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Extension and Optimization of the Local Geodetic Network at the
Onsala Space Observatory
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Abstract Since May 2017, the Onsala Space Obser-
vatory (OSO) has hosted the Onsala twin telescopes
(OTT), two identical telescopes fulfilling the VGOS-
specifications. The local geodetic ground network has
to be extended to the area around the OTT to pro-
vide local tie vectors for combining different geode-
tic space techniques at the observatory. Furthermore,
this network is essential for monitoring the temporal
and spatial stability of the new radio telescopes. Both
network configuration and measurement uncertainties
of the terrestrial observations have a strong impact on
the obtainable accuracy of the reference points. Net-
work optimization procedures help to avoid misconfig-
urations and provide suitable network configurations.
For OSO, an extended ground network and an optimal
observation schedule are derived that fulfill the accu-
racy requirements for monitoring processes. The ob-
servation schedule, derived by a second order design
optimization, focuses on a practical experience when
using modern geodetic instruments.
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1 Introduction

In May 2017, the Onsala Space Observatory (OSO)
inaugurated the Onsala twin telescopes (OTT). Both
VLBI radio telescopes are identical in design and con-
struction and fulfill the VGOS-specifications. For com-
bining VLBI results of the OTT with other geodetic
space techniques, i.e. for deriving the local tie vectors,
as well as for monitoring the temporal and spatial sta-
bility of the new radio telescopes, the local geodetic
ground network at OSO must be extended. The obtain-
able accuracies for, e.g. the reference points depend on
the network configuration and the measurement uncer-
tainties of the observations. The natural environment
and especially the rough terrain limit the selection of
locations for markers or pillars and their metrological
connections. Network optimization procedures help to
avoid misconfigurations and provide suitable network
configurations. The optimal selection of locations and
the optimization of the required observation weights
are known as first order design (FOD) and second or-
der design (SOD), respectively. Whereas — in most
cases — the FOD cannot be optimized by analytical or
numerical methods, the required weights of the SOD
are estimable. For OSO, an extended ground network
and an optimal observation schedule are derived that
fulfill the accuracy requirements for monitoring pro-
cesses. The observation schedule focuses on practical
experience when using modern geodetic instruments.

2 Optimization of Geodetic Networks

A geodetic network is designed to observe topographic
properties of the landscape or geometrical phenomena,
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e.g. deformations on buildings. The configuration de-
pends on the purpose of the network. Usually, four
design states are distinguished. The definition of an
ideal datum of the network is called zero-order design
(ZOD). The optimization of the network configuration
and the observation schedule are called first-order de-
sign (FOD), where the uncertainties of the observations
are known. ZOD and FOD mainly depend on the to-
pography and the realizable metrological connections.
In most cases, ZOD and FOD cannot be optimized
completely by numerical methods. The second-order
design (SOD) is characterized to optimize the uncer-
tainties of the observations, while the network config-
uration is kept unchanged. The evaluation of the im-
provement of further points and observations, which
are introduced to an existing network, is summarized
as third-order design (TOD). Thus, TOD combines the
optimization techniques used by FOD and SOD.

The optimization of a single stage cannot be done
independently of the prior states, e.g. the optimization
of the uncertainties of the observations (SOD) requires
a meaningful configuration (FOD) and a proper datum
(ZOD) of the network. Table 1 summarizes the parame-
ters which are assumed to be known and the parameters
to be optimized during the optimization process. Here,
the network configuration is given by the design matrix
A, the positive-definite dispersion matrix of the obser-
vations l is denoted by P−1, and Q =

(
ATPA

)− is the
dispersion matrix of the unknown parameters x, e.g.
the coordinates of the points. The generalized inverse
is denoted by ( )− and depends on the nullity of A, i.e.
the definition of the geodetic datum. Due to the natural

Table 1 Characterization of the parameters that will be opti-
mized during the optimization process w.r.t. the parameters that
are assumed to be known (e.g. [12]).

Design Known parameters Optimizable parameters
ZOD A, P x, Q
FOD P, Q A
SOD A, Q P
TOD Q A, P

environment and the local terrain there is only a lim-
ited number of suitable locations for survey pillars and
ground markers, which determines ZOD and FOD of
the network. In most cases, the optimizations are car-
ried out without numerical efforts. For SOD, several
approaches are known for deriving optimal uncertain-

ties of the observations w.r.t. the required and idealized
dispersion matrix K (e.g. [4, 10, 16]).

2.1 Procedure of second order design

The goal of the SOD is to find reliable weights P, so
that (

ATPA
)−

= Q .
= K. (1)

The matrix K is often called criterion matrix. Such
a criterion matrix contains a homogeneous-isotropic
structure of the point uncertainties and their depen-
dencies and can be expressed by a so-called Taylor-
Karman matrix (cf. [6])

K̃ = σ
2
0

(
φt (s)E+

φt (s)−φl (s)
s2 D

)
. (2)

Here, the transversal and longitudinal correlation
functions are given by φt (s) and φl (s), respec-
tively; σ2

0 is the variance of unit weight, and
s =

√
∆x2 +∆y2 +∆z2 is the distance between the

points in the network. The identity matrix is denoted
by E and the symmetric matrix D reads

D =

 ∆x2 ∆x∆y ∆x∆z
∆y∆x ∆y2 ∆y∆z
∆z∆x ∆z∆y ∆z2

 . (3)

Using the modified Bessel function of the second kind,
the longitudinal and transversal correlation functions
are given by

φl (s) =
4d2

s2 −2K0

( s
d

)
− 4d

s
K1

( s
d

)
, (4)

φt (s) =
2s
d

K1

( s
d

)
−φl (s) (5)

where K0 and K1 are the modified Bessel function of
zero and first order, and d is the so-called characteris-
tic distance. There are several approaches for defining
a suitable characteristic distance d (e.g. [11, 14]). Ac-
cording to Yazji [15], the characteristic distance is set
to

d =
√

2mins. (6)

The derived criterion matrix K̃ is unrelated to the spec-
ified ZOD datum. Hence, K̃ is transformed to the de-
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fined datum via an S-transformation, i.e.

K = SK̃ST (7)

where S is the specific transformation matrix (cf. [1]).
In this distribution, a modified approach of the di-

rect approximation of the inverse criterion matrix is
applied (e.g. [7]). The inverse representation of Equa-
tion 1 is given by

ATPA = Q− .
= K−. (8)

The corresponding normal equation system reads(
MTM

)
p = MTk, (9)

where

M =
(
AT�AT) . (10)

Here, � denotes the Khatri-Rao product, p = diag P,
and k = vec K− (e.g. [12])1,2. To avoid negative
weights during the estimation process, convex opti-
mization with inequality constraints are recommended
(e.g. [10]). The estimated weights p are optimal in the
least-squares sense for K− but not necessarily for K.
According to Illner and Müller [7] a correction factor

λu =
tr(QQ)

tr(QK)
(11)

is introduced and the final weights are given by

Pu = λuP. (12)

The estimated weights Pu of the SOD optimization
are unrelated to instruments used during the field work,
and the necessary number of repetitions of the observa-
tions are simply derived w.r.t. the a-priori uncertainty
of a single measurement (e.g. [10, 13]). Practical expe-
riences when using modern instrumentation are not in-
cluded in the optimization process. For example, mod-
ern automated total stations register slope distances, di-
rections, and zenith angles in parallel. A single element
of a polar measurement triple cannot be observed with-
out further ado. Moreover, a repetition of a full set of a
standpoint can be carried out automatically by the to-
tal station. To limit the effort of the measurement pro-
cedure, the number of observed target points in a set

1 Function diag extracts the main diagonal of a matrix.
2 Function vec vectorizes a matrix by stacking its columns.

should be kept unchanged. To take these practical as-
pects into account an adapted approach is needed.

2.2 Adapted Approach of SOD

The a-priori uncertainties of a single polar measure-
ment triple can be evaluated by metrological experi-
ence and knowledge about the measurement instru-
ment. It is the deterministic part of the weights Pdet.
The unknown part is the number of necessary repeti-
tions Prep of the grouped observations. Groupings are
applied to force full polar triples and to force the repe-
tition of a full set of target points of a standpoint using
specific grouping matrices Gtrip and Gset, respectively.
A grouping matrix (e.g. [13])

G =
[

g1 . . . gi . . . gg
]

(13)

is setup by g group vectors gT
i =

(
0 . . . 0 1 . . . 1 0 . . . 0

)
,

where ones indicate observations of the i-th group.
Equation 10 is extended by the deterministic part of
the weights Pdet and the specific grouping matrix G,
i.e.

Mrep = MPdetG. (14)

Substituting Equation 14 into Equation 9 provides the
repetition part prep = diag Prep via(

MT
repMrep

)
prep = MT

repk, (15)

and the weights of the observations, which are scaled
by Equation 11, are given by

Pu = λuPdetPrep. (16)

Whereas the estimated repetition part results in real
numbers, only integer numbers are useful for practical
application. As demonstrated in [9], the solution of an
integer least-squares problem and the rounded solution
of the corresponding real least-squares solution differ.
For example, letting

M =

 1 4
2 5
3 6

 , k =

 1
1
1

 ,

the real solution is

IVS 2018 General Meeting Proceedings



30 Eschelbach et al.

pT =
(
− 1

3
1
3

)
.

Rounding the entries of p to their nearest integer value
yields

dpTc =
(

0 0
)
,

whereas the optimal integer least-squares solution
reads (cf. [9])

pT =
(
−2 1

)
.

In geodesy, integer least-squares are used, for exam-
ple, to estimate the GNSS double-difference integer
ambiguity. The algorithm to solve integer least-squares
problems is based on a tree search (cf. [2]). Therefore,
the numerical effort and the runtime are larger than
for the ordinary real least-squares algorithm. Accord-
ing to Chang et al. [3], a real least-squares solution
can be transformed to its optimal integer solution. To
get a useful solution of the SOD, finally, integer least-
squares techniques are applied to transform Prep to its
optimal integer representation.

3 Results and Conclusion

Two different network configurations were simulated
mainly differing in the number of pillars near the OTT
and in the number of connecting standpoints. Whereas
the pillars surround the new telescopes and are pre-
destined for reference point determinations, the stand-
points are necessary to combine the network around
the 20-m telescope with the newly designed network of
the OTT. The first configuration forms the network of
six pillars and 23 further standpoints, and the second
configuration uses eight pillars and 24 standpoints. A
detailed description is given in [5]. The results of both
configurations are quite similar; therefore, we restrict
the discussion to the eight pillar configuration.

The uncertainties of the terrestrial instrument are
derived by an absolute uncertainty term σc and a
distance-dependent uncertainty term σv. The com-
bined uncertainty of a slope distance σSD, a horizontal
direction σHD, and a vertical angle σVA measurement,
respectively, are (cf. [8])

σSD =
√

σ2
c,s +(s ·σv,s)2, (17)

σHD/VA =

√
σ2

c,a +(ρ ·
σv,a

s
)2, (18)

where s denotes the distance and ρ is the conver-
sion factor between radian and gon. Using Equa-
tions 17 and 18 and the values given in Table 2, the
deterministic part of the weights Pdet, cf. Equation 16,
is defined.

Table 2 A-priori uncertainties of the polar measurement ele-
ments used for defining the stochastic model of the SOD. The
constant uncertainties σc as well as the distance-dependent un-
certainties σv are presented for polar observations.

Uncertainty Distance Direction Vertical angle
σc 1.0 mm 0.3 mgon 0.3 mgon
σv 2.5 ppm 0.75 mm 1.0 mm

The criterion matrix is set up by Equation 2, using a
target uncertainty σ0 = 0.5 mm of a coordinate compo-
nent, and S-transformed by Equation 7 to the geodetic
datum of the ZOD process. Here, the geodetic datum
is defined by marked points, i.e. ground markers and
pillars.

The SOD process is carried out sequentially. In
the first step, Gtrip is introduced in Equation 14 to
identify the necessary polar observation triples that
form the network with the specified point uncertain-
ties. Using the remaining observation triples of the
first analysis step and the extended grouping matrix(
GtripGset

)
, which ties a full set of target points of a

standpoint for repetition, the optimal number of repeti-
tion in real number representation is derived by solving
Equation 15. Finally, using integer least-squares tech-
niques the real least-squares result is transformed to
the optimal integer solution, to get a useful solution.
The final solution contains 22 standpoints and requires
137 grouped polar observation triples, cf. Figure 1. The
repetition numbers are one, two and one-time nine. The
large repetition number of nine is derived for a close
range distance of about s = 5.2 m, which results in
large angle uncertainties, cf. Equation 18.

In comparison to the spatial confidence intervals of
the points derived by K, the corresponding intervals de-
rived by C are always smaller, cf. Figure 1. Thus, the
solution derived by Prep reaches the specified target un-
certainty of the points.

Summarizing, the optimization of geodetic net-
works allows for an evaluation of expected point
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Fig. 1 Resulting network configuration and postulated and estimated confidences, as well as the SOD optimization observation plan.

uncertainties before markers are installed or measure-
ments are carried out. For optimizing the second order
design (SOD) numerical methods are well-known.

In this distribution, an extended network at the OSO
was derived, which surrounds the new OTT. During
the SOD optimization, the deviation between a Taylor-
Karman based criterion matrix and the derived disper-
sion matrix was minimized. By grouping observations
during the optimization process, practical experiences
when using modern geodetic instruments are consid-
ered. Finally, integer least-squares techniques are ap-
plied to get a practically usable solution of the SOD.
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(eds.): Optimization and Design of Geodetic Networks,
Springer, Berlin, 74–120, 1985.

14. H. Wimmer: Ein Beitrag zur Gewichtsoptimierung
geodätischer Netze. Dissertation, DGK-C 269, Munich.

15. S. Yazji: The Effect of the Characteristic Distance of the
Correlation Function on the Optimal Design of Geodetic
Networks. Acta Geod. Geoph. Hung, 33(2-4), 215–234,
1998.

16. M. Yetkin, C. Inal, C.O. Yigit: Use of the particle swarm
optimization algorithm for second order design of levelling
networks. J. Appl. Geod., 3(6), 171–178, 2009.

IVS 2018 General Meeting Proceedings


