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Efficient Approximate Big Data Clustering: Distributed and Par-
allel Algorithms in the Spectrum of IoT Architectures

Amir Keramatian
Division of Networks and Systems, Chalmers University of Technology

ABSTRACT
Clustering, the task of grouping together similar items, is a frequently used method

for processing data, with numerous applications. Clustering the data generated by
sensors in the Internet of Things, for instance, can be useful for monitoring and mak-
ing control decisions. For example, a cyber physical environment can be monitored
by one or more 3D laser-based sensors to detect the objects in that environment and
avoid critical situations, e.g. collisions.

With the advancements in IoT-based systems, the volume of data produced by,
typically high-rate, sensors has become immense. For example, a 3D laser-based
sensor with a spinning head can produce hundreds of thousands of points in each
second. Clustering such a large volume of data using conventional clustering meth-
ods takes too long time, violating the time-sensitivity requirements of applications
leveraging the outcome of the clustering. For example, collisions in a cyber physical
environment must be prevented as fast as possible.

The thesis contributes to efficient clustering methods for distributed and paral-
lel computing architectures, representative of the processing environments in IoT-
based systems. To that end, the thesis proposes MAD-C (abbreviating Multi-stage
Approximate Distributed Cluster-Combining) and PARMA-CC (abbreviating Paral-
lel Multiphase Approximate Cluster Combining). MAD-C is a method for distributed
approximate data clustering. MAD-C employs an approximation-based data synopsis
that drastically lowers the required communication bandwidth among the distributed
nodes and achieves multiplicative savings in computation time, compared to a base-
line that centrally gathers and clusters the data. PARMA-CC is a method for parallel
approximate data clustering on multi-cores. Employing approximation-based data
synopsis, PARMA-CC achieves scalability on multi-cores by increasing the synergy
between the work-sharing procedure and data structures to facilitate highly paral-



ii

lel execution of threads. The thesis provides analytical and empirical evaluation for
MAD-C and PARMA-CC.

Keywords: Approximation-based synopsis, Clustering, Distributed and Parallel Processing
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1
Overview

1.1 Introduction

Devices in IoT, Internet of Things, are changing our everyday lives by making every-
thing connected and automated to a certain degree. Ericsson forecasts the number of
IoT devices to hit around 20 billion by 2022. The thing in IoT is an entity with an
embedded system that has the ability to transfer data over a network. For example,
it can be a heart monitor and the associated communicating devices inside a person’s
body, or it can be a vehicle with tens of processing units and sensors on board.

An IoT-based system typically consists of a network of cyber-physical systems
(e.g. a variety of sensors, smart meters, actuators, pumps, and engines), resource-
constrained computational devices (e.g. handheld mobile computers), high-end servers,
communication medium and other associated devices.

3
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IoT has been effectively incorporated in industrial use-cases [1]. For example,
in the fourth industrial revolution [2], the production facilities in a factory, such as
Automated Guided Vehicles (AGV) and robot arms, are managed, controlled, and
optimized using IoT-based systems.

The following discusses a three-level computational architecture that facilitates
connection and computing in IoT-based systems.

A three-level computational architecture: cloud, fog, and edge

It is a common practice to transfer data into the cloud, where storage, computation,
analysis, and decision making take place [3]. As the typical infrastructure in cloud
provides abundant resources (e.g. powerfull high-end servers), cloud computing can
be used to solve problems in IoT-based systems. Cloud computing has several ad-
vantages. Firstly, computational scalability can be achieved by properly leveraging
the resources of high-end servers. Secondly, the cloud services typically enable the
users to pay for the services in a pay-as-you-go manner, making it more economical
than having on-premise equipment. Thirdly, the cloud is maintained by the cloud ser-
vice providers, sparing the end users from technical managements. These advantages
show the importance of cloud computing for many problems in IoT-based systems.

On the other hand, cloud computing has some disadvantages as well. Consider-
ing the distance between the devices and cloud service providers, the services might
suffer from high latency. Moreover, transmitting the data from all the devices in the
network requires high bandwidth. Furthermore, security measures are required to
transmit all the raw data to a cloud service provider.

Fog and edge computing have become popular in deployment to address the con-
cerns regarding cloud computing. Edge computing refers to the computation, anal-
ysis, storage, and decision making that takes place at the edge of the network, i.e.
the devices (like mobile phones) directly connected to the sensors or an IoT gateway
closely located to the sensors. Fog computing refers to leveraging the computational
and storage capacities within a local network of systems (e.g. a LAN) to carry out the
computation that would, otherwise, require the resources of a cloud infrastructure.
Compared to the cloud computing, fog and edge computing facilitate processing data
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closer to where it is produced [3]. As a result, adapting IoT-based systems to fog/edge
computing can provide solutions with lower latency and higher security, as the data
remains within the local network. Nevertheless, fog/edge computing can be challeng-
ing as fog/edge devices are typically resource-constrained in terms of computational
power. Furthermore, such devices can be connected via limited bandwidth media,
e.g. wireless networks, which makes transmitting large volumes of data expensive.

1.2 The scope of this thesis

This thesis revolves around methods for efficient data processing using powerful
high-end servers (typically deployed in the cloud computing), and resource-constrained
devices (typically deployed in fog/edge computing). The following subsections in-
troduce the different aspects of the thesis.

1.2.1 Processing sensor data

Sensors installed in IoT devices continuously gather data as they take measurements
in their environment. Based on the latent information in the sensors’ data, new control
decisions might be taken. For example, when the data from smoke and temperature
sensors indicate a possibility of fire, an alarm should go off.

With the advancements in IoT-based systems, modern sensors produce large vol-

ume of data in a high velocity. Furthermore, the data might be generated from a
variety of sources. These aspects are reminiscent of the 3V model [4] for big data.

Processing big data with conventional methods is challenging. Basically, process-
ing a too large volume of data with a conventional data processing method requires
excessive amounts of time which can be detrimental to time-sensitive problems, e.g.
navigating a self driving vehicle. Moreover, processing data that is produced at high
rates requires methods that can perform the processing in a single pass and on the
fly. Lastly, processing the fused data, aggregated data that is generated from multiple
sources, requires methods capable of processing heterogeneous data. For example,
an AGV, for the purpose of navigation and avoiding obstacles, might be equipped
with high-rate laser-based sensors, generating a high volume of data every second,
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digital cameras, and various other sensors. The following outlines the methods that
this thesis employs to address the challenges in processing big data.

1.2.2 Methods for dealing with big data produced by sensors

To address the challenges of processing big data, the methods proposed in this the-
sis use the insights from [5]: (i) scaling down the amount of data to be processed,
(ii) utilizing parallel processing and efficient use of shared memory to scale up the
computing on a node, and (iii) utilizing distributed nodes (e.g. in fog/edge) to scale

out the computing to different nodes.

Scaling down the data

The first line of defence against big data is scaling down the large volume of data.
Scaling down can be applied in a variety of forms [6], for instance, sampling [7, 8],
dimensionality reduction [9], and compression [10].

Most applications do not require exact solutions; however, they need to make
decisions as fast as possible. For instance, regarding the problem of managing AGVs,
a real-time solution that approximately detects the objects in the environment and
avoids hitting them is more helpful than an exact solution that detects the objects
with all the details but fails to to finish within reasonable amount of time, leading
to catastrophic outcomes. Therefore, approximation is an important tool for scaling
down the volume of data in order to achieve timely solutions.

Approximation techniques can be employed to derive a data synopsis orders of
magnitude smaller than the original data, leading to orders of magnitude speed-up
in processing time. Often, it is important that the data synopsis be constructed in
only one pass over the original data. Furthermore, as the data might not be present
all at once and become available gradually (for instance the manner in which most
sensors provide readings), the data synopsis can be constructed incrementally, with
constant overhead per new data entry. Sketches [11] are important approximation-
based synopsis for big data.
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Scaling up the computing in one node

Modern computing platforms support concurrent execution, synchronization, and
communication of many workers (e.g. threads, CPUs, etc), sharing the available
resources of the system, for instance memory. Leveraging parallel processing and
efficient use of the shared memory can lead to scaling up the computing on a single
node. Maximizing such scalability is particularly important on powerful high-end
servers (e.g. those typically employed in the cloud computing) as they provide abun-
dant resources in terms of computational power, memory, and storage. For example,
a high-end server can consist of several sockets, each socket accommodating several
cores, and each core can possibly support hyper-threading [12].

However, regarding many problems in IoT-based systems, achieving and main-
taining high scalability with increasing number of workers is challenging. In fact,
increasing the number of workers might even reduce the scalability of a system. The
following presents a discussion on the affiliated challenges with scalability of a sys-
tem considering varying number of workers.

The Universal Scalability Law. USL, or the universal scalability law [13], pro-
posed by Neil Gunther, is a model to quantify the scalability of a system. Accord-
ing to USL, there are two main obstacles on the way of achieving linear scalabil-
ity with the number of workers. The first one is contention, and the second one is
crosstalk [14]. Contention happens when the workers of a task require a shared re-
source but can not have it at the same time. Therefore, they have to queue up, which
negatively affects the parallelization of the task. Crosstalk happens when the pairs of
workers need to communicate in order to synchronize and share their states, which
negatively affects the scalability. Based on contention and crosstalk, USL models the
scalability of a system as the following:

SK =
K

1 + δ(K − 1) + κK(K − 1)
,

where SK is the scalability withK workers, and δ is the contention degree coefficient,
and κ is the crosstalk penalty coefficient. Note δ gets multiplied by (K − 1) which
shows contention grows linearly in the number of workers (i.e. as they queue up for
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a shared resource). On the other hand, κ gets multiplied by K(K − 1) reflecting the
crosstalk between all pairs of workers in the system. Note that, in an ideal system,
coefficients δ and κ are zero; therefore, the scalability of the system increases linearly
with the number of workers. Nevertheless, with κ and δ being greater than zero, the
growth of denominator gets higher than the numerator, and SK will start to decrease
after a large enough value of K.

Therefore, to achieve high scalability, the challenge is to design data structures,
algorithms, and work sharing schemes that minimize the contention for the shared
resources and the crosstalk among the pairs of workers.

Scaling out the computing to distributed nodes in fog/edge

Increasing the number of computing nodes is another approach to deal with big
data [5, 15, 16]. To that end, an interconnected network of fog/edge devices (with
attached sensors) can be leveraged to process the gathered sensor data. As the com-
munication takes place in the local network of the devices, the communication latency
is lower than the cloud computing setup, and the privacy of data is preserved within
the boundaries of the local network.

Nevertheless, there are two challenges that need to be considered in designing
an IoT-based system that scales out the computing. The first one concerns the fact
that the fog/edge devices are weaker than the high-end servers, in the sense that they
have limited computational and memory capacities. The second challenge arises from
the limited-bandwidth shared communication medium that interconnects the fog/edge
devices.

1.2.3 Algorithmic engineering concerns

To fully exploit the potential computational capacity of a hardware platform, this the-
sis considers (algorithmic) implementation details to maximize the synergy between
software and hardware [17]. In other words, this thesis takes into account concerns
regarding the design and algorithmic implementation of the solutions based on the
behaviour of the target platform. For example, regarding the high-end servers sup-
porting several workers, solutions must result in minimum contention and crosstalk
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among the workers, as suggested by USL. Similarly, regarding the resource-constrained
devices in fog/edge computing, solutions must be designed in order to minimize the
communication volume among the fog/edge devices, and perform the computational
tasks as close as possible to the generating sources of data.

1.3 Preliminaries

This section introduces the required background for reading the following sections.

1.3.1 LIDAR and point clouds

LIDAR (LIght Detection And Ranging) is a scanning method to generate a 3-D rep-
resentation of a target by illuminating the target with pulsed light waves. The 3-D
model is generated based on the time that light waves take to return.

A LIDAR scanner typically leverages several laser beams (e.g. 8 to 128). Lo-
cated on the spinning head of the sensor, each laser beam emits photons and reads
back their reflection several times in a second. As the spinning head of the LIDAR
scanner makes a full rotation, a 360 degree high resolution 3-D representation of the
environment is attained [18].

The readings from a LIDAR sensor are named point clouds [19]. Point clouds
generated by certain types of LIDAR sensors can contain hundreds of thousands of
3-D points, or even more. The point cloud from a full rotation of a LIDAR sen-
sor’s spinning head contains points corresponding to scene objects (e.g. pedestrians,
vehicles, etc) in the environment in which the LIDAR sensor is installed.

1.3.2 Cluster Analysis

Cluster analysis, or clustering, is the task of partitioning a given set of items into
clusters, where within a cluster items are more similar to each other than to those
in other clusters [20, Ch. 11-16]. More specifically, the task is to assign the same
clustering label to the items in the same cluster, but different from those in other
clusters.
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Cluster analysis is an important data analysis tool. Certain types of clustering
algorithms can be used to segment/partition the points in a point cloud based on the
scene object to which they belong. In other words, the clustering labels can differ-
entiate the points based on the scene object that each point is a member of [21, 22].
Cluster analysis can also be applied on GPS data to understand mobility and route
analysis [23, 24]. The two types of clustering algorithms that this thesis concerns are
introduced in the following paragraphs.

Distance-based clustering. The items grouped together in a distance-based cluster
satisfy some distance-related criteria. For example, the Euclidean clustering algo-
rithm [21, 22] partitions a given point cloud into an a priori unknown number of clus-
ters. It works with two adjustable parameters: minPts and ε. The algorithm produces
clusters each containing at least minPts number of points, and within each cluster,
each point lies in the ε-radius neighbourhood of at least another point in the same
cluster. Points not belonging to any cluster are characterized as noise. Lisco [25]
is a single-pass continuous version of the Euclidean clustering algorithm designed
for sorted data; e.g. a point cloud gathered by a LIDAR sensor is angularly sorted
because the point cloud is collected by the spinning head of the sensor.

Density-based clustering. The density-based clustering algorithms partition a given
point-cloud into high density regions (clusters), separated by contiguous regions of
low density regions. For example, Density-Based Spatial Clustering of Applications
with Noise, or DBSCAN [26], is a density-based clustering algorithm that parti-
tions a given point-cloud into an a priori unknown number of clusters. Similar to
the Euclidean clustering algorithm, DBSCAN works with two adjustable parameters:
minPts and ε. A Cluster found by DBSCAN consists of at least one core point and
all the points that are density-reachable from it. Point p is a core point if it has at least
minPts points in its ε-radius neighbourhood. Point q is directly reachable from p if
q lies in the ε-radius neighbourhood of p. Point q is density-reachable from p, if q is
directly reachable either from p or another core point that is density-reachable from
p. Non-core points that are not density-reachable from any core-points are outliers
[27, 28]. DENCLUE [29], STING [30], and OPTICS [31] are some other well-known
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density-based clustering algorithms.

1.4 Research Challenges

This thesis studies the problem of efficient sensor data clustering (e.g. point clouds
or GPS readings) from one or more sources as a representative problem in IoT-based
systems.

The aforementioned clustering task on point clouds can be used for extracting
valuable information regarding the objects and their dispositions in the environment
scanned by one or more LIDAR sensors. Considering the problem of managing
AGVs equipped with LIDAR sensors, clustering point clouds can be used for de-
tection and localization of scene-objects. Furthermore, it can be used for online mon-
itoring of the environment, guiding the AGV through the environment, and making
sure that it does not collide with other objects. It can also be employed to make
sure that the AGV does not enter a restricted area in the environment, framed by a
geofences.

To counter-balance the overwhelming effects of the big data produced by sen-
sors (e.g. LIDAR sensors), the methods in this thesis leverage scaling down, scaling
up, and scaling out (discussed in § 1.2) techniques. § 1.4.1 characterizes the dis-
tributed version of the problem, which employs the scaling down and scaling out
techniques. § 1.4.2 studies the problem using parallel computing, which the employs
scaling down and scaling up techniques. § 1.6 summarizes the contributions of the
thesis regarding each variant of the problem.

1.4.1 Clustering Sensor Data Distributedly Gathered by Multiple
Fog/Edge Devices

Combining readings from multiple sensors is commonly recognized as sensor fu-

sion. In certain scenarios it is useful to have multiple sensors scan the environment
simultaneously. For example, a LIDAR sensor installed in a particular place in the
environment might have an occluded view. In order to address the occlusion [32] and
increase safety and robustness, several LIDAR sensors can be installed in different
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locations to scan the environment from different perspectives. To that end, the first
direction of research that this thesis follows regarding the problem of efficient sensor
data clustering is leveraging a network of fog/edge devices with attached sensors for
distributed clustering of the sensor data, i.e. to scale out as noted in § 1.2.2.

Challenges. Centrally gathering all the local point clouds into a single source and
performing the clustering algorithm on their union, known as the merged point cloud,
is cumbersome. Firstly, transmitting several point clouds (each containing hundreds
of thousands of points) imposes high latency and takes long time, as long as a few
tens of seconds. The latter becomes even more challenging when the devices use
the wireless medium for communication, which has a low bandwidth and has a high
risk of transmission failures. Secondly, computationally speaking, performing the
clustering algorithm on the merged point cloud takes excessive amount of time on the
fog/edge devices as there can be many millions of points in the merged point cloud.

Research Questions. The aforementioned challenges arise from centrally gather-
ing all the point clouds. On the other hand, considering the distributed nature of
the problem, can processing the data closer to the generating sources increase the
computational efficiency and lower the communication overhead (Q1)? Moreover,
as mentioned in § 1.2, one primary technique to overcome the huge volume of data
is to first scale it down. How can approximation-based synopsis help to reduce the
required communication and computational resources (Q2)? This thesis introduces a
solution that jointly answers Q1 and Q2.

1.4.2 Highly Parallel Clustering on Shared Memory Multi-Core
Systems

The second direction of research that this thesis follows regarding the problem of
efficient sensor data clustering is leveraging the computational resources of a high-
end server for parallel clustering of sensor data, i.e. to scale up [5] on a single node,
as noted in § 1.2.2.
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Challenges. A parallel clustering algorithm employing several workers imposes the
following challenges: (i) the distribution of the workload among the workers, (ii) how
each worker processes its assigned workload, and (iii) synchronization and commu-
nication among the workers. In order to increase the scalability of the algorithm, the
aforementioned challenges must be addressed in a way to decrease the contention for
the shared resources and the crosstalk among each pair of workers, as suggested by
USL, see § 1.2.2.

Regarding point clouds, the majority of commonly used data structures (e.g., KD-
trees, Octrees [33], and voxel grids [21]), grow in size with respect to the size of the
point cloud. Furthermore, the cost of common queries and operations can become
expensive (e.g. super linear in the number of data points). Moreover, such data struc-
tures show their worst-case performance when the distribution of data is skewed [34].
Therefore, processing point clouds and GPS readings is challenging with such data
structures.

Research Questions. The work-sharing design of a parallel clustering algorithm
distributes the work-load among the workers and regulates the processing of each
worker, as well as the communication and synchronization among the workers. Con-
sidering USL, can the synergy from the joint design of the work-sharing mechanism
and the data structures increase the scalability by lowering crosstalk among the pairs
of workers and the contention for the shared data (Q3)? Moreover, can the total
amount of work-load be reduced by incorporating approximation-based synopsis into
the data structures, thus increasing scalability (Q4)? Furthermore, can leveraging
the approximation-based synopsis achieve super-linear scalability in the number of
workers (Q5)? This thesis studies how questions Q3, Q4, and Q5 can be jointly
answered.

1.5 Contributions

This section outlines the contributions of the thesis regarding the research problems
in § 1.4.
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1.5.1 Multi-stage Approximate Distributed Cluster-combining for
Obstacle Detection and Localization (Paper I)

Regarding the problem of distributed sensor data clustering on fog and edge devices,
this thesis, in Chapter 2, proposes MAD-C, abbreviating Multi-stage Approximate
Distributed Cluster-combining for Obstacle Detection and Localization.

In MAD-C, the devices, distributedly and in parallel, perform the substantial por-
tion of the required processing locally, addressing research question Q1 in § 1.4.1.
Furthermore, employing an approximation-based synopsis, each device locally ap-
proximates the results of its local processing. Afterwards, the fog/edge devices com-
municate and combine the approximation-based synopses in order to make a global
synopsis corresponding to the clustering of the merged point cloud. Each fog/edge
device can generate its local approximate-based synopsis incrementally with only one
pass over the data. As the local synopses are much smaller in size (compared to the
original local point clouds) and can be combined efficiently, MAD-C achieves sig-
nificant communication and computational savings, addressing research question Q2

in § 1.4.1. In addition to analytical results, empirical evaluation of MAD-C, both in
simulation and a setup of fog/edge devices), shows advantages of MAD-C regarding
Q1 and Q2.

Advances relative to the state of the art. Regarding the problems that concern
multiple sources of point clouds, the common practice is to perform processing on
the merged point clouds, for example [35]. Nevertheless, as pointed out in § 1.4.1,
when the data is gathered distributedly, centrally gathering and clustering the point
clouds is inefficient. In such cases, distributed clustering algorithms can be lever-
aged. For example, DBDC [36], density-based distributed clustering, is a client-
server method that approximates the clustering outcome of DBSCAN. Client nodes
in DBDC locally perform operations on their data and transmit some representatives,
on which the server performs some extra processing and forwards the results back
to the clients. Unlike MAD-C’s constant-size approximation-based synopsis, there
are no guarantees on the number of representatives in DBDC. Furthermore, MAD-C
nodes can operate with an arbitrary connection topology. Authors in [37] propose



1.5. CONTRIBUTIONS 15

distributed versions of some center-based clustering algorithms (e.g. K-Means, K-
Harmonic-Means, and Expectation-Maximization). In an iterative approach, each
local node computes sufficient statistics for its local data and then receives and ag-
gregates sufficient statistics from other nodes to attain a global sufficient statistics.
Nevertheless, MAD-C is more efficient at communication as the transmission of data
between MAD-C nodes takes place only once.

1.5.2 Parallel Multistage Approximate Cluster Combining (Pa-
per II)

Regarding the problem of parallel sensor data clustering on high-end servers, this
thesis, in Chapter 3, proposes PARMA-CC, Parallel Multistage Approximate Clus-
ter Combining. PARMA-CC facilitates leveraging an arbitrary number of workers
to achieve a high degree of scalability. It employs the same approximation-based
synopsis developed for MAD-C to scale down the large volume of data.

In PARMA-CC, the synergy between the data structures and the work sharing
schemes reduce the contention for the shared resources and the crosstalk between
pairs of workers, as suggested by USL. More specifically, PARMA-CC leverages
data-parallelism and a specially designed shared data structure that supports in-place
operations (eliminating the need for data copying or migration). Moreover, the work-
sharing mechanism regulates the workers to behave in a divide-and-conquer manner,
reducing the communication and synchronization among the workers. It also controls
how the workers access the shared data structure in order to avoid contention. Ex-
ploiting the aforementioned contributions, PARMA-CC addresses the research ques-
tion Q3 in § 1.4.2.

Furthermore, the empirical results of PARMA-CC show that the total amount of
work-load can be reduced by incorporating the approximation-based synopsis, ad-
dressing the research question Q4 in § 1.4.2. In addition, when the input data has
a skewed distribution, PARMA-CC can achieve super-linear scalability in the num-
ber of workers, addressing the research question Q5 in § 1.4.2. The thesis provides
analytical and empirical results to show the latter.
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Advances relative to the state of the art. There are three relevant categories of re-
lated work to PARMA-CC. The first category consists of distance-based and density-
based clustering methods, introduced in § 1.3. PARMA-CC can approximate the
clustering outcome of many distance-based and density-based methods through its
approximation-based synopsis. The second category contains methods that boost the
performance of conventional density-based and distance-based clustering algorithms
via parallelization. For example, Highly Parallel DBSCAN [38], HPDBSCAN, is
an OpenMP/MPI hybrid algorithm. HPDBSCAN offers good scalability; however,
when the data is skewed, its performance degrades severely. On the other hand,
PARMA-CC better tolerates skewed data. Moreover, the way that PARMA-CC is
designed to utilize the shared memory via in-place operations is more efficient than
OpenMP’s relaxed consistency memory model in which multiple copies of the same
data might exist. The last category consists of methods that, through approximation,
sacrifice accuracy to gain performance. For example, ρ-approximate DBSCAN [28],
and STING [30] approximate the clustering outcome of DBSCAN. Other approxi-
mation approaches employ sampling techniques, e.g. [39]. These approaches can as
well be utilized in PARMA-CC’s approximation-based synopsis.

1.6 Conclusions and Future Work

This thesis studies the problem of efficient sensor data clustering from one or more
sources employing powerful high-end servers or resource-constrained fog/edge de-
vices. Considering the large volume, velocity, (and possibly variety) of the data to be
clustered, this thesis proposes an approximation-based data synopsis to scale down
the data. Furthermore, it proposes methods tailored for each type of environment
(i.e. high-end servers or fog/edge devices) to efficiently address the problem using
the approximation-based data synopsis.

The methods introduced in this thesis can form a basis for a more general data
processing framework. A future line of research can fuse data from other types of
sources (e.g. positioning sensors) with LIDAR data, in order to increase accuracy
and safety. Another future line of research is to extend the methods to predict the
type (e.g. pedestrian, cyclist, etc) of the scene-objects. Moreover, the methods can be
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extended to be employed in a continuous fashion. As the readings from consecutive
rotations of a LIDAR sensor are similar, it is expected that an approximation-based
synopsis corresponding to one rotation of a LIDAR sensor can be employed to effi-
ciently generate synopsis corresponding to the next rotation of the LIDAR sensor.
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