
THESIS FOR THE DEGREE OF LICENTIATE OF SCIENCE

Efficient Approximate Big Data Clustering:
Distributed and Parallel Algorithms in the

Spectrum of IoT Architectures

AMIR KERAMATIAN

Division of Networks and Systems

Department of Computer Science and Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2019

Efficient Approximate Big Data Clustering: Distributed and Parallel Algorithms in the

Spectrum of IoT Architectures

Amir Keramatian

Copyright c© Amir Keramatian, 2019.

Technical report 207L
ISSN 1652-876X
Department of Computer Science and Engineering
Distributed Computing and Systems Group

Division of Networks and Systems
Chalmers University of Technology
SE-412 96 Gothenburg, Sweden
Phone: +46 (0)31-772 10 00

Author e-mail: amirke@chalmers.se

Printed by Chalmers Reproservice
Gothenburg, Sweden 2019

Efficient Approximate Big Data Clustering: Distributed and Par-
allel Algorithms in the Spectrum of IoT Architectures

Amir Keramatian
Division of Networks and Systems, Chalmers University of Technology

ABSTRACT
Clustering, the task of grouping together similar items, is a frequently used method

for processing data, with numerous applications. Clustering the data generated by
sensors in the Internet of Things, for instance, can be useful for monitoring and mak-
ing control decisions. For example, a cyber physical environment can be monitored
by one or more 3D laser-based sensors to detect the objects in that environment and
avoid critical situations, e.g. collisions.

With the advancements in IoT-based systems, the volume of data produced by,
typically high-rate, sensors has become immense. For example, a 3D laser-based
sensor with a spinning head can produce hundreds of thousands of points in each
second. Clustering such a large volume of data using conventional clustering meth-
ods takes too long time, violating the time-sensitivity requirements of applications
leveraging the outcome of the clustering. For example, collisions in a cyber physical
environment must be prevented as fast as possible.

The thesis contributes to efficient clustering methods for distributed and paral-
lel computing architectures, representative of the processing environments in IoT-
based systems. To that end, the thesis proposes MAD-C (abbreviating Multi-stage
Approximate Distributed Cluster-Combining) and PARMA-CC (abbreviating Paral-
lel Multiphase Approximate Cluster Combining). MAD-C is a method for distributed
approximate data clustering. MAD-C employs an approximation-based data synopsis
that drastically lowers the required communication bandwidth among the distributed
nodes and achieves multiplicative savings in computation time, compared to a base-
line that centrally gathers and clusters the data. PARMA-CC is a method for parallel
approximate data clustering on multi-cores. Employing approximation-based data
synopsis, PARMA-CC achieves scalability on multi-cores by increasing the synergy
between the work-sharing procedure and data structures to facilitate highly paral-

ii

lel execution of threads. The thesis provides analytical and empirical evaluation for
MAD-C and PARMA-CC.

Keywords: Approximation-based synopsis, Clustering, Distributed and Parallel Processing

Preface

Parts of the contributions presented in this thesis have previously appeared in the
following manuscript.

. Amir Keramatian, Vincenzo Gulisano, Marina Papatriantafilou, Philip-
pas Tsigas, and Yiannis Nikolakopoulos
“MAD-C: Multi-stage Approximate Distributed Cluster-combining for
Obstacle Detection and Localization”
Appeared in the F2C-DP workshop in the 24th European Conference on

Parallel Processing, 2018. In addition, an extended and revised version
is submitted for journal publication.

. Amir Keramatian, Vincenzo Gulisano, Marina Papatriantafilou, and
Philippas Tsigas
“PARMA-CC: Parallel Multiphase Approximate Cluster Combining”
To appear in the 21st International Conference on Distributed Comput-

ing and Networking, 2020.

iii

iv PREFACE

Acknowledgments

I am grateful for the invaluable guidance and support I receive from my supervisors
Marina Papatriantafilou, Vincenzo Gulisano, and Philippas Tsigas. I thank Yiannis
Nikolakopoulos for having done collaboration with me. Furthermore, I would like to
thank Agneta Nilsson and Tomas Olovsson for the time and effort they have put for
helping me.

Colleagues of mine have made the experience of working at Chalmers even more
pleasurable. Many thanks to Adones, Ali, Aljoscha, Aras, Bastian, Bei, Beshr, Boel,
Carlo, Charalampos, Christos, Dimitris, Elad, Elena, Fazeleh, Francisco, Georgia,
Hannah, Iosif, Ismail, Ivan, Joris, Karl, Katerina, Nasser, Oliver, Romaric, Thomas,
Vladimir and Wissam.

I would like to acknowledge the financial support by the Swedish Foundation for
Strategic Research, project Factories in the Cloud (FiC), with grant number GMT14-
0032.

Here is a good place as any to express my gratitude towards my parents. My
father inspired me with innovative thinking, and my mother taught me to aim high.
Besides family, my friends have generously provided support and care for me. By
this means I would like to thank Mozhgan, Elin, Sharon, and Hamid.

Amir Keramatian
Göteborg, December 2019

v

vi ACKNOWLEDGMENTS

Contents

Abstract i

Preface iii

Acknowledgments v

I OVERVIEW 1

1 Overview 3
1.1 Introduction . 3

1.2 The scope of this thesis . 5

1.2.1 Processing sensor data . 5

1.2.2 Methods for dealing with big data produced by sensors 6

1.2.3 Algorithmic engineering concerns 8

1.3 Preliminaries . 9

1.3.1 LIDAR and point clouds . 9

1.3.2 Cluster Analysis . 9

1.4 Research Challenges . 11

1.4.1 Clustering Sensor Data Distributedly Gathered by Multiple
Fog/Edge Devices . 11

1.4.2 Highly Parallel Clustering on Shared Memory Multi-Core
Systems . 12

1.5 Contributions . 13

vii

viii CONTENTS

1.5.1 Multi-stage Approximate Distributed Cluster-combining for
Obstacle Detection and Localization (Paper I) 14

1.5.2 Parallel Multistage Approximate Cluster Combining (Paper II) 15

1.6 Conclusions and Future Work . 16

Bibliography . 17

II PAPERS 21

2 MAD-C 25
2.1 Introduction . 26

2.2 Preliminaries . 28

2.2.1 System Model and Problem Description 29

2.2.2 Background and Baseline 30

2.3 The MAD-C algorithm . 32

2.3.1 Key idea of MAD-C . 32

2.3.2 Generating Local Maps by Efficient Summarization of Local
Clusters . 33

2.3.3 Towards a Global Map: Combining Maps 35

2.3.4 Algorithmic Implementation Aspects of MAD-C 37

2.4 MAD-C’s Completion Time Analysis 38

2.4.1 Assumptions, Notations, and Definitions 38

2.4.2 Characterizing the asymptotic behaviour of components of
the completion time . 39

2.4.3 Characterizing the completion time T0 46

2.5 Extensions and Examples of Further Usages 47

2.5.1 Extensions . 47

2.5.2 Geofencing with the fusion of LIDAR point clouds 48

2.6 Empirical Evaluation . 53

2.6.1 Evaluation Setup . 54

2.6.2 Evaluation Data . 55

2.6.3 Evaluation Results . 57

2.7 Related work . 63

CONTENTS ix

2.8 Conclusions . 65
Bibliography . 66

3 PARMA-CC 73
3.1 Introduction . 74
3.2 Preliminaries . 76

3.2.1 System Model and Problem Description 76
3.2.2 Background . 76

3.3 The PARMA-CC approach . 78
3.3.1 Overview and Challenges 78
3.3.2 Phase I of PARMA-CC . 81
3.3.3 Phase II of PARMA-CC . 81
3.3.4 Phase III of PARMA-CC . 82
3.3.5 Phase IV of PARMA-CC . 83

3.4 Data Structures and Algorithmic Implementations 84
3.4.1 Bounding Ellipsoid Data Structure 84
3.4.2 Ellipsoid Forest Data Structure 84
3.4.3 Object Data Structure . 85
3.4.4 Map Data Structure . 87
3.4.5 Analysis . 90

3.5 Experimental Evaluation . 92
3.5.1 Completion Time and Scalability 93
3.5.2 Relative Ratio of Local Clustering 96
3.5.3 Clustering Accuracy . 96
3.5.4 Summary of the Experimental Outcomes 96

3.6 Further Uses and Enhancements . 97
3.7 Related Work . 99
3.8 Conclusions . 100
Bibliography . 101

x CONTENTS

List of Figures

2.1 A scene with three LIDAR nodes located at N1, N2 and N3 along
with the local views and the merged view. 30

2.2 (a),(b), and (c) are local maps. (d) M1,2= combine(M1, M2), (e)
M1,2,3= combine(M1,2, M3) . 34

2.3 The relative position of an ellipse and the thick line that symboli-
cally represent a plane. 51

2.4 Samples of data used in the empirical evaluation. 56

2.5 Several performance related measurements. (a) shows the average
recall and precision (with one standard deviation) showing the effec-
tiveness of bounding ellipsoids in summarizing local clusters in the
KITTI scenes. (b) shows the clustering accuracy of MAD-C mea-
sured by rand index for the factory scene with different values of the
confidence step and different number of nodes (i.e. K). (c) shows
clustering accuracy boxplots of MAD-C on the random scenes with
different number of nodes when the confidence step is set to 1.5. . . 56

2.6 Completion time of MAD-C and Baseline in different setups for
syn-10, syn-50, and syn-100 data sets. (a-c) The IoT test-bed with
five nodes. (d-f) Simulation with five nodes. (g-i) Simulation with
seven nodes. Note that the simulation and the IoT test-bed use dif-
ferent hardware platforms. 59

xi

xii LIST OF FIGURES

2.7 MAD-C’s combine time in the IoT test-bed and the simulation for
syn-10, syn-50, and syn-100 data sets. Note that the simulation and
the IoT test-bed use different hardware platforms. 61

2.8 Transmission time of MAD-C and baseline nodes in different setups
for syn-10, syn-50, and syn-100 data sets. 62

3.1 (a) Point cloud split into green, blue, and red partitions. (b,c,d) The
maps corresponding to the partitions, with each ellipsoid being a
volumetric summarization of a local cluster; e.g., M1 contains {e1}
and {e2}. (e) The three maps combined, resulting in three objects:
{e1, e2, e3}, {e4, e5}, {e6}. 79

3.2 The ellipsoid forest and maps. Curly black lines are next pointers.
Red lines are pointers used by maps. Blue lines are parent pointers,
but NULL parent pointers are not shown. Ellipsoids in the green
color are merged as one object, and the ones in blue are merged as
another object. 89

3.3 PARMACCE and PARMACCD average scalability with increasing
number of threads. Please note that the y-axes scales on the graphs
are different. 94

3.4 Ratio of the longest local clustering to completion time with increas-
ing number of threads. 97

3.5 Accuracy in terms of rand index with increasing number of threads. . 97

Part I

OVERVIEW

1
Overview

1.1 Introduction

Devices in IoT, Internet of Things, are changing our everyday lives by making every-
thing connected and automated to a certain degree. Ericsson forecasts the number of
IoT devices to hit around 20 billion by 2022. The thing in IoT is an entity with an
embedded system that has the ability to transfer data over a network. For example,
it can be a heart monitor and the associated communicating devices inside a person’s
body, or it can be a vehicle with tens of processing units and sensors on board.

An IoT-based system typically consists of a network of cyber-physical systems
(e.g. a variety of sensors, smart meters, actuators, pumps, and engines), resource-
constrained computational devices (e.g. handheld mobile computers), high-end servers,
communication medium and other associated devices.

3

4 CHAPTER 1. OVERVIEW

IoT has been effectively incorporated in industrial use-cases [1]. For example,
in the fourth industrial revolution [2], the production facilities in a factory, such as
Automated Guided Vehicles (AGV) and robot arms, are managed, controlled, and
optimized using IoT-based systems.

The following discusses a three-level computational architecture that facilitates
connection and computing in IoT-based systems.

A three-level computational architecture: cloud, fog, and edge

It is a common practice to transfer data into the cloud, where storage, computation,
analysis, and decision making take place [3]. As the typical infrastructure in cloud
provides abundant resources (e.g. powerfull high-end servers), cloud computing can
be used to solve problems in IoT-based systems. Cloud computing has several ad-
vantages. Firstly, computational scalability can be achieved by properly leveraging
the resources of high-end servers. Secondly, the cloud services typically enable the
users to pay for the services in a pay-as-you-go manner, making it more economical
than having on-premise equipment. Thirdly, the cloud is maintained by the cloud ser-
vice providers, sparing the end users from technical managements. These advantages
show the importance of cloud computing for many problems in IoT-based systems.

On the other hand, cloud computing has some disadvantages as well. Consider-
ing the distance between the devices and cloud service providers, the services might
suffer from high latency. Moreover, transmitting the data from all the devices in the
network requires high bandwidth. Furthermore, security measures are required to
transmit all the raw data to a cloud service provider.

Fog and edge computing have become popular in deployment to address the con-
cerns regarding cloud computing. Edge computing refers to the computation, anal-
ysis, storage, and decision making that takes place at the edge of the network, i.e.
the devices (like mobile phones) directly connected to the sensors or an IoT gateway
closely located to the sensors. Fog computing refers to leveraging the computational
and storage capacities within a local network of systems (e.g. a LAN) to carry out the
computation that would, otherwise, require the resources of a cloud infrastructure.
Compared to the cloud computing, fog and edge computing facilitate processing data

1.2. THE SCOPE OF THIS THESIS 5

closer to where it is produced [3]. As a result, adapting IoT-based systems to fog/edge
computing can provide solutions with lower latency and higher security, as the data
remains within the local network. Nevertheless, fog/edge computing can be challeng-
ing as fog/edge devices are typically resource-constrained in terms of computational
power. Furthermore, such devices can be connected via limited bandwidth media,
e.g. wireless networks, which makes transmitting large volumes of data expensive.

1.2 The scope of this thesis

This thesis revolves around methods for efficient data processing using powerful
high-end servers (typically deployed in the cloud computing), and resource-constrained
devices (typically deployed in fog/edge computing). The following subsections in-
troduce the different aspects of the thesis.

1.2.1 Processing sensor data

Sensors installed in IoT devices continuously gather data as they take measurements
in their environment. Based on the latent information in the sensors’ data, new control
decisions might be taken. For example, when the data from smoke and temperature
sensors indicate a possibility of fire, an alarm should go off.

With the advancements in IoT-based systems, modern sensors produce large vol-

ume of data in a high velocity. Furthermore, the data might be generated from a
variety of sources. These aspects are reminiscent of the 3V model [4] for big data.

Processing big data with conventional methods is challenging. Basically, process-
ing a too large volume of data with a conventional data processing method requires
excessive amounts of time which can be detrimental to time-sensitive problems, e.g.
navigating a self driving vehicle. Moreover, processing data that is produced at high
rates requires methods that can perform the processing in a single pass and on the
fly. Lastly, processing the fused data, aggregated data that is generated from multiple
sources, requires methods capable of processing heterogeneous data. For example,
an AGV, for the purpose of navigation and avoiding obstacles, might be equipped
with high-rate laser-based sensors, generating a high volume of data every second,

6 CHAPTER 1. OVERVIEW

digital cameras, and various other sensors. The following outlines the methods that
this thesis employs to address the challenges in processing big data.

1.2.2 Methods for dealing with big data produced by sensors

To address the challenges of processing big data, the methods proposed in this the-
sis use the insights from [5]: (i) scaling down the amount of data to be processed,
(ii) utilizing parallel processing and efficient use of shared memory to scale up the
computing on a node, and (iii) utilizing distributed nodes (e.g. in fog/edge) to scale

out the computing to different nodes.

Scaling down the data

The first line of defence against big data is scaling down the large volume of data.
Scaling down can be applied in a variety of forms [6], for instance, sampling [7, 8],
dimensionality reduction [9], and compression [10].

Most applications do not require exact solutions; however, they need to make
decisions as fast as possible. For instance, regarding the problem of managing AGVs,
a real-time solution that approximately detects the objects in the environment and
avoids hitting them is more helpful than an exact solution that detects the objects
with all the details but fails to to finish within reasonable amount of time, leading
to catastrophic outcomes. Therefore, approximation is an important tool for scaling
down the volume of data in order to achieve timely solutions.

Approximation techniques can be employed to derive a data synopsis orders of
magnitude smaller than the original data, leading to orders of magnitude speed-up
in processing time. Often, it is important that the data synopsis be constructed in
only one pass over the original data. Furthermore, as the data might not be present
all at once and become available gradually (for instance the manner in which most
sensors provide readings), the data synopsis can be constructed incrementally, with
constant overhead per new data entry. Sketches [11] are important approximation-
based synopsis for big data.

1.2. THE SCOPE OF THIS THESIS 7

Scaling up the computing in one node

Modern computing platforms support concurrent execution, synchronization, and
communication of many workers (e.g. threads, CPUs, etc), sharing the available
resources of the system, for instance memory. Leveraging parallel processing and
efficient use of the shared memory can lead to scaling up the computing on a single
node. Maximizing such scalability is particularly important on powerful high-end
servers (e.g. those typically employed in the cloud computing) as they provide abun-
dant resources in terms of computational power, memory, and storage. For example,
a high-end server can consist of several sockets, each socket accommodating several
cores, and each core can possibly support hyper-threading [12].

However, regarding many problems in IoT-based systems, achieving and main-
taining high scalability with increasing number of workers is challenging. In fact,
increasing the number of workers might even reduce the scalability of a system. The
following presents a discussion on the affiliated challenges with scalability of a sys-
tem considering varying number of workers.

The Universal Scalability Law. USL, or the universal scalability law [13], pro-
posed by Neil Gunther, is a model to quantify the scalability of a system. Accord-
ing to USL, there are two main obstacles on the way of achieving linear scalabil-
ity with the number of workers. The first one is contention, and the second one is
crosstalk [14]. Contention happens when the workers of a task require a shared re-
source but can not have it at the same time. Therefore, they have to queue up, which
negatively affects the parallelization of the task. Crosstalk happens when the pairs of
workers need to communicate in order to synchronize and share their states, which
negatively affects the scalability. Based on contention and crosstalk, USL models the
scalability of a system as the following:

SK =
K

1 + δ(K − 1) + κK(K − 1)
,

where SK is the scalability withK workers, and δ is the contention degree coefficient,
and κ is the crosstalk penalty coefficient. Note δ gets multiplied by (K − 1) which
shows contention grows linearly in the number of workers (i.e. as they queue up for

8 CHAPTER 1. OVERVIEW

a shared resource). On the other hand, κ gets multiplied by K(K − 1) reflecting the
crosstalk between all pairs of workers in the system. Note that, in an ideal system,
coefficients δ and κ are zero; therefore, the scalability of the system increases linearly
with the number of workers. Nevertheless, with κ and δ being greater than zero, the
growth of denominator gets higher than the numerator, and SK will start to decrease
after a large enough value of K.

Therefore, to achieve high scalability, the challenge is to design data structures,
algorithms, and work sharing schemes that minimize the contention for the shared
resources and the crosstalk among the pairs of workers.

Scaling out the computing to distributed nodes in fog/edge

Increasing the number of computing nodes is another approach to deal with big
data [5, 15, 16]. To that end, an interconnected network of fog/edge devices (with
attached sensors) can be leveraged to process the gathered sensor data. As the com-
munication takes place in the local network of the devices, the communication latency
is lower than the cloud computing setup, and the privacy of data is preserved within
the boundaries of the local network.

Nevertheless, there are two challenges that need to be considered in designing
an IoT-based system that scales out the computing. The first one concerns the fact
that the fog/edge devices are weaker than the high-end servers, in the sense that they
have limited computational and memory capacities. The second challenge arises from
the limited-bandwidth shared communication medium that interconnects the fog/edge
devices.

1.2.3 Algorithmic engineering concerns

To fully exploit the potential computational capacity of a hardware platform, this the-
sis considers (algorithmic) implementation details to maximize the synergy between
software and hardware [17]. In other words, this thesis takes into account concerns
regarding the design and algorithmic implementation of the solutions based on the
behaviour of the target platform. For example, regarding the high-end servers sup-
porting several workers, solutions must result in minimum contention and crosstalk

1.3. PRELIMINARIES 9

among the workers, as suggested by USL. Similarly, regarding the resource-constrained
devices in fog/edge computing, solutions must be designed in order to minimize the
communication volume among the fog/edge devices, and perform the computational
tasks as close as possible to the generating sources of data.

1.3 Preliminaries

This section introduces the required background for reading the following sections.

1.3.1 LIDAR and point clouds

LIDAR (LIght Detection And Ranging) is a scanning method to generate a 3-D rep-
resentation of a target by illuminating the target with pulsed light waves. The 3-D
model is generated based on the time that light waves take to return.

A LIDAR scanner typically leverages several laser beams (e.g. 8 to 128). Lo-
cated on the spinning head of the sensor, each laser beam emits photons and reads
back their reflection several times in a second. As the spinning head of the LIDAR
scanner makes a full rotation, a 360 degree high resolution 3-D representation of the
environment is attained [18].

The readings from a LIDAR sensor are named point clouds [19]. Point clouds
generated by certain types of LIDAR sensors can contain hundreds of thousands of
3-D points, or even more. The point cloud from a full rotation of a LIDAR sen-
sor’s spinning head contains points corresponding to scene objects (e.g. pedestrians,
vehicles, etc) in the environment in which the LIDAR sensor is installed.

1.3.2 Cluster Analysis

Cluster analysis, or clustering, is the task of partitioning a given set of items into
clusters, where within a cluster items are more similar to each other than to those
in other clusters [20, Ch. 11-16]. More specifically, the task is to assign the same
clustering label to the items in the same cluster, but different from those in other
clusters.

10 CHAPTER 1. OVERVIEW

Cluster analysis is an important data analysis tool. Certain types of clustering
algorithms can be used to segment/partition the points in a point cloud based on the
scene object to which they belong. In other words, the clustering labels can differ-
entiate the points based on the scene object that each point is a member of [21, 22].
Cluster analysis can also be applied on GPS data to understand mobility and route
analysis [23, 24]. The two types of clustering algorithms that this thesis concerns are
introduced in the following paragraphs.

Distance-based clustering. The items grouped together in a distance-based cluster
satisfy some distance-related criteria. For example, the Euclidean clustering algo-
rithm [21, 22] partitions a given point cloud into an a priori unknown number of clus-
ters. It works with two adjustable parameters: minPts and ε. The algorithm produces
clusters each containing at least minPts number of points, and within each cluster,
each point lies in the ε-radius neighbourhood of at least another point in the same
cluster. Points not belonging to any cluster are characterized as noise. Lisco [25]
is a single-pass continuous version of the Euclidean clustering algorithm designed
for sorted data; e.g. a point cloud gathered by a LIDAR sensor is angularly sorted
because the point cloud is collected by the spinning head of the sensor.

Density-based clustering. The density-based clustering algorithms partition a given
point-cloud into high density regions (clusters), separated by contiguous regions of
low density regions. For example, Density-Based Spatial Clustering of Applications
with Noise, or DBSCAN [26], is a density-based clustering algorithm that parti-
tions a given point-cloud into an a priori unknown number of clusters. Similar to
the Euclidean clustering algorithm, DBSCAN works with two adjustable parameters:
minPts and ε. A Cluster found by DBSCAN consists of at least one core point and
all the points that are density-reachable from it. Point p is a core point if it has at least
minPts points in its ε-radius neighbourhood. Point q is directly reachable from p if
q lies in the ε-radius neighbourhood of p. Point q is density-reachable from p, if q is
directly reachable either from p or another core point that is density-reachable from
p. Non-core points that are not density-reachable from any core-points are outliers
[27, 28]. DENCLUE [29], STING [30], and OPTICS [31] are some other well-known

1.4. RESEARCH CHALLENGES 11

density-based clustering algorithms.

1.4 Research Challenges

This thesis studies the problem of efficient sensor data clustering (e.g. point clouds
or GPS readings) from one or more sources as a representative problem in IoT-based
systems.

The aforementioned clustering task on point clouds can be used for extracting
valuable information regarding the objects and their dispositions in the environment
scanned by one or more LIDAR sensors. Considering the problem of managing
AGVs equipped with LIDAR sensors, clustering point clouds can be used for de-
tection and localization of scene-objects. Furthermore, it can be used for online mon-
itoring of the environment, guiding the AGV through the environment, and making
sure that it does not collide with other objects. It can also be employed to make
sure that the AGV does not enter a restricted area in the environment, framed by a
geofences.

To counter-balance the overwhelming effects of the big data produced by sen-
sors (e.g. LIDAR sensors), the methods in this thesis leverage scaling down, scaling
up, and scaling out (discussed in § 1.2) techniques. § 1.4.1 characterizes the dis-
tributed version of the problem, which employs the scaling down and scaling out
techniques. § 1.4.2 studies the problem using parallel computing, which the employs
scaling down and scaling up techniques. § 1.6 summarizes the contributions of the
thesis regarding each variant of the problem.

1.4.1 Clustering Sensor Data Distributedly Gathered by Multiple
Fog/Edge Devices

Combining readings from multiple sensors is commonly recognized as sensor fu-

sion. In certain scenarios it is useful to have multiple sensors scan the environment
simultaneously. For example, a LIDAR sensor installed in a particular place in the
environment might have an occluded view. In order to address the occlusion [32] and
increase safety and robustness, several LIDAR sensors can be installed in different

12 CHAPTER 1. OVERVIEW

locations to scan the environment from different perspectives. To that end, the first
direction of research that this thesis follows regarding the problem of efficient sensor
data clustering is leveraging a network of fog/edge devices with attached sensors for
distributed clustering of the sensor data, i.e. to scale out as noted in § 1.2.2.

Challenges. Centrally gathering all the local point clouds into a single source and
performing the clustering algorithm on their union, known as the merged point cloud,
is cumbersome. Firstly, transmitting several point clouds (each containing hundreds
of thousands of points) imposes high latency and takes long time, as long as a few
tens of seconds. The latter becomes even more challenging when the devices use
the wireless medium for communication, which has a low bandwidth and has a high
risk of transmission failures. Secondly, computationally speaking, performing the
clustering algorithm on the merged point cloud takes excessive amount of time on the
fog/edge devices as there can be many millions of points in the merged point cloud.

Research Questions. The aforementioned challenges arise from centrally gather-
ing all the point clouds. On the other hand, considering the distributed nature of
the problem, can processing the data closer to the generating sources increase the
computational efficiency and lower the communication overhead (Q1)? Moreover,
as mentioned in § 1.2, one primary technique to overcome the huge volume of data
is to first scale it down. How can approximation-based synopsis help to reduce the
required communication and computational resources (Q2)? This thesis introduces a
solution that jointly answers Q1 and Q2.

1.4.2 Highly Parallel Clustering on Shared Memory Multi-Core
Systems

The second direction of research that this thesis follows regarding the problem of
efficient sensor data clustering is leveraging the computational resources of a high-
end server for parallel clustering of sensor data, i.e. to scale up [5] on a single node,
as noted in § 1.2.2.

1.5. CONTRIBUTIONS 13

Challenges. A parallel clustering algorithm employing several workers imposes the
following challenges: (i) the distribution of the workload among the workers, (ii) how
each worker processes its assigned workload, and (iii) synchronization and commu-
nication among the workers. In order to increase the scalability of the algorithm, the
aforementioned challenges must be addressed in a way to decrease the contention for
the shared resources and the crosstalk among each pair of workers, as suggested by
USL, see § 1.2.2.

Regarding point clouds, the majority of commonly used data structures (e.g., KD-
trees, Octrees [33], and voxel grids [21]), grow in size with respect to the size of the
point cloud. Furthermore, the cost of common queries and operations can become
expensive (e.g. super linear in the number of data points). Moreover, such data struc-
tures show their worst-case performance when the distribution of data is skewed [34].
Therefore, processing point clouds and GPS readings is challenging with such data
structures.

Research Questions. The work-sharing design of a parallel clustering algorithm
distributes the work-load among the workers and regulates the processing of each
worker, as well as the communication and synchronization among the workers. Con-
sidering USL, can the synergy from the joint design of the work-sharing mechanism
and the data structures increase the scalability by lowering crosstalk among the pairs
of workers and the contention for the shared data (Q3)? Moreover, can the total
amount of work-load be reduced by incorporating approximation-based synopsis into
the data structures, thus increasing scalability (Q4)? Furthermore, can leveraging
the approximation-based synopsis achieve super-linear scalability in the number of
workers (Q5)? This thesis studies how questions Q3, Q4, and Q5 can be jointly
answered.

1.5 Contributions

This section outlines the contributions of the thesis regarding the research problems
in § 1.4.

14 CHAPTER 1. OVERVIEW

1.5.1 Multi-stage Approximate Distributed Cluster-combining for
Obstacle Detection and Localization (Paper I)

Regarding the problem of distributed sensor data clustering on fog and edge devices,
this thesis, in Chapter 2, proposes MAD-C, abbreviating Multi-stage Approximate
Distributed Cluster-combining for Obstacle Detection and Localization.

In MAD-C, the devices, distributedly and in parallel, perform the substantial por-
tion of the required processing locally, addressing research question Q1 in § 1.4.1.
Furthermore, employing an approximation-based synopsis, each device locally ap-
proximates the results of its local processing. Afterwards, the fog/edge devices com-
municate and combine the approximation-based synopses in order to make a global
synopsis corresponding to the clustering of the merged point cloud. Each fog/edge
device can generate its local approximate-based synopsis incrementally with only one
pass over the data. As the local synopses are much smaller in size (compared to the
original local point clouds) and can be combined efficiently, MAD-C achieves sig-
nificant communication and computational savings, addressing research question Q2

in § 1.4.1. In addition to analytical results, empirical evaluation of MAD-C, both in
simulation and a setup of fog/edge devices), shows advantages of MAD-C regarding
Q1 and Q2.

Advances relative to the state of the art. Regarding the problems that concern
multiple sources of point clouds, the common practice is to perform processing on
the merged point clouds, for example [35]. Nevertheless, as pointed out in § 1.4.1,
when the data is gathered distributedly, centrally gathering and clustering the point
clouds is inefficient. In such cases, distributed clustering algorithms can be lever-
aged. For example, DBDC [36], density-based distributed clustering, is a client-
server method that approximates the clustering outcome of DBSCAN. Client nodes
in DBDC locally perform operations on their data and transmit some representatives,
on which the server performs some extra processing and forwards the results back
to the clients. Unlike MAD-C’s constant-size approximation-based synopsis, there
are no guarantees on the number of representatives in DBDC. Furthermore, MAD-C
nodes can operate with an arbitrary connection topology. Authors in [37] propose

1.5. CONTRIBUTIONS 15

distributed versions of some center-based clustering algorithms (e.g. K-Means, K-
Harmonic-Means, and Expectation-Maximization). In an iterative approach, each
local node computes sufficient statistics for its local data and then receives and ag-
gregates sufficient statistics from other nodes to attain a global sufficient statistics.
Nevertheless, MAD-C is more efficient at communication as the transmission of data
between MAD-C nodes takes place only once.

1.5.2 Parallel Multistage Approximate Cluster Combining (Pa-
per II)

Regarding the problem of parallel sensor data clustering on high-end servers, this
thesis, in Chapter 3, proposes PARMA-CC, Parallel Multistage Approximate Clus-
ter Combining. PARMA-CC facilitates leveraging an arbitrary number of workers
to achieve a high degree of scalability. It employs the same approximation-based
synopsis developed for MAD-C to scale down the large volume of data.

In PARMA-CC, the synergy between the data structures and the work sharing
schemes reduce the contention for the shared resources and the crosstalk between
pairs of workers, as suggested by USL. More specifically, PARMA-CC leverages
data-parallelism and a specially designed shared data structure that supports in-place
operations (eliminating the need for data copying or migration). Moreover, the work-
sharing mechanism regulates the workers to behave in a divide-and-conquer manner,
reducing the communication and synchronization among the workers. It also controls
how the workers access the shared data structure in order to avoid contention. Ex-
ploiting the aforementioned contributions, PARMA-CC addresses the research ques-
tion Q3 in § 1.4.2.

Furthermore, the empirical results of PARMA-CC show that the total amount of
work-load can be reduced by incorporating the approximation-based synopsis, ad-
dressing the research question Q4 in § 1.4.2. In addition, when the input data has
a skewed distribution, PARMA-CC can achieve super-linear scalability in the num-
ber of workers, addressing the research question Q5 in § 1.4.2. The thesis provides
analytical and empirical results to show the latter.

16 CHAPTER 1. OVERVIEW

Advances relative to the state of the art. There are three relevant categories of re-
lated work to PARMA-CC. The first category consists of distance-based and density-
based clustering methods, introduced in § 1.3. PARMA-CC can approximate the
clustering outcome of many distance-based and density-based methods through its
approximation-based synopsis. The second category contains methods that boost the
performance of conventional density-based and distance-based clustering algorithms
via parallelization. For example, Highly Parallel DBSCAN [38], HPDBSCAN, is
an OpenMP/MPI hybrid algorithm. HPDBSCAN offers good scalability; however,
when the data is skewed, its performance degrades severely. On the other hand,
PARMA-CC better tolerates skewed data. Moreover, the way that PARMA-CC is
designed to utilize the shared memory via in-place operations is more efficient than
OpenMP’s relaxed consistency memory model in which multiple copies of the same
data might exist. The last category consists of methods that, through approximation,
sacrifice accuracy to gain performance. For example, ρ-approximate DBSCAN [28],
and STING [30] approximate the clustering outcome of DBSCAN. Other approxi-
mation approaches employ sampling techniques, e.g. [39]. These approaches can as
well be utilized in PARMA-CC’s approximation-based synopsis.

1.6 Conclusions and Future Work

This thesis studies the problem of efficient sensor data clustering from one or more
sources employing powerful high-end servers or resource-constrained fog/edge de-
vices. Considering the large volume, velocity, (and possibly variety) of the data to be
clustered, this thesis proposes an approximation-based data synopsis to scale down
the data. Furthermore, it proposes methods tailored for each type of environment
(i.e. high-end servers or fog/edge devices) to efficiently address the problem using
the approximation-based data synopsis.

The methods introduced in this thesis can form a basis for a more general data
processing framework. A future line of research can fuse data from other types of
sources (e.g. positioning sensors) with LIDAR data, in order to increase accuracy
and safety. Another future line of research is to extend the methods to predict the
type (e.g. pedestrian, cyclist, etc) of the scene-objects. Moreover, the methods can be

BIBLIOGRAPHY 17

extended to be employed in a continuous fashion. As the readings from consecutive
rotations of a LIDAR sensor are similar, it is expected that an approximation-based
synopsis corresponding to one rotation of a LIDAR sensor can be employed to effi-
ciently generate synopsis corresponding to the next rotation of the LIDAR sensor.

Bibliography

[1] L. D. Xu, W. He, and S. Li, “Internet of things in industries: A survey,” IEEE Transac-

tions on Industrial Informatics, vol. 10, no. 4, pp. 2233–2243, Nov 2014.

[2] Heiner Lasi, Peter Fettke, Hans-Georg Kemper, Thomas Feld, and Michael Hoffmann,

“Industry 4.0,” Business & Information Systems Engineering, vol. 6, no. 4, pp. 239–242,

Aug 2014.

[3] Mung Chiang and Tao Zhang, “Fog and IoT: An Overview of Research Opportunities,”

IEEE Internet of Things Journal, vol. 3, no. 6, pp. 854–864, Dec. 2016.

[4] Todor Ivanov, Nikolaos Korfiatis, and Roberto V. Zicari, “On the inequality of the 3v’s of

big data architectural paradigms: A case for heterogeneity,” CoRR, vol. abs/1311.0805,

2013.

[5] P. B. Gibbons, “Big data: Scale down, scale up, scale out,” in 2015 IEEE International

Parallel and Distributed Processing Symposium, May 2015, pp. 3–3.

[6] Muhammad Habib ur Rehman, Chee Sun Liew, Assad Abbas, Prem Prakash Jayaraman,

Teh Ying Wah, and Samee U. Khan, “Big data reduction methods: A survey,” Data

Science and Engineering, vol. 1, no. 4, pp. 265–284, Dec 2016.

[7] Mohamed Medhat Gaber, Arkady B. Zaslavsky, and Shonali Krishnaswamy, “Mining

data streams: a review,” SIGMOD Record, vol. 34, no. 2, pp. 18–26, 2005.

[8] Jure Leskovec, Anand Rajaraman, and Jeffrey D. Ullman, Mining of Massive Datasets,

2nd Ed, Cambridge University Press, 2014.

[9] Carlos Oscar Sánchez Sorzano, Javier Vargas, and Alberto Domingo Pascual-Montano,

“A survey of dimensionality reduction techniques,” CoRR, vol. abs/1403.2877, 2014.

[10] B. Havers, R. Duvignau, H. Najdataei, V. Gulisano, A. C. Koppisetty, and M. Papatri-

antafilou, “Driven: a framework for efficient data retrieval and clustering in vehicular

networks,” in 2019 IEEE 35th International Conference on Data Engineering (ICDE),

April 2019, pp. 1850–1861.

18 CHAPTER 1. OVERVIEW

[11] Graham Cormode, Minos N. Garofalakis, Peter J. Haas, and Chris Jermaine, “Synopses

for massive data: Samples, histograms, wavelets, sketches,” Foundations and Trends in

Databases, vol. 4, no. 1-3, pp. 1–294, 2012.

[12] Avinash Sodani, Roger Gramunt, Jesús Corbal, Ho-Seop Kim, Krishna Vinod, Sundaram

Chinthamani, Steven Hutsell, Rajat Agarwal, and Yen-Chen Liu, “Knights landing:

Second-generation intel xeon phi product,” IEEE Micro, vol. 36, no. 2, pp. 34–46, 2016.

[13] Neil J. Gunther, “A general theory of computational scalability based on rational func-

tions,” 2008.

[14] B Schwarz, “Practical scalability analysis with the universal scalability law,” 2015.

[15] Nawsher Khan, Arshi Naim, Mohammad Rashid Hussain, Noorulhasan Naveed Quadri,

Naim Ahmad, and Shamimul Qamar, “The 51 v’s of big data: Survey, technologies,

characteristics, opportunities, issues and challenges,” in Proceedings of the International

Conference on Omni-Layer Intelligent Systems, COINS 2019, Crete, Greece, May 5-

7, 2019, Farshad Firouzi, Krishnendu Chakrabarty, Bahar Farahani, Fangming Ye, and

Vasilis F. Pavlidis, Eds. 2019, pp. 19–24, ACM.

[16] Raja Appuswamy, Christos Gkantsidis, Dushyanth Narayanan, Orion Hodson, and

Antony I. T. Rowstron, “Scale-up vs scale-out for hadoop: time to rethink?,” in ACM

Symposium on Cloud Computing, SOCC ’13, Santa Clara, CA, USA, October 1-3, 2013,

Guy M. Lohman, Ed. 2013, pp. 20:1–20:13, ACM.

[17] G. De Michell and R. K. Gupta, “Hardware/software co-design,” Proceedings of the

IEEE, vol. 85, no. 3, pp. 349–365, March 1997.

[18] Gerardo Atanacio-Jimenez, Jose-Joel Gonzalez-Barbosa, Juan B. Hurtado-Ramos, Fran-

cisco J. Ornelas-Rodriguez, Hugo Jimenez-Hernandez, Teresa Garcia-Ramirez, and Ri-

cardo Gonzalez-Barbosa, “Lidar velodyne hdl-64e calibration using pattern planes,” In-

ternational Journal of Advanced Robotic Systems, vol. 8, no. 5, pp. 59, 2011.

[19] Brent Schwarz, “Lidar: Mapping the world in 3d,” Nature Photonics, vol. 4, no. 7, pp.

429, 2010.

[20] S. Theodoridis and K. Koutroumbas, Pattern Recognition, Elsevier Science, 2008.

[21] Radu Bogdan Rusu, “Semantic 3d object maps for everyday manipulation in human

living environments,” KI - Künstliche Intelligenz, vol. 24, no. 4, pp. 345–348, Nov 2010.

[22] R. B. Rusu and S. Cousins, “3d is here: Point cloud library (pcl),” in 2011 IEEE Inter-

national Conference on Robotics and Automation, May 2011, pp. 1–4.

BIBLIOGRAPHY 19

[23] Radu Mariescu-Istodor and Pasi Fränti, “Grid-based method for gps route analysis for

retrieval,” ACM Transactions on Spatial Algorithms and Systems, vol. 3, no. 3, pp. 8,

2017.

[24] Yu Zheng, Quannan Li, Yukun Chen, Xing Xie, and Wei-Ying Ma, “Understanding

mobility based on gps data,” in Proceedings of the 10th International Conference on

Ubiquitous Computing, New York, NY, USA, 2008, UbiComp ’08, pp. 312–321, ACM.

[25] H. Najdataei, Y. Nikolakopoulos, V. Gulisano, and M. Papatriantafilou, “Continuous and

parallel lidar point-cloud clustering,” in 2018 IEEE 38th International Conference on

Distributed Computing Systems (ICDCS), July 2018, pp. 671–684.

[26] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu, “A density-based algo-

rithm for discovering clusters a density-based algorithm for discovering clusters in large

spatial databases with noise,” in Proceedings of the Second International Conference on

Knowledge Discovery and Data Mining. 1996, KDD’96, pp. 226–231, AAAI Press.

[27] Junhao Gan and Yufei Tao, “Dbscan revisited: Mis-claim, un-fixability, and approxima-

tion,” in Proceedings of the 2015 ACM SIGMOD International Conference on Manage-

ment of Data, New York, NY, USA, 2015, SIGMOD ’15, pp. 519–530, ACM.

[28] Erich Schubert, Jörg Sander, Martin Ester, Hans Peter Kriegel, and Xiaowei Xu, “Dbscan

revisited, revisited: Why and how you should (still) use dbscan,” ACM Trans. Database

Syst., vol. 42, no. 3, pp. 19:1–19:21, July 2017.

[29] Alexander Hinneburg, Daniel A Keim, et al., “An efficient approach to clustering in large

multimedia databases with noise,” in KDD, 1998, vol. 98, pp. 58–65.

[30] Wei Wang, Jiong Yang, and Richard R. Muntz, “Sting: A statistical information grid

approach to spatial data mining,” in Proceedings of the 23rd International Conference on

Very Large Data Bases. 1997, VLDB ’97, pp. 186–195, Morgan Kaufmann Publishers

Inc.

[31] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander, “Optics:

Ordering points to identify the clustering structure,” in Proceedings of the 1999 ACM

SIGMOD International Conference on Management of Data, New York, NY, USA, 1999,

SIGMOD ’99, pp. 49–60, ACM.

[32] Niklas Elmqvist and Philippas Tsigas, “A taxonomy of 3d occlusion management for

visualization,” IEEE Transactions on Visualization and Computer Graphics, vol. 14, no.

5, pp. 1095–1109, Sept. 2008.

20 CHAPTER 1. OVERVIEW

[33] Jan Elseberg, Dorit Borrmann, and Andreas Nuchter, “One billion points in the cloud -

an octree for efficient processing of 3d laser scans,” International Journal of Photogram-

metry and Remote Sensing, vol. 76, pp. 76–88, 02 2013.

[34] Wei Wang, Jiong Yang, and Richard Muntz, PK-Tree: A Spatial Index Structure for High

Dimensional Point Data, pp. 281–293, Springer US, Boston, MA, 2000.

[35] Muhammad Sualeh and Gon-Woo Kim, “Dynamic multi-lidar based multiple object

detection and tracking,” Sensors, vol. 19, no. 6, pp. 1474, 2019.

[36] Eshref Januzaj, Hans-Peter Kriegel, and Martin Pfeifle, “Towards effective and efficient

distributed clustering,” in In Workshop on Clustering Large Data Sets (ICDM), 2003, pp.

49–58.

[37] George Forman and Bin Zhang, “Distributed data clustering can be efficient and exact,”

SIGKDD Explorations, vol. 2, no. 2, pp. 34–38, 2000.

[38] Markus Götz, Christian Bodenstein, and Morris Riedel, “Hpdbscan: Highly parallel

dbscan,” in Proceedings of the Workshop on Machine Learning in High-Performance

Computing Environments, New York, NY, USA, 2015, MLHPC ’15, pp. 2:1–2:10, ACM.

[39] George Kollios, Dimitrios Gunopulos, Nick Koudas, and Stefan Berchtold, “Efficient

biased sampling for approximate clustering and outlier detection in large data sets,” IEEE

Trans. on Knowl. and Data Eng., vol. 15, no. 5, pp. 1170–1187, Sept. 2003.

Part II

PAPERS

