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Meeting the 2°C climate target would likely require reducing carbon dioxide emis-
sions from the global energy system to virtually zero within 50-100 years, and 
within 30-50 years for the 1.5°C target. Both cases would involve a complete transi-
tion of the global energy system to zero-emission technologies like renewables or 
nuclear power at unprecedented rates. This complex challenge can only be ana-
lyzed with energy system models, i.e. large computer models that can generate fu-
ture energy scenarios. This thesis presents five papers that develop methodology 
for modeling the global energy transition. 

In papers 1-2, we develop new methods for representing technological development 
of emerging technologies like solar or wind power in energy models. We use “ex-
perience curves”, empirical relationships that describe how costs tend to fall for 
new technologies as a function of their market growth. We find that by investing 
in solar and wind at a global scale we can drive down costs to a point where they 
compete with conventional fossil energy sources. 

Paper 3 is a study of meeting climate targets with bioenergy with carbon capture 
and storage (BECCS) using an integrated energy-climate model. BECCS is a tech-
nology that can produce negative emissions; i.e., it can deliver energy while actively 
removing CO2 from the atmosphere. We find that if BECCS is used on a global 
scale, it can significantly reduce costs of meeting the 1.5°C target and potentially 
reverse global warming in the long run. 

Paper 4 addresses another modeling problem. Many global energy models are too 
large to use an hourly time resolution which may be necessary to represent very 
high penetration levels of variable renewables like solar and wind power. We pre-
sent a method called “resource-based slicing” that can capture sufficient variability 
in just 16 annual time periods. 

Finally, in paper 5, we develop an open-source code base that uses global meteor-
ological datasets to generate all input data an energy model needs to study solar-, 
wind- and hydropower in arbitrary world regions. Our GIS-based approach pro-
duces both hourly capacity factors and regional potentials for installed capacity, 

Abstract 



and our simple generic model performs on par with more detailed dedicated mod-
els of European electricity generation. 

Keywords: energy system models, experience curves, BECCS, negative emissions, 
climate targets, time slices, variable renewables, GIS, open source, reanalysis 
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If humankind truly aspires to stop global warming and stabilize global temperature 
at some level, regardless of when and at which temperature level we agree to stabi-
lize, then we must reduce carbon dioxide (CO2) emissions to near-zero (Allen et al., 
2009; Matthews and Caldeira, 2008). Additionally, if we decide to limit warming to 
2°C above preindustrial temperature levels with reasonable likelihood, then near-
zero emission levels need to be reached well before the year 2100. For the more 
ambitious 1.5°C target, emissions must likely be reduced to zero around 20501 (IPCC 
2018). Either target requires a major shift to some combination of renewables, nu-
clear power and carbon capture and storage (CCS), at unprecedented rates of tran-
sition for the global energy system (Smil, 2010). 

But although many may (rightly) think of climate change as one of the greatest 
challenges society has ever faced, it is not the only engineering challenge confront-
ing the global energy system. It is hard to fault many developing countries for fo-
cusing on providing their citizens with modern energy carriers, even when this in-
creases their dependency on fossil fuels. The quality of air in some cities is so un-
healthy that average life expectancy has fallen several years, although possible so-
lutions to this problem may intersect with those of the climate problem. Energy 
security remains a concern for countries with limited resources of their own. 

On a more hopeful note, market growth rates of solar and wind power during the 
past 10-20 years have surpassed even the most optimistic scenarios produced by 
environmental NGOs. But this brings new challenges in itself; maintaining high re-
liability of electricity supply will test power system engineers as these variable re-
newables continue to gain market share. 

                                              
1 Since temperature level is a function of cumulative CO2 emissions, the deadline 
year depends on the pathway to zero emissions. 
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The problems facing the energy system are complex, interconnected and transdis-
ciplinary. Understanding energy systems often requires straddling fields of engi-
neering, economics, environmental science, systems theory, and – for modelers like 
myself – operations research (a branch of mathematics) and computer science. 

Further compounding the situation is the fact that it is virtually impossible to per-
form experiments. We have no backup earth to subject to scientific climate prod-
ding. Testing micro-scale energy systems may have little relevance to behavior of 
full-scale systems. 

For all these reasons, the only practical recourse available is modeling. But despite 
the limitations of a virtual playground, the questionable applicability on the real 
world, and the many, many uncertainties that we modelers are so painfully aware 
of, studying models is quite literally our only path forward. 

1.1 Energy system models 
An energy systems model can be characterized as a simplified, formalized represen-
tation of a real energy system, usually described using mathematical relations. Mod-
els mainly serve as a tool for learning; perhaps first for modelers themselves but 
ultimately for policy-makers and the general public. They can also provide decision 
support in specific planning situations. 

Although the use of models often involves looking into the future, the purpose is 
not to deliver forecasts of the likely development of the energy system. Instead, the 
ideal function of models is to answer hypothetical “what-if” questions, thereby gen-
erating qualitative or quantitative insights into the studied system. Some ad-
vantages of using a formal model-based methodology are that it adds consistency, 
reproducibility and a common platform for communication to the analysis. 

There are many different types of energy system models. Hall and Buckley (2016) 
use 14 different dimensions to categorize energy models used in the UK. One com-
mon classification is “top-down” and “bottom-up” models2. Top-down models refer 
to macro-economic models that use aggregated production functions and focus on 
market interactions. These are beyond the scope of this thesis. 

We focus on bottom-up or systems engineering models. These are technology-ori-
ented models that explicitly describe technical change within the energy system by 
including a large portfolio of potential technologies. Technological options are 
specified using both technical and cost parameters. In economic terms they are 

                                              
2 van Vuuren et al. (2009) provides a detailed comparison of differences between 
results related to IPCC AR4 from top-down and bottom-up models. 
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usually partial equilibrium models, because economic effects in non-energy sectors 
are largely ignored. For example, solar PV capacity may grow significantly in a 
model run, but opportunity costs for using capital and labor to build this industry 
are not taken into account. 

An optimization model is an energy model that is formulated as a mathematical 
optimization problem, i.e. it maximizes or minimizes an objective function subject 
t0 a number of constraints. The most common objective is to maximize the sum of 
producer and consumer surplus. However, when energy demand is inelastic (i.e. is 
independent of energy prices), this is equivalent to just minimizing total system 
cost. The optimal solution reflects a market equilibrium under perfect competition 
and may therefore underestimate real world costs. It represents the point of view of 
a single decision maker, an actor who minimizes total costs from a society point of 
view. This holds even when there are multiple regions and sectors in the model. 

Optimization models can range in scope from detailed power dispatch models with 
unit commitment and operational constraints, to long-term dynamic planning 
models with time horizons of 50-100 years. Much of the art of modeling lies in ex-
ploring the trade-offs between technological, spatial and temporal detail, and 
adapting system boundaries and model structure to the current research question. 

Perhaps surprisingly, useful energy system models can be formulated entirely using 
linear equations of continuous variables. Such models are called linear program-
ming (LP) models. This requires that both the objective and all constraints are lin-
ear functions. A significant advantage of LP models is that extremely efficient solu-
tion algorithms are available (using interior-point methods), so that even problems 
with millions of variables and equations can be solved. 

1.2 Thesis objective and synopsis 
The overriding goal of the thesis is to develop methodology for energy system mod-
els to help understand the transition of the global energy system toward a zero-
carbon future. Specific research questions will be presented in each chapter for each 
individual study. In most cases we had a fairly well-defined modeling approach in 
mind as we commenced the research. This means that on a pragmatic level, the 
only general research question these studies have in common is: how can we make 
it work, and how does this change our understanding?  

The following is a brief overview of the thesis and its included papers. To help struc-
ture the discussion I refer to figure 1-1, which presents a conceptual view of the 
technical energy system in relation to four critical factors in the system environ-
ment (Wene and Rydén, 1988). The main factors are energy demand, energy 
sources, physical environment and technological development. The figure is not 
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intended to be comprehensive – for example, there are also significant interactions 
with the economy and political constraints on the energy system from society – but 
it provides a useful overview of factors energy modelers must contend with. It was 
held as a cornerstone of energy modeling at my department during my formative 
years as a young PhD candidate. 

 
 

PHYSICAL 
ENVIRONMENT 

TECHNOLOGICAL 
DEVELOPMENT 

ENERGY SOURCES 
 Natural resources 
 Energy markets 

TECHNICAL ENERGY 
SYSTEM 

 Energy technologies 
 Energy flows 

ENERGY DEMAND 
 Sectors 
 Regions 

 
Figure 1-1. The technical energy system and four factors in the system environment. 

Chapter 2 summarizes paper 1 (Mattsson and Wene, 1997) and is the first of three 
chapters that concerns endogenous technological learning (ETL), a method for in-
ternalizing technological development in energy system models (c.f. figure 1-1) us-
ing experience curves. ETL is especially important for emerging technologies like 
solar PV and wind power, for which substantial technical progress is expected dur-
ing the 50-100 year time horizon of the models. In paper 1 we report results from an 
experimental energy model with experience curves (a.k.a. learning curves). We add 
a new feedback mechanism that represents induced technological change, as op-
posed to using exogenous assumptions, and discuss the qualitatively new insights 
that can arise from this kind of model. 

In chapter 3, I discuss research published in my licentiate thesis (Mattsson, 1997). 
Here I present a more reliable implementation of the same experience curve model 
as in paper 1. The formulation demonstrated here subsequently became the stand-
ard approach to ETL in bottom-up models. 

One of the main concerns with ETL models is the impact of uncertainty of the learn-
ing rate, a parameter that describes how quickly cost reductions occur as a function 
of accumulated experience. In chapter 4, I summarize a stochastic programming 
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model of ETL that endogenously considers learning rate uncertainty and finds tech-
nological pathways that hedge against this uncertainty (paper 2) (Mattsson, 2002). 

Chapter 5 moves on to the next box in figure 1-1, the physical environment. In this 
chapter I discuss paper 3 (Azar et al., 2013), which uses a global integrated energy-
climate model to study the potential impact of bioenergy with carbon capture and 
storage (BECCS). BECCS is a technology that can potentially provide negative emis-
sions, which means it can play a unique role in meeting global temperature targets 
and potentially even reverse global warming. In paper 3 we examine the role of 
BECCS in meeting various types and levels of climate targets, and its particular eco-
nomic properties as a mitigation technology. 

In chapter 6 we focus on the center box and dive deeper into how to represent a 
critical aspect of the technical energy system in models, namely the internal repre-
sentation of time. Conventional bottom-up models use “time slices” to capture de-
mand variability within a model year while reducing the number of time periods 
from 8760 hourly periods per year to typically just 6-12. The reduction is a prereq-
uisite for solving very large energy models. However, this method is inadequate for 
systems with high penetration of renewables, because it fails to capture solar and 
wind variability. In paper 4 (Lehtveer et al., 2017) we devise a conceptually simple 
alternative called “resource-based slicing” and test its applicability for global energy 
models and integrated assessment models. 

Finally in chapter 7, we shift attention to the left-most box and present a method 
and an open-source code base for input data generation of renewable energy 
sources (paper 5) (Mattsson et al., 2019). We use global meteorological reanalysis 
data combined with other public datasets to generate regional potentials and ca-
pacity factors for solar-, wind- and hydropower. Our approach allows us to con-
struct a capacity expansion model of a generic electricity system with hourly dis-
patch for arbitrary world regions. We test our framework by comparing results with 
studies by other researchers of future European electricity generation with high 
penetration of renewables. 
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"One of the most complex and salient questions remaining in climate change policy 
modeling is the appropriate treatment of technological change. The approach to 
modeling technological change is widely considered to be one of the most im-
portant determinants of the results of climate policy analyses; that is, the level of 
emissions abatement that can be achieved at a given cost." (Gillingham et al., 2008) 

2.1 Learning-by-doing and experience curves 
The term learning-by-doing reflects qualitatively that performance tends to im-
prove, and/or cost tends to decrease, as experience of production increases. Alt-
hough learning effects were first discovered in the airplane manufacturing industry 
in the 1930s, the credit for recognizing the far-reaching economic consequences of 
learning-by-doing is usually attributed to the Nobel laureate Kenneth Arrow, who 
put forward the hypothesis that technological change in general can be ascribed to 
experience (Arrow, 1962). Today, learning-by-doing is generally regarded as a pre-
requisite for performance improvements and cost reductions (Nakicenovic, 1996). 

An experience curve (sometimes called a learning curve3) is the quantitative em-
bodiment of learning-by-doing. It is an empirical relation stating that costs of a 
technology decrease exponentially as experience increases. The underlying ra-
tionale is that more opportunities for reducing costs and improving performance 

                                              
3 We follow Ayres and Martinàs (1992) in our distinction of learning curves and 
experience curves. Whereas learning curves often refer to learning by labor in re-
petitive manufacturing processes, the more general experience curves also reflect 
other changes that occur over the life cycle of a technology, such as incremental 
design improvements, manufacturing developments and economies of scale. 

2 Endogenous learning in energy system 
models (paper 1) 
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will be found as more development efforts are committed to a technology. Con-
versely, the better the price/performance of a technology, the more investments it 
will attract. In practice, to facilitate data acquisition, selling price is often used as a 
proxy for costs, and cumulative installed capacity as a proxy for experience. 

Experience curves are empirically very well corroborated and have been observed 
in a wide range of industrial products, processes and technologies, e.g. automobiles, 
semiconductors, petrochemicals, long-distance telephone calls, synthetic fibers, 
airline transportation, insurance administration and limestone crushing (Abell and 
Hammond, 1979; Argote and Epple, 1990; Ayres and Martinàs, 1992; Azar and Dow-
latabadi, 1999; Grubler, 1995; Löschel, 2002). 

Figure 2-1 shows an experience curve for crystalline silicon photovoltaic (PV) solar 
cell modules. The long-term stability of the cost reductions, even over six orders of 
magnitude of increasing experience, is remarkable. This regularity lends support to 
the notion of using experience curves to extrapolate existing technological devel-
opment trends into the future. Ausubel (1995) noted generally that rates of tech-
nical change in many fields (e.g. communication bandwidth trends, lighting effi-
ciency improvements or global energy decarbonization rates) tend to be stable over 
very long periods of time, and suggested that many trends could be usefully extrap-
olated 100 years into the future. 

 
Figure 2-1. Experience curve for crystalline silicon PV modules, 1976-2018 (ITRPV, 

2019). Most points are end-of-year observations, but some semiannual points are used 
between 2003 and 2012. 
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The experience curve has a simple mathematical formulation: 

with given by   LR  (Eq. 1) 

Here  represents the specific investment cost (in e.g. €/W for an energy supply 
technology) as a function of cumulative experience  (in W). The exponent de-
termines the rate of cost reductions and is frequently expressed using the so-called 
learning rate . A learning rate of 20%  means that costs are reduced 
by 20% for each doubling of cumulative experience. The constants  and  fix a 
starting point for the curve. 

The rate of cost reduction varies significantly between technologies, with typical 
learning rates for energy supply technologies ranging from 5% to 25% (Weiss et al., 
2010). Neij (2008) finds that small, modular technologies such as solar PV or wind 
power tend to have higher learning rates than large-scale non-modular plants and 
suggests that modularity may increase opportunities to improve technology and 
reduce costs. 

2.2 Background and research question 
The main purpose of energy systems engineering models is to provide decision sup-
port to energy policy by studying the dynamics of technical change in the energy 
sector. In traditional models however, improvements in individual technologies can 
only be considered by exogenous assumptions of cost reductions and/or efficiency 
improvements over time. The models are therefore by design blind to possibilities 
of learning-by-doing, i.e. technological development induced by actual market im-
plementation and experience. This deficiency is especially significant for emerging 
technologies, which hinge critically on future development prospects. 

Although costs for developing technologies can be ambitiously parameterized even 
in standard models, two main problems may arise when exogenous cost assump-
tions are used. First, to quote Niels Bohr, forecasting is difficult – especially about 
the future. Experience curves may lend some support to cost extrapolation which is 
inherently uncertain, but exogenous cost forecasts cannot directly utilize experi-
ence curves since future capacity investments are also unknown. Second, tradi-
tional energy models often feature perfect foresight over time horizons of several 
decades. With exogenous cost reductions, the model can then defer investments 
until they are profitable in a later time period, when in reality costs are unlikely to 
fall significantly unless large-scale investments take place. This manifests as an in-
consistency, when consistency is otherwise a major selling point of energy models. 
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A pragmatic way of dealing with this problem is to limit technology growth rates. 
The idea is that if the model “wants” to make large capacity investments at some 
point in the future, then it is forced to begin investing well in advance, presumably 
during a period of higher cost.  

If exogenous investment cost trajectories are used, the degree of development of a 
technology is independent of actual activity of that technology within the model, 
which corresponds to an autonomous view of technological development. This may 
be acceptable for applications where most technological development occurs out-
side the borders of the system being studied, e.g. a study of a national energy system 
where most cost reductions occur on the international arena. 

In economy-oriented models, technical change is often accounted for by including 
a parameter called the Autonomous Energy Efficiency Improvement (AEEI). The 
AEEI gives the rate at which the energy intensity of the economy can be reduced by 
structural change and penetration of new technologies, independently of energy 
prices (Manne and Richels, 1992; Nyström, 1995). The parameter is specified exoge-
nously, and is in the range of 0-1 %/year in most studies (Azar, 1996). 

This can be contrasted to a view of induced technical change, in which technologies 
and systems adapt to accommodate external pressures (e.g. Azar and Dowlatabadi, 
1999; Grubb, 1997; Nakicenovic, 1996). In this view governments can use policy in-
struments to harness the private sector and create new markets that enable learn-
ing-by-doing. 

Induced technical change can be reflected in bottom-up models by directly relating 
investment costs to accumulated experience of a technology using experience 
curves. These curves quantify learning-by-doing in a simple and transparent man-
ner and are empirically well established. However, they are also have a non-convex 
shape, so considerable computational difficulty should be expected from an effort 
to implement them in energy systems models. Nevertheless, they also represent a 
fundamental shift in model dynamics since the model “knows” that it can use in-
vestments to drive down costs. 

This leads us to the following research questions for paper 1: 

 How can we implement nonlinear experience curves within the framework 
of linear bottom-up energy system models? 

 Can the expected computational difficulties be overcome (or at least by-
passed)? 

 What qualitatively new insights can arise from a model with endogenous 
learning? 
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2.3 Method 
There are two main approaches to integrating experience curves within energy sys-
tems models based on linear programming: 

1. Direct nonlinear implementation 
2. Piecewise linear approximation of cumulative costs, after variable separation 

of the cost function 

Method 1 is the most straightforward. The experience curve cost relation  in 
equation 1 replaces the specific technology costs  (€/kW) in the objective func-
tion of the model. The new objective will then contain multiplicative terms of the 
form , where  is the cumulative experience of technology  at time 
, and  is the capacity investment (in kW) of technology  at time . Since both 

 and  are variables, this results in a nonlinear (and nonconvex) minimization 
problem. Standard nonlinear solvers can be used to find solutions for this problem. 

This was the approach chosen for paper 1. This method is attractive because of the 
simplicity of the model formulation. However, the main disadvantage is that most 
nonlinear solvers appropriate for large-scale problems use gradient methods which 
only find locally optimal solutions. When applied to nonconvex objective functions 
there is no guarantee (and no efficient way of confirming) that any local optima 
found also is a global optimum. To increase the confidence that the best locally 
optimal solution discovered was in fact the global optimum, we explored the solu-
tion space by performing several model runs using different initial values for the 
variables. 

TThe GENIE model 
The GENIE4 model is a bottom-up model of the Global ENergy system with Inter-
nalized Experience curves. It is intended as an experimental model to demonstrate 
the feasibility of large-scale energy system models with endogenous experience 
curves, and to illustrate the type of insights that can be obtained from models with 
improved technological dynamics. 

The model scope is therefore limited to the electricity supply sector. Neither heat, 
industrial feedstock, transport nor other demand-side technologies are included in 
the model. 

There are twelve electricity supply technologies in the model, six of which have ex-
perience curves. Four world regions are represented and the model time horizon is 

                                              
4 A genie or djinn is a spirit from Arabian tales, e.g. the spirit in the lamp in the tale 
of Aladdin. No allusion to the German word is intended. 
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80 years (1995-2075). Note that only results to 2055 are shown in the figures below 
(the last time period is 2045, but all periods have a length of ten years). The extra 
time periods are included to account for “residual learning”, i.e. the future benefits 
of having developed a technology compared to not having done so. 

The most important model constraints are: 

 Energy balance: total electricity generation must exceed demand. 
 Capacity limit: electricity generation is limited by installed capacity. 
 Peak & reserve requirements: “extra” capacity is required for peak and reserve 

demands. 
 Growth restriction: technology growth is limited to 30%/year. 
 Expansion potential: regional wind- & hydropower resources are limited. 
 Intermittent generation limits: solar PV and wind power can only supply 20% of 

annual electricity generation individually, or 30% combined. 
 CO2-emissons limit: total CO2-emissions from electricity can be limited. 
 Fossil fuel supply curves: fossil fuel costs increase as resources are depleted. 

Wind power and solar PV are intermittent, but the combination technology PV-H2 
is not considered intermittent. The latter consists of solar PV, electrolysis of water 
into hydrogen and oxygen, storage and recombination in fuel cells. 

The model minimizes the total discounted cost of global electricity supply with per-
fect foresight. See Mattsson (1997) for more information on the GENIE model and 
a complete listing of the model code. 

2.4 Results 
In my licentiate thesis (Mattsson, 1997) I replicated the early pilot study in paper 1 
with a reworked model based on the piecewise-linear methodology described in the 
next chapter. Two new technologies (wind power and combined cycle gas turbines) 
were added to the new model, and the number of technologies with experience 
curves was increased from two to six. Results from the newer model are included 
here, as they are functionally identical to the results using the nonlinear implemen-
tation of paper 1. 

Results from the base scenario assumptions without CO2 restrictions appear in fig-
ure 2-2. This can be described as a business-as-usual development of the global 
electricity system, with total discounted system costs of 9117 billion USD. In this 
solution, conventional fossil technologies are phased out and initially replaced by 
CCGT and hydropower. Later, due to increased gas prices, CCGT is replaced by a 
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mix of advanced coal power, wind and nuclear power. CO2-emissions from this sys-
tem roughly double by the middle of the century compared to 1995 levels. However, 
the pathway in figure 2-2 is merely a locally optimal solution. Due to the nonline-
arity of the experience curve, other solutions exist that arise from the exact same 
set of underlying parameter assumptions. 

An alternative solution to the same scenario appears in figure 2-3. This solution has 
a total system cost of 9106 billion US$, marginally lower than the previous solution, 
and is the true global least cost optimum. This case is initially similar to the previous 
one, except that CCGT has a less prominent role and that investments in solar PV 
and fuel cells take place “behind the scenes”. After 2015, however, the two cases 
visibly diverge. In case 2, natural gas fuel cells swiftly gain market share and even-
tually become the largest source of electricity. This development occurs at the ex-
pense of CCGT, advanced coal and nuclear power. Also, solar PV contributes sub-
stantially to global electricity generation. Together with wind power, they reach the 
upper limit for intermittent power sources in GENIE. The non-intermittent PV-H2 
technology also enters the system. Total CO2-emissions increase by a maximum of 
30%, but are reduced to just below 1995 levels by mid-century. 

It should be emphasized that these alternative futures stem from the same scenario, 
i.e. input databases and assumptions are identical for both cases. Mathematically 
they represent two different locally optimal solutions to the same problem (but 
there are many more).  

A hypothetical global policy maker that hesitates between these trajectories must 
decide early: in case 1, there are no investments in PV or fuel cells. In case 2, these 
technologies grow at the maximum allowed rate from the first time period onward. 
These investments are not profitable when they occur. They are necessary to drive 
down costs for PV and fuel cells in the long run. This situation is illustrated in figure 
2-4, which shows annual investment cost profiles for the two solutions. 
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Figure 2-2. Global electricity generation by technology in the base scenario: 

case 1, a business-as-usual situation. 

 
Figure 2-3. Global electricity generation by technology in the base scenario: 

case 2 (optimal), a more diverse system. 

  

hydroconv.coal

conv.gas

conv.oil
nuclear

adv.coal

ccgt

wind

0

5000

10000

15000

20000

25000

30000

35000

40000

1995 2005 2015 2025 2035 2045

TWh

Base scenario, case 1

Total system cost:
9117 billion US$

hydro
conv.coal

conv.gas

conv.oil nuclear

adv.coal
ccgt

fuel cell

wind

pv

pv-h2

0

5000

10000

15000

20000

25000

30000

35000

40000

1995 2005 2015 2025 2035 2045

TWh

Base scenario, case 2

Total system cost:
9106 billion US$



2.4 RESULTS 

15 

 

Figure 2-4 shows that case 2 requires approximately 30% more investment capital 
than case 1 in the year 2025. The difference between the cases represents additional 
learning investments (Wene, 2000) that are required in order to develop the emerg-
ing technologies. This suggests that there is a risk of technology lock-in. If capital 
is a scarce resource in the future (a fairly safe assumption), there is a danger that 
capacity will be built up with established technologies as in case 1, and no cost re-
ductions will take place in the emerging technologies. The model avoids this situa-
tion by the perfect foresight mechanism, but the real world situation requires tech-
nology specific policy instruments or niche markets that bear the additional costs 
of developing the new technologies. 

 
Figure 2-4. Annual investment costs for the base scenario. 

The trade-off between the need for near-term learning investments in order to de-
velop low cost technologies in the long term emphasizes the importance of dis-
count rates in models with endogenous technological learning. The "standard" 
value of 5% per year used in GENIE and many other energy system models with 
long time horizons is arguably too high. To illustrate numerical consequences 
with a simple example, a 5% discount rate values costs that occur 80 years in the 
future about 50 times lower than costs that those that occur today ( ). 
Since our society has a much longer life expectancy than individual humans or 
companies, some claim (e.g. Azar and Sterner, 1996; Stern et al., 2007) that it may 
be motivated to set the pure rate of time preference (ρ) to zero. According to the 
Ramsay rule (e.g. Moore and Vining, 2018), the social discount rate would then 
only reflect expected future economic growth (g) and the elasticity of the marginal 
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utility of consumption (η). In Mattsson (1997) alternative model runs were per-
formed with a discount rate of 2% per year (corresponding to ρ=0, g=1.5% per year 
and η=1.33). The resulting technology trajectories were very similar to case 1 and 
case 2, but the total system cost for case 2 was 7% lower than case 1 (instead of vir-
tually identical). 

2.5 Method conclusions 
One of the headline results of paper 1 was the existence of multiple local optima. In 
retrospect, choosing the straightforward nonlinear implementation may have been 
fortunate because it led to this discovery, while a competing research team at IIASA 
did not report local optima in their simultaneous paper using an experience curve 
model (Messner, 1997). 

However, the nonlinear solver was sensitive to initial conditions and converged to 
different local optima somewhat unpredictably, and occasionally failed entirely. It 
was also rather slow compared to linear solvers. For these reasons, we decided to 
reimplement the model using a piecewise linear approximation of the experience 
curve (i.e. method 2 above). This approach had several advantages: it found locally 
optimal solutions relatively quickly and consistently, it did not depend on initial 
variable values and it could determine when the global optimum had been found. 
The implementation is described in more detail in the next chapter. 

An alternative solution approach to the nonlinear formulation would be to apply 
global optimization techniques. There are algorithms for concave minimization 
that may prove to be efficient for our problem, but since we obtained satisfactory 
results using method 2, we never experimented with nonlinear global optimization. 

2.6 Discussion and recent research on experience curves 
Ayres and Martinàs (1992) demonstrate that learning rates are not always constant 
over time. Experience curves occasionally display separate phases with different 
learning rates. They explain these slope changes in terms of the technology life cy-
cle. An initial period of slow decline in costs may correspond to the infancy and 
childhood stages of the technology life cycle, followed by a swifter rate of progress 
as the adolescent stage is entered and the technology reaches a larger commercial 
market. Wene (2000) also discusses discontinuities in experience curves, but differ-
entiates between breaks in experience curves based on cost data and on price data. 
He calls those based on cost data technology structural changes and hypothesizes 
that they are caused by radical changes in the development process, e.g. a new var-
iant of the technology or a major change in the way the technology is produced. 
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Wene labels discontinuities in experience curves based on price data market struc-
tural changes. These breaks reflect a change in market conditions, e.g. a dominant 
firm that reduces its prices to meet increased competition from new actors. 

The apparent stagnation between 2003 and 2008 in the solar PV experience curve 
in figure 2-1 has yet another explanation. The swift growth of the PV industry caused 
the demand of polycrystalline silicon for PV to exceed the demand for use in semi-
conductors, which led to a severe worldwide shortage. During this time, increased 
material cost in PV modules masked ongoing improvements in the rest of the pro-
duction chain. When the shortage was resolved in 2008, PV prices quickly reverted 
to the long-term experience curve [ref]. 

Ayres and Martinàs (1992) also suggest that during the late stages of the life cycle, 
product standardization may cause learning to cease to be directly related to pro-
duction experience. Many experience curve analyses adopt this idea by including 
“floor costs”, a lower limit to costs that reflect an end to learning-by-doing (e.g. 
Hedenus et al., 2006; Kouvaritakis et al., 2000; Kypreos and Bahn, 2003; Seebregts 
et al., 2000). However, in my opinion the notion of floor costs lacks empirical sup-
port in technology studies. It may be that apparently stagnating costs are merely an 
artefact of market saturation. Once a technology has become widespread, it be-
comes increasingly difficult to double cumulative experience, and cost reductions 
may appear to halt. I have yet to see a convincing argument why learning-by-doing 
should come to an end if experience of production continues to double. 

An important issue to consider is the question of system boundaries. What is the 
learning system? Neij (2008) finds learning rates for wind turbine investment costs 
in the range of 6–8%, and learning rates for the levelized cost of electricity for wind 
power around 17%. The latter experience curves include both investment cost re-
ductions for turbines as well as installation cost reductions, efficiency improve-
ments and reduction of operating and maintenance cost. It may appear that both 
could be appropriate depending on what the system-in-focus happens to be. How-
ever, Wene (2000) emphasizes the importance of relating to the same learning sys-
tem for the performance measure (i.e. cost) and cumulative experience. Relating 
electricity costs to cumulative installed capacity would be a misuse of the experi-
ence curve, because this would be relating the performance of the total system 
(which produces electricity) to the experience in one of its subsystems (that manu-
factures turbines). An experience curve for the cost of wind electricity must meas-
ure experience in MWh, not MW. 

The effects of public and private-sector R&D are usually considered to be implicit 
within the experience curve representation. However, there have been efforts to 
quantify R&D explicitly using two-factor learning curves, which disaggregate the 
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effects of learning-by-doing and “learning-by-searching” (Kouvaritakis et al., 2000). 
These analyses aid thinking about dynamics of technological development, but suf-
fer in practice by the difficulty of measuring private R&D spending. Patent registra-
tions or other indicators are often used as proxies (Wiesenthal et al., 2012), but this 
introduces an error that limits the prognostication value of the two-factor ap-
proach. Public R&D data is more widely available and has been used to estimate 
two-factor learning curves for wind energy in European countries (Klaassen et al., 
2005). 

Nemet (2006) disputes the assumption that experience is the main driver of ob-
served cost reductions in solar PV from 1975 to 2001. He finds that majority of the 
cost reductions can be attributed to upscaling of module production plants, increas-
ing module efficiency and declining costs of silicon. A natural counterpoint could 
be that experience is precisely what enables the upscaling or increased efficiency. 
Nemet raises this counter-argument, but gives examples of firms that increased 
manufacturing capacity rapidly in spite of having limited production experience, 
and claims that important efficiency breakthroughs were achieved in universities. 
However, the upscaling firms were still quite small in absolute terms (e.g. Q-Cells 
increased production capacity from 12 MW to 50 MW per year in two years), and 
the capacity increase did not take place in a vacuum – there was arguably consider-
able spillover of experience from other firms and other sectors (e.g. semiconductor 
manufacturing) (Wiesenthal et al., 2012). Moreover, scale effects are often regarded 
as key components of learning-by-doing on a technology level (e.g. Dutton and 
Thomas, 1984). 

A related question is whether experience is a superior predictor of future costs com-
pared to a simple time relation. Nagy et al. (2013) tested this on a database of 62 
different technologies and found that both relations had roughly equal predictive 
value. However, Nagy et al. also noted that the majority of technologies in the da-
tabase featured exponential growth. As long as a technology grows exponentially, 
experience curves are indistinguishable from regular cost reductions over time, a 
fact originally observed by Sahal (1979). To discriminate between the two versions, 
technologies featuring “stop-and-go” behavior need to be examined. Nuclear power 
comes to mind as a potential candidate, but unfortunately the cost of nuclear has 
increased rather than decreased, and is a widely cited example of “forgetting-by-
not-doing” (e.g. Grubler, 2010; Rosegger, 1991). Nevertheless, despite the near uni-
versal acceptance of experience curves dynamics, it is clear that more empirical sup-
port is required. 

A major weakness of the experience curve concept is the lack of an underlying the-
oretical foundation. However, in an intriguing recent development, Wene (2007, 
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2015) uses a cybernetic approach to study a general learning system and derives the 
most commonly observed learning rates for real-world technologies. Using simple 
assumptions – postulating the functional form of the experience curve and assum-
ing that the learning system is feedback regulated and operationally closed (i.e. that 
external stimuli do not determine internal states of the system) – he calculates the 
eigenvalues of the learning loop and finds that the first modes appear at 20%, 7% 
and 4%. These values are in line with literature reviews of technologies that find 
clusters of learning rates at 18-20% and around 5% (Dutton and Thomas, 1984; 
McDonald and Schrattenholzer, 2001). 
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In this section, I describe an alternative method of implementing technological 
learning in energy system models using piecewise linear approximation of the ex-
perience curve. The mathematical implementation was documented in my licenti-
ate thesis (Mattsson, 1997) along with the full code of the GENIE demonstration 
model. Well-known bottom-up models such as MARKAL and TIMES have subse-
quently adopted this formulation (Loulou et al., 2005, 2004). 

3.1 Research question 
Paper 1 demonstrated the general viability of using experience curves to quantify 
technological learning in energy models, but the nonlinear implementation used 
was sensitive to initial conditions and solved quite slowly, even in the small demon-
stration model. Can a piecewise linear approach overcome these difficulties to make 
experience curves feasible in large-scale real world models?  

3.2 Method: piecewise linear implementation 
A common method for eliminating certain types of nonlinearities in optimization 
problems is to approximate the nonlinear functions using piecewise linear seg-
ments. Piecewise linearization reduces the problem to either a pure linear program 
(for convex nonlinearities) or a mixed-integer linear programming problem (for the 
nonconvex case). This requires that the nonlinearities are separable in its variables, 
which our model with its multiplicative terms (see section 2.3) unfortunately is not. 
However, the objective function can be reformulated to become separable in the 
following manner. 

3 Piecewise linear reimplementation 
(licentiate thesis) 
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First, recall from section 2.3 that the objective function of a straightforward nonlin-
ear experience curve implementation contains terms of the form , where 

 is the experience curve defined in equation 1 of section 2.1. Now note that 
. Next, define the cumulative investment cost function  as 

 

(Eq. 2) 

and replace the terms  in the objective with . 
(This is not strictly equivalent, but the new term is actually more correct since it 
avoids a sampling error due to the limited number of time periods.) Since both 

 terms are functions of only one variable, the new objective function is sep-
arable and therefore a piecewise linear approximation can be used. Then integer 
variables can be defined as segment indicators and the resulting problem can be 
solved using the well-established branch-and-bound method for mixed-integer lin-
ear programming (MILP), which has very efficient implementations in commercial 
solvers such as CPLEX or Gurobi. 

We tested several alternative MILP formulations. Two of these were found to have 
a significant performance advantage over the others. The simplest version based on 
Floudas (1995) appears below. The other method relates segment indicators across 
time and may be more efficient for problems with more time periods. 
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Figure 3-1. Segmentation of the experience curve. 
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For notational simplicity, suppose a three-segment approximation is used. Let  
denote the experience variable (for a particular technology and time period, alt-
hough these subscripts are omitted here) and  the piecewise linear approx-
imation of cumulative investment cost. Also, let  and  be the segment break-
points as in figure 3-1. The linear segments can be written: 

 (Eq. 3) 

where the constants  and  are easily determined from the breakpoints  and . 
Next, introduce binary variables  and continuous variables . The entire imple-
mentation can now be written in Greek5: 

 (Eq. 4) 

or in quasi-English: 

If , then , which forces , 
therefore , then , and finally . 

FFinding local optima 
The main advantage of the piecewise linear approach is that the branch-and-bound 
algorithm employed by the MILP solver will eventually find and prove the global 
optimum. In practice though, when too many experience curves are used or the 
segmentation is too detailed, a very large branch-and-bound tree of binary variables 
can result and solution times may be prohibitive. However, the algorithm will usu-
ally find several locally optimal solutions along the way, corresponding to LP solu-
tions to the problem with suboptimal values of integer variables. When the algo-
rithm is terminated prematurely it will return the best known solution along with 

                                              
5 Throughout this thesis, the following notation conventions are used. Parameters 
(constants) begin with a lower case letter, variables begin with an upper case letter, 
and integer variables use a Greek (lower case) letter. 
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bounds on the objective value for the global optimum to the piecewise linear prob-
lem. 

To find additional local optima of relevance to the energy system, we introduced 
temporary constraints on technology use. For example, we could direct the solver 
to find solutions with at least 100 GW of fuel cells. If the new solution was feasible 
in the original problem while the new constraint remained nonbinding (e.g. if the 
solution had 156 GW of fuel cells), then the new solution represented a local opti-
mum to the original problem. In this way we get the stability and solution speed of 
the piecewise linear implementation while still finding the alternative locally opti-
mal solutions that the original nonlinear implementation helped us discover. 

AAccuracy of the piecewise linear approximation 
Due to the concavity of the cumulative investment cost curve, the optimal cost of 
the problem with piecewise linear curves is a lower bound to the “true” optimal cost 
of the original problem with continuous curves. Also, since the optimal solution to 
the piecewise linear problem is feasible (though not necessarily optimal) in the con-
tinuous problem (only the objective function differs), a simple post-optimization 
recalculation of the cost of the piecewise linear solution using continuous experi-
ence curves gives an upper bound to the continuous optimum. This provides a 
method of assessing the accuracy of the piecewise linear approximation: when the 
lower and upper bounds are very close, the approximation is adequate and it is un-
likely that a refinement of the segmentation will result in a different solution. 

Computational aspects 
Regardless of the approach taken, it is important to remember that nonconvex min-
imization problems can only be solved at extreme computational expense, a fact 
that is only exacerbated by the high dimensionality of the problem. In our model, 
solution times are several orders of magnitude larger than for corresponding linear 
programs, and increase further with the number of experience curves and the num-
ber of time periods in the model. Therefore much effort has been placed in improv-
ing the efficiency of the implementation. Some experiences are shared here. 

Williams (2013) suggests that imposing additional redundant constraints on the in-
teger variables in MILP models may improve solution performance. We therefore 
added the following extra constraints on segment indicator variables, based on the 
observation that experience must increase over time. Here  is the number of 
segments used in the approximation and  denotes the binary segment indicator 
variable for segment  at time period  (for a certain technology, subscript omitted). 
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 (Eq. 5a) 

 (Eq. 5b) 

Significant reductions of solution time were observed after this change. This im-
provement can probably be attributed to a more refined (i.e. tighter) LP-relaxation6. 

Among the alternative MILP formulations, we make several attempts at introducing 
so-called special ordered sets (SOS) of variables. An SOS (of “type 1”) is a group of 
variables in which exactly one variable must be non-zero, so they should be well-
suited to represent segment indicators. This extra information is passed to the 
solver, which can adapt the branch-and-bound algorithm accordingly. However, no 
general performance improvement was observed in our model experiments. This 
somewhat surprising result may possibly be a reflection of the efficiency of the de-
fault branching procedure. The attempt to force the solver into different behavior 
only caused performance degradation. This could also conceivably be due to ineffi-
cient implementation of SOS branching in the CPLEX version we used, which at the 
time of the original implementation was CPLEX 4.0 (the latest version as of Novem-
ber 2019 is 12.9). 

Commercial MIP solvers often have parameters that can be tweaked to improve 
performance for a particular problem set. We found that setting parameter varsel 
to strong branching reduced solution times and memory requirements by an order 
of magnitude. This setting activates an internal heuristic in CPLEX to determine 
the best variable to branch on. The heuristic is fairly time-consuming at each node, 
but was efficient for our problem because it reduced the number of nodes that re-
quired visiting. Also, with this parameter setting CPLEX generally converged much 
faster to the final solution. In other words, even the first local optimum found was 
very similar to the final global optimum. This was not the case with other parameter 
settings, as the solution could change fairly dramatically near the end. 

The computational complexity of our model as measured by the amount of time, 
nodes and iterations required to reach the solution, was generally quite problem 
specific and was strongly dependent on the cost parameters used in each model 

                                              
6 The LP-relaxation is performed at every node in the branch-and-bound algorithm 
to determine whether the node (and its descendants) can be eliminated from fur-
ther consideration. 
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run. The “obviousness” of the optimum is what primarily determines solution time, 
not problem size or number of integer variables as might be expected. In other 
words, a problem with several structurally different solutions but nearly identical 
costs could need many iterations to solve, while a problem of the same size with a 
clear-cut optimum would be solved relatively swiftly. For example, solution times 
to prove the global optimum could vary between two hours and several days for the 
same problem but different parameters. Similar sized linear programs were solved 
in a minute or two. 

3.3 Discussion 
We found that the piecewise linear implementation was considerably more robust 
than the nonlinear formulation. It consistently and relatively quickly found reason-
able integer solutions, and always terminated with the global optimum for our 
demonstration model (though verifying the global optimum could occasionally 
take days as reported above). 

AAlternative implementations of technology learning 
The computational complexity of the implementation described here grows expo-
nentially with the number of technologies with experience curves. For this reason, 
very large-scale models (or even smaller models with many learning technologies) 
may not be reliably solved using this method. In these cases, the following alterna-
tive approaches can be explored. 

One idea is to avoid optimization altogether, e.g. using approaches by e.g. Capros 
and Mantzos (2000), Kouvaritakis et al. (2000) and Hedenus et al. (2006), as de-
scribed in the section below. In market simulation models, using endogenous non-
linear feedback relations such as experience curves to describe cost dynamics is no 
more computationally difficult than using exogenous assumptions. These models 
are particularly appropriate for answering “what if”-type questions, especially in the 
context of evaluating technology support schemes. However, they are less suitable 
for finding efficient energy solutions for society as a whole, as this would require 
extensive manual search by the model user. 

A frequently observed result in optimization models with endogenous learning is 
that the model tends to either invest maximally in emerging technologies (i.e. up 
to the growth constraint) from the first time period onwards, or to neglect the tech-
nology altogether. This observation naturally suggests a simplification of the imple-
mentation. Specify an exogenous “time-table” for fast growth in an emerging tech-
nology, and calculate the resulting costs exogenously using an experience curve. 
After some decades the technology can be regarded as having reached maturity, 
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with slowly decreasing exogenous costs over time. This approach would lead to a 
greatly simplified MIP implementation, with only one binary variable per learning 
technology. If the model chooses to invest in a technology at all, it would be con-
strained to invest according to the time-table during the initial decades (and be 
unconstrained thereafter). If not, experience is set to zero for all time periods. We 
simply use two constraints of the form: 

 (Eq. 6a) 

 (Eq. 6b) 

Here  is the variable representing cumulative experience of technology  at time 
,  the binary indicator variable for whether or not investments in that technology 

take place,  the exogenous cumulative experience parameter following a time-
table with fast growth, and  a suitable large value that cumulative experience 
cannot exceed. The objective function would then be entirely linear, with terms of 
the form . 

The drawback of this approach is the lack of flexibility in the initial investment 
time-table. This has negligible impact on system costs when capacities are very 
small, but can become significant later. 

One of the main problems with models with exogenous technology costs is that 
resulting technology investment trajectories are often incompatible with the cost 
assumptions – the output is inconsistent with the input. A common example is 
when investments in swiftly improving technologies only occur in later time periods 
once costs have been reduced, despite the fact that these cost reductions could not 
take place without significant investments. This particular problem can be ad-
dressed by using experience curves exogenously to generate the cost input (based 
on assumptions of future capacity), and recalculating the cost input based on feed-
back of resulting capacity output. Model runs are iterated in this way until they 
converge upon a stable solution, which then becomes internally consistent. During 
my time at the IEA, I would run the global Energy Technology Perspectives model 
in this way (IEA, 2008, 2006). The model would usually approximately converge 
after 3-10 iterations. However, there is no guarantee of convergence. If oscillations 
develop, some manual tweaking may be required (e.g. by introducing minimum or 
maximum constraints to a technology). A significant shortcoming of this approach 
is that the model has no foresight of technology development, so the final con-
verged result represents at best a locally optimal solution, and possibly only a fea-
sible solution (see section 5.5 for thoughts about a similar soft-linking approach). 
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TThe significance of the global optimum 
Given the large uncertainties in virtually all techno-economic parameters that rep-
resent the current system, and even larger uncertainties for parameters that repre-
sent the future, it is relevant to ask: what is the significance of the global optimum 
in models? Does it have any inherent meaning or does all meaning drown in pa-
rameter uncertainty? 

In my experience, modelers too often focus on the optimal solution. Cost minimi-
zation can simply be viewed as a filter that produces a single solution out of a mul-
titude of other feasible solutions, albeit one with interesting economic properties. 

The problem of parameter uncertainty can be mitigated by sensitivity analyses on 
critical parameters. However, sensitivity analysis is frequently used only to deter-
mine what other solutions can become optimal when parameters are varied, and 
not to explore marginally suboptimal solutions. Ideally any model study based on 
cost minimization should also explore if there are fundamentally different solutions 
marginally higher cost. The search for other interesting solutions could be auto-
mated within the existing optimization framework (e.g. by adding a cost constraint 
and changing the objective to maximize the distance to previously found solutions), 
and could provide much new insight about the systems studied. 

This idea has recently been formalized and gaining traction under the term “mod-
eling to generate alternatives” (MGA). For some recent studies using MGA in an 
energy system context, see (DeCarolis, 2011; DeCarolis et al., 2016; Price and Keppo, 
2017). 

In this context, models with endogenous experience curves have two advantages 
over models with exogenous technological development. First, the assumptions 
made about cost dynamics become more explicit and quantifiable, which highlights 
the need for sensitivity analysis and facilitates MGA. Second, the potential for mul-
tiple locally optimal solutions already encourages exploration of the solution space. 

3.4 Legacy 
The following is a review of the literature on using endogenous technological learn-
ing (ETL) in energy models. Normally this section would be called “Background” 
and would appear first in the chapter, but that approach would feel awkward since 
the first published papers of the field were our paper 1 and Messner (1997), a similar 
ETL implementation developed independently of our work. 

An early attempt to use ETL with experience curves within an energy systems mod-
eling framework was reported in Anderson and Bird (1992). They use a simulation 
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model to study the costs of a global transition to a renewable energy system. Re-
newable energy costs are determined endogenously by experience curves, but mar-
ket penetration of technologies is specified exogenously; strategic choices of tech-
nological trajectories are thus left to the model user. 

The MESSAGE linear programming model was extended to include endogenous ex-
perience curves by Messner (1997). The study focused on a comparison of results 
using static (constant) costs, dynamic (exogenous) costs, and learning (endoge-
nous) costs. ETL was implemented using a piecewise linear formulation of experi-
ence curves and solved using special ordered sets in a reduced single-region version 
of the full 11-region MESSAGE model, in which demand-side technologies were re-
moved. It is unclear from the paper whether the model solved to the global opti-
mum or terminated at a "best known" solution, and there is no mention of the pos-
sibility of multiple local optima.  

The ETL formulation presented in this chapter (and originally in my licentiate the-
sis) was implemented in the widely used MARKAL model by Ad Seebregts at ECN 
in the Netherlands and Leonardo Barreto at PSI in Switzerland (Barreto and 
Kypreos, 1999; Seebregts et al., 1998a) and was subsequently included in the stand-
ard MARKAL distribution (Loulou et al., 2004). Barreto documented the approach 
extensively in his PhD thesis (Barreto, 2001, pp 41-49), and it eventually became the 
standard citation for the mathematical formulation of ETL within the MARKAL 
community. 

Seebregts (1998b) was the first to demonstrate feasibility of the ETL approach in a 
large-scale optimization model. He used the MARKAL-Europe model with 510 tech-
nologies and 10 technologies with ETL, and concluded that the increase in solution 
time when ETL is enabled “remains acceptable”. Seebregts et al. (2000) introduce 
technology clustering, where technologies are grouped into clusters and their cost 
development are linked to five key learning technologies. This approach facilitates 
analysis of learning crossover (between technologies) and spillover (between re-
gions). 

The TIMES model (Loulou et al., 2005) is essentially a more flexible version of the 
MARKAL model and has directly adapted parts of the MARKAL code base, includ-
ing the ETL implementation. A recent example of ETL modeling with TIMES is 
Anandarajah (2015), which uses the 16-region TIAM-UCL integrated assessment 
model based on the TIMES framework to study technological learning in the 
transport sector. Its approach is similar to that of Seebregts et al. (2000), with three 
key technology clusters which are the basis for many individual learning technolo-
gies. 
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Kypreos (2003) introduced ETL in the MERGE model using an unusual two-model 
approach. A global MERGE model with a simplified energy system representation 
was iteratively soft-linked with a more detailed multiregion bottom-up model. ETL 
was introduced in both submodels. The original nonlinear experience curve equa-
tion was used in the nonlinear MERGE model and piecewise linearization in the 
technology-rich model. 

Hedenus et al. (2006) use quasi-endogenous learning with a limited foresight mech-
anism in the GET model, a dynamic global multisector energy system model. In-
vestment decisions in each time period are made with 30 years of foresight, but with 
no foresight of learning. Technology costs are reduced between time periods using 
experience curves, and new decisions are made in the next time period based on 
the lower costs. This myopic approach evades the computational difficulties of ETL 
but essentially implies that the underlying optimization model is used as an energy 
market simulation model. 

Capros and Mantzos (2000) adopt a similar “dynamic but myopic” approach to 
study induced technical change of demand-side technologies in the PRIMES model, 
a bottom-up partial equilibrium model based on linked modules that simulate en-
ergy markets. 

Kouvaritakis et al. (2000) develop a module that implements two-factor learning 
for energy market simulation models such as the POLES model. They use an agent-
based approach with large energy suppliers as the decision-making agents. Two-
factor learning means that cost decreases by both learning-by-doing and learning-
by-research. de Feber et al. (2003) discuss two-factor learning in the context of large 
energy system optimization models. They note that the learning-by-research term 
in two-factor learning prohibits the use of MILP approximations, which makes the 
approach intractable for large models. 

Bauer et al. (2012) describe the REMIND-R model, an energy-economy-environ-
ment (E3) model that includes ETL for energy technologies. Since nonlinear equa-
tions are already used in the hard-linked economy submodel, a straightforward 
nonlinear implementation of ETL can also be used (Bauer et al., 2017). The authors 
do not relate whether or not the nonlinearities cause difficulties solving the model.  

A recent ETL implementation is used by Heuberger et al. (2017), who present a cus-
tom power capacity expansion model of the UK called ESO-XEL. The model is dy-
namic with 5-year periods but nevertheless can be run with full hourly time resolu-
tion (8760 hours), or alternatively using reduced time representation by data clus-
tering. There are 15 electricity generation technologies with learning in the model, 
which uses a piecewise linear ETL implementation attributed to Barreto (2001). 
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4.1 Background 
Any study based on experience curves is highly sensitive to uncertainty in the learn-
ing rates of the underlying technologies . Even relatively small numerical differ-
ences in learning rates may cause dramatically divergent cost trajectories, due to 
the exponential relationship. When experience curves are used to describe technol-
ogy cost development in energy system models, it is likely that learning rate uncer-
tainty is the most significant parameter uncertainty in the model. 

RResearch questions 
Can stochastic programming be used to consider learning rate uncertainty endog-
enously in energy models? How can the standard stochastic programming method 
be adapted for this? Does a combined model at demonstration scale generate qual-
itatively new insights? 

Stochastic programming 
When an energy system model is subjected to a limited number of critical parame-
ter uncertainties, an optimal solution that considers the uncertainty endogenously 

                                              
7 Initial technology costs and experience (parameters  and  in equation 1) also 
have a large effect on results, but they since they represent a starting condition they 
can be measured, at least in principle. In practice however, this can be quite diffi-
cult. Costs of non-commercial emerging technologies may be highly speculative. 
Additionally, the initial experience parameter of a technology should probably also 
consider spillover experience from related technologies (e.g. stationary gas turbines 
and jet engines, solar PV modules and other semiconductor manufacturing, wind 
turbines and aviation aerodynamics), which is problematic to quantify. 

4 Uncertain learning (paper 2) 
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can be found using stochastic programming. For example, suppose that an inte-
grated assessment model needs to consider three possible values for the climate 
sensitivity (high, mid, and low), which can be assigned probabilities a priori. The 
uncertainty is further assumed to be completely resolved in some future year, say 
in 2050. This is conceptually illustrated in figure 4-1. In the first few time periods of 
the model, all variables follow a single pathway that hedges against the possible 
future outcomes of the climate sensitivity. After the uncertainty is eliminated, the 
model adapts to the reality of each of these parallel timelines, resulting in three 
different investment pathways. 

The previous paragraph describes a two-stage stochastic programming problem. If 
the uncertainty needs to be resolved progressively, the tree in figure 4-1 can be ex-
tended with additional branches, which creates a multi-stage problem. Or alterna-
tively, multi-stage problems may arise when uncertainties of several parameters are 
considered simultaneously. 

A straightforward implementation of stochastic programming involves adding an 
additional dimension to every variable of a standard deterministic model, i.e. sub-
scripting the variables by scenario/outcome. Then constraints are added to equalize 
variable values in parallel branches before the time period when uncertainty is re-
solved. The new objective function is a linear combination of the total costs of each 
branch, weighted by their probabilities. The resulting problem remains a linear pro-
gram (assuming the original deterministic problem was linear) with  times the 
number of variables, with  being the number of leaves in the scenario tree. 

The stochastic model can be solved using a standard LP solver. Alternatively, more 
efficient solution algorithms may involve decompositioning techniques that take 
advantage of the particular block structure of stochastic programming problems. 
However, convergence speed with decompositioning is sometimes slow, and just 
solving the large LP using a modern interior-point solver may be faster or more 
reliable despite its theoretical inefficiency. In paper 2 this brute-force method was 
chosen, primarily for its simplicity. 
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Figure 4-1. Conceptual sketch of standard stochastic programming. 

4.2 Method 

EExperience curves with uncertain learning 
For uncertainty in the learning rate of experience curves, resolving uncertainty at a 
fixed point of time would be inappropriate. Learning-by-doing implies that cost re-
ductions only take place with increasing experience. Similarly, it is reasonable that 
information about the ongoing rate of cost reductions should only be acquired with 
experience. To capture this dynamic in the GENIE test model, learning rate uncer-
tainties are assumed to resolve once a threshold level of cumulative installed capac-
ity is reached. 

The experience curve uncertainty is illustrated in figure 4-2. Although six technol-
ogies in the model have costs based on experience curves, only solar PV and fuel 
cells have experience curves with uncertain learning rates. Solar PV is assumed to 
develop along the established 20% learning rate until 5 GW of experience is 
reached8, after which it either continues to follow this “high learning” branch or 
breaks off on a “low learning” path with a 10% learning rate. Since there was no 
established learning rate for fuel cells when the model was implemented, the paths 
for fuel cells diverge immediately from the starting capacity, with assumed learning 
rates of 15% (high) and 8% (low). The uncertainty resolution threshold is 50 GW for 
both technologies, which implies that the model does not “know” which branch it 
is following – and therefore cannot adapt the energy system – until this information 
threshold is reached. 

                                              
8 The first time period of this version of the GENIE model represents the year 2000, 
at which time only 750 MW of solar PV capacity had been installed globally. 
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Figure 4-2. Stochastic experience curves. 

MMathematical description 
The resulting model can be represented using a mixed-integer linear program as 
follows. Introduce binary threshold indicators  to represent whether or not the 
experience variable  has reached the threshold experience levels  for 
technology  at time  in scenario branch . Here  is indexed only over the set of 
technologies with uncertain experience curves (i.e. solar PV and fuel cells), not all 
technologies. 

 (Eq. 7a) 

 (Eq. 7b) 

 (Eq. 7c) 

 (Eq. 7d) 
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 (Eq. 7e) 

For brevity, only equations for  are shown. Analogous equations for  are 
also required but are not shown here. Equation 7a links the binary indicator variable 

 to the threshold experience levels . The parameter  is an arbitrary 
large value that cumulative experience cannot exceed during the time period under 
study (c.f equation 6 in section 3.3). Equations 7b-7e then force different scenario 
branches to remain identical as long as threshold experience levels have not yet 
been reached ( ), but relax this constraint once threshold experience levels 
are attained ( ). 

The reason why  needs to be indexed over the scenario branches  may not be 
immediately apparent, but the decision about whether or not to invest up to thresh-
old experience levels for a certain technology may depend on how fast another tech-
nology with uncertain learning is developing. The interacting technologies could 
conceivably be either substitutes (so one becomes less interesting if the other 
achieves its full learning potential) or complementary (synergies make a technology 
even more appealing if another succeeds). 

In equations 7a-7e above, every occurrence of  can be replaced by  (for all  
in the set of piecewise linear segments, see equation 4). This is functionally equiv-
alent but increases the number of constraints and reduces solution times. This al-
ternative formulation is in fact the one used in GENIE. 

OObjective: probability-weighted cost or minimize maximum regret 
The default objective function of the stochastic problem is simply the weighted sum 
of discounted system costs  for each scenario branch, using the probability of each 
branch as weights (equation 8). However, it can be difficult to assign probabilities 
to each branch a priori. 

 (Eq. 8) 

Alternatively, the stochastic programming problem can be solved without assigning 
probabilities to the branches by minimizing the “maximum regret” as follows (e.g. 
Loulou and Kanudia, 1999). First, find ideal costs for each branch  by optimiz-
ing the deterministic problem assuming learning rates are known from the begin-
ning. Then, in any given strategy (i.e. a proposed feasible solution to the stochastic 
problem), the “regret” can be calculated for each scenario branch (or outcome) as 
the difference between the system costs of the strategy (after adaptation to that 
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branch) and the ideal system costs of that branch. The maximum regret for a strat-
egy is the highest value of the regret over all branches. Finally, strategies can be 
chosen by solving the uncertain problem while minimizing the maximum regret. 

This can be implemented as a linear programming problem by adding one contin-
uous variable for the maximum regret , and one constraint for each scenario 
branch that forces  to be greater than the regret of each individual branch. The 
objective is simply to minimize the maximum regret (equation 9a-b). 

 (Eq. 9a) 

 (Eq. 9b) 

In paper 2, the optimal hedging strategy was determined using expected costs 
(equation 8). Maximum regret was only calculated exogenously for a number of 
strategies; optimization using equation 9 was not used. 

4.3 Results 
The approach presented above introduces the model dynamic that information on 
learning rate uncertainty can only be obtained by undertaking investments in en-
ergy markets. 

Unsurprisingly, model results are strongly dependent on the probabilities of the 
high or low learning branches for solar PV and fuel cells. Paper 2 initially investi-
gates the optimal hedging strategy for the “50-50” case in which both branches are 
equally probable for both technologies. 

The optimal hedging strategy for the 50-50 case involved making immediate invest-
ments in fuels cells at the maximum allowed growth rate in the model. This allowed 
fuel cells to reach the information threshold capacity level by the year 2020. Early 
investments in solar PV also took place, but these were somewhat delayed and only 
reached the threshold in 2030 (figure 4-3). After threshold capacity levels were 
reached, the model adapted investments to the learning rates of each branch, even-
tually resulting in four completely different energy system outcomes (figure 4-4). 



4.3 RESULTS 

37 

 

2000 2010 2020 2030 2040 2050
0.1

1

10

100

1000

10000

GW

PV high - FC high

PV high - FC low

PV low - FC high

PV low - FC low

PV uncertainty
threshold (50 GW)

PV experience

2000 2010 2020 2030 2040 2050
0.1

1

10

100

1000

10000

GW

PV high - FC high

PV high - FC low

PV low - FC high

PV low - FC low

FC uncertainty
threshold (50 GW)

Fuel cell experience

 

Figure 4-3. Growth of emerging technologies in the optimal hedging strategy. 
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Figure 4-4. The four possible outcomes of the optimal hedging strategy. 
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Additionally, four different strategies were constructed (one for each branch) using 
optimal initial investment paths as if learning rates were known from the beginning, 
then each strategy was subjected to all four actual learning outcomes. This meant 
that strategies that assumed low learning rates did not reach threshold capacity 
levels and therefore never learned of foregone opportunities for high learning. 
When low fuel cell learning was assumed, potentially low cost systems were missed. 
The system cost difference was relatively insignificant when low solar PV learning 
was assumed, but in that case systems with significantly lower CO2 emissions were 
missed. All investments and all choices have opportunity costs; choosing not to 
make learning investments in emerging technologies may have the opportunity 
cost of ending up with a more costly energy system, or one with higher emissions. 

Finally, a sensitivity analysis was performed in which the probabilities of high learn-
ing were varied from 1% to 99% for both solar PV and fuel cells, and the optimal 
hedging strategy was calculated for each probability combination. We found that 
even a 10% probability of high learning rates for fuel cells was sufficient to motivate 
immediate investments at the maximum allowed rate (figure 4-5). Solar PV required 
approximately a 75% probability of high learning for immediate investments, or 
50% probability for slightly delayed investments (10 years). However, this relative 
unfavorability of PV may be an artifact of the intermittency constraint in the model, 
which limits the combined contribution of wind and PV electricity to 30% of annual 
electricity demand. 
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Figure 4-5. Summary of 49 model runs varying probabilities of high learning. 
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5.1 Background 
This chapter discusses paper 3, a study of the role of bioenergy with carbon capture 
and storage (BECCS) for meeting global temperature targets, particularly the 1.5°C 
and 2°C targets. Earlier working titles include “Reversing global warming” and “The 
economics of BECCS”, which are apt descriptions of additional themes discussed in 
the paper. 

Bioenergy can be carbon neutral when its combustion emissions are balanced by 
the carbon that was absorbed from the atmosphere as the biomass grew. This is the 
case when the entire biomass production chain is sustainable; i.e. no fossil energy 
use, no land use change or soil carbon imbalances, and biomass is replanted after 
harvest. When carbon neutral or low-carbon bioenergy is combined with carbon 
capture and storage, negative emissions can occur. BECCS is not the only negative 
emission technology (NET), but it unique because it can deliver useful energy while 
removing CO2 from the atmosphere. Evidence is mounting that BECCS and other 
NETs are of critical importance if ambitious climate targets are to be achieved (Fuss 
et al., 2018; IPCC, 2018). Here we focus on BECCS; other NETs are discussed below. 

In the 1990s and 2000s, targets for responding to the threat of climate change were 
commonly expressed as stabilization targets for atmospheric CO2 concentration, 
and were typically in the range 350-550 ppm depending on the ambition level of 
emission reductions. One of the first studies that assessed the potential contribu-
tion of BECCS for meeting concentration targets was Azar et al. (2006), which along 
with three similar studies by other research groups became the basis for the discus-
sion of negative emissions in the IPCC Fourth Assessment Report (IPCC 2007, Minx 
et al., 2018). 

5 Reaching temperature targets with 
BECCS (paper 3) 
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Azar et al. (2006) used the GET multisector global energy model to estimate how 
costs of meeting various levels of CO2 concentration targets were affected by the 
availability of carbon capture and storage (CCS) of fossil fuels and of BECCS. They 
found that BECCS only marginally reduced the cost of meeting a 450 ppm target 
(cost reduction < 10%), but the cost of meeting a stricter 350 ppm target was re-
duced by 40-60%. Azar et al. (2010) largely confirmed these results in a three-model 
intercomparison, and additionally mapped the limits of which targets were achiev-
able in the models. In all three models, considerably lower levels of CO2 concentra-
tion could be reached when BECCS was available. 

In 2011, my colleagues and I initiated a project to revisit these earlier studies using 
a newer version of the GET model, which had since been updated with improved 
representations of heat and transport sectors. The idea was to combine GET with 
an in-house simple climate model (Johansson, 2011) and reevaluate the role of 
BECCS, now using global temperature targets instead of concentration targets. 

5.2 Research questions 
Do the conclusions of the studies based on concentration targets still hold for tem-
perature targets, or would the heat inertia of the oceans limit the potential benefit 
of BECCS for temperature targets? If we fail to meet a given temperature target in 
the future but are willing to accept a temporary overshoot of the target, can BECCS 
be used to reduce global temperatures and meet targets retroactively? If so, to what 
extent can BECCS also be used to roll back global warming at a larger scale? How 
important is the type of target used (i.e. whether or not we allow temperature over-
shoot) for the value of BECCS? Finally, how are answers to these questions affected 
by uncertainty about climate sensitivity, global availability of biomass and carbon 
storage potential? 

5.3 Method 
We extended the single region version of the GET multisector global energy system 
model that has been progressively developed at the division of Physical Resource 
Theory since its original formulation in Azar et al. (2003). We rewrote the climate 
model initially developed in Johansson (2011) to a representation suitable for hard-
linking with GET, and updated the carbon cycle to use nonlinear impulse response 
functions describing CO2 uptake by the oceans and terrestrial biosphere. Concen-
trations of methane and nitrous oxide are tracked endogenously, with energy-re-
lated emissions produced by the GET module and non-energy emissions repre-
sented by an exogenous baseline along with potential emission reductions using 
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marginal abatement cost (MAC) curves. Radiative forcing of greenhouse gas con-
centrations is based on nonlinear parameterizations from IPCC reports (IPCC 2001, 
IPCC 2007), and radiative forcing of aerosols is calibrated by scaling its contribution 
to match the historical temperature record for the given climate sensitivity input. 
Annual temperatures are calculated from total annual radiative forcing using an 
upwelling-diffusion energy balance model with polar overturning. 

The resulting hard-linked energy-climate model is called GET-Climate. It is written 
in GAMS and solved using CONOPT 4. A graphical representation of flows and in-
ternal feedbacks of the climate module and interactions with the energy module is 
shown in figure 5-1. For more information on the model formulation, see the ap-
pendix of paper 3. 
 

 
Figure 5-1. Schematic overview of the climate module, its feedbacks and interactions 

with the energy system module. 
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The climate module contains multiple nonlinearities and feedbacks that increase 
its computational complexity. The combined GET-Climate model is therefore also 
nonlinear, despite the linear equations of the energy module. The nonlinearities 
and the relatively large size of the embedded energy module9 cause considerable 
numerical difficulties when solving the model, particularly since nonlinear solvers 
generally not suited for problems with many variables and constraints. A number 
of modeling “tricks” were therefore employed to help the nonlinear solver reliably 
find solutions. To help the solver start from feasible initial variable values, we pre-
solved the energy model with a linear solver and ambitious concentration targets 
and spinned up the climate module based on the energy system result. We also 
introduced (mostly redundant) bounds on climate model variables. 

GET-Climate generates least-cost technology investment pathways for the global 
energy system during 2010-2150 with perfect foresight, for a given energy demand 
scenario and temperature target. Two types of temperature limits are considered: a 
“ceiling target” which may never be exceeded, and an “overshoot target” which is 
only enforced in the year 2150 and therefore allows for a temporary overshoot of the 
temperature response. 

The energy system module based on GET contains several variants of BECCS tech-
nology for different energy sectors, including condensing power and cogeneration 
plants in the electricity sector, large-scale heat production in district heating and 
industrial sectors, and liquid fuel production for use in the transport sector. 

5.4 Results 
In figure 5-2, we present pathways for CO2 emissions, atmospheric concentration, 
and temperature for meeting 1.5°C and 2°C targets of both ceiling and overshoot 
type. Generally, we note that overshoot pathways with BECCS feature higher emis-
sions in the near term but global net-negative emissions in the distant future. The 
same tendency is found in ceiling emission pathways, but to a much lesser extent. 
Also, ceiling pathways do not become net-negative. 

Figure 5-3 presents scenario abatement costs (i.e. the difference between the system 
cost of a model run under a target and a business-as-usual run with no target) ob-
tained while varying the target level. We observe that BECCS significantly reduces 
costs of overshoot targets, but has little effect on ceiling targets. Also, when BECCS 
                                              
9 Note that the box representing the energy module in figure 6-1 is disproportion-
ately small. The number of model equations in the energy system and climate mod-
ules are roughly equal. In terms of number of generated equations, the energy mod-
ule is much larger than the climate module. 
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is available, substantially lower overshoot targets become feasible – even targets 
below 1°C (in the long run, and at high cost). 

 

 
Figure 5-2. CO2 emissions, CO2 concentration and mean surface temperature increase, 
for 2°C targets (left) and 1.5°C targets (right). Cases shown are: fossil CCS with ceiling 
targets (light blue), fossil CCS with overshoot targets (dark blue), fossil CCS and BECCS 
with ceiling targets (light green) and fossil CCS and BECCS with overshoot targets (dark 

green). Ceiling cases for the 1.5°C target are infeasible in our model. 
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Figure 5-3. The value of BECCS with overshoot targets (top) and ceiling targets 
(bottom). Abatement costs in percent of discounted future GDP as a function of 
temperature target for multiple model runs. Cases shown are: no CCS with overshoot 
targets (dark red), fossil CCS with overshoot targets (dark blue), fossil CCS and BECCS 
with overshoot targets (dark green), no CCS with ceiling targets (light red), fossil CCS 
with ceiling targets (light blue) and fossil CCS and BECCS with ceiling targets (light 
green). 
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Figure 5-4 shows emission pathways for the 2°C ceiling target and the 1.5°C over-
shoot target in the same chart, to illustrate that they (coincidentally) are nearly 
identical until 2080. However, the underlying development of primary energy sup-
ply are different in the two scenarios. Considerably less fossil CCS is used in the 
1.5°C overshoot case than in the 2°C ceiling case, because the model chooses to re-
serve carbon storage capacity for BECCS and net-negative emissions. Nevertheless, 
this suggests that the result from Meinshausen et al. (2009), that reachable temper-
ature targets are largely determined by cumulative emissions up to 2050, does not 
hold in the general case when NETs are available and overshoot is allowed. It also 
illustrates that the ambitious 1.5°C target may be reachable even after “a slow start”, 
but that this would involve temperature peaking at 2°C before it declines back to 
the target level. 

We also discuss results from the sensitivity analysis of main numerical assumptions 
presented in the supplementary material. For example, we find that the cost benefit 
of BECCS is even higher than in the default case in scenarios with higher climate 
sensitivity (supplementary figure 3). We also note that if the available amount of 
biomass is reduced from 200 to 100 EJ/year, then the benefit of BECCS is greatly 
reduced. In this case, net-negative emissions are only 5-6 Gton CO2/year, roughly a 
third of the level10 that is reached with our default assumptions (supplementary fig-
ures 4 and 6). 

We conclude that there are two fundamentally different mechanisms by which 
BECCS and other NETs can provide economic benefit. First, they can compensate 
for emissions in sectors which may lack low-cost mitigation options or for emissions 
in countries that do not participate in international climate agreements. In this way 
BECCS can be seen as a backstop mitigation technology; its existence provides an 
upper bound to mitigation costs. However, BECCS is not a particularly low-cost 
option abatement technology in itself. 

The second mechanism is more apparent in our paper. BECCS and other NETs allow 
emission reduction efforts to be postponed, which is economically advantageous 
when future costs are discounted. We find that this time-shifting effect is more sig-
nificant for overshoot targets than for ceiling targets, simply because there is little 
headroom to postpone emission reductions in the case of ceiling targets. Both flex-
ibility mechanisms are also discussed in Lomax et al. (2015), under the terms “de-
coupling in space” and “decoupling in time”. 

                                              
10 The total amount of negative emissions is likely halved along with the biomass 
availability, but some of the negative emissions are used to compensate for emis-
sions in other sectors. 
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Figure 5-4. CO2 emission pathways and primary energy supply to 2100. Emission 

pathways for the 2°C ceiling target with BECCS (light green) and the 1.5°C overshoot 
target with BECCS (dark green). Below, primary energy supply for the 2°C ceiling target 

with BECCS (middle) and the 1.5°C overshoot target with BECCS (bottom). Primary 
energy supply that has carbon capture applied is shown in lighter color shades. 
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Finally, we note that BECCS enables temperature levels to be reached that are oth-
erwise infeasible. Global warming can be reversed using NETs, but not quickly 
enough to serve as an “emergency brake” when climate damages already are upon 
us. The maximum rate of post-2100 temperature decline that is observed with our 
model framework is about 1°C/century including abatement of non-CO2 green-
house gases, or about 0.6°C/century when isolating the contribution of BECCS. 

5.5 Discussion 
BECCS is only one of several potentially important NETs. Other options include 
afforestation and reforestation (to increase carbon stored in trees and their soil), 
direct air capture (chemical capture of CO2 from ambient air) with carbon storage, 
soil carbon sequestration (changed agricultural practices that improve uptake and 
retention of carbon in soil), biochar (pyrolysis of biomass to charcoal for use as soil 
improvement), ocean fertilization (enhancing biological ocean carbon uptake by 
fertilizing nutrient-limited areas) and enhanced weathering (engineering minerals 
to enhance natural weathering, i.e. chemical uptake of CO2 from the air). 

Any of these NETs could substitute for BECCS in our study. However, BECCS is the 
only NET with major impact on the energy system. Other NETs have more limited 
energy system effects. For example, direct air capture increases electricity demand 
and biochar requires large-scale pyrolysis capacity and produces gaseous biprod-
ucts that could be used in the energy sector. 

The NETs have a wide range of different properties, restrictions and side-effects 
(Fuss et al., 2018). For example, unlike BECCS, afforestation and increased soil car-
bon are associated with a saturation of CO2 removal over time. Also, sequestration 
in these terrestrial carbon stocks is reversible and may be inherently vulnerable 
(Fuss et al., 2014). An example could be risk of sudden carbon release in large-scale 
wildfires (Lomax et al., 2015). 

Perhaps the most limiting physical constraint on BECCS is the global sustainable 
biomass resource, especially in relation to other needs for land and biomass, nota-
bly food security and biodiversity (e.g. Fuss et al. 2014). Estimates of global sustain-
able biomass resource in 2050 to 2100 range from 30 EJ/year to over 600 EJ/year 
depending on assumed trends in diet, crop yields, land use and population (Lomax 
et al. 2015). In paper 3 we test a range of 100 EJ/year to 300 EJ/year, based on the 
IPCC Special Report on Renewables (Chum et al. 2011). Anderson & Peters (2016) 
also highlight the logistics problem of “collating and transporting vast quantities of 
bioenergy—equivalent to up to half of the total global primary energy consump-
tion”. 
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Estimated abatement costs and sequestering potentials of NETs in 2050 based on 
Minx et al. (2018) is shown in figure 5-5. Note that this represents a relatively short-
term view compared to the time horizon used in our study, and the original figure 
in Minx et al. makes clear that the annual carbon removal potential of BECCS and 
direct air capture is expected in increase after 2050. Nevertheless, the availability of 
other low-cost NET options calls into question an exclusive focus on BECCS. Minx 
et al. emphasize this explicitly: “any single NET is unlikely to sustainably achieve 
the large NETs deployment observed in many 1.5◦C and 2◦C mitigation scenarios. 
Yet, portfolios of multiple NETs, each deployed at modest scales, could be invalua-
ble for reaching the climate goals.” 

 
Figure 5-5. Estimated costs and annual potential carbon removal of negative emission 
technologies in 2050, adapted from Minx et al. (2018) and Fuss et al. (2018). (No box is 

shown for ocean fertilization.) 

The cost of some of the NET options may appear to be somewhat high compared to 
more established mitigation options. However, Fuss et al. (2014) argues that miti-
gation pathways excluding NETs tend to be substantially more expensive than path-
ways including NETs. This can be explained by the second mechanism as noted 
above and in paper 3; postponing emission reductions has economic benefit when 
future costs are discounted. 

Studies using integrated assessment models show that meeting a 1.5◦C target in-
creasingly requires large-scale deployment of NETs (Anderson & Peters 2016, Minx 
2018). Many studies of the 2◦C target also use NETs, but the target is still feasible 
without NETs (Minx 2018). However, there is a striking gap between implied up-
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scaling in model pathways and real world progress in deployment and policy sup-
port of CCS and NETs (Minx 2018). Lomax et al. (2015) suggest that this may be 
partially due to uncertainty of future technology development of BECCS and other 
NETs, but cautions that uncertainties should not be used to justify inaction in the 
near term, but rather to start learning-by-doing to enable future scale-up. 

Some authors (undersigned included) view development of BECCS and NETs as an 
insurance policy that may increase flexibility in reaching a wider range of climate 
targets in the future, and therefore require deployment and policies in the present. 
Others warn that they might become “a dangerous distraction” (Fuss 2014) or “an 
unjust and high-stakes gamble” (Anderson & Peters 2016). The latter also argue that 
mitigation should proceed on the premise that NETs will not work at scale. I con-
cede that point if NET-skeptics concede the point on developing the technology.   

BBrief notes on the method 
In this study we chose to hard-link an energy model with a climate model. We 
briefly considered a soft-linking approach, in which the two models were iterated 
until they converged to a common solution with agreement on chosen interface 
variables (in this case probably energy-related CO2 emissions and CO2 prices). 
When soft-linking works and the iteration converges, it is like finding a feasible 
internally consistent solution to the combined problem. But convergence is not 
guaranteed; infinite oscillations may occur. Even when a feasible solution is found, 
there is no guarantee of it being a least-cost solution to the linked problem. We 
soon decided to proceed with hard-linking, because find optimal solutions was im-
portant for drawing conclusions on the cost implications of BECCS. 

A trickier question is: did we really need the energy model at all? Much modeling 
effort was expended to integrate the two separate models. But in the end, nearly the 
entire paper was about emission pathways and climate dynamics with almost no 
discussion about energy system developments. We could probably have written the 
same paper using just the climate model, making reasonable assumptions about the 
use of BECCS in the energy system. 

As the saying goes: “if all you have is a hammer, everything looks like a nail”. As an 
energy system modeler, I may have been a bit too enthusiastic about hammering 
away without considering the options. 
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6.1 Background 
The share of solar- and wind power in the electricity supply sector is expected to 
increase significantly as we begin transitioning towards a carbon-free society. Many 
researchers are now studying 100% renewable energy scenarios (e.g. Jacobson et al., 
2017), in which integration of variable renewables becomes a major challenge. Some 
of the most important options for integrating large amounts of solar and wind elec-
tricity include increasing flexible dispatchable generation capacity, electricity stor-
age at intraday, interday and perhaps seasonal timescales, and interregional power 
trade. 

Long-term energy transitions have historically been studied using bottom-up en-
ergy system models like MARKAL, MESSAGE or TIMES. These models are quite 
large, with dozens to hundreds of technology options in multiple energy supply and 
end use sectors, multiple regions and time horizons of 50 to 100 years. Because their 
sheer size compels some sacrifices, these models often use a simplified representa-
tion of a year using time slices. This involves dividing a year into a small number of 
segments, typically three seasons (winter, summer, intermediate) and two daily pe-
riods (day, night). Sometimes a few extra time periods are used for weekends or 
demand peaks. Supply technologies are parameterized using an average capacity 
factor for each time slice. 

This setup is perfectly acceptable for traditional energy systems dominated by ther-
mal supply technologies. The time slice division results in a good approximation of 
the load duration curve of (primarily electricity) demand. When all regions have 
the same time divisions it can capture electricity trade, which involves energy trans-
fer from a time slice in a region to the same time slice of another region. Intraday 

6 Modeling variable renewables with 
resource-based slicing (paper 4) 
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electricity storage can be modeled by allowing transfer between day and night pe-
riods of the same season, and seasonal storage by allowing transfer between arbi-
trary slices. 

However, the scheme is inadequate for studying supply systems with high penetra-
tion of intermittent renewables, especially for wind power which lacks seasonal and 
daily regularity. Representing electricity supply using an average capacity factor in 
each time slice means that all variability is lost, and all slices will have similar out-
put. Without explicitly representing variability, the model remains ignorant of 
sunny and windy periods that may require curtailment, as well as potential electric-
ity shortages during dark and calm periods. 

A way of sidestepping these problems altogether is to enforce a model constraint 
that limits the penetration of intermittent renewables to a level which can be easily 
integrated by regulating with dispatchable generation, often considered to be 20-
30% of annual demand. We used an intermittency constraint like this in papers 1 
and 2. This was actually a quite common method during the 1990s and early 2000s, 
when a 30% penetration level was thought to be many decades away. After the sur-
prisingly rapid growth of solar PV and wind power during the past 20 years, many 
countries are approaching this level and some have already surpassed it. 

6.2 Research questions 
Instead of using conventional time slices based on season and time of day, would it 
be feasible to implement slicing based on solar and wind generation? If enough 
slices are used, this would by design capture solar and wind (co-)variability. This 
method can’t easily be used for interregional electricity trade, since generation in a 
given hour might be allocated to different slices in different regions. However, there 
is an entire class of models with continent-sized regions that lack cross-border elec-
tricity trade, including global energy system models (e.g. MESSAGE, GET) and in-
tegrated assessment models. 

Another difficulty would be how to treat short-term electricity storage. The reason 
is similar to the trade caveat above, namely that generation in consecutive hours 
may be allocated to different slices. Using time slices inherently means discarding 
chronological information, which is required for the correct management of short-
term storage. Long-term storage such as power-to-gas or hydro reservoirs is still 
possible to implement in slicing models, as long as time-dependent losses can be 
assumed to be zero. 

Would this type of resource-based slicing allow us to eliminate artificial upper 
bounds on variable generation? How can it be implemented in a global multisector 
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energy system model? And can we find a way of handling short-term storage despite 
the intrinsic difficulties? 

6.3 Method 
We extended the code of the GET model (Lehtveer and Hedenus, 2015) to add re-
source-based slicing to the electricity supply sector by adding new variables for 
electricity generation that are indexed by slice as well as technology, time period, 
etc. For simplicity, we chose in this implementation not to add slicing to energy 
variables in other sectors. 

GET is a multisector global energy system model with ten continent-sized regions 
(see figure B1 in the appendix of paper 4). Electricity trade is not allowed between 
regions. 

Solar and wind data were produced based on ECMWF ERA-Interim reanalysis data 
using an early version of the GIS code that is the focus of paper 5. In short, the code 
takes reanalysis and other public datasets as input along with user-defined param-
eter assumptions on land use, turbine density, maximum population density and 
many others. Its output consists of potentials for installed capacity and time series 
of capacity factors for solar PV and wind power, partitioned by resource class (i.e. 
quality) and model region. The most important differences between this early GIS 
analysis and the updated version in paper 5 are the lower spatial and temporal res-
olution of the ERA-Interim dataset (80 km and 3 hours compared to 31 km and 1 
hour in paper 5) and the lower working resolution of the auxiliary spatial datasets 
(9 km compared to 1 km). We postpone further discussion of the GIS approach to 
the next chapter.  

Two methods of calculating resource slices from 3-hour capacity factors were 
tested. In the first method that we call manual slicing, we classified each slice ac-
cording to its level of solar and wind output. Slices were labeled “low solar – high 
wind” (for a windy night) or “high solar – mid wind” (clear skies with average wind). 
The number of levels used for each technology was varied in the paper, but here we 
assume three levels are used for both (high/mid/low for both solar and wind), which 
results in a total of nine slices. 

Solar and wind output were then mapped to slices as follows. First we condensed 
the per-pixel time series given by the reanalysis data to a single “representative time 
series” of solar PV and wind power for each model region, by taking the geograph-
ical mean of 3-hour capacity factors in all grid cells with an average or better re-
source class. This is equivalent to assuming that PV panels and wind turbines are 
distributed uniformly over all good solar and wind sites of each region. Then we 
allocated each 3-hour time step to a slice based on the two-dimensional distribution 
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of solar and wind output in that time step. Finally, using the original per-pixel time 
series, we calculated average capacity factors for each technology, resource class, 
region and slice. 

The other slicing method used k-means clustering to automatically classify the 
combined solar and wind outputs into slices. The slices produced by this method 
are not necessarily quantifiable by regular ranges of individual solar and wind out-
put as in the manual slicing example. See figure A3 in the appendix of paper 4 for 
an example with 16 clusters. 

To get a coarse representation of a load duration curve for electricity demand, we 
also assume that daytime demand (i.e. slices with high and mid solar output) is 15% 
higher than nighttime demand (slices with low solar). 

Flexibility constraints were introduced for all thermal technologies and hydro-
power. The purpose was to prohibit ramping up and down from zero to full capacity 
between slices, which may represent time periods three hours apart. 

Finally, we define a “slice transfer matrix” to roughly quantify short-term storage. 
Suppose we have a 12-hour storage technology and want to estimate limits of stored 
energy transfer from slice X to all other slices. We use the time series of allocated 
slices to determine the frequency of slices that occur within 12 hours after all time 
periods allocated to slice X. If say 20% of these potential destination slices are slice 
Y, then we assume a maximum of 20% of stored energy can be transferred from slice 
X to Y. 

6.4 Results 
Figures 6-1 to 6-3 show results from running a 450 ppm stabilization scenario using 
the GET model with 9-16 resource-based slices. The development of the aggregate 
global electricity production mix during 2010-2100 (figure 6-1) looks “reasonable” 
with its balanced mix of wind, solar, nuclear, hydro and fossil CCS. Variable elec-
tricity generation from wind and solar PV grows significantly and reaches a com-
bined market share of 47% of annual global electricity in 2060, but the share then 
declines slowly to 42% by 2100. This is due to the decreasing marginal value of new 
wind and solar generation, as the best resource classes are exhausted and as implicit 
electricity prices (shadow prices) approach zero in slices with high variable gener-
ation. Note that this saturation takes place without the use of an intermittency con-
straint, thus validating our slicing method. 
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The regional electricity mixes11 in 2100 (figure 6-2) are quite diverse, which reflects 
regional differences in resource quality of solar and wind generated by our GIS 
package. Regions with less attractive renewable options tend to use nuclear power, 
probably because of the limited carbon budget imposed by the concentration target 
(fossil CCS has some residual CO2 emissions in GET). 

 

 
Figure 6-1. Global electricity production mix with the 450 ppm CO2 scenario 

and clustering with 16 slices. 

                                              
11 Note that due to a graphical error, solar PV and CSP are shown in very similar 
shades of yellow. 
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Figure 6-2. Regional electricity production mix in year 2100 with the 450 ppm CO2 

scenario and 16 clusters. 

 
Figure 6-3. Electricity production mix in Europe year 2100 in the 450 ppm stabilization 

scenario, using 4x4 manual slicing. The width of each slice represents the share of hours 
that fall into that category. 
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Figure 6-3 illustrates the slicing dynamics of our model in the 4x4 manual slicing 
case. In this region (Europe), coal power with CCS and nuclear is used as a roughly 
constant base load, while natural gas with CCS, hydropower and CSP with thermal 
storage act as dispatchable intermediate generation, filling most of the net load gap 
left by solar PV and wind power. Note the use of hydrogen from power-to-gas and 
small amounts of short-term storage in figure 6-312. There is also some curtailment 
in slices with high variable generation. 

We also performed a series of model runs of the same scenario while varying the 
number and type of slices, see figure 6-4 (global) and figure 5 of paper 4 (Europe). 
We note that to a large extent, the runs have converged to the 64-slice solution 
already at 9 or 16 slices using both manual slicing and k-means clustering. However, 
a small exception to this is the apparent trade-off between solar PV and CSP gener-
ation, which continues to shift subtly even beyond 16 slices. 

Overall we conclude that our conceptually simple resource-slicing method captures 
many properties of energy model dynamics with large shares of intermittent gener-
ation, but the drawbacks with respect to interregional electricity trade and short-
term storage limit its suitability to global energy system models with continent-
sized regions and integrated assessment models. 

                                              
12 I include this figure despite its similarity with figure 3 of paper 4, because the 
figure in the paper inexplicably does not show the (small) contribution from short-
term storage. 

Figure 6-4. Global electricity mix at year 2100 for different number of slices with 
clustering (left) and manual slicing (right). 
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6.5 Discussion 

MMethod critique 
In retrospect, I have some critique of the approach we used in paper 4. Our choice 
of only implement slicing for electricity supply and not for other sectors is some-
what strange, and could potentially cause complex interactions when electricity 
generation occurs outside the supply sector. Examples include the heating sector, 
which potentially interacts with power generation by combined heat and power 
(CHP) plants, heat pumps, and thermal storage (which can help integration of var-
iable renewables), and the transport sector which interacts both by electricity use 
in trains and electric vehicles (EV) but also potentially by storing electricity in EV 
batteries. This choice was made partly for performance reasons and partly as a first 
development step, with the intention of expanding the slicing implementation later 
– though this has not yet happened. 

It should also be emphasized that the use of the “slice transfer matrix” is something 
of a hack. It does not remotely provide the flexibility of properly implemented 
short-term storage in an hourly model. Nevertheless, we do believe it somewhat 
mitigates the loss of chronological time periods. 

Perhaps the greatest weakness of paper 4 is that we were not able to compare our 
resource-based slicing approach directly with results from a more detailed model 
with hourly time resolution. This could have provided a baseline “correct” result to 
evaluate our slicing approximation. We simply did not have an hourly model avail-
able when paper 4 was written. But using the new GlobalEnergyGIS package de-
scribed in the next chapter, it would be interesting to revisit and re-evaluate pa-
per 4. The GIS package can easily generate hourly input data for a global electricity 
model with the same ten regions as in the GET model. Then two possible compari-
sons come to mind. First, we can take installed capacities for some year from the 
GET model, plug them into the hourly model presented in paper 5 and compare the 
resulting hourly electricity dispatch with the dispatch in the GET slices. Alterna-
tively, we can extract the power supply sector with resource slicing from GET as a 
separate (much smaller) model, and compare investment pathways with a dynamic 
perfect-foresight version of the hourly capacity expansion model in paper 5. 

In any case, performing model experiments in the relatively large global multisector 
GET model was probably a mistake, and likely caused weeks or months of unnec-
essary work. Small tailor-made models with fast run times and more easily digested 
results are almost certainly a better fit for model experiments. Once the new 
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method has been developed, tested and fully understood, it can be scaled up and 
implemented in larger models. 

AAn earlier study 
Our slicing methodology is essentially identical in all respects to the system states 
approach described by Wogrin (2014), including the use of a transition matrix to 
represent short-term storage. We cited this earlier work in paper 4 in the context 
of the transition matrix, but we did not realize at the time how similar the general 
approach was to ours. Other authors call this method the integral approach (Reich-
enberg et al., 2018) or the enhanced integral approach (Poncelet, 2018). Both 
Wogrin and Reichenberg use relatively small experimental models (as we propose 
above) and are able to test the approach in comparison with chronological 3-hour 
time steps. They conclude that the approach provides similar solutions to the 
hourly model while solving significantly faster, but note the downsides with respect 
to electricity trade and storage. 

Representative days 
Browsing the recent modeling literature gives the impression that the modeling 
community may be converging on the use of representative days as an acceptable 
method for reducing time resolution in energy models, while retaining the ability 
to analyze systems with high penetration of variable renewables (e.g. Ludig et al., 
2011; Nahmmacher et al., 2016; Poncelet et al., 2017). This method involves selecting 
a small number of days with “representative” solar and wind output, often with a 
variant of a clustering algorithm, and using them as a proxy for an entire year of 
data.  

When reducing time resolution in models, some potential problem areas are elec-
tricity trade, which requires simultaneous time periods in multiple (possibly dis-
tant) regions, and electricity storage at various timescales from hours to days to 
seasons (Reichenberg 2018). 

Since representative days retain time period chronology within the hours (or some-
times 3-hour periods) of each day, they can correctly model intraday storage, in-
cluding e.g. time-shifting solar energy from day to night using pumped hydro stor-
age, batteries or CSP thermal storage. However, interday storage is not possible 
since chronology between days is lost.  

Since interday variability is an important characteristic of solar and wind power, 
some authors use representative groups of days or even weeks to preserve interday 
chronology (Nagl et al., 2013; Schaber et al., 2012). However, this can significantly 
increase the number of time steps required to capture a sufficient amount of total 
variability. Also, since regional weather patterns are enduring and wind fluctuations 
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can last several weeks, even a representative week or two is not sufficient to capture 
the chronology of an entire wind “cycle”. 

On longer timescales other storage options like hydro reservoirs or power-to-gas 
may be used. These can be modeled using round trip losses and can be implemented 
in models using representative days or slices. However, self-discharge losses require 
chronology of time periods and therefore cannot be accurately modeled this way. 

When representative days are used in models with interregional electricity trade, 
days must be selected based on aggregate solar and wind generation over all re-
gions, and not days which may be more representative in individual regions. This is 
because trade is only possible if the same hours are represented in all regions. This 
constraint may limit the usefulness of the approach, since it may be difficult to find 
representative days on a continental scale. 

A promising new method was proposed by Pineda (2018) that may outperform both 
resource-based slicing (a.k.a. the system states approach a.k.a. the integral method) 
as well as representative days. It involves using a clustering algorithm that merges 
consecutive time periods and therefore significantly reduces the number of time 
periods while retaining their chronology. This method was brought to my attention 
too late to evaluate it for this thesis (mid-December 2019), but I very much look 
forward to testing it soon after January 17. 
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7.1 Background 
When developing a new energy model, a significant part of the work involved – 
perhaps even the lion’s share – is building the input database for the region under 
study. Technological parameters like costs, efficiencies and lifetimes can usually be 
borrowed from other models since the energy technology market tends to be global 
in scope, but other parameters like fuel costs, energy demand profiles, renewable 
output and future capacity potential are strongly dependent on local conditions and 
must be adapted to each new model region. 

Sometimes modelers estimate hourly renewable output profiles using regional gen-
eration statistics from the local electricity market, a method that implicitly assumes 
that the geographical distribution of installed capacity will not change over time. 
This is not a safe assumption. For example, if the market is efficient, new wind farms 
will generally be introduced at windier, more profitable sites before less profitable 
ones. Alternatively, wind generation may be expected to increasingly move offshore 
over time to avoid the NIMBY effect. Both cases would significantly alter locations 
where new wind capacity is installed. 

In recent years, the emergence of meteorological reanalysis data with high spatial 
and temporal resolution has enabled a new method for estimating wind or solar 
renewable generation at a given site. A reanalysis can be simply viewed as a retro-
active weather forecast. It describes the global state of the atmosphere at a given 
time in the past using advanced meteorological models. It is more reliable than or-
dinary forecasts because it is updated with observations made after the fact. The 
ERA5 reanalysis (Copernicus 2017) that we use in paper 5 is produced by the Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWF) and provides data for 

7 GIS-based generation of renewable 
input data for energy models (paper 5) 
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temperature, wind speed, humidity, solar insolation and many other variables. Each 
ERA5 variable is available hourly on a global grid with a resolution of 31 km, as well 
as for different pressure levels (i.e. altitude). 

Reanalysis data have generally been extensively ground-validated for use in energy 
system analyses (e.g. Huber et al., 2014; Pfenninger and Staffell, 2016). However, the 
ERA5 reanalysis is a relatively new product and validation studies have only recently 
begun to appear in the literature (Olauson, 2018; Urraca et al., 2018). ERA5 tends to 
underestimate real wind speeds because the 31 km resolution is not sufficient to 
capture wind interactions with local topography (e.g. funneling effects in moun-
tains) (Olsen et al., 2019). In paper 5 we attempt to compensate for this bias by 
calibrating ERA5 data with the Global Wind Atlas (DTU, 2019), a dataset with 1 km 
resolution. 

7.2 Research objective 
The ultimate goal of this project was to build a framework to support bottom-up 
modeling of electricity supply in any region of the world, with a focus on managing 
variability of renewables at high penetration levels. This required developing a GIS-
based software package that could use global reanalysis and other datasets to esti-
mate renewable input data for a bottom-up model with sufficient local accuracy. 
More specifically, we needed to estimate hourly output from solar PV, CSP, and 
onshore and offshore wind power as well as their potential installed capacity at any 
location. 

Since a package like that could be of interest to the entire energy modeling com-
munity, we also wanted to release it with an open source license, in the hope of 
eventually attracting users who could provide quality control and perhaps even de-
velopers who might add features to the package. Releasing it as open source would 
also facilitate transparency and reproducibility of model applications. 

The central principle of the resulting GIS package is that renewable input data can 
be generated by combining global datasets with global parameter assumptions, 
without relying on studies of renewable costs and potentials in individual countries. 
In other words, we use top-down assumptions to create bottom-up data. The main 
advantages of this approach are: 

 Data can be generated automatically. 
 Data can be generated for arbitrary regions of the world. 
 The generated data is inherently self-consistent. 

The main downside is that the analysis must be based on global datasets, which 
sometimes means not taking advantage of good data sources. For example, we do 
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not currently use maps of the existing transmission network in Europe. The global 
grid proxy that we use is based on gridded GDP and is considerably more uncertain. 

7.3 Method 
The following is an overview of the method used to generate renewable potentials 
and hourly capacity factors. For a more detailed description, see paper 5 and its 
supplementary material. 

To generate input data for solar PV, CSP, and onshore and offshore wind power, we 
download relevant variables for direct and diffuse solar insolation and wind speeds 
from the ECMWF ERA5 reanalysis data repository for a given year. We also down-
load other public datasets on administrative borders, gridded population and GDP 
in SSP scenarios, land cover, topography and protected areas. 

A high-resolution global raster (1 km pixels by default) of model regions is con-
structed based on region definitions given by the user and datasets for administra-
tive borders. Each pixel is assigned a resource class for solar and wind based on 
average annual capacity factors in the ERA5 reanalysis (for solar) or average annual 
wind speeds in the Global Wind Atlas (for wind). Other user-defined global param-
eter assumptions are used with auxiliary datasets to remove pixels which cannot be 
used for wind- and solar parks, e.g. due to being in a protected area or having too 
high population density. Renewable potentials for each region and resource class 
are calculated by assuming that a certain fraction of the area of each remaining pixel 
(another parameter) is available for solar- and wind farms. Finally, hourly capacity 
factors are obtained for solar by averaging hourly capacity factors from ERA5 data 
for each region and resource class. This implicitly assumes that solar PV is installed 
uniformly in each model region. Hourly capacity factors for wind are calculated 
similarly, but first hourly ERA5 wind speeds are scaled to match annual average 
wind speeds in the Global Wind Atlas in each pixel. This extra step is done to cap-
ture geographical variations in wind power output caused by local differences in 
topography and land cover at a spatial resolution of 1 km that are otherwise 
smoothed at the 31 km resolution of ERA5. An assumed wind turbine model is used 
to convert wind speeds to capacity factors. 

To calculate existing capacity and future potential for hydropower, we combine 
public databases on currently existing plants and dams (Lehner et al., 2011; World 
Resources Institute, 2018) with future potentials, costs, reservoir size and monthly 
inflow from Gernaat et al. (2017). 

Estimates of HVDC transmission costs and losses are calculated based on distances 
between population-weighted regional centers, and whether the connection is en-
tirely on land or partially marine. 
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A machine learning approach is used to generate synthetic hourly electricity de-
mand series that describe current demand in any country or region in the world, 
which we extend to future years using regional SSP scenarios. We fit a gradient 
boosting regression model to time series of electricity demand for 44 countries 
based on a small number of independent variables, including GDP, hourly and 
monthly temperatures and calendar indicators such as hour of the day and weekday 
or weekend. Only variables that could be easily parameterized using public statis-
tics were selected. Predictions in some countries could in principle be improved 
using data on e.g. current industrial structure or installed capacity of electrical heat-
ing and cooling (Toktarova et al., 2019), but we deliberately excluded variables that 
were either not globally available or could not be reliably extrapolated into the dis-
tant future. 

Finally, we link the resulting GIS-generated input data to a new capacity expansion 
model of a generic electricity supply system in arbitrary world regions. The model 
optimizes capacity investment and dispatch for the electricity sector during one 
year with hourly time resolution using a greenfield approach (i.e. all technologies 
must be built up “from scratch” except hydropower, which inherits its current ex-
isting capacity). 

7.4 Results and conclusions 
Aggregate continuous cost-supply curves for wind power and solar PV in Europe 
and China were constructed using the GIS package by configuring it with several 
hundred resource classes (instead of five classes when generating input data for the 
energy model), see figure 7-1. They demonstrate the differences in resource endow-
ment between Europe and China. China has virtually unlimited access to low cost 
solar electricity (particularly in the sparsely populated western regions), but wind 
resources are more limited and costs increase steadily as the best sites are taken 
into use. In Europe costs increase in a similar way for solar electricity as installations 
must occur in cloudier more northern sites, while the middle region of the curve is 
relatively flat for wind, reflecting a general availability of decent wind resources. 

In both regions, solar electricity is available at considerably lower levelized cost 
than wind power. Nevertheless, in the energy model runs using strict limits on CO2 

emissions, the optimal share of wind power is roughly twice as high as that of solar 
in both regions. This reflects the declining value of solar electricity as daytime gen-
eration becomes more saturated. 
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Figure 7-1. Cost-supply curves for all solar PV and wind classes in Europe (top) and 

China (bottom), with default (solid lines) and high assumptions (dashed lines) for land 
availability. The figure labels show the land area assumptions used for classes A1-A5 

(i.e. pixels with electricity access). Land availability in classes B1-B5 (remote areas 
requiring additional grid investments) is assumed to twice as large. 

Despite its simplicity, the energy model captures this effect as well as several other 
system effects typical of power systems approaching 100% share of renewables. Ex-
amples include the benefits of geographical smoothing, the importance of electric-
ity storage and cross-border electricity trade to deal with solar and wind variability, 
and the strikingly large amounts of curtailment during daytime peaks. 

Cross-validation testing of the synthetic demand module shows that demand pre-
dictions are (perhaps surprisingly) accurate over hourly, weekly and seasonal time 
scales for most countries, despite the generic approach and the small number of 
independent variables used in the regression. Some countries (roughly 10-15%) have 
significant prediction errors of daily demand variability, but this mostly happens 
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with non-OECD countries which are underrepresented in our database of real de-
mand time series. More data from developing countries could likely improve the 
model in this respect. 

More data may also be required to accurately portray a typical year of renewable 
generation. Both solar and wind generation are subject to considerable inter-annual 
variability, and it has been observed that models that only use a single year of re-
newable input data show a wide range of “optimal” installed capacities depending 
on which data year was selected (Pfenninger, 2017). The GlobalEnergyGIS package 
allows for download and preparation of arbitrary years of ERA5 input data. 

Overall, our model runs of a future European electricity system with high share of 
renewables are roughly in line with results from more detailed models, despite our 
top-down approach using global datasets, synthetic demand and a simpler and 
more generic optimization model. This gives confidence that our modeling frame-
work is sufficiently robust to be applicable to less studied regions of the world. 

Indeed, in addition to the sample model application presented in paper 5, my col-
leagues have already used the GlobalEnergyGIS package as the basis for several 
other case studies, including deep decarbonization scenarios in a future Eurasian 
supergrid (Reichenberg et al., 2019), benefits of integrating electricity generation in 
the Middle East and North Africa (Ek-Fälth et al., 2019), and a study of nuclear 
power in the Nordic power system (Kan et al., 2019). Collectively these studies il-
lustrate the flexibility and general applicability of our GIS package. 

7.5 Future work 
The GlobalEnergyGIS package was set up to partition renewable resource potentials 
into an arbitrary number of resource classes within each model region, thereby pro-
ducing supply curves for each region. Other modeling groups choose not to use 
resource classes and instead opt for smaller region size, which has a similar effect 
on regionally aggregated results (e.g. the European power mix) at the cost of losing 
heterogeneity in individual regions. There is a trade-off between region size and 
number of resource classes which effects regional accuracy of results and computa-
tional work needed to solve the model. This is an interesting potential topic of fu-
ture research. 

I would also very much like to expand the GIS analysis made for paper 5. The un-
certainty involving the “remaining land” parameter could perhaps be reduced or 
made endogenous to the model by estimating land costs and allowing a range of 
values for this parameter. I would also like to improve the analysis of hydropower 
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by using a hydrology model that covers locations above 60 degrees northern lati-
tude, that expands the representation of water inflow from monthly averages to 
hourly inflow and that can (somehow) capture cascades of hydropower plants along 
the same river. 

Further, the estimation of renewable supply potential could be expanded to include 
geothermal and bioenergy resources. The current use of a local GDP proxy to rep-
resent grid access could be replaced with an improved representation of existing 
and potential future transmission lines. Finally, location and infrastructure for fossil 
fuels and carbon storage potential could be added. 

In other words: the GIS package as presented in paper 5 is very much a work in 
progress. In the long term my ambition is to have it automatically generate virtually 
all regionally specific input data for energy models. 
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