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2. LITERATURE REVIEW

As there are a large number of possible areas of supply chain management in which
collaboration can be formed, we see a great variety of studies on collaborative networks
in logistics and supply chain (see Danloup et al. [9]). Collaboration is widespread in
logistics and supply chain: ranging from purchasing, demand planning, and inventory
management to warehousing and transportation. Erhun and Keskinocak [12] review va-
rious forms of collaboration in the supply chain, and outline the potential benefits of
each.

Collaborative logistics has received an increasing level of attention in recent years. Audy
et al. [3] present five different coordination mechanisms found in the literature to sup-
port collaborative logistics, which the authors differentiate by their planning function,
sharing approach, and information, decision and financial flows. It is noted that, in most
cases, the logistics solution is planned first and then the sharing is set based on the plan.
The authors list a very few number of works in which logistics planning and gain sha-
ring is addressed simultaneously: most notably Agarwal and Ergun [1] who design a
mechanism to motivate the carriers in a liner shipping alliance to act in the best interest
of the alliance while maximizing their own profits.

Note that the research presented in this thesis approaches collaborative logistics from
the perspective of the customers of the carriers. Extensive collaborative activities among
carriers (including 3PLs) have been in place for a long period of time. There is a signi-
ficant body of research studying collaborative logistics from the perspective of carriers.
Most of the studies in this category, try to propose efficient ways to reduce the cost of
carriers, based on the same concepts (capacity sharing, decreasing operational cost,...).
Hernández et al. [16] studied collaboration problem under dynamic capacities. Kwon
et al. [22] propose integrated multi-round mechanism for truckload transportation. Si-
milar to our study, they provide a mathematical model and heuristic algorithm to their
problem. Agarwal and Ergun [1] and Kuo and Miller-Hooks [20], study other problem
variants of Carrier collaboration in the literature and also, Hu et al. [18], Agarwal et al.
[2], Kuo and Miller-Hooks [20], and Özener et al. [27] provide overviews of collabora-
tion among carriers in air, ocean, rail, and road transportation, respectively.

Since collaboration among the shippers is a relatively new practice in the literature of
collaborative logistics, unlike the carrier collaboration, there are few studies related to
shipper collaboration. Moore Jr et al. [24] used optimization. and simulation models
together in order to find the efficient routs of carriers for a centralized transportation
procurement department at Reynolds Metal Company. Cruijssen et al. [8] report a co-
operative distribution agreement reached in 1993 between eight competing medium-
sized Dutch producers of sweet and candy, and provide a broad review of horizontal
cooperation in transport and logistics. Groothedde [14] solves a hub network design
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optimization model using a simulated annealing algorithm which sequentially adds ship-
pers to gradually build the collaborative hub network. Cruijssen et al. [7] study joint
route planning among companies with distinct distribution networks but whose truck
depots are sufficiently close. In the last two works, the underlying optimization prob-
lems solved are well known in the vehicle routing literature, and the Shapley Value
is the chosen cost allocation method. Ergun, Kuyzu, and Savelsbergh [10, 11] study
the optimization problems arising in collaborative truckload transportation procurement
networks managed by 3PL companies in the U.S. They study the minimization of conti-
nuous move tours which cover the given sets of lanes and also propose the using of LCP
as well as greedy heuristics for some problems with driver and time restrictions (NP-
hard). Immorlica et al. [19] study cycle covering problem for bounded size cycles which
cover an edges subset of a graph. They give a (1+ln 2)-approximation for the cardina-
lity constrained LCP. Kuyzu [21] introduces another constraint into the LCP, motivated
by the need to limit the number of partners with whom the collaborative tours must be
coordinated, develops a column generation approach for the solution of the resulting
NP-Hard LCP variant. Özener and Ergun [26] study the cost/benefit allocation problem
of the LCP, derived from cooperative game theory. They design allocation methods ba-
sed on optimal dual prices to maintain the collaboration among selfish collaborators.
Hezarkhani et al. [17] further characterize the theoretical properties of dual based met-
hods for allocating the cost of the LCP. They put forward a general framework for the
possibilities/impossibilities of a complete characterization of the core in lane covering
games, which is obtained by dual solutions. Öner and Kuyzu [25] develop row and co-
lumn generation based approaches for the selection of a single core stable coalition in
CTTP when the operational cost is obtained by solving an LCP with cardinality, length,
and/or parter constraints.

Frisk et al. [13] suggest the equal profit method (EPM) which relatively is a new way
of allocating costs. They study cost allocation methods for a large fleet sharing appli-
cation in southern Sweden with eight forest companies. According to them, EPM is a
more favorable method to coalition members than other well-known methods, because
it has several implicit advantages for maintaining the collaboration. They claim that the
cost allocation obtained by the EPM is shown to be in the core when it is not empty.
Audy et al. [4] modify EPM and the alternative Cost Allocation methods to allocate
costs among four Canadian furniture companies. Lozano et al. [23] study the advantage
of collaboration in transportation problems. They compare different cooperative game
theory concepts for allocating benefits of horizontal cooperation by enumerating all of
the possible coalitions among four different companies under a simple linear cost saving
model.

All of the above mentioned works assume that the partners and the operational solution
of the collaboration are determined independent of the cost allocation. A few works
have recently relaxed this assumption. Vanovermeire and Sorensen [33] devise methods
for measuring and rewarding flexibility in collaborative logistics and incorporate them
into existing cost allocation mechanisms, such as the Shapley value and the nucleolus.
They propose a cost minimization problem which is yielded by the integration of the
operational planning methods in to the mentioned well-known cost allocation methods.
Vanovermeire and Sorensen [32] develop an iterative coalition building heuristic that
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integrates the Shapley value and due date change penalties into the cost-minimization
problem in a collaborative setting involving the synchronized consolidation of trans-
portation orders. The method is tested on single origin-destination instances with three
collaborating companies.

To the best of our knowledge, Guajardo and Rönnqvist [15] are the first to consider
multiple coalitions in a collaborative logistics setting. They point out some practical
issues related to the sustainability of giant coalitions and propose mixed integer linear
programming models to partition the participants into multiple coalitions given a set of
candidate coalitions and their associated costs, in order to obtain core stability and st-
rong equilibrium in smaller coalitions. They assume that a third party, such as a team of
consultants suggests the set of candidate coalitions and a cost minimizing way to imple-
ment the collaboration among the companies in each candidate coalition. Note that these
sub-coalitions are not necessarily formed to guarantee a non-empty core. The models
are tested on a collaboration among eight forest companies in the form of backhauling
and wood bartering.

This study extends the existing literature on CTTP by integrating coalition member se-
lection, operational solution identification, and cost allocation where the underlying op-
timization problem is a NP-Hard constrained LCP variant. This is also one of first works
considering selection of coalition members, and/or formation of multiple coalitions in
horizontal logistics collaboration.
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3. PROBLEM DEFINITION

Given a set of shippers who each has identified a set of lanes (i.e. regularly scheduled
truckload movements) as candidates for collaborative procurement, our objective is to
identify the least costly way of dividing the shippers and their lanes into coalitions such
that the lanes included in each coalition are covered by tours with minimal empty truck
movements and the cost of each coalition is distributed to the lanes in an acceptable
manner. Each shipper wants to share tours with a limited number of partners.

More formally, given a complete graph G = (N,A) with node set N, arc set A, non-
negative arc lengths fa ∀a ∈ A, a set of shippers P, and a set of lanes Li ⊆ A from each
shipper i ∈ P (note: Li∩L j = /0 for i 6= j), the objective is to find a set of directed simple
cycles covering the lanes in L =

⋃
i Li with minimum total cost such that:

C1 The union of the cycles which cover the lanes of Li includes lanes from at most
MSPi other shippers.

C2 Each lane is included in at most one coalition.

C3 The lanes of L are divided into at most MK coalitions, and each coalition is core
stable.

C4 The lanes of Li are included in at most MSKi coalitions.

C5 Each coalition includes at most MKL lanes.

C6 The sizes of any two coalitions do not differ by more than MKLD lanes.

We assume that the cost of travel is proportional to the distance traveled. The empty
movement cost of a truck is expected to be lower than its loaded movement cost because
of reduced fuel consumption and less equipment wear. Therefore, we compute the cost
of repositioning along an arc a ∈ A by multiplying the arc length fa by a repositioning
coefficient ρa ∈ (0,1). We take the cost of traversing a lane with a loaded truck as simply
equal to the length of the lane. The cost of a cycle is the sum of the costs of its lane arcs
and repositioning arcs.

3.1 Core Stability in Constrained Lane Covering

As mentioned before, we are looking for a set of coalitions which consist of regularly sc-
heduled truckload movements with the least possible empty movement. In other words,
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the lanes entered in the coalitions should be covered by cycles with the least repositi-
oning amount. Besides, recall that we want each coalition to be core stable. We model
the cost allocation problem as a cooperative game and allocate a cost of wl to each lane
l ∈ L, similar to Özener and Ergun [26]. Let F(S) be the cost of lane set S⊆ L, which is
calculated by solving the LCP on S constrained by C1. This NP-Hard LCP variant is the
partner constrained LCP (PCLCP), which can be solved by a set covering/partitioning
formulation over the set of all feasible cycles that can be used to cover the lanes in S
[21].

Let the cost allocation game defined by coalition Lsub ⊆ L (participated lanes in coali-
tion) and cost function F be denoted as 〈Lsub,F〉 for each coalition. A cost allocation
wl, l ∈ Lsub for PCLCP is in the core of 〈Lsub,F〉 if and only if it satisfies the following:

∑
l∈Lsub

wl = F(Lsub) (3.1)

∑
l∈S

wl ≤ F(S) ∀S⊆ Lsub (3.2)

However, we can simplify the above conditions with the help of the following theorem:

Theorem 1 Replacing inequalities (3.2) with inequalities

∑
l∈c

wl ≤ F(c) ∀c ∈Csub (3.3)

will not change the set of cost allocations in the core.

Proof: This proof is based on the fact that the cost F(S) of each subset S is equal to
either the cost of a cycle or the sum of the costs of a set of cycles covering S. Let Csub
be the set of all feasible cycles (under C1), which can be used to cover the lanes in Lsub.
Hence, we can claim that since each cycle corresponds to a set of lanes, a cost allocation
wl, l ∈ Lsub satisfying (3.2) automatically satisfies (3.3). Furthermore, the cost of each
subset of lanes is the sum of the costs of a set of feasible cycles. Consequently, if the
allocated costs satisfy (3.3), they will also satisfy (3.2). �

The PCLCP can be formulated as a set covering problem or a set partitioning problem
over the entire set of all feasible cycles (under C1). Let scl ∈ {0,1} be a parameter
indicating whether each lane l ∈ Lsub is included in cycle c ∈Csub. Let the parameter fc
represent the cost of each feasible cycle c ∈Csub. For each feasible cycle c ∈Csub and
shipper company pair {i, j}⊆P, define a parameter pci j which denotes if the cycle leads
to a common collaborative tour between the shipper pair. As stated in the definition of
the problem, let MSPi indicate the maximum number of partners that each shipper i
is willing to accept. Let Mi j = min{|Li|, |L j|}. Define binary decision variables xc to
indicate whether a feasible cycle c ∈Csub is selected in the optimal solution or not. For
each shipper pair {i, j} ⊆ P, define binary decision variables yi j to indicate whether
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these two shippers share a collaborative tour in the optimal solution. The resulting set
partitioning formulation is below.

SPP: min ∑
c∈Csub

fcxc (3.4)

s.t. ∑
c∈Csub

sclxc = 1 ∀l ∈ Lsub (3.5)

Mi jyi j− ∑
c∈Csub

pci jxc ≥ 0 ∀{i, j} ⊆ P (3.6)

−yi j + ∑
c∈Csub

pci jxc ≥ 0 ∀{i, j} ⊆ P (3.7)

− ∑
j∈P\{i}

yi j ≥−MSPi ∀i ∈ P (3.8)

xc ∈ {0,1} ∀c ∈Csub (3.9)
yi j ∈ {0,1} ∀{i, j} ⊆ P (3.10)

In the formulation, constraints (3.5) ensure that every lane is covered by exactly one
feasible cycle. Constraints (3.6) force the value of the decision variable yi j to be equal to
1 if the solution has at least one feasible cycle which contains lanes from both shippers i
and j. Conversely, constraints (3.7) ensure that the value of decision variable yi j is equal
to 0 if the solution has no feasible cycles containing lanes from both of shippers i and j.
Constraints (3.8) make sure that each shipper i shares feasible cycles with at most MSPi
other shippers. Constraints (3.9) and (3.10) are the integrality constraints.

Theorem 2 The core of 〈Lsub,F〉 is non-empty if and only if the set covering / partiti-
oning formulation of the PCLCP has zero integrality gap and its constraints (3.6)-(3.8)
are redundant.

Proof: Equations (3.3) can be interpreted as the feasible region of the dual of the li-
near relaxation of SPP without constraints (3.6)-(3.8). In this case, the allocated costs
wl correspond to the dual variables. Let H(Lsub) be the optimal objective value of the
following linear program (over the lane set Lsub):

SPD: max ∑
l∈Lsub

wl (3.11)

s.t. ∑
l∈c

wl ≤ fc ∀c ∈Csub (3.12)

wl ∈ R ∀l ∈ Lsub (3.13)

Let wSPD
l , l ∈ Lsub comprise an optimal solution of the linear program SPD. Clearly,

H(Lsub) = ∑l∈Lsub
wSPD

l . Because of constraints (3.6)-(3.8) combined with integrality
of the decision variables and by well known duality theorems, we have ∑l∈Lsub

wl ≤
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H(Lsub) ≤ F(Lsub) for any cost allocation satisfying the stability conditions. Further-
more, ∑l∈Lsub

wSPD
l = F(Lsub) if and only if SPP has a zero integrality gap and the

constraints (3.6)-(3.8) are redundant. Hence, we cannot find a cost allocation that is
both budget-balanced and stable unless the LP relaxation of SPP without constraints
(3.6)-(3.8) is optimal for the full SPP. It follows that the core is non-empty if and only if
SPP has a zero integrality gap and its constraints (3.6)-(3.8) are redundant. This result
is in line with a classic theorem on cost allocation games with set covering type cost
functions [6, 28]. �

This proof also implies another consequence, which provides the base of our study. For
an arbitrary selected set of lanes L, keeping all of the lanes of L together as a single
core stable coalition is not likely. In this study, we devise an effective algorithm to pro-
vide stable coalitions. We will discuss further details of our algorithm in the upcoming
sections.
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3.2 Multiple Core Stable Coalitions Selection

The discussed formulation (SPP) is the most basic form of our problem which does
not provide lane selection and cost allocation decisions. We can formulate an integer
programming model which integrates mentioned properties and stability conditions into
the set partitioning formulation of the PCLCP.

We incorporate additional desirable cost allocation properties with the help of this mo-
del. We place an upper bound on each allocated cost to guarantee a certain percentage
of savings for each lane in the coalition. We also place a lower bound on each allocated
cost to prevent free-riders in the coalition.

Let C be the set of all feasible cycles. Let scl ∈ {0,1} be a parameter indicating whether
each lane l ∈ L is included in cycle c ∈ C. Let the parameter fc represent the cost of
each feasible cycle c ∈ C, i.e. fc = F(c). Let gl be the cost of lane l ∈ L outside the
collaboration. For each feasible cycle c ∈C and shipper company pair {i, j} ⊆ P, define
a parameter pci j which denotes if the cycle leads to a common collaborative tour bet-
ween the shipper pair. Similar to the SPP, let Mi j = min{|Li|, |L j|}. Let K = {1, ..,MK}
be the set of coalitions. Let λl be the lower bound of the cost allocated to lane l in the
collaboration. Let θl be the minimum proportional savings for lane l ∈ L if included in
the collaboration.

We first define binary decision variables xc to indicate whether a feasible cycle c ∈C is
selected in the optimal solution or not. For each shipper pair {i, j}⊆ P, we define binary
decision variables yi j to indicate whether these two shippers share a collaborative tour
in the optimal solution.

Let ulk be the binary decision variable indicating whether lane l is included in coalition
k from the collaboration. Let Ul be the binary decision variable indicating whether lane
l is excluded from all of the coalitions. Let wlk be the decision variable corresponding
to the cost allocated to lane l in coalition k. Our multiple coalition selection integer
program (MCSIP) is formulated as follows:

MCSIP:

min ∑
c∈C

fcxc +∑
l∈L

glUl (3.14)

s.t. ∑
c∈C

sclxc = 1−Ul ∀l ∈ L (3.15)

wlk ≤ (1−θl)glulk ∀l ∈ L,k ∈ K (3.16)
wlk ≥ λlulk ∀l ∈ L,k ∈ K (3.17)

∑
c∈C

pci jxc ≤Mi jyi j ∀{i, j} ⊆ P (3.18)

∑
c∈C

pci jxc ≥ yi j ∀{i, j} ⊆ P (3.19)

∑
j∈P\{i}

yi j ≤MSPi ∀i ∈ P (3.20)
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∑
k∈K

ulk +Ul = 1 ∀l ∈ L (3.21)

xc +(ul1k−ul2k)≤ 1 ∀c ∈C,{l1, l2} ⊆ Lc, (3.22)
k ∈ K

xc− (ul1k−ul2k)≤ 1 ∀c ∈C,{l1, l2} ⊆ Lc, (3.23)
k ∈ K

vik ≥ ulk ∀i ∈ P, l ∈ Li (3.24)
k ∈ K

vik ≤ ∑
l∈Li

ulk ∀i ∈ P,k ∈ K (3.25)

∑
k∈K

vik ≤MSKi ∀i ∈ P (3.26)

∑
k∈K

ulk ≤MKL ∀l ∈ L (3.27)

∑
i∈P

vik ≤MKS ∀k ∈ K (3.28)

∑
i∈P

ui k1−∑
i∈P

ui k2 ≤MKLD ∀k1,k2 ∈ K : k1 6= k2 (3.29)

∑
l∈L

∑
k∈K

wlk−∑
c∈C

fcxc = 0 (3.30)

∑
l∈c

wlk ≤ fc ∀c ∈C,k ∈ K (3.31)

wlk ≤ glulk ∀l ∈ L,k ∈ K (3.32)
xc ∈ {0,1} ∀c ∈C (3.33)
yi j ∈ {0,1} ∀{i, j} ⊆ P (3.34)
ulk ∈ {0,1} ∀l ∈ L,k ∈ K (3.35)
Ul ∈ {0,1} ∀l ∈ L (3.36)
vik ∈ {0,1} ∀i ∈ P,k ∈ K (3.37)

wlk ≥ 0 ∀l ∈ L,k ∈ K (3.38)

In the formulation above, the objective (3.14) minimizes the sum of the total cycle cost
and the total uncooperative cost. Constraints (3.15) ensure that every lane included in
a coalition is covered by exactly one cycle. Constraints (3.16) satisfy the individual ra-
tionality. This constraint ensure that every lane included in a coalition obtains specific
percentage savings. Constraint (3.17) provides a lower bound for each lane’s allocated
cost (otherwise, since the MCSIP is a minimization problem, the optimal value of he
allocated cost would be equal to zero). Constraints (3.18) force the value of the decision
variable yi j to be equal to 1 if the solution has at least one cycle which contains lanes
from both shippers i and j. Conversely, constraints (3.19) ensure that the value of deci-
sion variable yi j is equal to 0 if the solution has no cycles containing lanes from both of
shippers i and j. Constraints (3.20) make sure that each shipper i shares cycles with at
most MSPi other shippers. Constraints (3.21) require that each lane is included in at most
one coalition. Constraints (3.22) and (3.23) make sure that the lanes of a selected cycle
are in the same coalition. Constraints (3.24) and (3.25) establish consistency between
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the lanes and the shippers included in each coalition. Constraints (3.26), (3.27), and
(3.29) satisfy conditions C4, C5, and C6, respectively. Constraints (3.30) and (3.31) are
the budget balance and stability constraints, respectively. Constraints (3.32) ensure that
every lane included in a coalition obtains non-negative savings, and the cost allocated
to lane l from coalition k is zero if the lane is excluded from that coalition. Constraints
(3.33)-(3.38) are integrality and non-negativity constraints.

Note that any lane subset S⊆ L will either be a cycle or its cost F(S) will be sum of the
costs of a set of cycles. Each wlk can be positive for at most one coalition k, and const-
raints (3.24) and (3.25) ensure that all of the lanes of a selected cycle are in the same
coalition. Since wlk = 0 for coalitions which do not include lane l, a constraint in (3.31)
will be redundant unless all of the lanes of the corresponding cycle are in the same coali-
tion. Constraints (3.31) ensure that each coalition is stable within itself. An implication
of these constraints is that the total cost allocated to the lanes of a selected cycle is equal
to the cost of the cycle. Therefore, the total cost allocated to the lanes of each coalition
will be equal to its cost, which means that constraints (3.30) is sufficient for achieving
budget-balance within each selected coalition. We conclude that constraints (3.30) and
(3.31) are sufficient for ensuring core stability of each selected coalition.

Since we formulate the MCSIP over the set of all feasible cycles, the real-world large
instances requires column generation and advanced integer programming solution tech-
niques such as branch-and-price. For instance, constraints (3.22), (3.23), and (3.31) are
defined over the set of feasible cycles, which necessitates embedding row generation
along with column generation in the branch-and-bound procedure. The effectiveness of
this exact solution approach is expected to diminish rapidly as the problem size grows
even for the case of MK = 1, which can be formulated without several of the constraints
in the MCSIP [25]. Hence, this formulation is not a preferable method for large scale
real world problems. Due to the exponential numbers of rows and columns and comp-
lexity of the task hand, we opt for a heuristic algorithm. We provide the details of our
solution algorithm in the next section.
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4. SOLUTION APPROACH

Our solution approach is based on the observation that the cost allocation game defined
by the base LCP has a non-empty core [26]. We aim to select the coalitions such that
solving the base LCP on each coalition results in a feasible solution for the constrained
version. Our algorithm repeatedly solves the LCP on sets of lanes which are candidates
for coalitions. It’s worth mentioning that time efficiency of LCP is another reason that
we opt for using this method in our algorithm. If the solution of the base LCP satisfies
all of the constraints, then we will have identified a feasible coalition. Otherwise, we
modify the candidate coalition and repeat the process. We also modify feasible candi-
date coalitions to reduce the total system-wide cost. When the stopping conditions are
met, we will have found a core cost allocation for each coalition selected. We use the
following integer program to solve the base LCP on each candidate coalition S⊆ L.

LCPIP: min ∑
i∈L

∑
j∈L

ρhead(i),tail( j) fhead(i),tail( j) αi j (4.1)

s.t. ∑
i∈L

αi j = 1 ∀ j ∈ L (4.2)

∑
j∈L

αi j = 1 ∀i ∈ L (4.3)

αi j ∈ {0,1} ∀c ∈C (4.4)

The LCPIP simply assigns the head of each lane to the tail of one of the lanes. This
is in fact the well known assignment problem which has zero integrality gap. At each
iteration of our algorithm, we solve the LCPIP, decompose the solution into simple
cycles, and check the constraints imposed on the cycles for feasibility. Our solution
algorithm consists of two main phases: constructing a feasible coalition structure, and
improvement. The details of our algorithms are presented in the following subsections.

4.1 Constructing a Feasible Coalition Structure

In the first phase of our solution approach, we search for a partitioning of the lane set L
into at most MK subsets such that one subset corresponds to the set of lanes left out of
the coalitions and the remaining subsets form core stable coalitions. We do this in two
stages. First, we identify a coalition structure which satisfies C1 - C5, but not necessarily
C6. Then, we modify the coalitions to satisfy C6.

In real-world problems, the lanes of each shipper are allowed to be included in a prespe-
cified number of coalitions (i.e. MSKi). This number can be specified by the managers
and policy makers of the collaboration. It is clear that by increasing the number of co-
alitions which firms can participate in, they would be more likely to cooperate with
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a wider range of other shippers which can yield a better rate for them. In our algorithm,
we first start to construct a set of coalitions for the smallest possible value of MSKi
(i.e. mski=1) and we record the obtained solution as the best solution. Afterwards, we
increase the value of the mski in each iteration by one. In case we have a better solution,
we update the best solution found. Otherwise, we terminate our algorithm. In addition
to the worse solution, this process can be terminated by the time which mski exceedes
its prespecified upperbound MSKi .

The construction procedure of the initial core stable coalitions is presented in Algorithm
1. We construct the coalitions sequentially. We first put all of the lanes without a coali-
tion together as a candidate coalition. We then reduce the candidate coalition to satisfy
size limits and core stability conditions. Afterwards, we do the same processes for the
remaining lanes, as a new candidate coalition. However, the shippers which cooperate
with MSPi other shippers (constraint C1) in previously constructed coalitions cannot en-
ter their lanes in the candidate coalition. Hence, we remove the lanes of those shippers
from the candidate list. Then, we solve the LCPIP on the remaining candidate lanes and
check for additional constraints on the cycles.

In each iteration, if the LCPIP solution is not feasible for PCLCP, we try to remove one
of the lanes causing the infeasibility. In order to identify this lane, first of all we must
identify the cycle(s) which violates the constraint C1 the most, in its own. Afterwards,
we have to identify the shipper(s) which cause this violation, in the on hand cycle. Then,
we try to collapse the identified cycle(s) by extracting one of the lanes of the on hand
shipper(s). Note that after each time we extract a lane from the obtained solution, we
need to solve the LCPIP again for the remaining candidate lanes. However, in some
cases despite the fact that there is no infeasible cycle, the union of the cycles may make
the coalition infeasible. In such cases, we remove one of the lanes of the shipper with
the most violated maximum partners constraint C1, from the candidate collaboration. It
is worth mentioning that in case of ties in each part of the algorithm we make a random
selection.

Once we reduce the candidate coalition to a core stable coalition, we first remove the
lanes of the single-lane cycles from the candidate coalition because they do not make
any positive contribution to the coalition. Afterwards, we check for the maximum lanes
per coalition limit C5 because the candidate coalition may exceed it. Note that removing
a whole cycle does not disturb the core stability of a coalition, so we do not have to
solve the LCPIP again. If necessary, we reduce the size the coalition by removing the
lanes of cycles in the LCPIP solutions. We repeatedly remove the lanes of the cycle
with the highest repositioning cost, which is referred to as the most expensive cycle in
the algorithms, until the number of lanes in the coalition is less than or equal to MKL.
Then, we add the candidate coalition at hand to the coalition structure. We stop if we
have reached the maximum coalition limit MK or we cannot find another core stable
coalition.

In some cases, the obtained solution is made from only single-lane cycles which do
not have positive contribution to the total saving, as mentioned before. Even though the
probability of such cases is quite low, we have to note that such cases can be interpreted
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as a stopping condition of our algorithm.

Algorithm 1 Procedure for constructing core stable coalitions.
1: set the best solution equal to a large value
2: set the mski equal to 0
3: repeat
4: increase mski by one unit
5: repeat
6: form a candidate coalition from lanes without a coalition
7: remove the lanes of shippers which cooperate with more than MSPi other

shippers from candidate coalition
8: repeat
9: solve LCPIP on candidate coalition and decompose solution into

simple cycles
10: if candidate coalition is core stable then
11: remove the lanes of single-lane cycles from candidate coalition
12: while Number of lanes in candidate coalition exceeds MKL do
13: Remove lanes of most expensive cycle from candidate coalition
14: end while
15: if candidate coalition is not empty then
16: add candidate coalition to list of coalitions
17: update set of lanes without a coalition
18: end if
19: else
20: remove an infeasibility causing lane from candidate coalition
21: end if
22: until candidate coalition is core stable or empty
23: until no additional stable coalitions can be found

OR MK coalitions are found
24: run algorithm 2
25: run algorithm 3 (do improvement)
26: if the objective function value is less than best solution then
27: record the obtained solution as the best solution found
28: else
29: break
30: end if
31: until mski equals MSKi
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The set of coalitions at hand still may not satisfy pairwise size difference constraint C6.
Thus, we iteratively modify the coalitions to get a set of coalitions which satisfy all
of the constraints. The steps of our procedure are listed in Algorithm 2. For each pair
of coalitions which do not satisfy pairwise size difference limit, we have two options:
First, we can increase the smaller coalition’s size by adding a lane without a coalition.
Second, we can remove some of the larger coalition’s lanes. Preferably, we try adding
lanes to the smaller coalition before removing lanes from the larger coalition. At each
iteration, we take the smallest and the largest coalition in the current solution. We first
try to increase the size of the smaller coalition. We first form a candidate coalition from
the lanes of the smaller coalition together with the lanes without a coalition. We then
remove the lanes from the candidate coalition in search for a smaller but core stable
coalition ( in order to decrease the difference between the size of coalitions and also
obtaining a cost allocation in core). However, if the new solution’s objective value is
greater than the former one at any point, we do not remove any more lanes from the
candidate coalition because the objective will surely get worse in subsequent iterations.
Hence, in such cases, we will start to remove the lanes from the larger coalition instead.
Since, removing all the lanes of a cycle might be an aggressive approach, we try to
remove as few lanes as possible to satisfy the constraint C6. Therefore, first we identify
the cycle with the most repositioning cost ratio. Then, we identify the lane which causes
the least negative effect (i.e. most positive impact) on the cycle’s repositioning cost,
in case we remove the lane on hand. After applying all these steps, we have to check
whether the obtained solution satisfies the constraint C6 or not. Note that the objective
value we are referring is the total system-wide cost including the costs of the coalitions
and the lanes without a coalition.

Now, we have reached an initial solution which satisfies all the mentioned constraints.
However, it does not necessarily offer the set of coalitions withe the least total reposi-
tioning cost. Hence, in upcoming section we will discuss some methods for improving
the initial solution in detail.
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Algorithm 2 Procedure for reducing pairwise size difference of coalitions
1: while maximum pairwise size difference of coalitions exceeds MKLD do
2: L1← smallest coalition in current solution
3: L2← largest coalition in current solution
4: form a candidate coalition from union of L1 and lanes without coalition
5: while |L2|− |L1|> MKLD AND candidate coalition is larger than L1 do
6: solve LCPIP on candidate coalition
7: if new objective is greater than old one then
8: break while
9: else

10: if candidate coalition is core stable then
11: remove lanes of single-lane cycles from candidate coalition
12: while Number of lanes in candidate coalition exceeds MKL do
13: Remove lanes of most expensive cycle from candidate coalition
14: end while
15: if candidate coalition is larger than L1 then
16: replace L1 with candidate coalition
17: update set of lanes without a coalition
18: end if
19: else
20: remove an infeasibility causing lane from candidate coalition
21: end if
22: end if
23: end while
24: while |L2|− |L1|> MKLD do
25: Identify the cycle with the greatest amount of repositioning ratio in L2

26: remove a lane of identified cycle which has the least negative effect
(i.e. most positive impact) on the total cost

27: update set of lanes without a coalition
28: end while
29: end while
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4.2 Coalition Improvement Algorithm

The coalition structure we have at the end of the procedure described in Algorithms 1
and 2 is not necessarily the lowest cost coalition structure for the given set of lanes. For
this reason, we have devised an improvement algorithm with the aim of decreasing the
total system-wide cost of the coalition structure.

According to theorem 2, as discussed before, the probability that all lanes form a core
stable coalition is extremely low. However, in order to minimize the total system-wide
gap, we try to exclude as few lanes from the grand coalition, as possible. Hence, by
applying the improvement algorithm we are looking to lower the system-wide cost.
In the improvement algorithm (see Algorithm 3), we try to uniformize the differences
between actual partnership number and maximum partners limit of each shipper. In each
major iteration, we first identify a shipper which is closest to its maximum partner limit
for each coalition. Generally, these shippers deprive other shippers of a higher degree of
collaboration. Adding more shippers to the coalition is likely to cause them to exceed
their maximum partner limit which cause infeasibility, while the rest of the shippers
in the coalition are willing to accept more collaborative partners. Then, we add the
lanes of each of the aforementioned shippers to an exclusion list of the corresponding
coalition. These lanes will be excluded from their current coalition in the search for
a lower cost solution but they can be used in other coalitions. Next, we go through
the set of coalitions in the solution. For each coalition Lk, we first form a candidate
coalition. That consists of the union of the lanes of Lk except the lanes in its exclusion
list, lanes without a coalition and the set of lanes in the exclusion lists of other coalitions.
As before, we remove lanes from the candidate coalition in the hope of reaching a
core stable subset. Once the remaining candidate coalition is deemed core stable, we
check whether it includes any lanes from the exclusion lists of other coalitions and
removing would disturb the core stability of other coalitions. If the core stability of the
other coalitions remain intact, we replace Lk with the candidate coalition and update the
coalitions and the exclusion lists as necessary. Once we go through all of the coalitions,
we check whether there is any improvement in the objective. We update the coalitions
in the case of a tangible improvement. Otherwise, we revert back to the previous set of
coalitions. We stop when we cannot improve the current solution.

Now, after completing all steps, designed for constructing the set of coalitions, we inc-
rease the mski by one. In other words, we relax the constraint C4 and we let shippers
to enter their lanes to more coalitions. Then, we repeat all of these steps for new mski
until facing with either a worse solution (compared with former mski) or reaching the
predetermined value of mski.
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Algorithm 3 Procedure for improving the total cost of the coalition structure.
1: repeat
2: for each coaliton in coalition structure do
3: add lanes of shipper closest to its max partner limit to the coalition’s exclu-

sion list
4: end for
5: for each coaliton Lk in coalition structure do
6: form a candidate coalition from union of lanes without a coalition

and Lk minus its exclusion list
and lanes in exclusion lists of other coalitions

7: repeat
8: solve LCPIP on candidate coalition
9: decompose on hand solution into simple cycles

10: if candidate coalition is core stable then
11: remove lanes of single-lane cycles from candidate coalition
12: while Number of lanes in candidate coalition exceeds MKL do
13: Remove lanes of most expensive cycle from candidate coalition
14: end while
15: if candidate coalition is not empty then
16: if candidate coalition

does not make other coalitions unstable then
17: replace Lk with candidate coalition
18: update exclusion list of Lk

19: remove lanes of new Lk from their exclusion lists
and other coalitions

20: update set of lanes without a coalition
21: else
22: empty candidate coalition
23: end if
24: end if
25: else
26: remove an infeasibility causing lane from candidate coalition
27: end if
28: until candidate coalition is core stable or empty
29: end for
30: if new objective is not better than the previous one then
31: revert coalition structure to the previous one
32: end if
33: until no change in objective
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4.3 Cost Allocation

Once the construction of the core stable coalitions procedure terminates, we determine
the allocated cost for each lane included in one of the selected coalitions. Recall that
we build the coalitions such that each has a non-empty cost allocation core. In the cost
allocation phase, we search for a cost allocation in the core. That is, we look for a
cost allocation that is budget-balanced and stable (or group strategy proof). Since there
can be multiple cost allocations in the core, we search for the one which makes the
percentage savings of the lanes as close to each other as possible.

Our cost allocation procedure is based on solving a linear program with a huge number
of rows, one for each feasible cycle (see (3.3)). Therefore, we formulate a cost allocation
master problem with a limited number of rows and add more rows corresponding to the
violated constraints as needed by solving a row generation sub-problem.

Let Lk denote the set of lanes in coalition k. Let Ck denote the set of all feasible cycles
consisting only of the lanes of Lk. Let Ĉk denote the set of cycles given by the LCPIP
solution on Lk. Let wl be the decision variable corresponding to the cost allocated to lane
l ∈ Lk. Let Rmin and Rmax be the decision variables corresponding to the minimum and
maximum savings of the lanes in the coalition, respectively. Our cost allocation linear
problem (CALP) is given by (4.5)-(4.12).

CALP: min Rmax−Rmin (4.5)

s.t. wl ≤ glRmax ∀l ∈ Lk (4.6)

wl ≥ glRmin ∀l ∈ Lk (4.7)

∑
l∈Lc

wl = fc ∀c ∈ Ĉk (4.8)

∑
l∈Lc

wl ≤ fc ∀c ∈Ck−Ĉk (4.9)

wl ≥ 0 ∀l ∈ Lk (4.10)
Rmax ≥ 0 (4.11)
Rmin ≥ 0 (4.12)

In the CALP formulation, the objective (4.5) minimizes the difference between the ma-
ximum and minimum percentage savings of the lanes in the coalition. Constraints (4.6)
and (4.7) assures that Rmax and Rmin take appropriate values. Constraints (4.8) and (4.9)
are the budget balance and stability constraints, respectively. Note that (3.1) and (3.3)
imply (4.8). The rest are non-negativity constraints.

Since the CALP formulation contains a potentially huge number of stability constraints
(4.9), we first relax the CALP by removing the stability constraints, and we only add
the stability constraints violated by the relaxation to the model. We will refer to this
relaxed model the restricted cost allocation master problem (RCAMP). Let C̃ be the set
of cyles corresponding to the stability constraints included in the RCAMP. We start by
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solving the RCAMP with an empty C̃. We then look for a violated stability constraint
not included in the RCAMP. If we identify a violated stability constraint, we add it to
the RCAMP and solve it again. If we cannot find any violated stability constraints, it
means that we have found a cost allocation in the core, and we stop.

We check the existence of a violated stability constraint by solving the row generation
subproblem (RGSP) given by (4.13) - (4.25), where w̃l, l ∈ Lk are the current costs
allocated by the RCAMP.

RGSP: min ∑
l∈L

( fl− w̃l)rl + ∑
a∈A

ρa fata (4.13)

s.t. ∑
(m,n)∈L

r(m,n)+ ∑
(m,n)∈A

t(m,n)

− ∑
(n,m)∈L

r(n,m)− ∑
(n,m)∈A

t(n,m) = 0 ∀n ∈ N (4.14)

∑
(m,n)∈L

r(m,n)+ ∑
(m,n)∈A

t(m,n) ≤ 1 ∀n ∈ N (4.15)

∑
j∈P\{i}

zi j ≤MSPi ∀i ∈ P (4.16)

∑
l∈Li

rl−|Li|qi ≤ 0 ∀i ∈ P (4.17)

∑
l∈Li

rl−qi ≥ 0 ∀i ∈ P (4.18)

qi− zi j ≥ 0 ∀{i, j} ⊆ P (4.19)

q j− zi j ≥ 0 ∀{i, j} ⊆ P (4.20)

qi +q j− zi j ≤ 1 ∀{i, j} ⊆ P (4.21)

rl ∈ {0,1} ∀l ∈ Lk (4.22)

ta ∈ {0,1} ∀a ∈ A (4.23)

qi ∈ {0,1} ∀i ∈ P (4.24)

zi j ∈ {0,1} ∀{i, j} ⊆ P (4.25)

In the RGSP, constraint (4.14) satisfies the flow balance for each node. In other words,
it makes the number of arcs (loaded plus empty truck movements) entering and leaving
each node equal to each other. Constraints (4.15) ensure that any feasible solution only
consists of simple cycles. Constraints (4.16) enforce partner bounds C1. Constraints
(4.17) and (4.18) force the value of variable qi to 1, when any lane of shipper i is se-
lected; and to take the value of 0, when none of the lanes of the shipper is selected.
Constraints (4.19)-(4.21) ensure that decision variable zi j equals 1 if and only if lanes
of both shipper i and shipper j are selected.

It is important to note that the solution of the RGSP may include more than one simple
cycle. Therefore, the formulation presented above is actually a relaxation of the true row
generation subproblem. Its objective value cannot be lower than the negative of the hig-
hest stability violation. We could have added additional constraints to the formulation
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to prevent multiple cycles in the solution. However, these constraints would have a ne-
gative impact on the tractability of the RGSP and, more importantly, they are not really
necessary. If the RGSP objective is negative, then all of the cycles in the solution must
have nonnegative stability violation. Otherwise, we can remove the cycle without the
violation and obtain a lower objective value, which contradicts with the optimality of
the solution. When the RGSP has a negative objective, we add the stability constraints
of all of the cycles with positive stability violation to the RCAMP.
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5. COMPUTATIONAL EXPERIMENTS

We have assessed the performance of our algorithms on randomly generated Euclidean
problem instances. We have generated these instances by modifying the instance gene-
ration procedure of Ergun et al. [10] so that each lane belongs to one of a given number
of shippers and each shipper has a partner limit. Each instance contains nodes which
were randomly dispersed over a square region of 1,800× 1,800 miles. Some of the
nodes are placed in clusters corresponding concentration of points as in metropolitan
areas. Each generated node has at least one incoming or outgoing lanes. Some of the
nodes have incoming lanes only, some have outgoing lanes only, while some have both
incoming and outgoing lanes. Lanes are prevented from originating and terminating in
the same cluster.

It worth mentioning that there are two main types of instances: (i) large shipper instances
in which there are |L|/20 shippers with 15 to 25 lanes and partner limit (MSPi) of 1 or
2, and (ii) small shipper instances in which there are |L|/10 shippers with 5 to 15 lanes,
and partner limit of 3 or 4.

All of the algorithms were implemented using the Java programming language. The
experiments were run on a desktop PC with 3.60 GHz Intel i7-4790 processor, 16 GB
RAM, and Microsoft Windows 8 Professional operating system. IBM ILOG CPLEX
12.6 and Concert technology were utilized to solve the linear and integer programs.

In the experiments, we set MKL and MKLD to 60% and 20% of the number of lanes
of the instance, respectively. We varied MK and MSKi to analyze their impact on the
final solutions. We evaluated the performance of our solution approach in terms of the
numbers of coalitions formed, the number of lanes in each coalition, the total number
of lanes in all of the coalitions formed, the allocated cost per mile for each lane, the
optimality gap of the total system-wide cost with respect to the LCP lower bound, and
the CPU times.

5.1 Results

In this section, we first present the results of experiments with the small shipper instan-
ces and then we present the experiments with large shipper instances.

For each set of instances, we first discuss the results of our experiments in which we set
MSKi = 1 and vary the maximum number of coalitions MK. The results are summarized
in Tables 5.1 and 5.3 for small shippers and also 5.2 and 5.4 for large shippers. Presented
results in Tables 5.1 and 5.2 correspond to the size of coalitions and percentage of the
lanes which are participated in the coalitions. Upon inspecting Table 5.1 and 5.2,
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we observe that as MK increases, the number of and percentage of lanes placed in a
coalition increases. The size of the largest and the smallest coalition decreases as well.
Because we construct the initial set of coalitions sequentially, later coalitions have fewer
lanes to choose from than earlier coalitions.

Table 5.3 and 5.4 lists statistics on the per mile cost allocated to the lanes selected for
the coalitions. We report the maximum, minimum and average values of the mean and
the standard deviation of cost per mile across different coalitions. Note that a low mean
cost per mile for a coalition is an indication that the lanes of the coalition can be covered
with low repositioning, and vice versa. We observe that increasing MK may result in an
increased or decreased average mean and standard deviation of cost per mile.
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Table 5.1: Number of lanes in coalitions when MSKi = 1 (Small Shippers)

Inst |N| |L| |P| MK
Coal. sizes

Coals.
Lanes with Coal.

Max Min Avg Count %
1 100 100 10 1 40 40 40.0 1 40 40.0

2 40 40 40.0 2 80 80.0
3 29 9 22.3 3 67 67.0

UNR 29 9 22.3 3 67 67.0
2 100 100 10 1 48 48 48.0 1 48 48.0

2 44 31 37.5 2 75 75.0
3 33 14 26.0 3 78 78.0

UNR 33 14 26.0 3 78 78.0
3 100 200 20 1 30 30 30.0 1 30 15.0

2 31 30 30.5 2 61 30.5
3 31 30 30.7 3 92 46.0

UNR 31 30 30.7 3 92 46.0
4 100 200 20 1 30 30 30.0 1 30 15.0

2 37 28 32.5 2 65 32.5
3 39 20 32.3 3 97 48.5

UNR 39 20 34.0 4 136 68.0
5 200 200 20 1 41 41 41.0 1 41 20.5

2 55 32 43.5 2 87 43.5
3 41 34 37.3 3 112 56.0

UNR 40 34 36.7 4 147 73.5
6 200 200 20 1 45 45 45.0 1 45 22.5

2 45 41 43.0 2 86 43.0
3 45 31 39.0 3 117 58.5

UNR 45 6 29.8 5 149 74.5
7 200 400 40 1 40 40 40.0 1 40 10.0

2 47 40 40.5 2 90 22,5
3 47 40 44.7 3 134 33.5

UNR 56 13 32.2 9 290 72.5
8 200 400 40 1 37 37 37.0 1 37 9.3

2 37 28 32.5 2 65 16.3
3 37 27 30.7 3 92 23.0

UNR 42 24 31.2 8 250 62.5
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Table 5.2: Number of lanes in coalitions when MSKi = 1 (Large Shippers)

Inst |N| |L| |P| MK
Coal. sizes

Coals.
Lanes with Coal.

Max Min Avg Count %
1 100 100 5 1 42 42 42.0 1 42 42.0

2 44 41 42.5 2 85 85.0
3 44 41 42.5 2 85 85.0

UNR 44 41 42.5 2 85 85.0
2 100 100 5 1 56 56 56.0 1 56 56.0

2 57 42 49.5 2 99 99.0
3 57 42 49.5 2 99 99.0

UNR 57 42 49.5 2 99 99.0
3 100 200 10 1 57 57 57.0 1 57 28.5

2 53 51 52.0 2 104 52.0
3 56 6 48.7 3 146 73.0

UNR 50 29 42.0 4 168 84.0
4 100 200 10 1 47 47 47.0 1 47 23.5

2 41 39 40.0 2 80 40.0
3 41 48 39.3 3 118 59.0

UNR 41 19 35.0 5 175 87.5
5 200 200 10 1 53 53 53.0 1 53 26.5

2 54 50 52.0 2 104 52.0
3 54 43 49.0 3 147 73.5

UNR 49 36 41.5 4 166 83.0
6 200 200 10 1 58 58 58.0 1 58 29.0

2 58 40 49.0 2 98 49.0
3 58 39 46.0 3 138 69.0

UNR 58 19 36.0 5 180 90.0
7 200 400 20 1 56 56 56.0 1 56 14.0

2 56 53 54.5 2 109 27.3
3 56 49 52.7 3 158 39.5

UNR 56 42 42.1 8 337 84.3
8 200 400 20 1 59 59 59.0 1 59 14.8

2 58 42 50.0 2 100 25.0
3 60 33 49.7 3 149 37.2

UNR 66 18 41.3 8 330 82.5
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Table 5.3: Allocated cost per mile (wl/ fl) when MSKi = 1 (∀i ∈ P)(Small Shippers)

Inst |N| |L| |P| MK
Mean Std Dev

Max Min Avg Max Min Avg
1 100 100 10 1 1.27 1.27 1.27 0.44 0.44 0.44

2 1.29 1.14 1.22 0.55 0.45 0.50
3 1.22 1.10 1.17 0.57 0.07 0.38

UNR 1.22 1.10 1.17 0.57 0.07 0.38
2 100 100 10 1 1.11 1.11 1.11 0.39 0.39 0.39

2 1.14 1.13 1.13 0.40 0.39 0.40
3 1.37 1.05 1.19 0.47 0.39 0.42

UNR 1.37 1.05 1.19 0.47 0.39 0.42
3 100 200 20 1 1.23 1.23 1.23 0.37 0.37 0.37

2 1.34 1.23 1.28 0.37 0.31 0.34
3 1.34 1.23 1.28 0.48 0.31 0.39

UNR 1.34 1.23 1.28 0.48 0.31 0.39
4 100 200 20 1 1.20 1.20 1.20 0.41 0.41 0.41

2 1.31 1.18 1.25 0.39 0.37 0.38
3 1.31 1.21 1.27 0.52 0.41 0.48

UNR 1.31 1.21 1.26 0.52 0.41 0.49
5 200 200 20 1 1.18 1.18 1.18 0.27 0.27 0.27

2 1.35 1.14 1.25 0.60 0.30 0.33
3 1.22 1.18 1.19 0.37 0.27 0.31

UNR 1.23 1.17 1.20 0.67 0.22 0.38
6 200 200 20 1 1.20 1.20 1.20 0.37 0.37 0.37

2 1.20 1.18 1.19 0.45 0.37 0.41
3 1.27 1.18 1.22 0.46 0.37 0.43

UNR 1.74 1.17 1.20 0.35 0.07 0.28
7 200 400 40 1 1.28 1.28 1.28 0.29 0.29 0.29

2 1.28 1.20 1.24 0.43 0.29 0.36
3 1.35 1.20 1.27 0.43 0.29 0.35

UNR 1.35 1.20 1.27 0.42 0.24 0.35
8 200 400 40 1 1.21 1.21 1.21 0.33 0.33 0.33

2 1.21 1.14 1.18 0.37 0.33 0.35
3 1.21 1.14 1.17 0.37 0.26 0.32

UNR 1.30 1.14 1.21 0.60 0.27 0.39
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Table 5.4: Allocated cost per mile (wl/ fl) when MSKi = 1 (∀i ∈ P) (Large Shippers)

Inst |N| |L| |P| MK
Mean Std Dev

Max Min Avg Max Min Avg
1 100 100 5 1 1.27 1.27 1.27 0.37 0.37 0.37

2 1.25 1.23 1.24 0.46 0.36 0.41
3 1.25 1.23 1.24 0.46 0.36 0.41

UNR 1.25 1.23 1.24 0.46 0.36 0.41
2 100 100 5 1 1.18 1.18 1.18 0.47 0.47 0.47

2 1.19 1.17 1.18 0.57 0.44 0.51
3 1.19 1.17 1.18 0.57 0.44 0.51

UNR 1.19 1.17 1.18 0.57 0.44 0.51
3 100 200 10 1 1.26 1.26 1.26 0.31 0.31 0.31

2 1.25 1.20 1.22 0.46 0.45 46.00
3 1.28 1.22 1.25 0.42 0.22 0.31

UNR 1.34 1.23 1.27 0.41 0.32 0.38
4 100 200 10 1 1.20 1.20 1.20 0.36 0.36 0.36

2 1.23 1.23 1.23 0.49 0.42 0.46
3 1.20 1.21 1.22 0.57 0.42 0.48

UNR 1.28 1.21 1.24 0.52 0.35 0.43
5 200 200 10 1 1.15 1.15 1.15 0.40 0.40 0.40

2 1.25 1.24 1.25 0.52 0.34 0.43
3 1.25 1.24 1.25 0.52 0.34 0.42

UNR 1.36 1.16 1.27 0.40 0.32 0.36
6 200 200 10 1 1.13 1.13 1.13 0.32 0.32 0.32

2 1.19 1.13 1.16 0.38 0.32 0.35
3 1.21 1.17 1.19 0.46 0.42 0.45

UNR 1.34 1.13 1.22 0.48 0.32 0.42
7 200 400 20 1 1.22 1.22 1.22 0.39 0.39 0.39

2 1.28 1.22 1.25 0.39 0.39 0.39
3 1.28 1.21 1.24 0.32 0.39 0.40

UNR 1.42 1.21 1.27 0.42 0.34 0.37
8 200 400 20 1 1.17 1.17 1.17 0.38 0.38 0.38

2 1.24 1.23 1.23 0.38 0.37 0.37
3 1.23 1.16 1.21 0.40 0.26 0.32

UNR 1.28 1.17 1.23 0.49 0.22 0.70
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Next, we discuss the impact of changing MSKi on the results of the algorithm. In this
group of experiments, we set MSKi to one, two, or unbounded. We set MK to three when
MSKi is one or two. However, we set MK to unbounded when MSKi is unbounded in
order to monitor the algorithm’s performance with the most possible relaxed form. Tab-
les 5.5 - 5.8 present statistics collected on lanes with coalitions and allocated cost per
mile, respectively. We expect the algorithm to construct as many coalitions as possible
in order to get a better solution. However, in some cases we observe that despite the
increase in the MSKi, the number of selected coalitions does not change. This observa-
tion clearly indicates that increasing MSKi does not always have a favorable impact on
our solution because increasing MSKi also expands the number of possible alternatives.
In other words, Increasing the value of MSKi and/or the number of lanes increases the
number of possible cycles which can be used in the LCP solution. Because of tight part-
ner bounds MSPi, the LCP solution will be more likely to be infeasible for the PCLCP.
Hence, we have to be more careful in selecting which lane to remove next from the
candidate coalition. Therefore, our algorithm would struggle in removing the lanes in
the right sequence for loose problem instances and bounds. That is why our algorithm
prefers to keep the former solution, obtained with a smaller MSKi, which has a smaller
optimality gap.

Table 5.7 and 5.8 lists statistics similar to Table 5.3 and 5.4, but with varying MSKi va-
lues, on allocated cost per mile for lanes in the selected coalitions. Due to the mentioned
reasons in the previous paragraph, increasing MSKi does not cause any change in the
average and the standard deviation (because the solution is similar to the former one)
in some instances, but in the rest of them, it leads to increased average mean cost per
mile, while leading to decreased average standard deviation and increased maximum
mean cost per mile. The negative correlation between MSKi and allocated cost per mile
is quite counterintuitive. We are essentially relaxing the problem by increasing MSKi.
So, we expect to see a decrease in repositioning costs incurred, but we observe the op-
posite. This is due to the fact that when MK is equal to two or higher, we must pay
attention to the pairwise size difference of the coalitions to maintain fairness across the
coalitions. Hence, there is a higher chance that the lanes will be placed in coalitions of
higher repositioning.
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Table 5.5: Number of lanes in coalitions when MSKi varies (Small Shippers)

Inst |N| |L| |P| MSKi
Coal. sizes

Coals.
Lanes with Coal.

Max Min Avg Count %
1 100 100 10 1 29 9 22.3 3 67 67.0

2 37 17 30.0 3 90 90.0
UNR 29 9 22.3 3 67 67.0

2 100 100 10 1 33 14 26.0 3 78 78.0
2 33 14 26.0 3 78 78.0

UNR 25 5 15.7 6 94 94.0
3 100 200 20 1 31 30 30.7 3 92 46.0

2 31 30 30.7 3 92 46.0
UNR 27 2 11.0 16 176 88.0

4 100 200 20 1 39 20 32.3 3 97 48.5
2 39 20 32.3 3 97 48.5

UNR 33 4 18.4 9 166 83.0
5 200 200 20 1 41 34 37.3 3 112 56.0

2 41 34 37.3 3 112 56.0
UNR 46 6 18.2 9 164 82.0

6 200 200 20 1 45 31 39.0 3 117 58.5
2 45 31 39.0 3 117 58.5

UNR 45 6 29.8 5 149 74.5
7 200 400 400 1 47 40 44.7 3 134 33.5

2 47 40 44.7 3 134 33.5
UNR 56 13 32.2 9 290 72.5

8 200 400 400 1 37 27 30.7 3 92 23.0
2 37 27 30.7 3 92 23.0

UNR 31 2 15.0 20 299 74.8
Note: MK = 3 for MSKi ∈ {1,2}; MK =∞ for MSKi=∞.
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Table 5.6: Number of lanes in coalitions when MSKi varies (Large Shippers)

Inst |N| |L| |P| MSKi
Coal. sizes

Coals.
Lanes with Coal.

Max Min Avg Count %
1 100 100 5 1 44 41 42.5 2 85 85.0

2 41 22 33.0 3 99 99.0
UNR 33 13 22.5 4 90 90.0

2 100 100 5 1 57 42 49.5 2 99 99.0
2 57 42 49.5 2 99 99.0

UNR 57 42 49.5 2 99 99.0
3 100 200 10 1 56 6 48.7 3 146 73.0

2 56 36 48.7 3 146 73.0
UNR 50 29 42.0 4 168 84.0

4 100 200 10 1 41 48 39.3 3 118 59.0
2 41 8 39.3 3 118 59.0

UNR 41 19 35.0 5 175 87.5
5 200 200 10 1 54 43 49.0 3 147 73.5

2 54 43 49.0 2 98 49.0
UNR 49 36 41.5 4 166 83.0

6 200 200 10 1 58 39 46.0 3 138 69.0
2 58 39 46.0 3 138 69.0

UNR 58 19 36.0 5 180 90.0
7 200 400 20 1 56 49 52.7 3 158 39.5

2 56 49 52.7 3 158 39.5
UNR 56 22 42.1 8 337 84.3

8 200 400 20 1 60 33 49.7 3 149 37.2
2 56 49 52.7 3 158 39.5

UNR 66 18 41.3 8 330 82.5
Note: MK = 3 for MSKi ∈ {1,2}; MK =∞ for MSKi=∞.
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Table 5.7: Allocated cost per mile as MSKi varies (Small Shippers)

Inst |N| |L| |P| MSKi
Mean Std Dev

Max Min Avg Max Min Avg
1 100 100 10 1 1.22 1.10 1.17 0.57 0.07 0.38

2 1.13 1.18 1.23 0.47 0.43 0.45
UNR 1.25 1.10 1.17 0.57 0.07 0.38

2 100 100 10 1 1.37 1.05 1.19 0.47 0.39 0.42
2 1.37 1.05 1.19 0.47 0.39 0.42

UNR 1.31 1.04 1.20 0.54 0.25 0.36
3 100 200 20 1 1.34 1.23 1.28 0.48 0.31 0.39

2 1.34 1.23 1.28 0.48 0.31 0.39
UNR 1.72 1.19 1.43 0.48 0.22 0.27

4 200 200 20 1 1.31 1.21 1.27 0.52 0.41 0.48
2 1.31 1.21 1.27 0.52 0.41 0.48

UNR 1.78 1.16 1.34 0.49 0.00 0.36
5 200 200 20 1 1.22 1.18 1.19 0.37 0.27 0.31

2 1.22 1.18 1.19 0.37 0.27 0.31
UNR 1.42 1.14 1.28 0.49 0.19 0.36

6 200 200 20 1 1.27 1.18 1.22 0.46 0.37 0.43
2 1.27 1.18 1.22 0.46 0.37 0.43

UNR 1.74 1.17 1.20 0.35 0.07 0.28
7 200 400 40 1 1.35 1.20 1.27 0.43 0.29 0.35

2 1.35 1.20 1.27 0.43 0.29 0.35
UNR 1.35 1.20 1.27 0.42 0.24 0.35

8 200 400 40 1 1.21 1.14 1.17 0.37 0.26 0.32
2 1.21 1.14 1.17 0.37 0.27 0.32

UNR 1.49 1.14 1.33 0.50 0.00 0.33
Note: MK = 3 for MSKi ∈ {1,2}; MK =∞ for MSKi=∞.
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Table 5.8: Allocated cost per mile as MSKi varies (Large Shippers)

Inst |N| |L| |P| MSKi
Mean Std Dev

Max Min Avg Max Min Avg
1 100 100 5 1 1.25 1.23 1.24 0.46 0.36 0.41

2 1.27 1.22 1.25 0.43 0.33 0.37
UNR 1.38 1.22 1.28 0.37 0.29 0.23

2 100 100 5 1 1.19 1.17 1.18 0.57 0.44 0.51
2 1.19 1.17 1.18 0.57 0.44 0.51

UNR 1.19 1.17 1.18 0.57 0.44 0.51
3 100 200 10 1 1.28 1.22 1.25 0.42 0.22 0.31

2 1.28 1.22 1.25 0.42 0.22 0.31
UNR 1.34 1.23 1.27 0.41 0.32 0.38

4 100 200 10 1 1.20 1.21 1.22 0.57 0.42 0.48
2 1.23 1.21 1.22 0.52 0.42 0.48

UNR 1.28 1.21 1.24 0.52 0.35 0.43
5 200 200 10 1 1.25 1.24 1.25 0.52 0.34 0.42

2 1.25 1.24 1.25 0.52 0.34 0.42
UNR 1.36 1.16 1.27 0.39 0.32 0.36

6 200 200 10 1 1.21 1.17 1.19 0.46 0.42 0.45
2 1.21 1.17 1.19 0.46 0.42 0.45

UNR 1.34 1.13 1.22 0.48 0.32 0.42
7 200 400 20 1 1.28 1.21 1.24 0.32 0.39 0.40

2 1.28 1.21 1.24 0.32 0.39 0.40
UNR 1.42 1.21 1.27 0.42 0.34 0.37

8 200 400 20 1 1.23 1.16 1.21 0.40 0.26 0.32
2 1.28 1.21 1.24 0.42 0.39 0.40

UNR 1.28 1.17 1.23 0.49 0.23 0.37
Note: MK = 3 for MSKi ∈ {1,2}; MK =∞ for MSKi=∞.

Tables 5.9 and 5.10 list the optimality gaps of our final solutions with respect to the
LCP lower bound for each instance. We assume that the lanes without a coalition will
be covered by single lane cycles. We take the total cost of a coalition structure as the
sum of the costs of the coalitions and the single lane cycles of the lanes without a co-
alition. Then, we compute the optimality gap by calculating the difference between the
total cost of the coalition structure and LCP lower bound as a percentage of the LCP
lower bound for each instance. Despite the fact that increasing MK tend to decrease the
optimality gap, we observe that in most of the cases increasing MSKi tends to increase
the optimality gap.This fact also can be accounted by the discussed reasons in previous
parts. In short, we can claim that, not only increasing the value of MSKi is not an ad-
vantage for our algorithm, but also it makes the coalition construction processes more
complicated and more challenging. Consequently, our algorithm prefers to keep the so-
lution with the smaller MSKi as best solution found. Since larger MSKi tends to increase
the optimality gap in practice, the algorithm would terminate and would use the best
solution found so far for the larger MSKi. These tables also show that larger instances
are associated with larger optimality gaps.
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Table 5.9: Optimality gaps with respect to the LCP lower bound (Small Shippers)

Inst |N| |L| |P| MSKi
MK

1 2 3 ∞

1 100 100 10 1 25% 10% 9% 9%
2 * 10% 4% 9%

Unr * * 4% 9%
2 100 100 10 1 30% 15% 14% 14%

2 * 15% 14% 7%
Unr * * 14% 7%

3 100 200 20 1 42% 34% 27% 27%
2 * 34% 27% 21%

Unr * * 27% 14%
4 100 200 20 1 49% 42% 34% 24%

2 * 42% 34% 18%
Unr * * 34% 18%

5 200 200 20 1 45% 33% 28% 16%
2 * 33% 28% 16%

Unr * * 28% 16%
6 200 200 20 1 46% 35% 28% 18%

2 * 35% 28% 18%
Unr * * 27% 18%

7 200 400 40 1 50% 43% 38% 19%
2 * 43% 38% 19%

Unr * * 38% 19%
8 200 400 40 1 55% 51% 48% 27%

2 * 51% 48% 25%
Unr * * 48% 25%

*: Same as previous line.

Table 5.11 and 5.12 contains the number of coalitions selected under different combi-
nations of MSKi and MK values. We observe that the number of selected coalitions is
mainly determined by MK, as expected. On the other hand, it is affected by both MSKi
and MK, especially for small MSKi. When MSKi is small, the number of selected coali-
tions is highly likely to be small, even with unbounded MK. The number of coalitions
is not always high even when both MSKi and MK are unbounded.

As mentioned before, the small shipper instances have looser partnership constraints,
compared to the large shippers. Hence, we might expect better solution at first glance.
However, by observing the presented solutions, we find out that the solutions of the
large instances are comparatively more favorable. After a detailed scrutiny of these two
instance types, we maintain that the range difference between the lane number of each
shipper can be an account for this fact. Even though small shippers have looser partners-
hip constraints, they will lack the opportunity to have a higher degree of collaboration,
due to the small number of lanes they have. On the other hand, larger shippers have
more freedom to participate in coalitions without violating the partnership constraints.
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Table 5.10: Optimality gaps with respect to the LCP lower bound (Large Shippers)

Inst |N| |L| |P| MSKi
MK

1 2 3 ∞

1 100 100 5 1 30% 10% 10% 10%
2 * 10% 3% 6%

Unr * * 3% 6%
2 100 100 5 1 24% 2% 2% 2%

2 * 2% 2% 2%
Unr * * 2% 2%

3 100 200 10 1 35% 22% 12% 9%
2 * 22% 12% 9%

Unr * * 12% 9%
4 100 200 10 1 37% 30% 21% 7%

2 * 30% 21% 7%
Unr * * 21% 7%

5 200 200 10 1 35% 26% 15% 12%
2 * 26% 15% 12%

Unr * * 15% 12%
6 200 200 10 1 42% 30% 21% 9%

2 * 30% 21% 9%
Unr * * 21% 9%

7 200 400 20 1 42% 36% 30% 10%
2 * 36% 30% 10%

Unr * * 30% 10%
8 200 400 20 1 52% 47% 39% 17%

2 * 47% 39% 17%
Unr * * 39% 17%

*: Same as previous line.

Tables 5.13 and 5.14 contains the CPU times of the algorithm for different MSKi and
MK combinations on the problem instances. The CPU time spent on finding coalitions
is more than finding a cost allocation in most cases. We observe our heuristic finds high
quality solutions for tight problems very quickly. As the problem becomes looser, the
CPU time increases and the solution quality degrades. For MSKi = 1, the algorithm
terminates in under a minute with the small instances, and well under one hour for
the largest instances. The algorithm does not take more than two hours in any of the
experiments.
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Table 5.11: Number of coalitions selected(Small Shippers)

Inst |N| |L| |P| MSKi
MK

1 2 3 ∞

1 100 100 10 1 1 2 3 3
2 * 2 3 3

Unr * * 3 3
2 100 100 10 1 1 2 3 3

2 * 2 3 6
Unr * * 3 6

3 100 200 20 1 1 2 3 3
2 * 2 3 10

Unr * * 3 16
4 100 200 20 1 1 2 3 3

2 * 2 3 9
Unr * * 3 9

5 200 200 20 1 1 2 3 4
2 * 2 3 9

Unr * * 3 9
6 200 200 20 1 1 2 3 5

2 * 2 3 5
Unr * * 3 5

7 200 400 40 1 1 2 3 9
2 * 2 3 9

Unr * * 3 9
8 200 400 40 1 1 2 3 8

2 * 2 3 20
Unr * * 3 25

*: Same as previous line.
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Table 5.12: Number of coalitions selected (Large Shippers)

Inst |N| |L| |P| MSKi
MK

1 2 3 ∞

1 100 100 5 1 1 2 2 2
2 * 2 3 4

Unr * * 3 4
2 100 100 5 1 1 2 2 2

2 * 2 2 2
Unr * * 2 2

3 100 200 10 1 1 2 3 4
2 * 2 3 4

Unr * * 3 4
4 100 200 10 1 1 2 3 5

2 * 2 3 5
Unr * * 3 5

5 200 200 10 1 1 2 3 4
2 * 2 3 4

Unr * * 3 4
6 200 200 10 1 1 2 3 5

2 * 2 3 5
Unr * * 3 5

7 200 400 20 1 1 2 3 8
2 * 2 3 8

Unr * * 3 8
8 200 400 20 1 1 2 3 8

2 * 2 3 8
Unr * * 3 8

*: Same as previous line.
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6. CONCLUSION

In this thesis, we study the design of coalition structures which consist of multiple disjo-
int core stable coalitions of shippers interested in collaborative truckload transportation
procurement. Each coalition must have a minimum cost collaborative solution with an
acceptable cost allocation. Due to the complexity of the task hand, we propose a heuris-
tic to find good quality solutions to this problem.

Our heuristic appears to work best when the degree of freedom is limited due to either
the number of lanes on hand or the restrictions put in place by the decision makers. We
suggest using this algorithm when the lane density does not exceed 200/(1800miles×
1800miles) and at most one coalition per shipper is acceptable. Limiting each shipper
to at most one coalition should in fact be preferable by most shippers since participating
in multiple coalitions will require more coordination effort compared to participating in
a single coalition. We also suggest allowing a high number of coalitions for the partici-
pants to get the most benefit.

Choosing the next lane to remove from the candidate coalition is critical for solving
problem instances with a high number of lanes and loose restrictions. In our future
work, we plan to investigate different criteria for choosing the next lane to remove from
the candidate coalition for increasing the effectiveness of our solution approach.
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