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Abstract
One goal of developing automated cars is to completely free people from driving tasks.
Automated cars that require no human driver need to handle all traffic situations that a
human driver is expected to handle, and possibly more. Although human drivers cause a
lot of traffic accidents, they still have a very low accident and failure rate that automated
systems must match.

Tactical planners are responsible for making discrete decisions during the coming sec-
onds or minute. As with all subsystems in an automated car, these planners need to be
supported with a credible and convincing argument of their correctness. The planners’
decisions affect the environment and the planners need to interact with other road users
in a feedback loop, so the correctness of the planners depend on their behavior in relation
to other drivers and the environment over time. One possibility to ascertain their cor-
rectness is to deploy the planners in real traffic. To be sufficiently certain that a tactical
planner is safe by that methods, it needs to be tested on 255 million miles without having
an accident.
Formal methods can, in contrast to testing, mathematically prove that the requirements

are fulfilled. Hence, they are a promising alternative for making credible arguments of
tactical planners’ correctness. The topic of this thesis is how formal methods can be
used in the automotive industry to design safe tactical planners. What is interesting is
both how automotive systems should be modeled in formal frameworks, and how formal
methods can be used practically within the automotive development process.

The main findings of this thesis are that it is natural to express desired properties of
tactical planners in formal languages and use formal methods to prove their correctness.
Model Checking, Reactive Synthesis, and Supervisory Control Theory have been used
in the design and development process of tactical planners, and all three methods have
their benefits, depending on the application.

Formal synthesis is an especially interesting class of formal methods because they can
automatically generate a planner based on requirements and models. Formal synthesis
removes the need to manually develop and implement the planner, so the development
efforts can be directed to formalizing good requirements on the planner and good assump-
tions on the environment. However, formal synthesis has two limitations: the resulting
planner is a black box that is difficult to inspect, and it is difficult to find a level of
abstraction that allows detailed requirements and generic planners.

Keywords: Formal methods, automated cars, tactical planning, formal verification,
formal synthesis, Model Checking, Reactive Synthesis, Supervisory Control Theory.
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CHAPTER 1

Introduction

One goal of developing automated cars is to completely free people from driving tasks,
and the introduction of such cars is thought to bring several benefits and new application
areas. For instance, as many people spend a sizable part of their time commuting to and
from work in their own cars, one major benefit is to let people spend that commuting
time on more fun things than driving on congested urban roads. Another example is
that automated cars would allow people who currently cannot or should not drive to
get access to better personal mobility, for instance elderly people or people with visual
impairments [1]–[4].

Automated cars that require no human driver are technologically very advanced ma-
chines, and they need to handle all traffic situations that a human driver is expected to
handle, and possibly more. However, this level of automation is difficult to achieve [5], so
automated cars that still partly rely on an active human driver might be an important
step to making traffic safer [6]. Such cars with less advanced automation can be benefi-
cial for drivers in other ways as well, for instance, cars that keep themselves at a certain
speed and in lane with driver supervision might be considered a benefit to some drivers.

The amount of human involvement in the driving tasks is the main factor that affects
the difficulty to implement an automated vehicle, so there is a classification system which
categorizes vehicles into one of 6 levels depending on required driver involvement (see
Table 1.1) [7]:

Level 0 The car does not help with driving, so the driver performs all tasks related to
controlling speed, steering, etc.

Level 1 The car steers or controls speed; adaptive cruise control is an example.
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Chapter 1 Introduction

Level 2 The car steers and controls speed, but the driver needs to continuously monitor
it; cars that stay in lane or parks themselves are examples.

Level 3 The car steers and controls speed, but the driver might need to take over
control in difficult situations; cars in this level might for instance overtake on
their own.

Level 4 The car completely manages the driving tasks within certain operational con-
ditions; a car that can only drive on dry highways without human intervention
would be in this level.

Level 5 The car completely manages the driving tasks; there need not be anyone in the
car.

Related to the automation levels are Advanced Driver Assistance Systems (ADAS) and
Automated Driving (AD) systems. In this thesis, ADAS refer to functionality that help
the driver with the driving tasks in Level 0 to 2, and AD systems refer to functionality
that perform the driving task in Level 3 to 5.

SAE Level Name Monitoring agent

Level 0 No automation Driver
Level 1 Driver assistance Driver Hands on
Level 2 Partial automation Driver Hands off
Level 3 Conditional automation System Eyes off
Level 4 High automation System Mind off
Level 5 Full automation System Steering wheel optional

Table 1.1: SAE automation levels [7].

Reasons for both ADAS and AD are to relieve the driver from driving tasks and to
increase traffic safety. Some ADAS, like adaptive cruise control, are supposed to free the
driver from controlling speed and distance, and instead let the driver focus on planning
ahead, and in that way facilitate safer driving. Other ADAS correct for errors, of which
autonomous emergency braking is an example; it overrides the driver’s commands and
automatically brakes the vehicle if the system believes that the driver cannot avoid a
collision. The AD systems are supposed to increase traffic safety by removing the driver
altogether.
Although human drivers cause a lot of traffic accidents, they still have a very low

accident and failure rate [8]. This low rate poses difficulties when both ADAS and AD
systems are developed; if these systems shall increase traffic safety, then their introduction
cannot cause higher risk of accidents than what is expected without them. Hence, the
low accident rate of human drivers effectively puts requirements on how fault tolerant
the ADAS and AD systems need to be. However, this does not mean that all ADAS
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and AD systems have the same requirements on fault tolerance. Systems in higher SAE
levels generally require higher fault tolerance. For instance, a collision warning system in
Level 0 can easily be ignored by the driver and a high false warning rate can therefore be
tolerated since it does not affect the safety significantly. The occurrence of erroneous and
excessive braking in a Level 3 system, on the other hand, must be rare lest the vehicle
runs an undue risk of being rear-ended. A more detailed motivation for this is given later
in Section 2.2.

When human driving tasks are taken over by automation it is done so by several
electronics or electrical (E/E) subsystems, each with a specific sub-task. For the purpose
of this thesis the automated car’s E/E subsystems are broken up into four categories
according to the overview shown in Figure 1.1. Starting from the left, the sensors perceive
the vehicle’s surroundings and turn that into sensor-specific semantic information. For
instance a camera can find other vehicles in an image. The information from each separate
sensor is then passed on to the sensor fusion subsystem. It takes in information from
all the sensors and merges it to produce a more accurate estimation of the environment.
Based on the fused sensor information, decision and control decides which actions to take
and how. Decision and control passes on its decisions to the actuators in form of, e.g.,
paths and acceleration commands. The actuators convert the decisions to, e.g., steering
torque and brake torques.

Figure 1.1: System overview.

All four subsystems can be further divided, but here it is only interesting to consider
decision and control which can be divided into strategic, tactical, and operational plan-
ning [9], as can be seen in Figure 1.1. Strategic planning refers to planning for long time
horizons, such as route planning. Tactical planning refers to planning during the com-
ing seconds or minute, which would include discrete decisions such as when to do lane
changes or whether to stop at an intersection. The operational planning is performed on
the scale of milliseconds up to a second, and examples can be speed control and sudden
avoidance maneuvers.

All four subsystems in Figure 1.1 need to be supported by a credible and convincing
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Chapter 1 Introduction

argument of their correctness [10]. Since the subsystems have different tasks and solve
them with widely different algorithms their correctness are also ascertained with different
methods. The actuators and the operational planning subsystems are analyzed and
verified with methods from control theory, which provides tools for asserting stability, and
determining maximal tracking error, etc. This is a field with mature analytical methods
developed from the 1930’s and onward. The sensors and sensor fusion subsystems can
use a statistical approach to verify its correctness in open-loop simulations. Given a
recorded input an accuracy of the estimates compared to ground-truth data can be
calculated. The main issue for AD systems is that a lot of data is needed [8], and that
reliable ground-truth data or annotations can be laborious to attain.
Many of the analytical tools from control theory are not suitable for discrete decisions

made by the tactical planners that are the main concern of this thesis. For example,
analytical proofs of stability and reachability for continuous or discrete time systems with
continuous states cannot be used on discrete state systems. The open-loop simulations
that are useful for the sensing parts can also not be used to the same extent for the
tactical planning subsystem. This so since the planner’s decisions affect the environment
and the planner needs to interact with other road users in a feedback loop. A recording of
a traffic scenario will therefore only be a valid basis for a convincing correctness argument
if the planners take the exact same decisions as the vehicle did during the recording; an
implausible feat for the millions of miles needed as indicated by Kalra and Paddock [8].
Instead of simulations, the tactical planners can be verified as part of the complete
vehicle during real driving. However, this does not scale well since failures during the
verification will add millions of kilometers to the needed total mileage [10]. This thesis
explores ways to limit the needed verification effort of tactical planners, and tries to focus
on the correctness of their construction to achieve fault tolerant planners.
The above gives some indication on how much effort that is needed to verify that a

functionality is safe enough from a complete vehicle level. However, needed safety effort
must be known already during the development of the E/E subsystems. It can be difficult
to reason about and argue for how fault tolerant these individual ADAS or AD E/E
subsystems need to be, so the automotive industry has developed the functional safety
standard ISO26262 [11] to establish best practices to deal with the risks introduced by
safety-critical functionality. In broad strokes, the standard defines a systematic process
to judge the safety criticality of different end effects that can be caused by different
E/E system faults. The safety criticality measure has 5 different levels and is called
Automotive Safety Integrity Level (ASIL). Based on the ASIL for an end effect, the
standard then recommends best practice methods to use to ensure a sufficient level of
safety when designing, implementing, verifying, and validating parts of the E/E-system
that can cause that end effect if they experience a failure. For instance, one possible
end effect of a fault could be that the vehicle does not accelerate when the driver presses
the accelerator pedal, and the fault might be a sensor that fails to measure the position
of the accelerator pedal correctly. A vehicle that cannot accelerate has a problem, but
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maybe not a safety critical one, and in that case the ASIL would be low. A low ASIL
would in turn mean that the accelerator pedal sensor could be developed with less safety
effort and still keep the risk of harm at a sufficiently low level.

ISO26262 recommends two verification methods: reviews and testing. Reviews are
qualitative and requires staff to go through and inspect work products. Testing is quan-
titative and measures the effect when systems are exposed to certain inputs. Both these
verification methods can be applied to large parts of the development process [11], but
neither of them can provide proofs of correctness; they can only find faults, not an ab-
sence of them [12]. Also, when the design or implementation of a part is changed the
review and testing has to be performed again, and with higher ASIL the reviews and
testing are recommended to be more thorough. This might be a bottleneck if more ad-
vanced ADAS and AD systems are to be developed. More advanced could mean several
things, but two examples could be more capabilities or less driver involvement. Both
these advances incur more work spent on reviews and testing, which is discussed more
in Section 2.2.

The ISO26262 standard mentions one class of methods and tools that can alleviate
some burdens of reviews and testing. These are called formal methods [12], [13], and
can, in contrast to reviews and testing, mathematically prove that the requirements are
fulfilled. (A caveat being that this statement holds for a model of the system, so any
modeling errors void the correctness proof.) At their core, formal methods have a formal
language that has well defined and unambiguous semantics. The formal language is used
to formalize the requirements. After the requirements are formalized there are mainly
two subclasses of formal methods from which to choose to continue the process; formal
verification and formal synthesis.

Formal verification needs a formal model of the implementation and possibly the en-
vironment with which it interacts [12]. This model can be the actual software code, a
simplified abstraction thereof, or a very simple model of the intended functionality of
the item; it depends on which requirements are being verified against. When the formal
requirements and the formal model are available the formal verification tool can search
for counterexamples. If none are found, then the model fulfills the requirements. Because
formal verification comes with a proof or a counterexample, less effort needs to be spent
on reviews and tests.

Formal synthesis, on the other hand, does not have a model of the implementation
included in the formal model, but it requires a model of the environment [13], [14].
Based on the formal requirements and the formal model, formal synthesis automatically
creates a correct-by-construction implementation. This has the advantage over formal
verification that the implementation does not need to be performed manually; an error
prone and time consuming process. Also, changes in the requirements does not necessarily
incur any manual reimplementation.

Formal methods, especially formal verification, have been used successfully in industrial
applications [15]–[17]. They have a clear potential also in the automotive industry to
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Chapter 1 Introduction

increase the quality of the safety work, as well as decrease development time and cost.
However, except in the case of software verification, it is not established in any large
extent as to what parts of the automotive development process that can benefit from
formal methods. Potential pitfalls and limitations are also not well explored.
The topic of this thesis is how formal methods can be used in the automotive industry to

design safe tactical planners. What is interesting is both how automotive systems should
be modeled in formal frameworks, and how formal methods can be used practically within
the automotive development process.

1.1 Hypothesis
The hypothesis of this thesis starts in the belief that formal methods, and especially
formal synthesis, can be applied in automotive development processes to generate useful
and meaningful correct-by-construction tactical planners. Such formal methods should
be beneficial because they alleviate drawbacks of other methods that cannot provide cor-
rectness proofs, specifically the processes of reviews and testing. However, since formal
methods, and especially formal synthesis, does not seem to be widely adopted for gener-
ation of tactical planners for automated cars there probably are limitations or obstacles
that hinder the adoption. These potential limitations and obstacles are investigated in
this thesis.
Furthermore, with discrete systems operating in continuous domains there must be

a mapping, or abstraction, from continuous states to discrete states. This abstraction
affects how a tactical planner can operate, and selecting the wrong level of abstraction
could cause synthesis to generate useless or trivial planners, or fail to generate planners
at all. This thesis investigates whether and how the abstraction of the continuous domain
affects the usefulness of the tactical planners.

1.2 Research questions
Based on the hypothesis, this thesis aims to answer the following research questions:

• What are the current limitations of formal synthesis that currently hinders indus-
trial adoption for automotive systems?

• What level of abstraction is possible to use for automotive systems, and will that
level facilitate meaningful and non-trivial planners?

• To what problems can synthesis and verification be applied?

1.3 Contributions
The main contributions of this thesis are:
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1.4 Method

• It identifies the difficulty to inspect the result of synthesis as an obstacle to adoption
of formal synthesis.

• It identifies a conflict between the desire to express detailed requirements and to
generate generic tactical planners.

• It provides insights into how verification and synthesis models differ when it comes
to separation of environment, requirements, and planner.

• It determines that the differing syntax and semantics of the modeling paradigms
have little effect on the synthesized planners. However, a few characteristics of the
synthesis results of the different paradigms are important to consider when formal
synthesis is applied to a problem.

1.4 Method
The work of this thesis has been carried out in the form of several case studies con-
nected to tactical planners for automated cars. Realistic requirements and scenarios have
been formulated in each case, and formal methods have been used to design correct-by-
construction tactical planners. These planners have then been evaluated by simulations,
experiments, and visual inspections. The evaluations and comparisons have mainly been
qualitative.

1.5 Outline
This thesis is divided into two parts. Part I gives an introduction to safety of auto-
mated cars, explains fundamentals of formal methods, and puts the appended papers
into context. Part II contains the appended papers that form the basis of this thesis.

Part I consists of the following chapters: Chapter 2 presents the problem of credibly
arguing for the safety of automated cars. Chapter 3 goes through the fundamental
concepts of formal methods that are used in later chapters. The appended papers are
discussed and put into perspective in Chapter 4. Chapter 5 concludes the findings in
this thesis and presents future challenges. Finally, Chapter 6 gives short summaries of
the appended papers.
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CHAPTER 2

How safe?

In order to deploy AD systems on public roads, the automotive industry needs to present
compelling arguments that the cars are sufficiently safe [10]. One way of providing such
arguments, as mentioned in Chapter 1, is to follow the process recommended by ISO
standard 26262 [11]. This in practice means that for certain safety requirements the
probability of failure should be less than 10−9. Achieving such level of integrity and
correctness makes any approach only based on simulation, field testing and statistical
data inadequate and unrealistic. As noted by [8], if a fleet of 100 autonomous vehicles
drives 24 hours/day, 365 days/year, at an average speed of 25 mph, it takes 400 years to
demonstrate with 95% confidence that their failure rate is 20% better than the human
driver failure rate of 1.09 fatalities per 100 million miles (US, 2013). Furthermore, if there
is a failure during this verification, the amount of required field testing is increased [10].

This chapter gives an overview of how many miles have been driven by some automated
car systems and an introduction to the functional-safety standard ISO 26262.

2.1 Driving Around the World
Several companies working with automated cars are publishing safety reports that detail
their efforts to ascertain safety [18]–[21]. They are also publishing how long they have
driven with their field test vehicles (or customer vehicles in the case of Tesla): Waymo
10 million miles [22]; Tesla 1 billion miles [23]; Yandex 1 million miles [24]; Uber at least
2 million miles [25], [26]. All of these companies, except Tesla, are field testing SAE
Level 4 or 5 cars. Tesla’s system is available for consumers and relies on the driver as a
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fall-back, so it is at most a SAE Level 3 system (cf. Table 1.1).
Is this amount of driving enough to credibly argue that the systems are safer than a

human driver? To be 95 % sure that an automated car’s systems are at least as safe
as a human driver (in the U.S.) the systems need to drive 255 million miles with no
fatalities [10]. As can be seen above, most automated-car companies fall short on this
target with at least one order of magnitude. Tesla seems to fare well since they have
tested on 4 times as many miles as required. However, fatalities increase the required
number of miles; 402 million miles required for one fatality and 535 million miles for a
second fatality, etc [10]. And there have been fatalities where, for instance, Tesla and
Uber cars have been involved [27], [28]. An independent report also argues that Tesla
cars with active AutoPilot are less safe than when AutoPilot is inactive [29].
The numbers above also assumes that the systems have a single occupant [10]. When

the cars are put into use one has to consider the expected number of occupants and
increase the number of miles driven accordingly.
A further caveat is that the statistical argument of number of miles driven without

fatalities must be based on one and the same version of the system, a prerequisite which
is clearly void for Tesla [30], but it is also unlikely that the other actors have been driving
millions of miles for several years without updating their systems.
With these mileages in mind, it seems infeasible to base a correctness argument solely

on the amount of miles driven by an ADAS or AD system. The question is then: what
is the alternative?

2.2 ISO26262
As mentioned above and in Chapter 1, it can be difficult to reason about and argue for
how fault tolerant individual subsystems of ADAS or AD systems need to be, so the
automotive industry has developed the functional safety standard ISO26262 to establish
best practices to deal with the risks introduced by safety-critical functionality [11]. Sim-
ply put, the process of the standard starts with a definition of the functionality to be
developed (called the ‘item’ in the standard), and then a hazard analysis is performed for
the item. During the hazard analysis potential malfunctions of the item are considered,
and if they are possible sources of harm they are considered hazards. Each hazard is con-
sidered in all the operational situations of the item, and the combination of the hazard
and an operational situation is called a hazardous event. The purpose of the standard
is to provide best practice recommendations on how to reduce the risk of all hazardous
events to an acceptable level1.
For each hazardous event it is judged how severe the consequences of that event can

be (severity), how often the vehicle is in the operational situation of the hazardous event
(exposure), and how difficult it is for an agent other than the safety-critical functionality

1Note that there is still a non-zero risk for the occurrence of the hazardous event; there is no such thing
as 100 % safe.
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to detect and counteract the hazardous event (controllability). For instance, one iden-
tified possible hazard could be the omission of braking when approaching a stationary
vehicle. The severity is decided by the collision speed, and the exposure is decided by the
probability of a stationary vehicle on a road where such speed is held. The controllability
is based on how likely the driver is to brake, which, among other things, is influenced by
the automation level.

The purpose of the standard is to prevent the hazardous events, and the means with
which to prevent them are specified in safety goals. To prevent fatal collisions with
pedestrians, for instance, a safety goal might be to limit the top speed of the vehicle
to 30 km/h. For every identified hazardous event, the estimated severity, exposure, and
controllability are combined to form an automotive safety integrity level (ASIL). The
ASIL is transfered to the safety goals that are attached to a hazardous event, and the
ASIL will guide what safety efforts that are needed during development to ascertain the
fulfillment of each safety goal.

When all safety goals have been formulated, the standard follows a V-model: an ar-
chitecture with subsystems is developed for the item, and the safety goals are broken
down into functional safety requirements, allocated to the subsystems. The subsystems
are further split into hardware and software components by hardware and software ar-
chitectures. Correspondingly, the functional safety requirements are further refined into
lower level safety requirements allocated to the hardware and software components. All
the architectural components (subsystems, hardware and software components) are then
implemented, verified, and validated in accordance with the safety requirements. Here,
the ASIL of the safety goal has a direct effect on the effort as the standard prescribes
recommended implementation, verification, and validation activities based on the ASIL,
and, in general, the ASIL of a safety goal is inherited to all the lower level requirements
that refines it.

From a functional safety point of view, ADAS and AD systems are increasingly difficult
to develop because of three mechanisms. Firstly, as desired operational situations and
capabilities of the systems are expanded, so is the complexity of the technical solutions.
Even if the ASIL of a specific component is the same, the increased complexity means
more safety effort, and this typically does not scale linearly. Secondly, expansion of
operational situations means more hazardous events with higher severity and exposure.
These increases lead to higher ASIL, and thus greater safety effort. Thirdly, the goal is to
remove the driver, or at least reduce the driver’s involvement in the driving tasks. This
removal or reduction causes lower controllability [31], which also means higher ASIL.

The ASIL is rightfully high as an effect of these three mechanisms since it is difficult
to refine requirements that are complete with respect to the safety goal, and it is diffi-
cult to implement fault free code. High ASIL makes sure that requirement refinement,
implementation, verification, and validation are all performed according to strict pro-
cesses that minimize the risk of faults. However, these processes cause long and costly
development. For instance, implementation and verification of high-ASIL software re-
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quires, among other things, extensive design reviews of the code and testing of almost
every input-output combination to assure that the software requirements are fulfilled to
high enough level. But these tasks are cumbersome and require involvement from many
people, will still miss faults, and have to be repeated when requirements change [12].

2.3 Saving Some Time
Evidently, the approach of ensuring safety solely by driving many million miles is ex-
pensive and time consuming. Hence, there are incentives to limit the amount of miles
required to assure a high confidence of correctness. For instance, limiting updates and
failures of a system after field tests have started by ensuring that the system is correct
from the start saves both time and lives. ISO 26262 provides a processes that can support
that aim by judging risks in different situations, and how to mitigate them to acceptable
levels. Part of the process is to break down the safety-critical requirements to individual
components. The breakdown can be beneficial in the development work since the efforts
to ensure safety can start before all components can be integrated into one system and
tested as a whole in a field test. However, the extensive reviews and testing needed for
components with the highest ASIL are imperfect and expensive in time and money. This
is a limiting factor for SAE levels 4 and 5, as there is likely several components with the
highest ASIL.
What can be done to construct systems that are correct from the start and limit the

efforts put into review and testing? The ISO 26262 standard mentions formal methods
as one class of methods that can be used to ascertain correctness of the developed sys-
tems. However, the standard does not instruct how formal methods can be applied, so
before such methods can be applied within the development process of tactical planners
it must be known what problems the formal methods can solve and how to apply them
to the applicable problems. This thesis attempts to evaluate how problems in the devel-
opment of tactical planners in automated cars can be solved by formal methods and how
some formal methods compare in terms of benefits and drawbacks. A central question
is whether there are any obstacles to adopting formal methods, and especially formal
synthesis, as a tool to develop provably correct tactical planners for automated cars.
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CHAPTER 3

Formal Methods

Formal methods are a class of methods that make it possible to reason about correct-
ness of systems. A key property of these methods is that requirements and models are
expressed in semantics that are very precise and unambiguous.

There are several formal semantic systems. Here we are interested in systems that can
express temporal properties since we want to be able to reason about a vehicle’s behavior
over time. Examples of other systems are systems that reason about the correctness of
a program’s output only given the current input.

3.1 Automata
Temporal properties can be expressed in formal languages. A formal language is a set of
strings constructed from letters of an alphabet according to well-formed and unambiguous
rules. Connected to formal languages are finite state automata that can be used to model
formal languages.

Finite state automata consists of states and transitions between them. The transitions
between the states are labeled with letters from the alphabet and defines which inputs a
certain state can consume and how the state changes with that input.

Definition 1: A finite state automaton is a tuple

A = 〈Q,Σ, δ, q0, F 〉,

where Q is a finite set of states, Σ is a finite set of symbols, the alphabet, q0 ∈ Q is
the initial state, and F ⊆ Q is the accepting states. δ : Q × Σ → Q is the transition
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function, a partial function defining which states are connected and which inputs causes
these transitions.
In connection with the accepting states F , a finite state automaton has an acceptance

condition that states which strings are accepted by the automaton. A string is generated
by starting with an empty string in the initial state q0 and then concatenating σ ∈ Σ
for every new transition taken. The subset of strings generated this way that fulfills the
acceptance condition is the formal language defined by a specific automaton.

3.2 LTL
Linear Temporal Logic (LTL) is a formal logic capable of expressing temporal properties.
In addition to atomic propositions in the set AP and standard propositional logic opera-
tors, LTL includes temporal operators [32]. The temporal operators ′ (next), � (always),
and ♦ (eventually) are used in this thesis. These temporal operators can be used to
express, for instance as done in Paper B, that if one of a vehicle’s subsystems fails, then
eventually the vehicle shall stop safely at the side of the road.
An LTL formula can be converted into a Büchi automaton that accepts the language

expressed by the LTL formula [33], [34]. A Büchi automaton is an automaton that accepts
all strings that visit the accepting states an infinite number of times. A Büchi automaton
that represents an LTL formula has 2AP as its alphabet — the set of all sets of atomic
propositions. Hence, the formal language of an LTL formula is a set of infinite strings,
where each letter is a set of the atomic propositions that are true in that particular state.
If LTL formulae are interpreted over infinite runs of a program they can be used to

check properties that hold for that program. For this purpose a program is translated
into a transition system, of which Kripke structures are one subclass.

Definition 2: A Kripke Structure is a tuple

M = 〈S, I,R,AP,L〉,

where S is a set of states, I ⊆ S is a set of initial states, R ⊆ S × S is a transition
relation, AP is a set of atomic propositions, and L : S → 2AP is a labeling function that
defines the atomic propositions that are true in each state.
LTL formulae can be evaluated over infinite runs on a Kripke structure. A run π of

a Kripke structure M is an infinite sequence of states {π0, π1, . . . }, where π0 ∈ I and
(πi, πi+1) ∈ R. Let π[i] represent the infinite run starting from state πi. Let τ and θ be
LTL formulae, and ψ be an atomic proposition. The definition of when a run π satisfies
a formula is given inductively:

• π � τ iff π[0] � τ

• π[i] � ψ iff ψ ∈ L(πi)

• π[i] � ¬τ iff π[i] 2 τ
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• π[i] � τ ∨ θ iff π[i] � τ or π[i] � θ

• π[i] � τ ′ iff π[i+ 1] � τ

• π[i] � �τ iff π[k] � τ for all k ≥ i

• π[i] � ♦τ iff π[k] � τ for some k ≥ i

The Kripke StructureM satisfies a formula τ if every possible run π satisfies the formula.
Two classes of interesting properties of LTL are safety and liveness properties, where

the simplest examples are �p and �♦p, respectively. Safety properties can be disproved
with finite prefixes of the strings of the formal language, which in principle means that
safety properties states what shall never happen. Liveness properties cannot be disproved
with finite strings of the language, which means that liveness properties specify conditions
that shall be fulfilled infinitely many times.

3.3 Terminology
Foundations for Model Checking (MC), Reactive Synthesis (RS) and Supervisory Control
Theory (SCT) are presented in the next sections. The terminologies of Model Checking,
Reactive Synthesis, and Supervisory Control Theory are both overlapping and conflicting,
as Paper C points out when the formal synthesis tools TuLiP [35] and Supremica [36] are
compared, so before they are presented, a note on the terminology used in these fields is
needed.

To explain the different parts that go into the different formal methods there are a few
terms that need to be defined. What is important for this thesis are mainly three things:
the planner, the environment, and the requirements. The planner refers to the (artificial)
product that is being designed — usually the tactical planner in the case of this thesis.
For a given planning problem, the planner is exactly the parts of a system that are
allowed to be changed or designed. The environment is the outside world with which
the planner interacts. Within automotive applications this is typically the dynamics of
the car, the roads, and other road users. However, the environment also includes other
systems and subsystems of the car that cannot or must not be changed during the design
of the planner. Examples of this can be brake systems or sensor systems. Lastly, the
requirements are the desired behaviors of the system as it interacts with its environment.
The requirements define desired and undesired behaviors of the system.

Model Checking starts from a planner, possibly interacting with an environment, and
its requirements. However, MC lumps together the planner and its environment and calls
them together the system. As the name Model Checking implies, MC is the process of
checking properties of a model1 of the planner and, when applicable, the environment. A
model is a formal characterization of the planner and environment that captures the be-
haviors that are interesting for the verification. Depending on the goal of the project the

1Also called the system model.
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model can be a small piece of code, or an abstraction of an entire car and its surround-
ings. The formal properties that the Model Checker checks are the formalization of the
requirements on the system; the requirements expressed in a formal language [12]. In this
thesis the formalization of the requirements will mainly be called the formal specification.
In RS, at least in the case of TuLiP, the names have a bit different meaning compared

to MC. RS use the concept of environment and system as names for the environment and
planner, where the system is constructed such that it guarantees the fulfillment of the
requirements as long as the environment model is correct. Also in RS terminology, the
system controls the environment. Since RS aims to synthesize a controller, or a reactive
module, there is never a model of the planner in RS. In RS terminology there is neither an
environment model, but an environment specification that states the assumed behaviors
of the environment. Paper C explains these concepts of RS with some examples. To be
consistent through the thesis, the assumed behavior of the environment will be called
the environment model for RS.
Supremica, and SCT in general, can be used for both formal verification and synthesis.

Regardless, the formalization of the environment, planner, and requirements are divided
into plants and specifications. In general, the plants are the models of the environment
and/or planner, whichever is applicable. The specifications are the formalizations of
the requirements. However, the plants can also have markings on states, which is a
formalization of a certain type of requirements that express the possibility to reach those
states. Some examples of this are also given in Paper C.

3.4 Model Checking

Model Checking is used to prove formal properties of a formal model of the system.
The system can consist of hardware or software, but it is software applications that are
considered here. Verification of software with MC starts with the formal specification,
which is composed of the formal properties, and the formal model. The intended result
of model checking is either a proof that the model exhibits the formal property, or a
counterexample that demonstrates why the property does not hold in the model. The
benefit of performing model checking over reviewing and testing is that model checking
is exhaustive and can prove that no faults are present. However, a caveat is that this
holds only when the model captures the relevant behaviors of the system. The model
checker (the program that performs the Model Checking) can also run out of time or
memory because of the state explosion problem. Then model checking can only be used
to find faults, just like testing.
In LTL Model Checking the formal properties are expressed in LTL and the software

program is modeled as a transition system.
Definition 3: Let K = 〈S, I,R,AP,L〉 be a transition system and B = 〈Q,Qi, δ, AP, F 〉
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be a Büchi automaton. Then the product K ×B is the following tuple

T = 〈S ×Q,Ni,→, AP,Na〉,

where

(s, q)→ (s′, q′) iff (s, s′) ∈ R and (q, L(s′), q′) ∈ δ
Ni = {(si, q) | si ∈ I and ∃qi ∈ Qi : (qi, L(si), q) ∈ δ}

Na = {(s, q) | q ∈ F}

Let the transition system K be a Kripke structure that models a software program,
and ϕ an LTL formula that expresses a desired formal property of K. To prove whether
K satisfies ϕ the following steps are performed [12]:

(i) Construct a Büchi automaton B for the LTL formula ¬ϕ.

(ii) Construct the product K ×B.

(iii) Analyze whether K ×B has a run π visiting accepting states infinitely often.

(iv) If such a π is found, then ϕ is not satisfied by K, and π is a counterexample. If no
such π is found, then K satisfies ϕ.

The construction of transition systems and Büchi automata can be quite involved,
so there are software tools that let the user define the transition system in a formal
format that is more suitable for humans, and the properties in LTL. These are then
automatically translated into a transition system and Büchi automata, and then turned
into a product tuple, which in turn is searched for the existence of π. One such model
checker is Spin [37], which allows the user to specify the system model in the language
Promela, and the desired properties in LTL.

3.5 Reactive Synthesis
Reactive Synthesis (RS) [14] aims to automatically synthesize a reactive module that
satisfies the desired guarantees φs, under the assumptions of the environment φe. In
other words, the reactive module satisfies the formula φe → φs [38]. A reactive module
evolves in computation cycles and engages in an ongoing interaction with its environment.
The reactive module alternately reads inputs from the environment and assigns values
to its outputs, possibly affecting the environment. For a comprehensive introduction to
RS, refer to [41].

One way to model the RS problem is to consider the reactive module to be synthesized
and the environment as adversaries that play a finite-state game and take turns to provide
input to each other [42]. Then, an iterative process can be adopted to find a fix-point
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of a subset of states and transitions that solves the RS problem. The states, transitions,
inputs, and outputs can be modeled by a Kripke structure.
In RS, the set of atomic propositions AP is divided into two disjoint subsets APe

and APs, representing the propositions of the environment and the reactive module,
respectively. The atomic propositions in APe are seen as the inputs to the reactive
module, while APs are its outputs. The atomic propositions in AP can be composed
of relational operators on functions of discrete finite domain variables so they can be
considered either true or false, given a certain valuation in a certain state.
A subset of LTL formulae that is particularly interesting is called General Reactivity

of Rank 1 (GR(1)) [43]. This set of formulae is useful because it is possible to perform
reactive synthesis of the GR(1) fragment in polynomial-time. Given an LTL formulae ϕ
defining the environment model and the formal specification, GR(1) synthesis constructs
a reactive module such that the total system satisfies ϕ, if such a reactive module exists.
The LTL fragment GR(1) has the following form [43]:

ϕ ,
(
(ψeinit ∧ �ψesafe ∧

∧
0<i≤J
�♦ψelive,i) → (ψsinit ∧ �ψssafe ∧

∧
0<i≤N

�♦ψslive,i)
)
, (3.1)

where ψeinit and ψsinit contain all the initial conditions of the environment and the re-
active module, respectively. ψesafe and ψelive,i (J number of sub-specifications) are the
safety and liveness assumptions on the environment. ψssafe and ψslive,i (N number of
sub-specifications) are the desired safety and liveness properties of the reactive module.
Note that the implication in (3.1) shall be interpreted as a strict realizability implica-

tion [44]. Strict realizability means that the reactive module must not ‘cheat’ by falsifying
the environment assumptions. If a normal logical implication would be used, the reac-
tive module could be synthesized such that it violates the formal specification to force
the environment to violate the assumptions. If any of the formulae on the left of the
implication in (3.1) is false, then the implication is trivially true if it is not interpreted
as a strict realizability implication.
Klein and Pnueli give the following counterexample with two boolean variables p and

q, where p is an environment variable and q is a reactive module variable:

�¬p′ ∧�♦(p↔ q)→ �(p′ ↔ q′) ∧�♦q. (3.2)

If the implication in (3.2) is treated as the standard logical implication, a reactive module
could satisfy the formula by letting q be True in all states. The environment then cannot
fulfill both its assumptions, and thus the implication is satisfied regardless of whether
the reactive module fulfills its specifications or not.
The strict realizability implication details that the reactive module must not be the

first player to violate the safety properties. Formula (3.2) cannot be satisfied if the
implication is strictly realizable. If the environment fulfills the safety assumptions then
p is False all the time, and hence the reactive module must let q be False all the time,
otherwise breaking the specification �(p′ ↔ q′). The liveness assumption �♦(p ↔ q) is
satisfied, but the reactive module cannot then fulfill the liveness specification �♦q.
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3.6 Supervisory Control Theory
The Supervisory Control Theory (SCT) [13], [45] is a model-based approach for control
of Discrete Event System (DES). A DES is a category of automata whose transitions
are triggered by occurrences of events; the labels on the transitions are not interpreted
as inputs but observations of events. Given a DES to be controlled, the plant, and a
specification describing the desired behavior, a control entity, called a supervisor, can be
automatically synthesized to dynamically restrict the behavior of the plant, such that
the closed-loop system satisfies the specification.
Finite state machines (FSM) are defined the same as automata (1), but is given here

again to stress that the alphabet consists of events.
Definition 4: An FSM is a tuple

A = 〈Σ, Q,→, Q◦, Qω〉,

where Σ is a set of events, the alphabet; Q is a finite set of states; → ⊆ Q × Σ × Q
is the transition relation; Q◦ ⊆ Q is the set of initial states; and Qω ⊆ Q is the set of
marked states.

In SCT, the accepting states are termed the marked states, so Qω are equal to F in (1).
The accepting condition of an FSM accepts all finite strings that are a prefix to a string
ending in a marked state [13]2.
Given a plant G and a specification K of the desired controlled behavior, the SCT

makes it possible to automatically synthesize a supervisor S that controls the plant such
that the specification is satisfied.

The supervisor and the plant form an asymmetric closed-loop system where the super-
visor restricts the event generation of the plant. As the plant generates events enabled by
the supervisor, the supervisor observes the generated sequences of events and determines,
at each state, which of the currently possible events that should be enabled. Some of
the events cannot be disabled by the supervisor. These events are uncontrollable. The
supervisor is required to be controllable, i.e. it must never try to disable an uncontrol-
lable event. By disabling controllable events, the supervisor can confine the plant to
a subset of its possible states so that the closed-loop system only visits states that are
considered “good” by the specification. At the same time, the supervisor guarantees that
from any closed-loop state, the system can always continue to a desired marked state, it
is non-blocking. Finally, the supervisor disables as few events as possible, it is maximally
permissive.

For a plant with controllable and uncontrollable events, the alphabet Σ consists of
the two disjoint sets Σc and Σu consisting of the controllable and uncontrollable events,
respectively.

Definition 5: Given two FSM G1 = 〈Σ1, Q1,→1, Q
◦
1, Q

ω
1 〉 and G2 = 〈Σ2, Q2,→2, Q

◦
2,

Qω2 〉, the full synchronous composition of G1 and G2 is G1 ‖G2 = 〈Σ1 ∪Σ2, Q1×Q2,→,
2There are also SCT variants with accepting conditions that only accepts infinite strings [46]. Then
the accepting condition is the same as for Büchi automata.
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Q◦1 ×Q◦2, Qω1 ×Qω2 〉, where:

(x1, x2) σ→ (y1, y2) if σ ∈ Σ1 ∩ Σ2, x1
σ→1 y1,

and x2
σ→2 y2 ;

(x1, x2) σ→ (y1, x2) if σ ∈ Σ1 \ Σ2 and x1
σ→1 y1 ;

(x1, x2) σ→ (x1, y2) if σ ∈ Σ2 \ Σ1 and x2
σ→2 y2 .

Basically, supervisor synthesis is an iterative removal of states and/or transitions of
an initially calculated supervisor “candidate”. Practically, this candidate is calculated
from G||K where || denotes the full synchronous composition operator [13]. The iterative
algorithm removes from G||K the states that break the controllability and/or the non-
blocking properties. Iteration is necessary since enforcing one property may break the
other. The iteration will eventually reach a fix-point, and what then is obtained is the
maximally permissive, controllable, and non-blocking supervisor.
Extended finite-state machines (EFSM) are similar to FSM, but augmented with up-

dates associated to the transitions [47], [48]; formulas constructed from variables, integer
constants, the Boolean literals true (T) and false (F), propositional logic connectives,
and discrete arithmetic operators.
A variable v is an entity associated with a bounded discrete domain dom(v) and an

initial value v◦ ∈ dom(v). Let V = {v0, . . . , vn} be the set of variables with domain
dom(V ) = dom(v0) × · · · × dom(vn). An element of dom(V ) is called a valuation and
is denoted by v̂ = (v̂0, . . . , v̂n) with v̂i ∈ dom(vi), and the value associated to variable
vi ∈ V is denoted v̂[vi] = v̂i. The initial valuation is v◦ = (v◦0 , . . . , v◦n).
A second set of variables, called next-state variables, denoted by V ′ = { v′ | v ∈ V }

with dom(V ′) = dom(V ), is used to describe the values of the variables after execution
of a transition. Variables in V are referred to as current-state variables to differentiate
them from the next-state variables in V ′. The set of all update formulas using variables
in V and V ′ is denoted by ΠV .

For an update p ∈ ΠV , the terms vars(p) and vars′(p) denote the sets of all variables,
and all next-state variables, respectively, that occur in p. For example, if p ≡ x′ = y + 1
then vars(p) = {x, y} and vars′(p) = {x}. Here and in the following, the relation ≡
denotes syntactic identity of updates to avoid ambiguity when an update contains the
equality symbol =.

With slight abuse of notation, updates p ∈ ΠV are also interpreted as predicates over
their variables, and they evaluate to T or F, i.e., p : dom(V )× dom(V ′) → {T,F}. For
example, if V = {x} with dom(x) = {0, 1}, then the update p ≡ x′ = x + 1 means that
the value of the variable x in the next state will be increased by 1 over its current-state
value. Its predicate p(x, x′) evaluates as p(0, 1) = T and p(1, 1) = p(0, 0) = p(1, 0) = F.

Definition 6: An extended finite-state machine (EFSM) is a tuple

E = 〈Σ, Q,→ , Q◦, Qω〉,
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where Σ is a set of events, the alphabet; Q is a finite set of locations;→ ⊆ Q×Σ×ΠV×Q
is the conditional transition relation; Q◦ ⊆ Q is the set of initial locations; and Qω ⊆ Q
is the set of marked locations.
The expression q0

σ:p→ q1 denotes the presence of a transition in E, from location q0 to
location q1 with event σ and update p. Such a transition can occur if the EFSM is in
location q0 and the update p evaluates to T, and when the transition occurs, the EFSM
changes its location from q0 to q1 while updating the variables in vars′(p) in accordance
with p; variables not contained in vars′(p) are unchanged.

Given an EFSM E = 〈Σ, Q,→ , Q◦, Qω〉, its variable set is

vars(E) =
⋃

(q0,σ,p,q1)∈→
vars(p),

which contains all variables that appear on some transitions of E.
Definition 7: Given two EFSMs E1 = 〈Σ1, Q1,→1, Q

◦
1, Q

ω
1 〉 and E2 = 〈Σ2, Q2,→2,

Q◦2, Q
ω
2 〉, the synchronous composition of E1 and E2 is E1 ‖E2 = 〈Σ1 ∪Σ2, Q1 ×Q2,→,

Q◦1 ×Q◦2, Qω1 ×Qω2 〉, where:

(x1, x2) σ:p1∧p2−−−−−→ (y1, y2) if σ ∈ Σ1 ∩ Σ2, x1
σ:p1−−−→1 y1,

and x2
σ:p2−−−→2 y2 ;

(x1, x2) σ:p1−−−→ (y1, x2) if σ ∈ Σ1 \ Σ2 and x1
σ:p1−−−→1 y1 ;

(x1, x2) σ:p2−−−→ (x1, y2) if σ ∈ Σ2 \ Σ1 and x2
σ:p2−−−→2 y2 .

In an EFSM, the current state of the system is given by the current location together
with the current values of all the variables. Since the variables are discrete and bounded,
the EFSM can be flattened, which introduces states for the combinations of locations
and variable values [12].

Definition 8: Let E = 〈Σ, Q,→ , Q◦, Qω〉 be an EFSM with variable set vars(E) = V .
The monolithic flattening of E is U(E) = 〈Σ, QU ,→U , Q

◦
U , Q

ω
U 〉 where

• QU = Q× dom(V );

• (x, v̂) σ→U (y, ŵ) if E contains a transition x σ:p→ y such that p(v̂, ŵ) = T;

• Q◦U = Q◦ × {v◦};

• QωU = Qω × dom(V ).

U(E) is the DES representation of the EFSM, where all the variables have been re-
moved and their values v̂ embedded into the state set QU . This ensures the correct
sequencing of transitions in the DES.

With the introduction of updates to FSMs it is possible to restrict the plants’ behaviors
by adding updates to the plants. In that case the synthesis algorithm does not need to
generate a supervisor as separate automata.
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For the purpose of adding updates to plants, Binary Decision Diagram (BDDs) [49]
can be used in the synthesis algorithm. A BDD is a data structure that can efficiently
store huge state-spaces and transition sets encoded as Boolean functions. The computa-
tional complexity of synthesis using BDDs does not depend on the number of states or
transitions, but on the number of nodes in the BDD, as the computations are performed
symbolically rather than explicitly; synthesis is performed on sets of states and transi-
tions rather than single such elements. So even though the BDD-based synthesis works
on a monolithic model, it can handle systems of considerable sizes. The approach pre-
sented in [50] uses partitioning techniques to further stretch the ability of the synthesis
procedure.
The BDD-based synthesis works directly on the EFSM model, encoding the transi-

tion relation and the updates as Boolean expressions. The synthesis then results in a
partitioning of the state-space into allowed and forbidden states, and then guarantees
that only controllable events take the system from the allowed into the forbidden states.
From this is then generated updates that represent the control actions of the supervisor.
These updates are Boolean expressions over values of variables and state labels, that
define when the particular event is enabled.
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CHAPTER 4

Correct-by-Construction Tactical Planners

In theory, formal methods are a promising approach for the development of correct
tactical planners, and case studies have been performed to demonstrate the real usefulness
of formal methods applied to practical problems [51]–[53]. Tactical planners are special
because of three characteristics;

• they take discrete decisions in environments where they interact with other road
users;

• the car’s position continuously changes and therefore they are moving while taking
decisions; and

• they need to be agnostic of absolute position since they should operate in large
parts of the world’s road network.

These three characteristics mean special consideration because temporal specifications
are needed to describe the desired interactions, and the states need to have a careful
abstraction.

This chapter describes how the characteristics affect the modeling of the planner and
the environment, and the formalization of the requirements. Especially, different mod-
eling formalisms are compared to expose benefits and drawbacks of using one formalism
over the another.
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4.1 Inspection of Results

One of the key findings of obstacles to using formal synthesis in larger scale industrial
applications is the importance of inspection of the results. When the number of states
of the supervisor or reactive module exceeds about 20 and when the states are highly
interconnected, it becomes very difficult to inspect and understand their resulting prop-
erties. Obviously, the supervisor or reactive module adheres to the stated requirements
that all have very precise and formal syntax and semantics, but with several interacting
requirements it is increasingly difficult to anticipate all effects of the interactions. An
objection would be that the supervisor or reactive module could be calculated by hand to
get an understanding of the results, but that defeats the purpose of applying automatic
methods to reduce the efforts of manual labor.
Interestingly, this obstacle of interpreting the results are also an issue within machine

learning (ML), and specifically within deep learning (DL) [54], [55]. On a high level the
work processes of ML and formal synthesis are very similar. A model of the environment
is one input (data in the case of ML and a formal model in the case of formal synthesis),
the requirements is the second input (reward function for ML and formal specification
for formal synthesis), and a black box model is the output (a trained agent in ML and
an automaton in formal synthesis). The goal in both fields is to find a black box output
that fulfills the requirements, adhering to the rules of the environment.
Although the solutions to these issues of explainability or ability to inspect and un-

derstand most likely require different tools for analysis and interpretation, the interest
of the topic in ML still indicates how important these issues are to solve before the
methods can be used with credibility; explaining why and when they work are important
when arguing that automated cars are safe in certain operational domains. As will be
explained in Section 4.2 though, formal synthesis has benefits in that the assumptions
on the environment become very clear because of the separation of environment and
specification.
The problem of inspection is a large part of Paper A where the results would other-

wise not have been possible to understand. Paper D also includes examples where the
possibility to inspect the black box result is important in order to formalize the correct
environment model and the correct requirements. In Paper C the focus was to compare
the synthesis methods from a modeling perspective, and thus the importance of inspec-
tion was not made explicit. However, conclusions of the issue of inspection can still be
drawn from the results of Paper C. Formal verification does not produce a black box,
and hence Paper B does not cover the issue, but the results from that paper can still be
used to reason about the usefulness of methods whose model and requirements are easily
interpretable.
The goal of Paper A is to patch a fault in a manually implemented tactical planner that

is responsible for deciding when it is safe to make lane changes (Lateral State Manager
(LSM), shown in Figure 1 in Paper A). The manually implemented code was modeled by
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Zita et al. [16] and formally verified with Supremica [36]. The result of the verification
exposed several faults, of which one was very elusive in the attempts to manually correct
it. Paper A attempts to automatically produce a patch for the LSM by using Supremica
to formally synthesize a supervisor.

The supervisor obtained for the LSM this way is correct by construction, but it is clear
that ‘correctness’ in this case does not mean the same as patching and correcting the
LSM. To come to this conclusion — that the supervisor did not rectify the fault within
the LSM — requires inspection of the supervisor.

Supremica can generate supervisors as automata in several different ways. The simplest
automaton to analyze in the scope of Paper A consists of 700 states, and is unreasonable
to visually inspect. Another option for interpreting it can be to simulate it, but that
defeats the purpose of automatic synthesis.

However, Supremica can also use BDD-based synthesis, where the result is added
as updates to the existing plants instead of generating new automata1. It is shown in
Paper A that the BDD-based supervisor is equivalent to the automata-based supervisors.
It is also evident that the updates added by the synthesis do not have the intended effect
of patching the fault; instead of correcting the fault the guards put limitations on which
values the inputs to the LSM can take. This issue can be traced back to the model, but
would not have been found easily if it were not for the possibility to inspect the generated
supervisor.

Paper D further indicates the importance of interpreting the synthesis results. By in-
spection, errors are found in both the model of the environment and in the formalizations
of the requirements. In contrast to Paper A, that only concerns SCT (more specifically
Supremica), Paper D also brings these conclusions into the field of RS, or at least syn-
thesis with the GR(1) fragment, by evaluating synthesis in TuLiP [35] side-by-side with
Supremica [36]. Given that booth tools implement fundamental algorithms in their field,
it seems likely that the results on inspection applies broadly in the fields.

In addition to finding errors in the formalizations, Paper D finds that inspection of
the supervisor and the reactive module is an important tool for qualitatively comparing
the properties of them. For instance, it is possible to visually inspect and conclude that
the supervisor allows all the traces that the reactive module accepts, but the reactive
module does not accept all traces that the supervisor allows.

In its first case study, Paper C similarly use visual inspection of the supervisor and
the reactive module to ascertain that they represent the same solution. They both have
relatively small state spaces, so visual inspection is effective.

The supervisor and the reactive module for the second case study in Paper C, on the
other hand, have huge state spaces that are unsuitable for visual inspection, even if the
length of the road is reduced heavily. The comparisons in Paper C that require evaluation
of the results are instead performed with simulations. Simulations are enough to obtain

1The BDD-based synthesis is convenient when patching since the updates are easy to translate to
if-statements and add to the original code.
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the results and draw the conclusions presented in Paper C, but better tools for inspection
might have contributed to more profound results.
As already stated above, Paper B does not perform synthesis. However, code and

abstract state machines are used in the design to aid the understanding of the behaviors
of the tactical planner. Compared to the generated supervisor and reactive module, the
code and abstract state machines seem to facilitate understanding by providing structure
and by merging (or abstracting) states that have the same behavior.
The same idea might be applied to the synthesized planners’ states to simplify the

inspection of large supervisors and reactive modules. State transitions of planners that
have no effect on the current output might contribute to an unstructured representation
in the synthesized planners’ automata-representations, and merging those states might
benefit the understanding.

4.2 Verification vs. Synthesis
Formal verification is a versatile tool for proving absence of faults. This is experienced
in Paper B, which uses Model Checking simultaneously with model-based design in an
iterative process to develop a tactical planner for an automated car. As discussed in Sec-
tion 3.3, the model of the planner and the environment are merged and there is no precise
distinction between the two. The formal specification of desired properties is entirely in
LTL. As noted in Paper B, the implementation of the tactical planner was easy to in-
tegrate with the rest of the car’s systems, and no errors were found during simulation
or in-car experiments. Although the simulations and in-car experiments were not ex-
haustive, the smooth integration gives some indication that the process with alternating
design, implementation, and model checking contributes to less errors.
However, formal verification has some drawbacks: Paper B concludes that the model

of the planner has to be updated to match new implementations of the planner. Manual
modeling always has the possibility of introducing faults [12], and remodeling naturally
increases that risk. The modeling can in some instances be made automatic, but then
the same caveat applies for the translation algorithm. Another drawback, experienced by
Zita et al. [16], is when a specification does not hold and the formal verification reports
a counterexample that is difficult to remedy manually.
Paper A and Paper D are similar to each other and investigate how the formal models

and requirements already derived by Zita et al. and Paper B, respectively, can be used
as input to a synthesis algorithm. The main conclusion of both Paper A and Paper D is
that it is helpful to already have formal models and requirements, but they need to be
reworked before they can be successfully used in synthesis.
Zita et al. [16] provide plants and specifications in Supremica to find a fault in the LSM.

The approach of Paper A is to use the same plants and specifications as input to formal
synthesis to generate a patch for the LSM. This approach fails, and the main reason
seems to be that the verification model does not have any separation of the planner and
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the environment. All dynamics are treated as a description of the environment behavior,
where the planner can restrict all behaviors. The verification model is a direct translation
of the code, so every line of code is represented, but for synthesis what matters is how
the inputs behave, how that affects the state, and how the outputs should be set based
on the inputs and the state.

Paper D illustrates more distinctly what type of changes are needed to go from verifi-
cation to synthesis. As noted above, the verification model has merged the environment
and planner behaviors, and they have to be split before the synthesis can start. To start
from such a pre-existing model of the environment simplifies the modeling for synthesis,
but there is a significant difference in syntax and semantics in the imperative verification
model in Promela on one hand, and the declarative LTL and automata in TuLiP and
Supremica on the other.

From an operational domain perspective the distinct separation of environment be-
haviors and planner behaviors is a great benefit of the synthesis process. As mentioned
above in Section 4.1, explaining when the synthesized planner works is an important
part of a credible safety argument [10], and separate formal environment assumptions
can simplify that argumentation.

The specification expressed in LTL in Paper B can be used with almost no changes in
the synthesis of the reactive module in Paper D. Minor changes are needed to account
for the limitations that GR(1) brings, for instance ♦� is not supported in the formal
specification directly. The translation of the LTL formulae into automata for Supremica
is more involved, but is not an obstacle. However, the LTL specification of Paper B is
not complete; it only expresses the properties that are most interesting to verify. Hence,
more requirements are needed to synthesize a tactical planner with the same behavior as
the manually implemented one.

The model of the planner used for verification is not used directly in synthesis because
it is the part to be generated, but if available it guides the formalization of the require-
ments on the planner. If the tactical planner of Paper A would be synthesized, then it
too will probably suffer from incomplete requirements. That synthesis with one formal
specification could lead to the desired tactical planner is unlikely. A successful synthesis
of the tactical planner as described in Paper A requires a separation of the planner and
environment model as laid out in Paper D, and the planner model should be used to
guide the formalization of a complete set of formal specifications.

The incompleteness of the requirements in formal verification is only a drawback when
they are later used in synthesis, however; when the only purpose is to formally verify
the planner and environment, the possibility to verify only the properties that matters
simplifies the process.
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4.3 Abstraction of States
Cars move in continuous time and space, but tactical planners make discrete decisions
at discrete time instances. The continuous time and space of the physical car must be
discretized or abstracted into discrete states before the formal methods described here
can be used to prove properties of the planners or to synthesize them. The abstraction
can be done to different levels. For instance, Paper B and Paper C abstract a car’s
longitudinal dynamics2 in fine detail (or low abstraction), where distance is divided into
many small steps. The discrete speed determines how many steps the car moves in every
time step, just like the dice decide how many streets the players move in Monopoly3.
A major advantage of a low level of abstraction is the type of formal specifications that

can be expressed. If the model has many details it is also possible to express detailed
specifications. Both Paper B and Paper C display this advantage. In Paper B it is
possible to express a specification for ‘do not pass the end of a path’, and in Paper C it
is possible to express that the two automated cars shall ‘keep a safety distance’. Both of
these specifications are intuitive to state as they refer to end effects.
In the end, what is important for the safety of tactical planners is that they are safe,

which often means that they must not crash. The low level of abstraction used in Paper B
and Paper C means that such ‘do not crash’-requirements can be expressed directly.
The detailed models of Paper B and Paper C come with a price, however. Their low

level of abstractions are infeasible from two perspectives.
Firstly, the correctness of the planners is restricted to the certain model of the envi-

ronment, which in Paper B and Paper C means the specific lengths of the paths and the
specific length of the circular road with one other car, respectively. In practice, a car is
used in much more varied situations than what is modeled in Paper B and Paper C. Even
if an automated car has a very restricted operational domain, there are far too many
roads and traffic occupants to model them all. In conclusion, the tactical planners must
be generic and fit a wide range of environments with no dependence on detailed states.
Since Paper B is using model checking in the development of the planner, it is possible
to design a generic planner and verify it on a detailed model. The planner can handle
several different paths and is verified on one detailed path. An induction argument could
be made for its correctness on other paths. Paper C, however, uses synthesis to gener-
ate a planner, and that planner’s decisions depend on both cars’ positions on the road.
Removing the other car or increasing the number of steps of the road after synthesis has
been performed leads to invalid states, and the decisions of the planner become nonsense.
Secondly, the low level of abstraction means a large number of states. Even if the

operational domain is limited, there will be a huge number of states. Formal methods
suffer from the state explosion problem, which means that the memory needed to store
all states becomes too big to be tractable. For any reasonably capable tactical planner

2That is, the dynamics in the driving direction. Paper B considers the motion along paths and Paper C
considers a straight road.

3And just like in Monopoly, something bad happens when moving too fast.
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the state explosion problem would be a serious obstacle with a low level of abstraction.
The paths in Paper B has a maximal length of 1500, and Spin cannot handle much more.
Supremica is close to the memory limit when the road in Paper C is 100 steps long.

Paper A and Paper D aim to synthesize generic planners that are not bound to specific
positions as in Paper B and Paper C. To accomplish that, their environment models have
a higher level of abstraction. Neither of the two papers have states that represent detailed
position, but rather the states represent operational modes. Paper D, for instance, does
not include position along a path or the car’s speed in the model of the environment.
Instead the model considers all positions along one path as one state, and the car can
either be stopped or driving. This higher level of abstraction leads to generic planners
since the details of the paths in Paper D does not matter to the planner, as long as the
process of passing between them is the same.

In addition to the benefit of allowing generic planners, synthesis with high levels of
abstraction also decreases the required state space. Then larger problems can be synthe-
sized, and the synthesized planners become easier to inspect and interpret if they consist
of fewer states.

In summary, the level of abstraction is a very important consideration when applying
formal methods. The level of abstraction will determine what type of requirements can
be expressed, how large problems can be handled, and how generic the tactical planner
can be. Ideally, we would like to express detailed requirements, solve large problems, and
design generic planners. What should the models look like to accomplish such goals?

4.4 Modeling Considerations
As seen before, the level of abstraction of the models is important to consider before
applying formal methods to a design problem. The abstraction is an important part
of the model in any language, but there are also important considerations as to which
modeling formalism to model in. As already indicated in Chapter 3, the different formal
languages have many similarities in their underlying definitions and algorithms, but
their semantics and what is possible to express can differ widely. However, despite these
differences, it can often be possible to acquire similar results in the different formalisms by
careful modeling. This section will mainly cover the differences in modeling for synthesis.

Paper C and Paper D study differences in modeling in RS and SCT, specifically dif-
ferences between TuLiP and Supremica. One fundamental difference between TuLiP
and Supremica is the modeling format. TuLiP has support for LTL synthesis, albeit
a restricted fragment of LTL, and Supremica’s modeling is performed with automata.
Although writing LTL or drawing automata is a major difference in terms of modeling
language and for the process of the designer, it does not seem to matter in terms of
what problems and solutions that formal synthesis can be applied to, at least not in the
problems investigated in the appended papers. Based on the theory of formal languages
in Chapter 3 and the results in Paper C and Paper D, it seems like the modeling formats

31



Chapter 4 Correct-by-Construction Tactical Planners

are sufficiently similar to allow expressions of similar structure in an automaton sense.
The GR(1) fragment, which the TuLiP model is restricted to, limits which formulae

that can be used in the model. Although GR(1) excludes a large part of LTL, it is
still possible to specify such properties with a combination of GR(1) formulae and extra
atomic propositions in AP . Piterman et al. [43] demonstrate how ‘until’ can be specified
in GR(1) synthesis, and Paper D has examples of how other non-GR(1) formulae are
expressed. For instance, the property of �(p→ �q), where p, q ∈ AP , can be expressed
as:

�(q → q′) (4.1)
�(p→ q) (4.2)

The property ♦�p is also not part of GR(1), but is easy to express in GR(1) synthesis
by the formulae

�p→ p (4.3)
♦p (4.4)

Hence, as indicated by both Paper C and Paper D, the restrictions of GR(1) does not seem
to be an obstacle for synthesizing tactical planners in the considered problems. Whether
these results are general is not clear and needs to be evaluated by a more systematic
review of the type of requirements and environments that applies to a broader class of
tactical planners.
The GR(1) restriction of LTL does not seem to be an obstacle for the modeling com-

pared to LTL, but the difference between the properties that can be expressed in LTL in
general and in SCT can become obstacles for synthesis. Hence, it is important to select
a suitable modeling formalism depending on what type of problem that should be solved
and what kind of solution that is desired.
In Section 3.6 it is stated that supervisors synthesized with SCT are maximally per-

missive; the supervisor disables as few events as possible, while still guaranteeing that
all requirements are fulfilled. This characteristic of supervisors is unparalleled in RS, so
its effects are important for the choice of synthesis formalism. Maximal permissiveness
allows supervisors to restrict unsafe behaviors, while the supervisors do not mandate
which safe behaviors that should be promoted. Depending on problem and desired so-
lution a maximal permissive planner can be a benefit or a drawback. The intention of
having maximally permissive supervisors is that they shall restrict a system to the safe
states and not interfere with decisions that are not affecting safety. However, that inten-
tion does not mean that synthesized supervisors are not allowed to be applied to other
problems, as illustrated in [56].
Starting with the simple game modeled in Paper C, it is shown that maximal permis-

siveness does not always mean a difference when the supervisor is compared to a reactive
module. If there is only one solution to a problem the two formalisms generate the same
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planner. However, it needs to be considered that the number of possible solutions might
not be known a priori.

In Paper A, the maximal permissiveness property of the supervisor were to be used
as a restriction on the already implemented software. Instead of implementing a new
planner based on a synthesized supervisor it might have been used to generate additional
restrictions on the software to ensure its safety. Since no supervisor was synthesized as
intended we can only speculate on the plausibility of such restrictions.

The tactical planners synthesized by Supremica in Paper C and Paper D show the
effects that maximal permissiveness has. In many states of these supervisors several
controllable events are allowed to fire. It is up to an event generator to fire one of
them, or in some cases wait for an uncontrollable event to fire. The supervisors give
no indication of whether one event is better than another, only that they all keep the
system in a safe set of states if fired. The need for an event generator can be seen as an
opportunity or a drawback. If the supervisor is intended to be a restriction that maintains
a vehicle in a safe set of states, then it might be beneficial to only formalize the safety
related requirements. If it is difficult to formalize which choice is best among the safe
actions, an event generator can then be developed that selects among the safe choices.
The event generator is, on the other hand, another decision maker to develop. There are
extensions of SCT that can automatically create an event generator [56], and modeling
techniques can be used to limit the number of enabled events [57]. These methods affect
the modeling, so whether an event generator is desired that should be known a priori.

Reactive modules are not maximally permissive. The reactive modules that are synthe-
sized by TuLiP in Paper C and Paper D have one certain output for each input. Hence,
the reactive modules do not need an event generator and can directly be implemented
as tactical planners. This means that they have a defined behavior and do not represent
only a restriction of the actions, they define exactly what decision to make. A caveat
of this characteristic is, as noted in Paper D, that behaviors that are not specified can
be realized. So, consider a formal model and specification that are synthesized into a
tactical planner that exhibits a desired behavior even if that behavior is not specified.
Consider also that the tactical planner later must be augmented with a new requirement
not relating to the original desired behavior. Since the original desired behavior is not
specified there is a chance that it disappears in synthesis with the new requirement.

As Paper D illustrates, a maximally permissive supervisor will display such specifica-
tion omissions while a reactive module might show them. As discussed in Section 4.1, it
is difficult to understand what properties all the interactions between the specifications
result in. Maximally permissiveness gives a possibility to view what properties that are
specified or not.

Further considerations when choosing between synthesis formalisms are progress, cy-
cles, and turns. Progress means that the planner and the environment are ‘moving’
toward the marked states. In TuLiP, progress is synonymous with liveness, but the term
progress is used in this context since liveness has a strict definition and is not defined for
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Supremica.
The accepted languages of TuLiP and Supremica differ in two important aspects re-

lated to progress: the length of the strings, and whether marked states must appear
in them. TuLiP builds upon the semantics of LTL, which means that the language of
the environment and the formal specification consists of infinite strings of states, where
marked states appear infinitely often (see Section 3.2). With �♦ it is therefore possible
to specify that a system shall reach a certain state, and the synthesized reactive module
guarantees that the state is reached. Supremica, on the other hand, are based on FSM
that only accept finite strings of states. These accepted strings of states either end with
a marked state, or are prefixes of such strings; the language contains finite strings that
does not include the marked states (see Section 3.6). What this means for the model-
ing semantics in SCT is that a system may reach a marked state, and the synthesized
supervisor must allow at least one marked state to be reached.
The specifications of Supremica cannot express progress, but the the maximal permis-

siveness of a supervisor means that the structure of its FSM representation allows all
safe progress properties. In a sense, a supervisor allows all safe progress properties by
default, while a reactive module generated by TuLiP is only guaranteed to satisfy the
specified progress properties.
Paper C discuss cycles in connection to progress. Cycles are sequences of states that

are repeated forever. They are easy to express in TuLiP, as shown in Paper C. A
benefit of using TuLiP in this case is that it is apparent if the specified cycles cannot
be satisfied, because TuLiP then will generate an empty reactive module. In Supremica
the specifications cannot express progress, so cycles cannot be forced by specifications.
Since cycles cannot be forced, Supremica will synthesize a non-empty supervisor without
cycles even if cycles are desired.
Paper C outlines a method to, in a sense, force cycles even in Supremica. To overcome

the lack of progress properties in SCT, the plant is structured in a way such that a su-
pervisor cannot prevent further execution cycles. This is achieved by having one marked
location with an uncontrollable event on the outgoing transition. So, if the plant fires
the uncontrollable event (which the supervisor cannot prevent), then the supervisor also
has to allow the plant to fire the remaining events to complete the cycle (because of the
marking). Although this technique does not produce infinite runs or progress, it makes
sure that, if the plant so chooses, there is always the possibility for another cycle.
One reason to force cycles is to emulate a game, where two or more players take

turns in a sequential manner. TuLiP synthesizes a reactive module by solving a game
between the environment and the reactive module, which is a benefit in some applications.
For instance, in the second case in Paper C, both cars must be allowed to decide their
individual speed in each cycle (time step). The environment model or formal specification
in TuLiP do not need formulae expressing how the speed updates shall be interleaved.
Supremica, on the other hand, needs a separate plant whose only purpose is to ensure that
the environment and supervisor update the speed in turns. Since these cycles represent
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the passing of time in some sense, it is crucial that they can continue forever.
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CHAPTER 5

Conclusions

Formal methods have several benefits as tools to design tactical planners for automated
cars. Given the requirements and an environment model, the planner is proven to be
correct. This provable correctness is in contrast to other methods, such as reviews and
tests which can only find errors but cannot prove absence of errors. Furthermore, tactical
planners make discrete decisions, and formal methods work on discrete states, so the
requirements on tactical planners are natural to express in formal models. Tactical
planners also act in dynamical feedback systems where they interact with the environment
by actions and observations, which are built-in features of formal methods. An important
capability of the formal methods in this regard is that they are capable of expressing
temporal properties that detail how these interaction will or must continue over time.

Formal synthesis is an especially interesting class of formal methods because they can
automatically generate the planner based on requirements and models. Formal synthesis
removes the need to manually develop and implement the planner, so the development
efforts can be directed to formalizing good requirements and good assumptions on the
environment.

Demonstrations show that formal methods can be used to synthesize useful correct-
by-construction tactical planners for automated cars. However, the application of formal
synthesis to the generation of such planners has obstacles. These obstacles are mainly a
problem of inspection and abstraction.

The first obstacle is that the output of formal synthesis methods are a black box that
makes decisions based on previous inputs. Theoretically, the behavior of the black box is
known since the model of the environment and the requirements are known. Practically,
on the other hand, it is difficult to completely understand all possible interactions and

37



Chapter 5 Conclusions

edge cases that result from the synthesis. One useful method to ascertain that the
synthesis result is reasonably correct is to visually inspect it as an automaton, but this is
only possible for planners with a small number of states. Another method is to simulate
the tactical planner and check that it makes the desired decisions. However, using visual
inspection or simulations to validate the requirements are no more effective than reviews
and testing, which are the activities that formal methods were to amend. Consequently,
if formal synthesis shall be used to generate tactical planners with hundreds of states,
then the validation of the requirements requires consideration. Possible approaches to
simplify the validation might be to find abstractions of synthesized planners, or build
libraries of common models and requirements that are known to be correct.
The second obstacle concerns the level of abstraction of the tactical planners. Safe

planners must avoid collisions, so the capability to express such requirements are crucial.
Two cars have collided if they occupy the same physical space, so a requirement expressing
‘do not collide’ must be able to refer to the positions of the two cars. Moreover, to be
practical in traffic, the resolution of the positions need to be high. As an example, if
a road would be divided into 100 meter sections, then the planner cannot drive closer
than 100 meters to any other car. The feasible resolution for a planner would rather
be counted in single meters. Modeling all roads that the planner should operate on in
such detail is infeasible. The solution is to model in a higher level of abstraction and
use generic states that model modes of operation rather than, for instance, position.
However, with a high level of abstraction it is not possible to express the same detailed
requirements. As both detailed requirements and generic planners are desired, it seems
valuable to investigate how the two can be combined.

5.1 Future Works
One possible drawback of SCT is that the synthesized supervisor restricts the system by
disabling events rather than making decisions. Depending on the problem, the supervisor
will have states from which more than one event is allowed because of the maximal
permissiveness of the supervisor. If one or more events from such a state are controllable,
it follows that some entity needs to make a decision whether to fire a certain event or to
wait for an uncontrollable event to fire. That entity is called an event generator. The
need for an event generator might limit the usefulness of SCT, especially if the event
generator instead can be synthesized by RS. However, if the decisions to be made by
an automated car can be divided into comfort decisions and safety decisions, then the
possibility to have a separate event generator for comfort decisions and a supervisor to
restrict it to safe decisions could be a versatile combination. The event generator could
be generated with machine learning such that it generates events that are comfortable
and aware of interactions, while the formal specification of the supervisor can focus solely
on safety [58], [59].
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CHAPTER 6

Summary of Included Papers

Paper A An earlier research study [16] employed formal verification and found issues in
manually implemented code for an automotive application. Paper A explores
whether these issues may be patched by using formal synthesis. Models and re-
quirements are available, but the results show that it is not possible to use those
directly to synthesize a meaningful patch. However, the attempted process of
patching gives insights into prerequisites and limitations of synthesis.

Paper B In Paper B, an automated vehicle is tasked with a transport mission where
safety is a high concern. Paper B employs formal verification to aid the de-
sign of a safety-critical tactical planner for the automated vehicle. The planner
has requirements on temporal properties, which can be difficult and expen-
sive to assure by testing and/or reviewing. The results indicate that formal
methods can indeed be beneficial in automotive development processes. Con-
tinuous formal verification of the design and implementation while they are
being developed means that ‘bad’ requirements and solutions are found early;
simulations and real-world experiments of the complete system were performed
successfully with little modification. The results also show that formal verifica-
tion has the capability of proving functionality of a generic planner on a more
specific environment model.

Paper C TuLiP and Supremica are tools from the fields of Reactive Synthesis and Su-
pervisory Control Theory. Paper C compares the two synthesis methods im-
plemented in TuLiP and Supremica from a modeling perspective. The compar-
ison is based on two case studies; a turn-based game and an automated vehicle
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scenario. Paper C demonstrates differences and similarities between the two
synthesis tools, which can indicate in what situations a practitioner should use
one before the other. For instance, it is demonstrated how shared resources
affect the modeling, how cycles can be modeled, and how progress requirements
are treated.

Paper D The tactical planner designed in Paper B was formally verified to be safe. How-
ever, formal verification has some drawbacks, so Paper D replicates the tactical
planner in Paper B with the two different synthesis methods implemented in
TuLiP and Supremica in order to investigate whether formal synthesis can al-
leviate the drawbacks. The synthesis methods are compared to each other, and
to formal verification as performed in Paper B. The comparisons treat model-
ing, requirements, and the resulting planners. It is shown that the synthesized
planners are similar to each other and that the requirements can be formal-
ized in both of the synthesis methods’ formalisms. Paper D gives insights into
benefits and drawbacks of using formal synthesis to design tactical planners.
As an example, it is difficult to inspect and interpret the results of synthesis,
so it is sometimes difficult to know what behaviors interacting requirements
are causing. Additionally, there is a conflict between the possibility to express
detailed requirements while also generating generic planners.
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