
thesis for the degree of licentiate of engineering

Falsification of Signal-Based Specifications for
Cyber-Physical Systems

with applications from the automotive domain

Johan Lidén Eddeland

Department of Electrical Engineering
Chalmers University of Technology

Göteborg, Sweden, 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Research

https://core.ac.uk/display/275893439?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Falsification of Signal-Based Specifications for Cyber-Physical
Systems with applications from the automotive domain

Johan Lidén Eddeland

Copyright © 2019 Johan Lidén Eddeland
All rights reserved.

This thesis has been prepared using LATEX.

Department of Electrical Engineering
Chalmers University of Technology
SE-412 96 Göteborg, Sweden
Phone: +46 (0)31 772 1000
www.chalmers.se

Printed by Chalmers Reproservice
Göteborg, Sweden, December 2019

To Hanna

Abstract
In the development of software for modern Cyber-Physical Systems, testing
is an integral part that is rightfully given a lot of attention. Testing is done
on many different abstraction levels, and especially for large-scale industrial
systems, it can be difficult to know when the testing should conclude and the
software can be considered correct enough for making its way into production.
This thesis proposes new methods for analyzing and generating test cases as

a means of being more certain that proper testing has been performed for the
system under test. For analysis, the proposed approach includes automatically
finding how much a given test suite has executed the physical properties of
the simulated system.

For test case generation, an up-and-coming approach to find errors in Cyber-
Physical Systems is simulation-based falsification. While falsification is suit-
able also for some large-scale industrial systems, sometimes there is a gap
between what has been researched and what problems need to be solved to
make the approach tractable in the industry. This thesis attempts to close this
gap by applying falsification techniques to real-world models from Volvo Car
Corporation, and adapting the falsification procedure where it has shortcom-
ings for certain classes of systems. Specifically, the thesis includes a method for
automatically transforming a signal-based specification into a formal specifica-
tion in temporal logic, as well as a modification to the underlying optimization
problem that makes falsification more viable in an industrial setting.
The proposed methods have been evaluated for both academic benchmark

examples and real-world industrial models. One of the main conclusions is
that the proposed additions and changes to analysis and generation of tests
can be useful, given that one has enough information about the system under
test. It is difficult to provide a general solution that will always work best –
instead, the challenge lies in identifying which properties of the given system
should be taken into account when trying to find potential errors in the system.

Keywords: Testing, Simulation-Based Verification, Falsification, Cyber-Physical
Systems.

i

ii

List of Publications
This thesis is based on the following publications:

[A] J. Eddeland, J.G. Cepeda, R. Fransen, S. Miremadi, M. Fabian and
K. Åkesson, “Automated Mode Coverage Analysis for Cyber-Physical Sys-
tems Using Hybrid Automata”. The 20th World Congress of the International
Federation of Automatic Control, 2017, Toulouse, France

[B] J. Eddeland, S. Miremadi, M. Fabian and K. Åkesson, “Objective Func-
tions for Falsification of Signal Temporal Logic Properties in Cyber-Physical
Systems”. 13th IEEE Conference on Automation Science and Engineering
(CASE), 2017, Xi’an, China.

[C] K. Claessen, N. Smallbone, J. Eddeland, Z. Ramezani and K. Åkesson,
“Using Valued Booleans to Find Simpler Counterexamples in Random Test-
ing of Cyber-Physical Systems”. 14th Workshop on Discrete Event Systems
(WODES), 2018, Sorrento Coast, Italy.

[D] J. Lidén Eddeland, K. Claessen, N. Smallbone, Z. Ramezani, S. Mire-
madi and K. Åkesson, “Enhancing Temporal Logic Falsification with Specifi-
cation Transformation and Valued Booleans”. Submitted for possible journal
publication.

[E] J. Lidén Eddeland and K. Åkesson, “A Case Study of Optimization
Solvers and Objective Functions for Falsification of Cyber-Physical Systems”.
Submitted for possible conference publication.

iii

iv

Acknowledgments
First of all, I would like to thank my supervisors Knut Åkesson and Sajed
Miremadi for always giving me the support I need in my doctoral studies.
During times when I have struggled, you have always helped me with encour-
aging words and fruitful discussions, all of which has contributed greatly to
this thesis. Thanks also goes to my assistant supervisor Martin Fabian, who
always helps me with proofreading and specifying the theoretical concepts of
my research.
I also want to thank everyone I have worked with at Volvo for making

it a good workplace for me. Specifically, I want to thank my first manager
Isak Öberg for all the help during the start of my time as a PhD student.
Andreas Andersson has always been available for good discussion on technical
details, and Ulf Eliasson and Johan Alenius have helped me out with specific
issues more times than I can count. Team MM and Team Red have always
contributed to a great experience at work.

I am thankful to everyone at Chalmers who help make it a good working
environment as well, especially the Automation group and the other industrial
PhD students whom I share my office with. I am also very grateful to Koen
Classen and Nicholas Smallbone for taking their time to discuss interesting
concepts with me. I would also like to show my deep appreciation to Alexan-
dre Donzé, who always helps me to solve different problems even though my
questions are not always well-posed.

This research has been performed as part of Volvo Cars Industrial PhD Pro-
gram (VIPP). The work has been performed with support from the Swedish
Governmental Agency for Innovation Systems (VINNOVA) project TESTRON
2015-04893 and from the Swedish Research Council (VR) project SyTeC 2016-
06204. I gratefully acknowledge this support.

Finally, I want to thank my family who have endured me from the very
beginning. I express my gratitude to my parents and brothers for their con-
tinuous love and support. The one who remains to be mentioned is the one
who I could not live without: my wife Hanna. Coming home from work every
day to you and our sons Vidar and Sixten makes me the happiest person in
the world. Thank you for your endless patience and love, I will try to match
it for the rest of our lives!

v

Acronyms

CI: Continuous Integration

CPS: Cyber-Physical System

MBT: Model-Based Testing

MC/DC: Modified Condition/Decision Coverage

SMT: Satisfiability Modulo Theories

SUT: System Under Test

vi

Contents

Abstract i

List of Papers iii

Acknowledgements v

Acronyms vi

I Overview 1

1 Introduction 3
1.1 Testing in industry . 6

Levels of testing . 6
Continuous integration . 8

1.2 Thesis outline . 8

2 Software testing 11
2.1 Model checking versus testing 11
2.2 Coverage criteria . 12

Coverage criteria for Cyber-Physical Systems 14
2.3 Random testing . 14

vii

3 Optimization-based testing of cyber-physical systems 17
3.1 Cyber-Physical Systems . 17

Requirements of CPSs . 18
3.2 Discrete-time signals . 20
3.3 Signal temporal logic . 20

Robust satisfaction of STL formulas 21
3.4 Falsification . 23

Input generators . 25
Robustness function . 25
Parameter optimizer . 26

3.5 Falsification example . 26

4 Related Work and Research Questions 29
4.1 Related work . 29

Signal Temporal Logic and Metric Temporal Logic 29
Falsification of Cyber-Physical Systems 30

4.2 Research questions . 31
4.3 Methodology . 33

Method . 34
Analysis . 35
Limitations of the methodology 35

4.4 Contributions . 35

5 Summary of included papers 37
5.1 Paper A . 37
5.2 Paper B . 38
5.3 Paper C . 38
5.4 Paper D . 39
5.5 Paper E . 39

6 Concluding Remarks and Future Work 41

References 43

viii

II Papers 49

A Automated Mode Coverage Analysis for Cyber-Physical Systems
Using Hybrid Automata A1
1 Introduction . A3
2 Hybrid Automata and the MC/DC Criterion A5
3 Hybrid Automata . A8
4 Coverage Criterion . A9

4.1 Mode coverage . A10
4.2 Comparison to other coverage definitions A11

5 Automotive use case . A12
5.1 Introduction of the model A12
5.2 Generating the modes A13
5.3 Characteristics of generated modes A15
5.4 Coverage results . A16

6 Conclusions . A17
References . A18

B Objective Functions for Falsification of Signal Temporal Logic
Properties in Cyber-Physical Systems B1
1 Introduction . B3
2 Problem Overview . B5

2.1 Falsification of temporal properties B5
2.2 Generating inputs based on parameters B6
2.3 Example . B8

3 Preliminaries . B9
3.1 Signal Temporal Logic B11
3.2 Robust satisfaction of STL formulae B11
3.3 Falsification of STL formulae B12

4 Alternative Objective Functions B13
5 Implementation . B14

5.1 Optimization problem B16
6 Use Case . B16

6.1 Introduction of the model B16
6.2 Experimental setup . B17
6.3 Results . B18

7 Conclusion . B18

ix

References . B20

C Using Valued Booleans to Find Simpler Counterexamples in Ran-
dom Testing of Cyber-Physical Systems C1
1 Introduction . C3

1.1 Related work . C4
1.2 Contributions . C5

2 Example . C6
2.1 The model . C6
2.2 Testing and shrinking with QuickCheck C7
2.3 Falsification with Breach C10

3 Approach . C12
3.1 Valued Booleans . C13
3.2 Comparison with Signal Temporal Logic C17

4 Evaluation . C19
4.1 The heater example . C20
4.2 Automatic transmission example C22

5 Conclusion . C25
References . C25

D Enhancing Temporal Logic Falsification with Specification Trans-
formation and Valued Booleans D1
1 Introduction . D3

1.1 Related work . D4
1.2 Contributions . D5

2 Signal Temporal Logic and Falsification D6
2.1 Discrete-time signals . D6
2.2 Signal Temporal Logic D7
2.3 Falsification . D7

3 Signal-Based Specifications . D9
3.1 STL specifications in a signal-based framework D10
3.2 Signal-based specifications expressed in STL D11
3.3 Recursive loops in specifications D14
3.4 When semantics do not match D17

4 Valued Booleans . D18
4.1 Max semantics . D19
4.2 Additive semantics . D21

x

4.3 Properties for reasoning about Valued Booleans D22
4.4 Other properties of VBools D26

5 Results and Discussion . D28
5.1 Automatic Transmission Benchmark D29
5.2 Abstract Fuel Control Benchmark D30
5.3 Third Order ∆− Σ Modulator D30
5.4 Static Switched System D32
5.5 Transforming Volvo requirements to STL D33
5.6 Discussion . D34

6 Conclusions . D35
6.1 Future work . D36

References . D37

E A Case Study of Optimization Solvers and Objective Functions
for Falsification of Cyber-Physical Systems E1
1 Introduction . E3

1.1 Related work . E4
1.2 Contribution . E4

2 Preliminaries . E5
2.1 Discrete-time signals . E5
2.2 Signal Temporal Logic E5
2.3 Robust semantics for STL E6
2.4 Falsification . E8

3 Experimental setup and results E8
3.1 Optimization solvers . E11
3.2 Automatic Transmission Benchmark E11
3.3 Third Order ∆− Σ Modulator E13
3.4 Static Switched System E13
3.5 Discussion . E14

4 Conclusions . E16
References . E17

xi

Part I

Overview

1

CHAPTER 1

Introduction

When we as humans create something, it is usually a process of trial and error.
“Rome was not built in a day” is a proverbial saying that can suggest both
that great things take a long time to finish, but perhaps also that there will be
mistakes made along the way. Developing modern software is no exception,
which means that we need to systematize how to catch the errors so that they
do not exist in the final product.
This thesis tackles the problem of testing software. Specifically, techniques

to increase the level of automation in testing of Cyber-Physical Systems
(CPSs) are presented, in an effort to find bugs or errors without creating
much additional work effort for the engineers designing the system. A CPS
is, as the name suggests, a system which consists of both cyber and physi-
cal properties – meaning that there is some software interacting with actual
physical components. Some examples of CPSs are cars, industrial robots, and
advanced medical devices. A CPS is considered a hybrid system in the sense
that it contains both discrete and continuous elements.
To efficiently develop modern CPSs, a common design paradigm is to use

models. A model in this case is a mathematical description of the inner work-
ings of the CPS, and the model can be defined for different levels of abstrac-

3

Chapter 1 Introduction

tion. For example, a simple model of a car could simply define how a point
mass accelerates forward as a function of how hard the driver pushes the
gas pedal. However, a more detailed model could take into account the fric-
tion between the car and the road, the weight of the passengers in the car, the
weather and air resistance around the car, and many other characteristics that
determine how the car moves through space. Performing testing on models is
naturally called Model-Based Testing (MBT). MBT typically involves much
automatic testing and is becoming more and more useful as the software size in
cars is increasing rapidly, which means that manual testing does not scale well
enough time-wise to be viable for the future. For example, Figure 1.1 shows
the historical downloadable software size in certain Volvo cars, which indi-
cates that the software size is increasing approximately exponentially. This
motivates introducing more automated testing as a complement to the manual
testing which is usually already in place in development of modern CPSs.

1998 2002 2006 2011 20150

200

400

600

800

1,000

1,200

S80
1.5MB

XC90
5MB

S80
11MB

V60
118MB

XC90
917MB

Year

M
eg
ab

yt
es

Figure 1.1: A bar chart of the downloadable software size in certain Volvo car
models during the years 1998 - 2015.

To test the models that are being developed, one must define what needs to
be tested. This is done by defining a specification, i.e., the desired behaviour
of the system. A specification can be written in natural language, e.g. “The
car’s velocity should be lower than 150 km/h”, or in some more mathematical
way, e.g. “v < 150”. The output of the system given a certain input, a test
case, can then be evaluated against the specification to see if the test case has
passed or failed.

4

An important and difficult question is how to create new test cases for the
System Under Test (SUT). Generating a test case for a model of a CPS typi-
cally means coming up with inputs to a simulation of the closed-loop system
including both software and the physical components of the system. In the
end, the tests are created to find faults if they exist in the system (testing can
never prove absence of errors in the system), but there are different approaches
to guide the generation to this end. One approach is to consider code coverage
of the software being tested. As an example, consider the pseudo-code below.
if a then

x = x+ 1
else

x = x− 1
end if
If one wants full statement coverage of the given code, all statements need

to be executed, meaning that a needs to take on both values true and false
(for example in a test suite, a collection of test cases). There are many types
of coverage other than statement coverage, for example branch coverage and
decision coverage, but the main idea of a coverage criterion is to give a number
indicating how much of the structure of the code that has actually been tested.
Another approach to generate new test cases is via optimization-based test-

ing (or falsification) of CPSs. This approach formulates the problem of gen-
erating test cases as an optimization problem, where the objective function
measures how far a formal specification is from being falsified, i.e., not be-
ing fulfilled. To be clear, whenever falsification is mentioned in this thesis, it
refers to the specific optimization-based method of finding counterexamples
to temporal logic specifications of CPSs.
No matter which test method is considered, it is clear that testing attracts

many practitioners from both academia as well as industry. It is however also
clear, as in most research areas, that methods developed in academical con-
texts are not always found in industry. In other words, there is a discrepancy
in methods developed by researchers and methods used in industry. This the-
sis attempts to diminish this discrepancy by adapting academical methods to
be suitable for industrial models as well as academical ones.

5

Chapter 1 Introduction

1.1 Testing in industry
Testing in an industrial context often becomes difficult because of the sheer
scale of software development. When several hundred engineers work together
to develop (a part of) a CPS, for example a component in a car, there are
typically different levels of testing performed. It is also common to introduce
different automatic methods for faster and more reliable software development.
One of these methods is Continuous Integration (CI), which is detailed later
in this section.

Levels of testing
As part of a Model-Based Design approach, the testing levels can include, but
are not limited to:

• Model-in-the-Loop (MIL): The software component(s) to be tested
are modeled and simulated (meaning that no explicit code is written,
rather the software components are created using a model language, for
example Modelica or Simulink). The plant, i.e., the physical part of the
system which the software interacts with, is also simulated.

• Software-in-the-Loop (SIL): The modeled software (or controller) is
code-generated, and then this generated code is tested against a simu-
lated plant.

• Hardware-in-the-Loop (HIL): Some component(s) of the actual hard-
ware are used in the testing, while some of the plant is still being simu-
lated.

The final stage of testing is to physically test the entire system, for example
by driving the finished car and trying to evaluate whether all the requirements
on the system are fulfilled. The earlier testing phases presented here are the
ones that are cheapest and easiest to scale. For MIL and SIL testing, since
everything is simulated, the only limiting factor in creating and evaluating
new test cases is computational power. For HIL testing, since there is an
actual hardware component interacting with the software, the testing needs
to be performed in real time, typically also with additional safety measures
since parts could potentially catch fire or be part of similar hazards.

6

1.1 Testing in industry

In this thesis, the main focus is on testing environments where the whole
system is simulated, e.g. MIL and SIL testing. It should still be noted that
all different testing environments are vital for complete testing of the CPS,
as MIL and SIL testing for example cannot capture any hardware problems.
Similarly, for a car there are certain aspects that can only be tested by actual
driving of the car and not in HIL testing.
There is also another aspect of testing in the software development process.

When a software component is created, typically the software developer will
create unit tests to verify that the component works as expected by itself.
When several software components are created, the next step is for them to
be connected to each other as part of the functionality of the system. Now
testing needs to be performed to validate that the interface and interaction
between the components work as expected – this is called integration testing.
When all different parts of the final system are connected, the final testing
stage is called system testing. Figure 1.2 shows how MIL, HIL and SIL testing
can be related to unit, integration and system testing in an interpretation of
the V model of software development.

Implementation

Unit
tests

Integration
tests

System
tests

Specification
model

Control design
model

Requirements

MIL

SIL

HIL

Design

Ve
rifi

ca
tio

n

Figure 1.2: An illustration of how MIL, SIL, and HIL testing can be related to
unit, integration, and system testing in the V model of software de-
velopment. Even though each of the testing levels come sequentially
in the testing process, there is not a 1:1 correspondence between (for
example) MIL/Unit, SIL/Integration, or HIL/System.

7

Chapter 1 Introduction

Continuous integration
A common way to incorporate testing in industry is to use Continuous In-
tegration (CI). CI is the practice of automatically merging developed code
often, in order to more frequently find smaller faults rather than having to
fix large errors with many potentially complex causes at larger time intervals.
An overview of a typical CI workflow is shown in Figure 1.3.
A sketch of the desired effect of CI, in terms of time spent finding and

correcting errors in the developed software, can be seen in Figure 1.4. It
is clear that in the ideal case, it is easier to find bugs when there are few
of them and there are not many different versions of the software to check
against. However, implementing CI also requires writing of automated tests
and a general change in the way of working (compared to not using CI). As
this thesis is focused on automated testing, it can be seen as part of making
a CI chain work.

1.2 Thesis outline
The thesis is divided into two parts. In the first part, an overview is presented
to give the reader the understanding needed for the papers appended in the
second part.
Chapter 2 contains a brief overview of why to perform testing for the

software that is part of CPSs. There are also presentations of coverage criteria
(needed for understanding Paper A) and random testing (needed for Paper C
and Paper D).
Chapter 3 is about optimization-based testing of CPSs. In this chapter

the falsification process is detailed, including a definition of Signal Temporal
Logic for discrete-time signals. These definitions are useful for understanding
papers B, D, and E.
Chapter 4 first includes a summary of related and recent work in related

research areas. It also contains the research questions, the methodology, and
the main contributions of the thesis.
Chapter 5 summarizes the content of the appended papers.
Chapter 6 contains a conclusion of the work presented in the thesis, and

also an outlook on the future work to be done.

8

1.2 Thesis outline

Developer Code
repository

Pre-build
tests

Post-build
tests

Commit to code
repository

Automatically trigger
CI process

Run automated
pre-build tests

Success?

Build new version
of product

Receive build fail
notification

Run automated
post-build tests

Success?
Receive

automated test fail
notification

Merge to
master

Yes

No

No

Yes

Figure 1.3: A flowchart including typical elements of continuous integration (CI).
When a developer pushes their code, the code needs to be built and
pass both unit tests and other automated tests before being pushed to
the master branch. If the code does not build, or if it fails any tests, the
developer will be notified and needs to change the code before trying
to push again. In the context of this figure, pre-build tests could be
unit tests, while post-build tests could be integration tests.

9

Chapter 1 Introduction

Delivery Delivery Delivery
Time

Te
ch
ni
ca
ld

eb
t

Traditional
Continuous Integration

Figure 1.4: A sketch of intended technical debt over time using traditional devel-
opment methods versus continuous integration. Committing the de-
veloped code with high frequency typically also means that the faults
are easier to find and less time-consuming to fix.

10

CHAPTER 2

Software testing

This chapter gives a short insight into what software testing is, and the dif-
ferent kinds of software testing that are related to this thesis. In Section 2.1,
there is a brief discussion about why testing is a reasonable approach to verify-
ing behaviour of CPSs. Section 2.2 discusses coverage criteria for testing and
how they are used in industry. In Section 2.3, random testing is presented.

2.1 Model checking versus testing
An approach to verify correctness of programs is model checking [1]. Model
checking is exhaustive, meaning that if there is an error in the model with
regards to the specification, a model checking algorithm that finishes will find
it [2]. While this sounds appealing, model checking techniques have limitations
and are not possible to use for general industrial CPSs. In fact, the general
problem of verifying properties for hybrid systems, i.e., systems with both
discrete and continuous dynamics, is undecidable [3]. This means that it
has been proven that in the general case, no algorithm can decide whether a
certain property for a hybrid system holds or does not hold. In addition to
this, while model checking methods are very useful for models without the

11

Chapter 2 Software testing

limitations discussed here, there are several other obstacles to overcome [4]
for model checking to be viable in industry (the most notable being a lack
of experience in industry in formalizing the models and specifications to be
checked).
With this in mind, we turn to testing instead. Testing is non-exhaustive,

meaning that no matter how long we test, we can not prove the absence of
bugs, but testing can still raise the confidence in the correctness of the final
product. Testing is scalable and usable for complex industrial-sized systems,
making it suitable for the research presented in this thesis which is close to
application.

2.2 Coverage criteria
Testing the inner structure of the SUT is called white-box testing, while testing
the system behaviours without considering the inner workings of the SUT is
called black-box testing. If the scope is to perform white-box testing, one may
be interested in looking at different code coverage criteria for evaluating if the
test cases have tested the system appropriately or not. For examples of some
common coverage criteria, consider the simple example below.
1: if (a and b) or c then
2: x = x+ 1
3: else
4: x = x− 1
5: end if
To fulfill statement coverage, every statement needs to be executed by the

test suite. To fulfill branch coverage, every branch of the program needs to be
executed. In this case, there are two branches; the “if” branch (row 2) and
the “else” branch (row 4), which means that “(a and b) or c” has to evaluate
to true at least once and false at least once in the test suite.
Fulfilling decision coverage is sometimes defined as fulfilling branch cov-

erage, and sometimes as making sure that every point of entry and exit in
the program has been invoked at least once as well as that every decision
in the program has taken all possible outcomes at least once [5]. A decision
is a Boolean expression composed of conditions and zero or more Boolean
operators, where a condition is a Boolean expression containing no Boolean
operators. In the given example, “(a and b) or c” is a decision, while “a”, “b”

12

2.2 Coverage criteria

and “c” are conditions.
Another coverage criterion that covers more than the ones mentioned above

is Modified Condition/Decision Coverage (MC/DC). MC/DC is especially in-
teresting because it is used widely in industry to validate test suites, and
because MC/DC is highly recommended for ASIL D (the highest classifica-
tion of Automotive Safety Integrity Level) in ISO 26262 [6]. MC/DC requires
all of the following:

1. Every point of entry and exit in the program has been invoked at least
once.

2. Every condition in a decision in the program has taken all possible out-
comes at least once.

3. Every decision in the program has taken all possible outcomes at least
once.

4. Each condition in a decision has been shown to independently affect
that decision’s outcome. A condition is shown to independently affect
a decision’s outcome by varying just that condition while holding fixed
all other possible conditions.

Below is a short analysis of what is needed to fulfill each of the points of
MC/DC for the given code example.

1. To fulfill the first point, branches of the if -statement need to be exited,
meaning that “(a and b) or c” needs to evaluate to true at least once,
and false at least once.

2. To fulfill the second point, each condition (a, b and c) must be true at
least once, and false at least once.

3. To fulfill the third point, it is enough for this example to fulfill the same
things as the first point since there is only one decision present.

4. To fulfill the fourth point is the trickiest. Consider the two cases below

a = true, b = true, c = true

a = false, b = false, c = false

13

Chapter 2 Software testing

These inputs fulfill the first three points, but they do not fulfill the
fourth point. The reason is that for both of these cases, none of the
conditions a, b or c independently affect the decisions outcome. Instead,
an example of cases required to fulfill MC/DC are shown below (where
conditions in bold can be shown to independently affect the decisions
outcome by keeping the other conditions fixed).

a = true, b = true, c = false

a = false, b = true, c = false

a = true, b = false, c = false

a = false, b = false, c = true

Coverage criteria for Cyber-Physical Systems
In the realm of testing Cyber-Physical Systems, different kinds of coverage
criteria have also been considered to improve the testing procedure. One
approach [7] uses the star discrepancy to measure how well-filled a set of
points is. This is applied to the values of the continuous state variables in a
test suite for the SUT, and the test generation algorithm presented uses start
discrepancy as a guide.
In another work [8], the authors present several coverage metrics to be

used as evaluation of a requirements-driven falsification tool. The proposed
coverage metrics typically include information about the discrete states of the
hybrid SUT.

2.3 Random testing
A testing technique relevant to this thesis is random testing (or randomized
testing; the terms will be used interchangeably in this thesis). In random test-
ing, the user supplies the testing tool with properties that need to be tested,
and generators that define how the inputs to a program can be created [9] (at
least for user-defined types where the testing tool cannot know how to gener-
ate data otherwise). Some different random testing techniques are fuzz testing
[10], where faulty inputs are sent into a program to test its security, and con-
colic testing [11], where random inputs is combined with symbolic execution
to easier find very specific path conditions leading to bugs in programs.

14

2.3 Random testing

As an example of random testing, consider the following (faulty) implemen-
tation of a function to calculate the absolute value of a number.
function abs(x)

if x > 0 then
return x

else
return x . Should be −x

end if
end function
Depending on the tool and the type defined for x, one might need to define

a generator for x. For example, one alternative is that x should be any signed
integer, another that x should be a double in the range [-100, 100]. For the
sake of this example, we choose the second alternative as the input generator
for x. A reasonable specification to test against for the absolute value could for
example be ∀x x ≥ 0. Very many test cases can be generated automatically,
where the input of each test case is a random number according to the specified
generator. Since approximately 50% of the generated input would fail the
specification, the bug in the code would be found easily with random testing.
For the given example, the input is simply a random number, but input

generation can easily be generalized to support e.g. random testing of simu-
lated CPSs. For example, consider a model of a car, where the input defines
how much to accelerate (a percentage of the full acceleration in the range
[0, 100]). The input generator would then need to create a time-indexed vec-
tor, where for each time the input has a value in [0, 100]. Note, however, that
it is probably not reasonable to simply generate a new random value for each
time instance, independent of neighbouring values, as this would be an unre-
alistic scenario (nobody could push and release their foot on the accelerator
pedal tens of times per second). To circumvent this, one could do one of the
following (or a combination of both):

• Make sure that the input generator only generates smooth curves, e.g.
by generating an appropriate start value and then randomly selecting
a second derivative, which is then integrated twice to provide the final
input (making sure that the twice integrated values are in the interval
[0, 100]).

• Generate purely random values for each time, but shrink the generated

15

Chapter 2 Software testing

test case when a fail is found. Shrinking keeps simplifying the input
of the test case as long as it keeps failing the specification, which could
result in a physically reasonable input after the shrinking process finishes
(for details, see e.g. [12]).

To summarize, random testing is a form of software testing that can be pro-
ficient at finding certain kind of bugs in code, given that the testing problem
is set up properly. However, to automatically generate test cases for Cyber-
Physical Systems requires several other considerations as well – something
that is covered in more detail in Chapter 3.

16

CHAPTER 3

Optimization-based testing of cyber-physical systems

This chapter starts with a presentation of Cyber-Physical Systems in general
and continues with the basics of falsification for CPSs. Falsification of CPSs
is the main subject of papers B, C, D, and E. Included in this presentation
is the definition of discrete-time signals, Signal Temporal Logic (STL), and
the robust satisfaction of STL formulas. Finally, the whole falsification loop
is summarized and explained in further detail.

3.1 Cyber-Physical Systems
Cyber-Physical Systems are systems that interact with the physical environ-
ment through the use of sensors (for acquiring information) and actuators (for
affecting the physical surroundings) [13]. The main differences from mecha-
tronic systems are that a CPS can be connected to and communicate with
other CPSs, and a CPS consists of several different integrated subsystems
[14]. As systems get larger and more complex, a CPS can be seen as part of
the transition chain going from first a mechatronic system, then to a CPS, and
then to a cloud-based system. As an example from the automotive domain,
a drivetrain for a vehicle is considered a mechatronic system, while an entire

17

Chapter 3 Optimization-based testing of cyber-physical systems

car is considered to be a CPS.

Requirements of CPSs
CPSs are typically safety-critical, meaning that a failure in operation of the
system can result in serious damage or injury. Therefore, there is much focus
in research to make sure that CPSs conform to safety requirements1 [15].
However, it is not trivial to formulate the requirements to be put on CPSs.
As an extended example, consider a hypothetical requirement on a specific

CPS, namely a car. This is to help illustrate the kind of requirements that
could exist in industry and therefore also inspire the transformation approach
used in Paper D. However, as real industrial requirements are proprietary,
only a discussion on hypothetical requirements can be included in this thesis.
Consider therefore say that we have the following requirement on the car:

Requirement 1. The car should be comfortable to drive.

This requirement is very abstract. On one hand, many would be able to
evaluate whether or not this requirement holds after driving the car a few
hours. On the other hand, it is unclear how to formally specify this require-
ment, and specifically it is impossible to test that parts of the system, e.g.
certain software, fulfills its part of the requirement.
To make the requirement testable, it needs to be broken down into compo-

nents. Of course, a requirement like the one presented can be interpreted in
many different ways, and will be considered fulfilled in different ways depend-
ing on who is asking. Now, different attempts of refining the requirement will
be performed; an overview of how the different requirements relate to each
other are shown in Figure 3.1. The first refinement follows in Requirement 2:

Requirement 2. To be considered comfortable (and therefore fulfill Require-
ment 1), the car should fulfill all of the following:

2.1 The car seats should be ergonomic;

2.2 The inside of the car should reach comfortable temperature quickly after
start, and

1Note that requirement and specification typically refers to the same thing. However, the
word requirement is typically used in industrial contexts, and the word specification is
typically used to denote more formal or mathematical objects in academical contexts.

18

3.1 Cyber-Physical Systems

Req. 1

Req. 2.1 Req. 2.2

Req. 3.1 Req. 3.2

Req. 2.3

Req. 4

Figure 3.1: A tree describing how different example requirements are related. Each
node is a refinement of its parent.

2.3 When the driver presses down the accelerator pedal, the car should re-
spond quickly.

It should be clear that Requirement 2 is for most people not enough to
describe that a car is comfortable, but this analysis is limited to the three
sub-requirements presented, in order to keep the example short enough for
presentation. The refinement will continue only for the requirements which
can be considered software-related, as those are the ones that could be used as
specifications in a simulation-based testing environment (such as the testing
environment used in most of this thesis).

Clearly, Requirement 2.1 is not software-related; it is rather an issue to solve
with the hardware of the car. However, in a modern car, both Requirement
2.2 and Requirement 2.3 are likely software-related. In order for them to be
testable, they need to be more clearly defined, so that a simulation environ-
ment can somehow evaluate whether the requirement has been fulfilled or not.
Another level of refinement is applied, which results in requirements 3 and 4.

Requirement 3. When the car starts,

3.1 The inside of the car should reach 21◦C within 2 minutes, and

3.2 The inside temperature of the car should never reach above 23◦C.

Requirement 4. To feel like the car responds quickly to desired acceleration,
if the angle of the accelerator pedal is larger than 70◦ and the current speed is
lower than 200 km/h, the gear must be shifted correctly within 0.5 seconds and

19

Chapter 3 Optimization-based testing of cyber-physical systems

then the maximum acceleration force must be felt by the driver within another
2 seconds. Otherwise, if the angle of the accelerator pedal is lower than 70◦
or the current speed is higher than 200km/h, the behaviour of acceleration is
defined by another requirement.

The requirements can be refined even further, but the main point of the
refinement process has been shown: the further a requirement is refined, the
more clear it is which signals of the system must be included to evaluate
the requirement. It is also typical that to check whether a requirement has
been fulfilled by a specific test case, a set of prerequisites have to be fulfilled.
These prerequisites correspond to different entries in the tables of formulas
discussed in the transformation of specifications in Paper D. For example, for
Requirement 4, one precondition would be that the angle of the accelerator
pedal is larger than 70◦ and that the current speed is lower than 200 km/h.

3.2 Discrete-time signals
Falsification relies on monitoring of signals with respect to specifications writ-
ten in temporal logic. As such, falsification in literature is usually defined
in relation to continuous signals [16]. However, in Paper C, there is much
discussion about semantics of logic for discrete-time signals, which is why the
discrete-time presentation is chosen in this chapter as well. It is possible but
not trivial to generalize these definitions to continuous time [17], [18].

Definition 1. A discrete-time signal x[k] is a function x : I → R from a
finite subset of I ⊂ Z to R, where k ∈ I. The set I labels the time instants
of the signal, and the signal takes on continuous values at each of those time
instants.

3.3 Signal temporal logic
Signal Temporal Logic (STL) [19] is an extension of Linear Temporal Logic
(LTL) [20], with the additions of real-valued signals and dense time (as op-
posed to boolean expressions and modalities). LTL was originally designed
for formal verification of software by encoding formulas of what should hold
for the systems that should be verified.

20

3.3 Signal temporal logic

The grammar of STL formulas is defined here as

ϕ ::= µ | ¬µ | ϕ ∧ ψ | ϕ ∨ ψ | �[a,b]ϕ | ♦[a,b]ϕ | ϕ U[a,b]ψ,

where µ is a predicate, and ϕ and ψ are STL formulas. µ is decided by the
sign of a function of an underlying signal x, meaning that µ ≡ µ(x[k]) > 0.
Similarly to [21], the validity of a formula ϕ with respect to the discrete-time

signal x at time instant k is defined as

(x, k) |= µ ⇔ µ(x[k]) > 0
(x, k) |= ¬µ ⇔ ¬((x, k) |= µ)
(x, k) |= ϕ ∧ ψ ⇔ (x, k) |= ϕ ∧ (x, k) |= ψ

(x, k) |= ϕ ∨ ψ ⇔ (x, k) |= ϕ ∨ (x, k) |= ψ

(x, k) |= �[a,b]ϕ ⇔ ∀k′ ∈ [k + a, k + b], (x, k′) |= ϕ

(x, k) |= ♦[a,b]ϕ ⇔ ∃k′ ∈ [k + a, k + b], (x, k′) |= ϕ

(x, k) |= ϕ U[a,b]ψ ⇔ ∃k′ ∈ [k + a, k + b] (x, k′) |= ψ

∧ ∀k′′ ∈ [k, k′), (x, k′′) |= ϕ

Table 3.1 contains examples to clarify how the different operators behave.

Table 3.1: Examples of different STL operators.
Symbol Meaning Example
¬ Logical NOT ¬(x > 0)
∧ Logical AND (x > 0) ∧ (x < 10)
∨ Logical OR (x < 0) ∨ (x > 10)

�[a,b] Timed always �[0,5](x > 20)
♦[a,b] Timed eventually ♦[0,4](x = 5)
U[a,b] Timed until (x = 1) U[0,5] (y > 10)

How to interpret these examples is shown in Table 3.2.

Robust satisfaction of STL formulas
One advantage of writing specifications in STL is that there is a notion of
robustness defined for them. The robustness of an STL specification is in-

21

Chapter 3 Optimization-based testing of cyber-physical systems

Table 3.2: How to interpret the examples from Table 3.1.
¬(x > 0): x is not greater than 0.

(x > 0) ∧ (x < 10): x is between 0 and 10.
(x < 0) ∨ (x > 10): x is less than 0 or greater than 10.

�[0,5](x > 20): For all times between 0 and 5,
x is greater than 20.

♦[0,4](x = 5): Between times 0 and 4, there is at least one
time when x is equal to 5.

(x = 1) U[0,5] (y > 10): For some time t̄ between 0 and 5, y is larger
than 10. For all times before this time, i.e. for
times between 0 and t̄, x is equal to 1.

formally how “far away” the specification is from the point of failing. The
robustness ρ is a real-valued function, whose sign indicates if the correspond-
ing specification ϕ is satisfied or not (negative means non-satisfied, positive
means satisfied). ρ(ϕ, x, k) is a function of a specification ϕ, a signal x (po-
tentially a vector), and a time k at which the robustness is evaluated. The
robustness is defined similarly to earlier works [21]:

ρ(µ, x, k) = µ(x[k]) (3.1)
ρ(¬µ, x, k) = − µ(x[k])) (3.2)
ρ(ϕ ∧ ψ, x, k) = min(ρ(ϕ, x, k), ρ(ψ, x, k)) (3.3)
ρ(ϕ ∨ ψ, x, k) = max(ρ(ϕ, x, k), ρ(ψ, x, k)) (3.4)
ρ(�[a,b]ϕ, x, k) = min

k′∈[k+a,k+b]
ρ(ϕ, x, k′) (3.5)

ρ(♦[a,b]ϕ, x, k) = max
k′∈[k+a,k+b]

ρ(ϕ, x, k′) (3.6)

ρ(ϕ U[a,b]ψ, x, k) = max
k′∈[k+a,k+b]

(min(ρ(ψ, x, k′), (3.7)

min
k′′∈[k,k′]

ρ(ϕ, x, k′′)))

Some examples follow. For the specification ϕ1 = (x[k] > 3), µ(x[k]) is
defined as x[k] − 3 and the robustness at time 0 is ρ(ϕ1, x, 0) = x[0] − 3.
Consider two simulations with resulting signals x1, x2 that satisfy ϕ1 at time
0, and let us say that x1[0] = 5 and x2[0] = 15. Intuitively, x1[0] is closer to

22

3.4 Falsification

not satisfying the specification, and thus should have lower robustness value.
Indeed, the robustness value of x1 is 2 and the robustness value of x2 is 12.
For the specification ϕ2 = ♦[a,b](x > 5), the robustness at time 0 is

ρ(ϕ2, x, 0) = maxk′∈[a,b](x[k′]−5). For this eventually operator, the robustness
is the maximum of the robustness of its inner formula. It is always the case
that the robustness of a specification with respect to a specific signal and time
will be a scalar.
To summarize, STL formulas can be used to specify desired behaviours of

CPSs, and the robustness of STL formulas are used to give a measure of
how much fulfilled or not a specification is (quantitatively), rather than just
measuring whether it is fulfilled or not (qualitatively). One possible use of
this robustness is to order a set of test cases based on how close they are to
not fulfilling the specification. This naturally leads us to falsification, which
is covered in the next section.

3.4 Falsification
Falsification of CPSs uses optimization for generating new test cases. The
reason STL is introduced in Section 3.3 is because the robustness of STL
formulas is used as the objective function for the optimization. An overview
of the falsification procedure is shown in Figure 3.2.
The Generator takes the input parametrization to generate an input to the

SUT. The Simulator generates a simulation trace, which is used together with
the requirement ϕ to evaluate the robustness function for the simulation. The
robustness function ρ is evaluated to see whether the specification is falsified
or not. If it is not falsified, new parameters are sampled and the process is
repeated. The different parts of this procedure are now presented in more
detail.
Falsification can, as stated earlier, be formulated as a minimization problem.

The problem is non-linear and thus hard to solve. To be more specific, the
objective function is non-linear, which can be seen from how the robustness
is defined in (3.1) - (3.7). The constraints, originating from the domain of
the parameters, are linear. The falsification is performed in the following way
[22]:

The space of permissible input signals is parametrized by m input parame-
ters a = (a1, . . . , am) that take values from a set Pu. The actual input u[k]

23

Chapter 3 Optimization-based testing of cyber-physical systems

G
en

er
at
or

Si
m
ul
at
or

R
ob

us
tn
es
s

fu
nc

tio
n

Fu
nc

tio
n

ev
al
ua

tio
n

St
op

Pa
ra
m
et
er

op
tim

iz
er

O
ut
pu

t
S[
k
]

N
ot

fa
lsi
fie

d

In
pu

t
sig

na
l

pa
ra
m
et
er
s
h

Pa
ra
m
et
er

in
iti
al

gu
es
s
h

In
pu

t
u[

k]

O
bj
ec
tiv

e
fu
nc

tio
n

va
lu
e
ρ

Sp
ec
ifi
ca
tio

n
ϕ

Fa
lsi
fie
d

Figure 3.2: A flowchart describing the main falsification procedure.

24

3.4 Falsification

is created using a generator function g such that u[k] = g(v(a))[k], where
v(a) ∈ Pu is a valuation of the parameter vector a. The output signal is
calculated by the system S.
The optimization problem is now formulated as

minimize
v(a)∈Pu

ρ(ϕ, S(g(v(a))), 0) (3.8)

where the initial guess is called vi(a).

Input generators

The question is how to define suitable a that parametrize the inputs to the
system S. This requires expert knowledge of the system and is not something
that can be easily solved in general, since there can be complicated dynamics
in S and, for industrial systems, unknown assumptions on the inputs. For the
sake of the optimization problem, it is preferable to use as few parameters
as possible, as each parameter increases the dimension of the search space
in the minimization problem. However, if there are too few parameters, the
inputs generated might not be expressive enough, and therefore the falsifica-
tion procedure can miss reasonable test cases that actually would falsify the
specification. Examples of input generators are shown in Section 3.5.

Robustness function

The standard robustness function ρ presented earlier is the one used by the
two biggest falsification tools – the MATLAB toolboxes Breach [23] and S-
TaLiRo [24]. As a negative robustness value means that the specification is
falsified, it is easy to then check whether the algorithm should terminate or
try to find other parameters that results in a robustness value lower than the
current one.
In Paper B and Paper C, alternative robust semantics are presented. These

are more expressive in some cases, and will make the falsification procedure
end up with different results than if the “standard” STL robust semantics are
used. It is, however, not possible to decide which robust semantics are better
to use in general, as the performance depends on both the specification and
the system. This is discussed in more detail in Paper D and Paper E.

25

Chapter 3 Optimization-based testing of cyber-physical systems

Parameter optimizer
There has been much research on how to best select new parameter val-
ues in the attempt to generate simulations that give lower robustness val-
ues (and therefore will be closer to falsifying the specification). Specifically
for optimizing parameters in falsification, there are publications about Ant
Colony Optimization [25], Simulated Annealing [26], and Local Stochastic
Tabu search [27], among others. The common denominator for these algo-
rithms is that they do not require a gradient for optimization, which is essen-
tial if the SUT is considered black-box.
However, there are also approaches to use gradients in the optimization,

for example as in [28]. This is not something considered in this thesis as the
systems considered are black-box and of considerable size.

3.5 Falsification example
In this section, an example of a simplified falsification procedure is presented,
the aim of which is to show more details about how the input generators and
robustness functions work.
The model used for falsification in this example is a model of the automatic

transmission system of a vehicle [29], and it is also used for evaluation purposes
in Paper D and Paper E. The model has two inputs; the first input is the
throttle of the vehicle, which has a value in the range [0, 100] at all times, and
the second input is the brake of the vehicle, which has a value in the range
[0, 500] at all times. For the throttle, the input generator uses 7 control points
distributed evenly in time. Between these control points, each of which lie
in the interval [0, 100], the throttle values are interpolated using a standard
MATLAB function.
An example of three generated input scenarios are shown in Figure 3.3.
The specification to be falsified is ϕ = ♦[0,20](ω ≥ 2000), and can be inter-

preted in natural language as the engine speed reaches 2000 RPM within 20
seconds. In Figure 3.3, the specification is indicated in the bottom figure with
a green box in such a way that a trace of the RPM has to enter the box to
fulfill the specification. The robustness function of the specification, using the
standard robustness function ρ, is

ρ(ϕ, x, 0) = maxk′∈[0,20](ω[k′]− 2000). (3.9)

26

3.5 Falsification example

0 5 10 15 20 25 30 35 400

20

40

60

80

100

Time (s)

Input 1: Accelerator

Trace 1
Trace 2
Trace 3

0 5 10 15 20 25 30 35 40

0

200

400

Time (s)

Input 2: Brake

Trace 1
Trace 2
Trace 3

0 5 10 15 20 25 30 35 400

1,000

2,000

3,000

4,000

5,000

Time (s)

Output: RPM

Trace 1: ρ = 1717.9
Trace 2: ρ = 1263.6
Trace 3: ρ = -103.9

Figure 3.3: An example of three generated input scenarios for falsification of an
automatic transmission system of a vehicle. The top figure shows input
1, which is parametrized by 7 control points spread evenly in time. The
middle figure shows input 2, which is parametrized by 3 control points
spread evenly in time. The bottom figure shows the resulting simulated
RPM values for the three traces, and it also indicates a ”green box”
which a trace must enter to fulfill the specification under test.

27

Chapter 3 Optimization-based testing of cyber-physical systems

Table 3.3: Summary of input parameters and robustness value for the three traces
in the example presented in this section.

Trace Input 1 parameters Input 2 parameters Robustness ρ
1 1 30.4 69.4 0 58.2 100 26.9 249 451.2 369.2 1717.9
2 63.1 0 0 100 100 36.9 60.2 206.5 318.4 22.8 1263.6
3 0 0 0 33 57.1 100 44.8 500 357.8 0 -103.9

In other words, the robustness of each trace is the difference between the
maximum value of ω and 2000, in the first 20 seconds only. Table 3.3 shows
the information that is available to the optimization solver during falsifica-
tion, namely the input parameters and the resulting robustness value ρ from
simulating the system with the input generated from the given parameters.
For the first trace, the maximum value of the engine speed in the first 20

seconds is 3717.9 at time 14.4 seconds, which gives ρ = 1717.6. For the second
trace, the maximum value is 3263.6 at time 20 seconds, which gives ρ = 1263.6
– this is considered closer to falsification than the first trace. Finally, the third
trace has maximum value 1896.1 at time 20 seconds, which gives ρ = −103.9.
Negative robustness indicates that the specification has been falsified, and the
given trace is a counterexample to the specification.

28

CHAPTER 4

Related Work and Research Questions

This chapter first contains recent work published in fields that are relevant to
this thesis in Signal Temporal Logic and Metric Temporal Logic, as well as in
falsification. Following that are the research questions that are the basis of the
research performed leading up to the thesis. The method and contributions
of the papers appended to the thesis are also included.

4.1 Related work
Testing of CPSs is a wide and growing research area. For the interested, three
recent surveys [30]–[32] explore different aspects of testing of CPSs, including
different simulation-based approaches as well as monitoring of specifications.

Signal Temporal Logic and Metric Temporal Logic
Signal Temporal Logic (STL) was originally introduced [19] as an extension of
Metric Temporal Logic (MTL) [33] with real-valued signals, while MTL itself
is an extension of Linear Temporal Logic (LTL) [20]. One of the main focus
areas of STL formulas is their quantitative semantics [18] and the efficient

29

Chapter 4 Related Work and Research Questions

monitoring of such semantics [34]. An extension to this is the ability for online
monitoring of STL formulas [35], which for example enables the evaluation of
specification fulfillment for partial traces of simulated systems.
While this thesis is focused on properties that actually can be expressed

using STL, it should be noted that some properties need other formalisms to
be expressed. For example, STL* [36] includes an additional freezing opera-
tor which makes it possible to specify damped oscillations in a signal, Time-
Frequency Logic (TFL) [37] can be used to specify frequency-domain proper-
ties in addition to time-domain, and hyperproperties [38] are properties that
require two or more execution traces to be evaluated.
A modified version of STL, avSTL [39], has been proposed, which introduces

time-averaged temporal operators in place of � and ♦. These time-averaged
operators yield a different robustness value than the standard robust seman-
tics, which is shown to be preferential in certain systems and specifications
with an application to falsification. In somewhat similar fashion, another
change to the robust semantics of STL is ”edit distance” [40], which is a met-
ric that measures the distance in both time and space of an STL specification.
In a related publication [41], the authors note that the monitoring of STL
formulas can be considered as filtering over the signals in the specifications,
both for the qualitative and quantitative semantics.
Writing formal specifications is a difficult task [42]. To alleviate the process

of using formal specifications, approaches in earlier works have included tools
that make is easier to write specifications [43], tools to automatically detect
faulty specifications [44], as well as defining template specifications that make
it easier for inexperienced testers to formulate the specifications [45].

Falsification of Cyber-Physical Systems
Falsification of CPSs can be performed in different ways, for example as
simulation-based, optimization-based, or temporal logic-based, where the key
is that falsification typically consists of all three approaches as part of the
whole process. Notable falsification tools are S-TaLiro [24] and Breach [46].
An application of falsification is parameter mining of temporal requirements
from closed-loop models [22], where one can automatically find out which
specifications a system fulfills, given template specifications of a certain form.
Other recent modifications to the falsification procedure include falsifica-

tion of systems with machine learning components [47] and falsification using

30

4.2 Research questions

deep reinforcement learning [48]. Other approaches includes time staging [49],
which splits the input generation into temporal parts, and specific procedures
for better falsification of request-response specifications [50], [51]. Another
way to generalize the falsification problem is to put the falsification in an
outer loop where different parametrizations of the input signals are consid-
ered [52].
To evaluate different forms of falsification against each other, different

benchmarks [29], [53] of specifications and systems are typically used. Re-
cently, a set of standardized benchmarks have been proposed as part of an
annual friendly workshop competition in falsification [54].

4.2 Research questions
The goal of the research performed leading up to this thesis can be summa-
rized in three research questions, all connected to Model-Based Testing of
Cyber-Physical Systems. The research questions did not originally all exists
as they are presented here, they were rather developed and matured during
the progress of the performed research. As such, the research questions are
not in any sort of “chronological” order, instead they are presented in a way
that arguably makes them easiest to understand in relation to each other.

1. How do optimization-based testing methods compare to random testing
in finding software faults for Cyber-Physical Systems?

This is an important question that needs to be answered in order to know if
optimization-based methods are worthwhile to pursue, or if the effort should
be spent on simple randomized testing instead. While there will never be
a complete answer to this question (as there are infintely many systems to
test), the empirical data presented in Paper E indicate that optimization-
based methods outperforms random testing for several variations of solvers,
specifications and systems.

While it is definitely interesting to compare optimization-based testing and
random testing, it is also interesting to find out how optimization-based testing
performs for real models in industry. This prompts the next research question.

2. What is unique about industrial models in the context of optimization-
based testing? How can the testing methods be adjusted for these char-
acteristics?

31

Chapter 4 Related Work and Research Questions

As the research area of optimization-based testing is quite close to indus-
trial applications, the practical aspects are deemed important. In Paper B,
the point was to illuminate some shortcomings in the well-established proce-
dure of falsification of CPSs, specifically when there are discrete-valued signals
present in the system (and the specification). These discrete-valued signals
correspond to switching behaviour in the systems, which can be difficult to de-
tect efficiently using falsification with the standard robust semantics presented
in earlier works. To combat this issue, new objective functions are defined for
a certain class of specifications, safety specifications, and it is concluded that
for some systems, the new objective functions give better performance than
the previously defined ones. In Paper C, Paper D, and Paper E, another more
general notion of new objective functions is used, which can be applied to any
class of specification. Paper E also highlights two important choices when
performing falsification for real systems – the choice of optimization solver, as
well as the choice of robust semantics for the STL specifications.
The methods presented in the research area of falsification can also be diffi-

cult to apply to real-world models because of the need of theoretical knowledge
about the process. Specifically, specifications need to be stated in STL, some-
thing that a typical engineer in industry cannot accomplish. This leads us to
wanting to investigate the next research question.

3. How can specifications expressed as Simulink block diagrams already in
place in industry be used for optimization-based falsification of Cyber-
Physical Systems?

One piece of this puzzle is attempted to be solved in Paper D. The main
issue is that tools for falsification require specifications written in formal logic,
but engineers in industry typically do not have the knowledge necessary to
write correct specification in these frameworks. The solution of automatically
transforming specifications from Simulink into logic specifications is one of the
main contributions of this thesis.
Finally, when there is a set of generated test cases (no matter the method),

there is a need to know how to evaluate them in a concise way, without losing
too much information about the test cases themselves. These thoughts are
summarized in the final research question.

4. What are the strengths and weaknesses of code coverage and mode cov-
erage for models of Cyber-Physical Systems?

32

4.3 Methodology

Paper A tackles this question. More specifically, a new kind of coverage
criterion is presented which is defined based on the dynamical equations of
the CPS model. This novel mode coverage is calculated both for a simple
illustrating example, as well as for a use case (which is a model at Volvo Car
Corporation). The conclusion is that a mostly automatic approach can be
used to analyze how thoroughly the physical behaviour of the model has been
tested.
The paper makes it clear that both code coverage and mode coverage can be

useful, but for different purposes. Code coverage (MC/DC) is typically used
as a minimum requirement for evaluating whether a test suite (a collection of
test cases) has exercised the System Under Test enough. As such, MC/DC is
given as a percentage, and testers seldom reflect over why a certain degree of
MC/DC is fulfilled or not fulfilled. On the other hand, mode coverage is more
to be used as a basis for further analysis, especially when the mode coverage is
not 100%, since the testers should then investigate the physical behaviours in
the modes that are never visited by the test suite. In this way, mode coverage
typically requires more work from a tester after the automatic analysis has
been performed, in contrast to the established MC/DC code coverage criterion
which is just used as a check that the test suite fulfills some basic properties.

4.3 Methodology
The purpose of the research presented in this thesis is to create further un-
derstanding of the testing problem for Cyber-Physical Systems. The research
has been experimental in nature, as is common for research in this area, where
the basis for evaluation of the research typically consists of different mathe-
matical models of systems (benchmark models). The aim was to address the
more practical research problems, which is especially clear in the formulations
of research questions 2 and 3.
As the research area of testing of CPSs is tightly connected to applications,

it has been an important goal to conduct research that applies to large-scale
systems and not only smaller, simpler systems. While smaller systems have
the merit that they are typically easier to analyze and present, the potential
negative effect is that they do not always correspond very well to actual sys-
tems found in industry. With this in mind, one of the motivations for the
conducted research has been to work with methods that scale well for indus-

33

Chapter 4 Related Work and Research Questions

trial systems, but also to present the results in such ways that the issues of
large-scale systems are clearly shown by the use of smaller examples. As the
industrial models themselves are proprietary, they cannot be published, how-
ever the research area is still interested in the results of applying methods to
these proprietary models.

Method
To be able to carry out meaningful research, the academic state-of-the-art was
investigated in an extensive literature review. In the research area of testing
of CPSs, there are many works that present tools, algorithms, and extensions
to previous works that increase testing capabilities using new approaches.
The decision to first focus on coverage, the subject of Paper A, was due to a
need to analyze a set of test cases for a model already existing at Volvo Car
Corporation. The model in question was also included in the paper as a case
study.
In a similar fashion, the reason for choosing falsification of CPSs as a method

to further develop and adapt for industrial models was that there was a need
from the industrial perspective to automatically generate new test cases for
models present at Volvo Car Corporation. When the falsification approach was
applied to several models, we noticed shortcomings of parts of the procedure,
which led to subsequent research, and which also led to papers B, C, D, and
E.
For all the papers appended to this thesis, the goal of tables and figures with

results have always been to illustrate as many aspects of the treated problem
as possible. In Paper A, the experiments were performed using OpenModelica
and the programming language Python, with test cases previously created by
TestWeaver. The experiments in all remaining papers were performed using
MATLAB.
From the research project’s point of view, the models to be tested at Volvo

Car Corporation were chosen beforehand, as they are the models being devel-
oped at the particular part of the organization where the research takes place.
This means that the tools for research as well as the research itself was chosen
based on the information on what the models required to be analyzed. How-
ever, for the academic evaluation of research results, the benchmark models
had to be chosen somehow. Since there at the start of the project was no
concrete set of benchmarks used by the whole research community, several

34

4.4 Contributions

different models were picked from different publications in the field. The
benchmark models used for evaluation in the appended papers have appeared
in several different papers. As for the smaller examples in the appended pa-
pers, they were created with the purpose of highlighting the contribution of
the paper as clearly as possible, in order to make the paper easy to read and
understand.

Analysis
As the aim of all research is to be reproducible, that has also been our main
goal in the content presented in the appended papers. However, since several
of the use cases presented in the papers (particularly the dog clutch model in
Paper A, and the Volvo models discussed in papers B and D) are proprietary,
exact reproducibility is impossible and the scientific integrity of the author has
to be trusted. However, in the cases where there is a use case from Volvo Car
Corporation included, there is also a simplified example included to motivate
the reasons for the approach presented in the specific paper.

Limitations of the methodology
Choosing methods that are relevant for industrial problems might not result
in the research that is the most appealing from a theoretical point of view,
however it is still interesting for the research area in question since the field
is in its nature close to application. Choosing the method of falsification
as a means of attempting to verify behaviour for simulations of CPSs has
the drawback of never guaranteeing any fulfillment of any property, but it is
widely accepted as a reasonable verification strategy since it scales well for
complex systems.

4.4 Contributions
As the reader might have guessed from the research questions, the main focus
of the research behind this thesis is practical implementation in industry. The
field of testing CPSs is itself naturally close to application, but there is always
a need to come up with new methods that scale well enough to make them
usable in complex systems. The contributions are directly connected to the
research questions as follows.

35

Chapter 4 Related Work and Research Questions

Contribution 1. Comparison of optimization-based falsification and random-
ized testing with a similar setup, finding out whether it is useful to pursue
optimization-based falsification with different robust semantics for a set of
benchmark problems.

Contribution 2. Illustration of the shortcoming of the “standard” objective
function used for falsification of CPSs, in the context of industrial applications,
as well as definitions of new objective functions that attempt to resolve this
issue.

Contribution 3. A method for automatic transformation of specifications
from Simulink into Signal Temporal Logic, which makes it possible to use
temporal logic-based falsification in applications where the testers modeling
the specifications have no knowledge of STL or formal specifications.

Contribution 4. Definition of a new type of coverage criterion, mode cover-
age, for testing of CPSs, as well as examples of situations where said criterion
can be useful and how it compares to code coverage.

The research contributions stem from novel approaches that have helped
advance the area of testing of CPSs towards being more viable for industrial
applications.

36

CHAPTER 5

Summary of included papers

This chapter briefly summarizes the appended papers.

5.1 Paper A
J. Eddeland, J.G. Cepeda, R. Fransen, S. Miremadi, M. Fabian and
K. Åkesson
Automated Mode Coverage Analysis for Cyber-Physical Systems Using
Hybrid Automata
The 20th World Congress of the International Federation of Automatic
Control, 2017, Toulouse, France

This paper presents a new coverage criterion, mode coverage, for testing of
Cyber-Physical Systems. Mode coverage is defined based on the modes of the
hybrid automaton that the System Under Test can be modeled as. The paper
also shows how to automatically acquire the modes of the hybrid automaton,
given code in a causal modeling language. This procedure relies on Satisfia-
bility Modulo Theories (SMT) analysis, which is used to automatically find
the constraints on variables that are logically possible to fulfill. An analysis

37

Chapter 5 Summary of included papers

of the mode coverage is shown for a use case of a model of a dog clutch from
Volvo Car Corporation, where it can be seen that mode coverage provides the
new information that some specific physical properties of the system had not
been tested at all.

5.2 Paper B
J. Eddeland, S. Miremadi, M. Fabian and K. Åkesson
Objective Functions for Falsification of Signal Temporal Logic Properties
in Cyber-Physical Systems
13th IEEE Conference on Automation Science and Engineering (CASE),
2017, Xi’an, China.

This paper discusses issues of using the “standard” falsification technique for
some examples of industrial models, namely models where there are discrete-
valued signals present in the specification and SUT. The problem is illustrated
with some simple examples and one possible solution is presented, which is
to alter the objective function used in the falsification problem. Two new
objective functions for safety specifications, MARV and RARV , are shown to
increase falsification capabilities for three example specifications from Volvo
Car Corporation. The improvement is seen by having objective function values
that vary more as a function of the input parameters, even with discrete
behaviour in the system which comes from having Boolean and enumerated
signals in the software.

5.3 Paper C
K. Claessen, N. Smallbone, J. Eddeland, Z. Ramezani and K. Åkesson
Using Valued Booleans to Find Simpler Counterexamples in Random
Testing of Cyber-Physical Systems
14th Workshop on Discrete Event Systems (WODES), 2018, Sorrento
Coast, Italy.

In this paper, the logic of Valued Booleans (vBools) is introduced. A vBool
is a combination of a Boolean value and a non-negative real-valued number,
which indicates not only if a property is true or false, but also assigns a mag-
nitude indicating how true or false the property is. vBools are very similar

38

5.4 Paper D

to robust satisfaction of STL, but they come with the ability to add different
robust semantics for different formulas (or parts of formulas). vBools are used
here to simplify test cases in the tool Quickcheck, a technique for simplifica-
tion called shrinking, and it is shown that for Cyber-Physical Systems which
contain real-valued signals, using vBools give counterexamples that are eas-
ier to analyze compared to using only Boolean satisfaction of the properties
under test.

5.4 Paper D
J. Lidén Eddeland, K. Claessen, N. Smallbone, Z. Ramezani, S. Mire-
madi and K. Åkesson
Enhancing Temporal Logic Falsification with Specification Transforma-
tion and Valued Booleans
Submitted for possible journal publication 2019.

This paper has two main parts. The first part is about automatic trans-
formation from a signal-based framework (in this case Simulink) into STL
specifications. This makes it possible for engineers without knowledge of STL
to still use a tool for falsification, and the transformed specifications actually
contain some more information compared to a specification written directly in
STL. The second part of the paper discusses the framework of vBools, which
has been defined in Paper C and is used in the falsification framework to be
able to switch between different objective functions (most notably max seman-
tics and additive semantics). A comparison of different objective functions (or
robustness semantics) is shown for several benchmark examples. The conclu-
sion is that which semantics will perform best during falsification is heavily
dependent on both the system and the specification.

5.5 Paper E
J. Lidén Eddeland and K. Åkesson
A Case Study of Optimization Solvers and Objective Functions for Fal-
sification of Cyber-Physical Systems
Submitted to conference.

This paper contains a case study of falsification of CPSs using different

39

Chapter 5 Summary of included papers

robust semantics of STL and different optimization solvers. The benchmarks
used are a subset of the benchmarks used in Paper D, and the falsification
setup is the same except for the fact that in this paper, several different
optimization solvers are used and compared. The main purpose of the paper
is to assert whether or not the results observed in Paper D also applies when
considering several different optimization solvers; that is, if performance of
different robust semantics in falsification depends on both the system and the
specification in similar ways. The conclusion presented is that similar results
apply also for different solvers, and also that for the benchmark problems
presented, some solvers and strategies are typically better than others.

40

CHAPTER 6

Concluding Remarks and Future Work

The research of this thesis has been focused on analyzing already generated
test cases, as well as improving techniques for generating new test cases for
Cyber-Physical Systems. The research has been performed at Volvo Car Cor-
poration with a focus on implementing state-of-the-art research methods to
models being developed there.
As the papers appended to this thesis are given in chronological order, the

reader can see how the research focus has changed over the time of the project
so far. In the beginning, the aim was to look at a specific model of a dog
clutch, and see how an analysis of the test result could be designed for more
insight into the quality of automatically generated test cases. As there are
already many approaches to evaluate test suite quality, the goal was to come
up with a novel approach that had not been used before. The result was a
type of coverage that is inspired by the physical properties of the SUT, which
is adequate for all models that have been modeled in this acausal modeling
paradigm. This summarizes one of the main contributions of the thesis.

After the work of Paper A had been performed, the focus shifted from
analyzing previously created test cases, into actually generating the test cases
themselves. A naturally fitting research area is the optimization-based (or

41

Chapter 6 Concluding Remarks and Future Work

simulation-based) falsification of CPSs. This is a growing area that gets a lot
of attention, and it was interesting to look at for the purpose of this thesis, as
the approaches presented in academic papers are often on the verge of being
applied to real industrial problems. As such, the focus of Paper B, Paper C,
Paper D, and Paper E is on pieces needed in the falsification framework for
it to be properly implemented for complex and large real-world models. The
main focus of the research has concerned the definition of a robust semantics
for the logic language STL, and what the semantics could possibly be extended
with in order to make it more viable for certain classes of models and systems.
The future work planned for the continuation of the project is still focused

on the area of falsification for CPSs and potential areas that can be improved
for its use in industrial applications. One of the directions intended is to
evaluate the additive semantics presented in Paper C for models at Volvo
Car Corporation (in the evaluation in Paper D and Paper E, the semantics
were only evaluated for typical benchmark examples). Another direction is
to instead focus on the optimization part of the falsification loop, in which
we intend to improve the optimization solvers by including other robust se-
mantics (again, most notably the additive semantics). If possible, it would be
interesting to also increase test generation quality by considering the coverage
criterion presented in Paper A (or possibly some similar criterion), and to
construct test suite reduction based on mode coverage. Finally, we will also
investigate whether we can use statistical methods to automatically find how
sensitive a specification is with respect to a certain input, with the use of
robustness. This could then be used to automatically adjust the parametriza-
tion of the falsification, to help reduce the dimensionality of the optimization
problem.

42

References

[1] E. M. Clarke, E. A. Emerson, and J. Sifakis, “Model checking: Algorith-
mic verification and debugging”, Communications of the ACM, vol. 52,
no. 11, pp. 74–84, 2009.

[2] C. Baier and J.-P. Katoen, Principles of model checking. MIT press,
2008.

[3] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, “What’s de-
cidable about hybrid automata?”, in Proceedings of the twenty-seventh
annual ACM symposium on Theory of computing, ACM, 1995, pp. 373–
382.

[4] M. Nyberg, D. Gurov, C. Lidström, A. Rasmusson, and J. Westman,
“Formal verification in automotive industry: Enablers and obstacles”, in
International Symposium on Leveraging Applications of Formal Meth-
ods, Springer, 2018, pp. 139–158.

[5] K. J. Hayhurst and D. S. Veerhusen, “A practical approach to modified
condition/decision coverage”, in Digital Avionics Systems, 2001. DASC.
20th Conference, IEEE, vol. 1, 2001, 1B2–1.

[6] ISO, “Iso/dis 26262-1 - road vehicles — functional safety — part 1
glossary”, Tech. Rep., 2009.

[7] T. Dang and T. Nahhal, “Coverage-guided test generation for continuous
and hybrid systems”, Formal Methods in System Design, vol. 34, no. 2,
pp. 183–213, 2009.

43

References

[8] A. Dokhanchi, A. Zutshi, R. T. Sriniva, S. Sankaranarayanan, and G.
Fainekos, “Requirements driven falsification with coverage metrics”, in
Proceedings of the 12th International Conference on Embedded Software,
IEEE Press, 2015, pp. 31–40.

[9] K. Claessen and J. Hughes, “Quickcheck: A lightweight tool for random
testing of haskell programs”, Acm sigplan notices, vol. 46, no. 4, pp. 53–
64, 2011.

[10] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating fuzz
testing”, in Proceedings of the 2018 ACM SIGSAC Conference on Com-
puter and Communications Security, ACM, 2018, pp. 2123–2138.

[11] P. Godefroid, N. Klarlund, and K. Sen, “Dart: Directed automated ran-
dom testing”, in ACM Sigplan Notices, ACM, vol. 40, 2005, pp. 213–
223.

[12] T. Arts, J. Hughes, J. Johansson, and U. Wiger, “Testing telecoms soft-
ware with quviq quickcheck”, in Proceedings of the 2006 ACM SIGPLAN
workshop on Erlang, ACM, 2006, pp. 2–10.

[13] V. Bolbot, G. Theotokatos, L. M. Bujorianu, E. Boulougouris, and
D. Vassalos, “Vulnerabilities and safety assurance methods in cyber-
physical systems: A comprehensive review”, Reliability Engineering &
System Safety, vol. 182, pp. 179–193, 2019.

[14] P. Hehenberger, B. Vogel-Heuser, D. Bradley, B. Eynard, T. Tomiyama,
and S. Achiche, “Design, modelling, simulation and integration of cyber
physical systems: Methods and applications”, Computers in Industry,
vol. 82, pp. 273–289, 2016.

[15] R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-physical sys-
tems: The next computing revolution”, in Design Automation Confer-
ence, IEEE, 2010, pp. 731–736.

[16] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over real-
valued signals.”, in FORMATS, Springer, vol. 6246, 2010, pp. 92–106.

[17] G. E. Fainekos and G. J. Pappas, “Robust sampling for mitl specifica-
tions”, in International Conference on Formal Modeling and Analysis of
Timed Systems, Springer, 2007, pp. 147–162.

44

References

[18] G. Fainekos and G. Pappas, “Robustness of temporal logic specifications
for continuous-time signals”, Theoretical Computer Science, vol. 410,
no. 42, pp. 4262–4291, 2009.

[19] O. Maler and D. Nickovic, “Monitoring temporal properties of contin-
uous signals”, in Formal Techniques, Modelling and Analysis of Timed
and Fault-Tolerant Systems, Springer, 2004, pp. 152–166.

[20] A. Pnueli, “The temporal logic of programs”, in Foundations of Com-
puter Science, 1977., 18th Annual Symposium on, IEEE, 1977, pp. 46–
57.

[21] V. Raman, A. Donzé, D. Sadigh, R. M. Murray, and S. A. Seshia, “Reac-
tive synthesis from signal temporal logic specifications”, in Proceedings
of the 18th international conference on hybrid systems: Computation
and control, ACM, 2015, pp. 239–248.

[22] X. Jin, A. Donzé, J. V. Deshmukh, and S. A. Seshia, “Mining require-
ments from closed-loop control models”, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 34, no. 11, pp. 1704–
1717, 2015.

[23] A. Donzé, “Breach, a toolbox for verification and parameter synthesis
of hybrid systems.”, in CAV, Springer, vol. 10, 2010, pp. 167–170.

[24] Y. Annpureddy, C. Liu, G. Fainekos, and S. Sankaranarayanan, “S-
taliro: A tool for temporal logic falsification for hybrid systems”, in
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, Springer, 2011, pp. 254–257.

[25] Y. S. R. Annapureddy and G. E. Fainekos, “Ant colonies for tempo-
ral logic falsification of hybrid systems”, in IECON 2010-36th Annual
Conference on IEEE Industrial Electronics Society, IEEE, 2010, pp. 91–
96.

[26] H. Abbas, G. Fainekos, S. Sankaranarayanan, F. Ivančić, and A. Gupta,
“Probabilistic temporal logic falsification of cyber-physical systems”,
ACM Transactions on Embedded Computing Systems (TECS), vol. 12,
no. 2s, p. 95, 2013.

45

References

[27] J. Deshmukh, X. Jin, J. Kapinski, and O. Maler, “Stochastic local search
for falsification of hybrid systems”, in International Symposium on Auto-
mated Technology for Verification and Analysis, Springer, 2015, pp. 500–
517.

[28] H. Abbas, A. Winn, G. Fainekos, and A. A. Julius, “Functional gradient
descent method for metric temporal logic specifications”, in American
Control Conference (ACC), 2014, IEEE, 2014, pp. 2312–2317.

[29] B. Hoxha, H. Abbas, and G. Fainekos, “Benchmarks for temporal logic
requirements for automotive systems”, Proc. of Applied Verification for
Continuous and Hybrid Systems, 2014.

[30] S. A. Asadollah, R. Inam, and H. Hansson, “A survey on testing for
cyber physical system”, in IFIP International Conference on Testing
Software and Systems, Springer, 2015, pp. 194–207.

[31] J. Kapinski, J. Deshmukh, X. Jin, H. Ito, and K. Butts, “Simulation-
guided approaches for verification of automotive powertrain control sys-
tems”, in 2015 American Control Conference (ACC), IEEE, 2015, pp. 4086–
4095.

[32] E. Bartocci, J. Deshmukh, A. Donzé, G. Fainekos, O. Maler, D. Ničković,
and S. Sankaranarayanan, “Specification-based monitoring of cyber-
physical systems: A survey on theory, tools and applications”, in Lectures
on Runtime Verification, Springer, 2018, pp. 135–175.

[33] R. Koymans, “Specifying real-time properties with metric temporal logic”,
Real-time systems, vol. 2, no. 4, pp. 255–299, 1990.

[34] A. Donzé, T. Ferrere, and O. Maler, “Efficient robust monitoring for stl”,
in International Conference on Computer Aided Verification, Springer,
2013, pp. 264–279.

[35] J. V. Deshmukh, A. Donzé, S. Ghosh, X. Jin, G. Juniwal, and S. A. Se-
shia, “Robust online monitoring of signal temporal logic”, Formal Meth-
ods in System Design, vol. 51, no. 1, pp. 5–30, 2017.

[36] L. Brim, P. Dluhoš, D. Šafránek, and T. Vejpustek, “Stl∗: Extending
signal temporal logic with signal-value freezing operator”, Information
and computation, vol. 236, pp. 52–67, 2014.

46

References

[37] A. Donzé, O. Maler, E. Bartocci, D. Nickovic, R. Grosu, and S. Smolka,
“On temporal logic and signal processing”, in International Symposium
on Automated Technology for Verification and Analysis, Springer, 2012,
pp. 92–106.

[38] L. V. Nguyen, J. Kapinski, X. Jin, J. V. Deshmukh, and T. T. John-
son, “Hyperproperties of real-valued signals”, in Proceedings of the 15th
ACM-IEEE International Conference on Formal Methods and Models
for System Design, ser. MEMOCODE ’17, Vienna, Austria: ACM, 2017,
pp. 104–113, isbn: 978-1-4503-5093-8.

[39] T. Akazaki and I. Hasuo, “Time robustness in mtl and expressivity in
hybrid system falsification”, in International Conference on Computer
Aided Verification, Springer, 2015, pp. 356–374.

[40] S. Jakšić, E. Bartocci, R. Grosu, T. Nguyen, and D. Ničković, “Quanti-
tative monitoring of stl with edit distance”, Formal methods in system
design, vol. 53, no. 1, pp. 83–112, 2018.

[41] A. Rodionova, E. Bartocci, D. Nickovic, and R. Grosu, “Temporal logic
as filtering”, in Proceedings of the 19th International Conference on Hy-
brid Systems: Computation and Control, ACM, 2016, pp. 11–20.

[42] A. Dokhanchi, B. Hoxha, and G. Fainekos, “Metric interval temporal
logic specification elicitation and debugging”, in Formal Methods and
Models for Codesign (MEMOCODE), 2015 ACM/IEEE International
Conference on, IEEE, 2015, pp. 70–79.

[43] B. Hoxha, N. Mavridis, and G. Fainekos, “Vispec: A graphical tool
for elicitation of mtl requirements”, in Intelligent Robots and Systems
(IROS), 2015 IEEE/RSJ International Conference on, IEEE, 2015, pp. 3486–
3492.

[44] A. Dokhanchi, B. Hoxha, and G. Fainekos, “Formal requirement de-
bugging for testing and verification of cyber-physical systems”, ACM
Transactions on Embedded Computing Systems (TECS), vol. 17, no. 2,
p. 34, 2018.

[45] J. Kapinski, X. Jin, J. Deshmukh, A. Donze, T. Yamaguchi, H. Ito, T.
Kaga, S. Kobuna, and S. Seshia, “St-lib: A library for specifying and
classifying model behaviors”, SAE Technical Paper, Tech. Rep., 2016.

47

[46] A. Donzé, “Breach, a toolbox for verification and parameter synthe-
sis of hybrid systems”, in International Conference on Computer Aided
Verification, Springer, 2010, pp. 167–170.

[47] T. Dreossi, A. Donzé, and S. A. Seshia, “Compositional falsification of
cyber-physical systems with machine learning components”, Journal of
Automated Reasoning, vol. 63, no. 4, pp. 1031–1053, 2019.

[48] T. Akazaki, S. Liu, Y. Yamagata, Y. Duan, and J. Hao, “Falsification
of cyber-physical systems using deep reinforcement learning”, in Inter-
national Symposium on Formal Methods, Springer, 2018, pp. 456–465.

[49] G. Ernst, I. Hasuo, Z. Zhang, and S. Sedwards, “Time-staging enhance-
ment of hybrid system falsification”, arXiv preprint arXiv:1803.03866,
2018.

[50] A. Dokhanchi, S. Yaghoubi, B. Hoxha, and G. Fainekos, “Vacuity aware
falsification for mtl request-response specifications”, in Proceedings of
the 13th IEEE Conference on Automation Science and Engineering (CASE’17),
2017.

[51] T. Akazaki, “Falsification of conditional safety properties for cyber-
physical systems with gaussian process regression”, in International Con-
ference on Runtime Verification, Springer, 2016, pp. 439–446.

[52] A. Aerts, B. Tong Minh, M. Reza Mousavi, and M. A. Reniers, “Tem-
poral logic falsification of cyber-physical systems: An input-signal space
optimization approach”, in 14th Workshop on Advances in Model Based
Testing (A-MOST), 2018.

[53] X. Jin, J. V. Deshmukh, J. Kapinski, K. Ueda, and K. Butts, “Power-
train control verification benchmark”, in Proceedings of the 17th inter-
national conference on Hybrid systems: computation and control, ACM,
2014, pp. 253–262.

[54] G. Ernst, P. Arcaini, A. Donze, G. Fainekos, L. Mathesen, G. Pedrielli,
S. Yaghoubi, Y. Yamagata, and Z. Zhang, “Arch-comp 2019 category
report: Falsification”, EPiC Series in Computing, vol. 61, pp. 129–140,
2019.

48

Part II

Papers

49

