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Abstract

The purpose of this work is to expand the current knowledge about the me-
chanism with which turbulent regions interact with non-turbulent ones. The
continuous exchange of mass and momentum between these two regions is
a process characterized by some of the smallest and the largest scales on the
flow. In such a spectrum of scales, viscous diffusion of enstrophy in the past has
been considered to be the drive of turbulent propagation through small scale
vortices diffusing into the nearby laminar fluid. Inertial dynamics, on the other
hand, are considered to play a role only in the measure in which they are able
to increase or decrease the total surface of the interface over which vorticity
viscously diffuses into the laminar region. In order to better assess these hy-
potheses, the present study recurs to numerical simulations of turbulent fronts
with zero mean shear. First, a scale analysis has been performed by studying
the spectra of the enstrophy budget equation across the interface. Secondly, the
effect of an altered scales distribution is investigated. This is achieved without
directly affecting the viscous mechanics, thus by using dilute polymer soluti-
ons. Spectral analysis reveals not only that the inertial transport of turbulent
fluctuations holds a central role in sustaining the interface propagation, but
also that viscous diffusion is characterized by two scales: a thickness of the
order of the Kolmogorov scale in direction normal to the interface and a larger
width of the order of the Taylor length scale. Polymer solutions, simulated
by means of the FENE-P model, show to produce interfaces with smoother
features and larger scales, more importantly turbulent fronts in dilute polymer
solution propagate less than their Newtonian equivalents. Evidence shows a
local action of the polymers at the interface via preferential alignment with and
enhancement of vortex compression.
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Kurzfassung

Ziel dieser Arbeit ist die Erweitung des aktuellen Wissens über den Interakti-
onsmechanismus zwischen turbulenten und laminaren Regionen. Der kontinu-
ierliche Austausch von Masse und Impuls zwischen den beiden Regionen ist
ein Prozess, der sowohl durch die kleinsten als auch durch die größten Skalen
gekennzeichnet ist. In einem solchen Skalenspektrum wurde in der Vergan-
genheit die viskose Diffussion der Enstrophie als Antrieb der turbulenten Aus-
breitung kleinskaliger Wirbel in das benachbarte laminare Gebiet betrachtet.
Trägkeitseffekte, hingegen, spielen nach dieser Ansicht lediglich bezüglich der
Vergrößerung oder Verkleinerung der gesamten Grenzfläche, über welche die
Wirbelstärke in den laminaren Bereich diffundiert, eine Rolle. Um diese Hypo-
thesen besser zu bewerten, wurden in der vorliegenden Arbeit numerische Si-
mulationen turbulenter Grenzgebiete ohnemittlere Scherung eingesetzt. Zuerst
wurde eine Skalenanalyse durchgeführt, indem die Spektren der Enstrophie-
Bilanz-Gleichung aus der gesameten Grenzfläche zwischen turbulenten und
nicht turbulenten Regionen untersucht wurden. Als zweites wurde die Aus-
wirkung einer veränderten Skalenverteilung untersucht. Dies wurde durch den
Einsatz verdünnter Polymerlösungen erreicht, welche die viskose Mechanik
nicht direkt beeinflussen. Die spektrale Analyse zeigt welch zentrale Rolle der
Trägheitstransport turbulenter Fluktuationen beim Erhalt der Grenzflächenaus-
breitung spielt. Des Weiteren wird gezeig, dass die viskose Diffusion durch
zwei Skalen charakterisiert ist: einer dicken in der Größenordnung der Kol-
mogorov Länge und normal zur Grenzfläche und einer breiten, die größer ist
als die dicke un welche, der Größenordnung einer Taylor-Längenskala ist. Po-
lymerlösungen, die mit Hilfe des FENE-P-Modells simuliert wurden, zeigten,
dass sie Grenzflächen mit glatteren äußerungen und größeren Skalen erzeugen,
vor allem turbulente Fronten in verdünnter Polymerlösung breiten sich weniger
aus als ihre Newtonschen äquivalente. Der Nachweis zeigt, wie die Polymere
an der Grenzfläche durch eine bevorzugte Ausrichtung und eine Verstärkung
der Wirbelkompression lokal wirken.
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1 Introduction

1.1 General aspects of turbulent/non-turbulent
interfaces

In most real life problems related to the flowing of a fluid, one eventually
will have to deal with turbulent flows. Even today, the highly non-linear and
chaotic behavior of turbulent flows constitute a formidable challenge to both
theoretical and applicative engineering, leaving a number of open issues in
disciplines ranging from material processing to astrophysics. A large sub-
class of turbulent flows is represented by those ones in which turbulent-flow
regions and regions in which the flow is laminar coexist. This is the case,
for example, of boundary layers, jets, shear flows, plumes and wakes, without
forgetting all kind of transitional flows. The boundary separating the laminar
and turbulent regions, often referred to as turbulent/non-turbulent interface (or
for brevity also TNTI), is a highly convoluted and non-stationary surface. The
two regions possess striking differences, among which one of the most relevant
is probably the large change in mixing rates: within a turbulent flow quantities
as momentum, temperature, passive scalars or reactants concentrations are
spread and mixed at much faster rates [19], while in laminar flow mixing is
brought about by the several orders of magnitude slower molecular diffusion.
Therefore an enhanced spreading of the turbulent region is obviously sought-
for in all applications where such increased mixing is desirable and avoided in
those where it is not. Examples of the former case are chemical reactors, heat
exchangers or turbulators on wings, while in the latter group of applications
one can find the drag-reduction, spillage containment, reduction of sediment
re-suspension or brown-out, erosion prevention. The passage itself from a
turbulent to a non-turbulent region is sharp and abrupt [19], the differences are
so striking that in several cases it is possible to discern the boundary between
this regionswithout any particular expedient. This happens, for example, for the
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1 Introduction

transport of passive scalarswhose diffusivity is two to three orders ofmagnitude
smaller than the kinematic viscosity of the ambient fluid [19]. In such regime,
the turbulent/non-turbulent interface effectively delimits the volume of fluid
within the scalar quantity can be transported. Corrsin and Kistler [17] have
been the first to study the properties of the turbulent/non-turbulent interface in
a free shear layer; in their work they identified the non-turbulent region as the
part of the field deprived of vorticity. They theorized that the weak, large-scale
irrotational fluctuations that can be found in the laminar region should smoothly
match the intense small scale vortical fluctuations of the turbulent one in a thin
region called laminar or viscous superlayer. This layer is dominated by the
viscous forces which are recognized to be the sole mechanism of propagation
of vorticity in the irrotational region [8, 19].

The sharp, quasi-discontinuous character of the turbulent/non-turbulent inter-
face historically made it challenging to study it and direct observations of the
laminar superlayer have not been possible until recent times. Most of the early
studies had to rely on fixed point measurement of the intermittency of some
variable (e.g. velocity, temperature, scalar concentrations) in order to estimate
the average position of the interface. With relatively recent developments in
experimental techniques, the instantaneous measurements of sufficiently resol-
ved regions of the velocity field next to the interface became available. Almost
at the same time the increase of the available computational power had permit-
ted to simulate interfacial flows with resolution up to the Kolmogorov scale.
As a consequence, new and more refined ways to study the turbulent/non-
turbulent interface had been developed: thanks to these new techniques Bisset
et al. [7] have first been able to observe the theorized jump of velocity va-
riance and vorticity across the turbulent/non-turbulent interface. It has been
observed that vorticity is the quantity that changes the most sharply across
the interface, proving itself as the most reliable way to detect the interface
in a number of flows [19, 36, 42]. Other properties, like the concentration of
passive scalars or temperature, have similar though less steep variations and
have been used in order to detect the interface where vorticity was not directly
accessible [7, 36, 42, 97].

Once the interface is identified in a snapshot of the field, it is possible to
compute a series of statistics conditioned with respect to the distance from the
interface. Conditional averaging generates a new reference system for every
point over the interface and performs the average over points which are ho-
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1.1 General aspects of turbulent/non-turbulent interfaces

mogeneous in their distance from the interface. This permits to highlight the
sharp changes occurring across the interface, where standard averaging me-
thods would smear out such features by averaging together contributes from
both turbulent and non/turbulent regions. Such an approach was used in Holz-
ner et al. [43] as well as in Taveira and da Silva 2013 and 2014 [78, 79] to
compute budgets of kinetic energy, vorticity and strain rate across the inter-
face. In particular, using this approach Taveira and da Silva 2014 [79] found
the existence of a layer with a thickness in the order of the Kolmogorov scale
in which the viscous diffusion of vorticity dominates over all other effects.
They identified this layer as the viscous superlayer theorized by Corrsin and
Kristler [17].

While the viscous superlayer is characterized by some of the smallest scales
in the flow [8] the convolution of the interface with its bulges and pockets is
apparently driven by the large scale dynamics of the flow [8]. Indeed, it has
been observed that the largest convolutions on the surface of the turbulent/non-
turbulent interface are the imprint of large-scale vortices beneath it [7] and
large scale perturbation in jet outlets are known to produce the phenomena of
bifurcating and blooming jets [71], in which entrainment is greatly increased.
The large scale bulges at the interface are possibly quite dependent on the
large-scale dynamics that sustain the turbulent flow and may differ in wakes,
jets, boundary layers, shear flows and mixing layers [8,11], even though is still
object of debate whether this affects the entrainment rate [96]. Nevertheless it is
hard to find a single responsible cause for these changes when comparing such
different flows: mean shear, for example, was found to enhance entrainment by
increasing both the viscous and the inertial contributions to it [98].

Though this might discourage a generalist approach to the subject, there are
also commonalities that are shared by all types of interfacial flows. These
might be determined by üniversal"characteristics of turbulence or be due to
generic properties specific to the turbulent/non-turbulent interface. An example
of both cases is probably its fractal-like nature: a constant fractal dimension of
the interface has been found in a range of scales spanning from the integral scale
down to near the Kolmogorov scale (Sreenivasan et al. 1989 [76], Chauhan
et al. 2014 [11]. Such a fractal dimension appears to remain constant among
different type of flows and at different Reynolds numbers. These fractal features
sensibly increase the effective surface of the interface [76] and its diffusive flux
of vorticity. Another general property of turbulent/non-turbulent interfaces is
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1 Introduction

its strong vorticity anisotropy: this is caused by the solenoidality of the curl,
which requires that the vorticity vector remains roughly parallel to any surface
across which the vorticity’s magnitude drops or increases sharply [8]. This
means that vorticity lines cannot cross or end in the irrotational region but are
tilted and follow the interface contour. Anisotropy, steep gradients and large
span of interplaying scales make turbulent interfaces particularly challenging
to both turbulence modelling and LES simulations. This is partly due to these
steep unresolved jumps in all the properties and partly due to the fact that the
hypothesis of local equilibrium doesn’t hold in these regions [19]. This hinders
the capabilities of accurately predicting turbulent propagation in those cases
where the use of such models is the only viable numerical tool (as it is for most
of the medium/high Reynolds number applications). For this reason there is
a need for a sounder understanding of the physical interactions between large
scale dynamics and the small unresolved ones, as well as between the inertial
and the viscous ones.

Beside these applicative necessities, the interface is an interesting region for
the study of turbulence per se. It can be seen as a problem of turbulence
transition, where weak perturbations in the laminar region are amplified under
increasing shear and finally destabilize acquiring vorticity once in contact with
the interface. At the same time, turbulent fluctuation can undergo the opposite
process, i.e. re-laminarization. The difference between the rate of this process
and the rate at which irrotational fluid transitions into turbulence determines
how fast and far the turbulent region can further spread. Summarizing we can
say that in turbulent propagation several concurrent processes contribute to the
spreading of the turbulent region across a wide range of flow scales. Small (as
well as large) scale vorticity diffusion, though fundamental, cannot be used
alone to characterize the propagation rates. Similarly, it is not clear how to
relate the differences in the large-scale turbulence generation mechanisms to
the differences in the observed entrainment. One interesting way to study the
balance of the different processes contributing to entrainment dynamics is
perhaps to "tweak"the turbulence in such a way to alter such equilibrium for
the same flow topology, i.e. forcing mechanism. For example, one may alter
the way energy is redistributed from the energy-containing scales towards the
dissipative range without significantly change viscous dynamics. Perhaps one
of the most effective ways available to alter the turbulent flow of a Newtonian
liquid is the addition of small quantities of long chain polymers.
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1.2 Turbulent flows of dilute polymer solutions

1.2 Turbulent flows of dilute polymer solutions

There are a number of ways to alter the properties of a turbulent flow by adding
additives to the flow. In the search of a way of reducing drag in various wall
bounded systems, scientist and engineers experimented with a wide range of
substances capable of reducing drag in a turbulent flow. The experimented
with fibers, clays, bubbles, paper pulp, surfactants cationic and anionic, dust
particles, sand suspensions, flocks, algae and biological molecules as certain
long chain polysaccharides, flocculating agents, paramagnetic particles in pre-
sence of magnetic fields and polymers [6, 41, 92], just to name a few. There
is not, up to today, general agreement on how such a range of materials and
techniques can achieve drag reduction in a turbulent flow. This is particularly
true for dilute polymer solutions, which have proven to be one of the most
effective agents with reported drag reductions in turbulent shear flows up to
80% using dilute solutions with just a few parts per millions of polymers [41].
Until the flow remains below a certain Reynolds number no differences are
directly observable between a dilute polymer solution and a Newtonian fluid
flow of matching viscosity [87]. But when a certain threshold Re number is
reached it is possible to observe a general reduction in the intensity of Reynolds
stresses and turbulent production [87].

One of the simplest models of a polymer molecule approximates it as a chain
of concentrated masses kept together by elastic links. Velocity gradients of
scales comparable to the molecular length would act on these concentrated
masses by pulling them apart, stretching the polymers and storing the energy
taken from the flow in their bonds. When the shear is removed the polymer
returns to a coiled state returning the energy in the dissipative range of the
flow or, at an even smaller scale, in form of thermal agitation. One of the main
difficulties in the study of turbulence in dilute polymer solutions is the scales
of the phenomenon: a few polymer molecules every some million molecules
of solvent already affects a turbulent flow, and the molecules used have lengths
varying from a few tens of nanometres up to hundreds of micrometres [41]. Up
to the present day,the scales of the problem combined with the impracticalities
in measuring polymer stresses made it impossible to experimentally study the
molecular dynamics of polymers in turbulent flows. Also, on the numerical
side, the scales and the large number of added degrees of freedom from the
polymer molecules make it computationally prohibitive to simulate even small
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1 Introduction

amount of polymer molecules dispersed in a turbulent flow. Hence, the study
of polymer dynamics in turbulent flows has to rely on simplified models and
numerical simulations. Despite the intrinsic limitations of this approach and
the strong assumptions used, the polymer models available today have been
able to qualitatively replicate many of the main aspects of turbulent flows of
dilute polymer solutions [67].

Most of the current literature on turbulence of dilute polymer solutions focuses
on the reduction of drag and hence on wall-bounded flows. In these flows,
polymers appear to be active essentially in the near-wall region, where they
are particularly effective in suppressing wall-normal velocity fluctuations and
increasing the anistropization of the flow [29]. In general, a polymer in the
flow is stretched, un-stretched, tilted and transported by the flow according to
its time scales, hence the interaction of a polymer chain with the underlying
turbulence is theoretically strongly dependent on the history of stretching and
orientation of the molecule. Nevertheless, in experiments where polymers
are locally injected in a point-wise manner, it has been observed that, by
choosing an injection point in the near-wall region, it is possible to achieve
maximum reduction of drag similar to flows with homogeneously distributed
polymers [33, 34, 63]. Moreover, it is observed that, by reducing the wall-
normal velocity fluctuations, the injected polymers remain confined at about
the same distance from the wall for several eddy turnover times downstream
of the injection point [63], maintaining their action limited to such region.
The importance of the near-wall region is highlighted by the diminished drag-
reducing potential of polymers in pipe flows with rough walls [91], suggesting
that this phenomenon might be strongly correlated to the organized structures
present in the near-wall region of hydraulically smooth wall-bounded flows.
Hence, even though the interaction between polymer and fluid is theoretically
strongly dependent on the extension history, i.e. non-local in time and space,
at least some of its macroscopic effects are indeed restricted to limited regions
of the flow. This opens the possibility to at least partially de-couple the flow-
polymer interaction from the extension history and allows linking it more
directly to the local properties of the flow. In the present study of turbulent/non-
turbulent interfaces this partial loss of memory of the polymer leaves open
the question of whether the polymer affects the interface through the general
alteration of turbulence or whether its action is more localized directly in the
interfacial region. The scales of the molecule generally used limit any possible
direct action of the polymers to the smallest scales of the flow, although indirect
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1.3 Objectives and procedure

effects from small scales on larger ones are possible under certain conditions
via triadic interactions [5,87]. Dilute polymers are hence an ideal candidate to
study the importance of small-scale dynamics at the turbulent/non-turbulent
interface. Indeed, they permit the creation of flows with the same large-scale
energy injection of the Newtonian case, but with a dissipative/diffusive range
shifted towards larger scales. By analysing where and how the polymers affect
the flow, it is possible to understand how much the interface is influenced by
the local small-scale dynamics and how much it is influenced by the bulk of
the turbulence sustaining it. Finally, observing the behaviour of the polymers
at the interface will give further insight on the mechanisms with which they
suppress turbulence.

1.3 Objectives and procedure

This thesis aims to study the dynamics with which the irrotational fluid nearby
a turbulent front transitions to a turbulent state and becomes entrained in the
mass of the turbulent flow. As previously observed, this process is characteri-
zed by concurrent inertial and viscous dynamics over the full range of scales
of the flow. In order to discern mechanisms which are most relevant to the en-
trainment, a comparison is made between how it unfolds in a classical turbulent
fluid against the case of a fluid with non-Newtonian behaviour (specifically, a
dilute polymer solution). In these fluids normal turbulence is altered, and the
changed interplay between scales affects the turbulent/non-turbulent interface
giving new insights on this phenomenon. The objective of the thesis can be
hence summarized as follows:

7

• study the scales at which the inertial and viscous propagation
dynamics operate,

• study how the turbulent front is affected by the introduction of polymers,

• determine if the observed modifications are due to either prevalently
local or non-local effects.

• assess the importance of the viscous against the inertial dynamics
in the propagation of a turbulent front.



1 Introduction

In order to do so, a series of direct numerical simulations of propagating tur-
bulent fronts with both, a Newtonian fluid and a dilute polymer solution model
have been performed. The choice of DNS has been justified by the fact that
turbulent/non-turbulent interface is characterized by both, some of the smallest
and larges scales of the flow. Contrary to experimental measurements, DNS
simulations provide full 3D fields and resolution over the whole range of scales
of the interface. Moreover, through dilute polymer models, the DNS approach
gives access to the extensional and orientational status of the polymers in
every point of the turbulent flow. This allows to directly analyse how polymers
interact with turbulence in different regions of the flow. Being the literature
on the behaviour of polymer models with turbulent/non-turbulent interfaces
quite limited, validation against experiment is nevertheless still required. To
this purpose, the numerical results will be compared with data available from
a set of experiments performed by the Turbulence Structure Laboratory of
Tel Aviv University. For the purpose of this study, the scope has been limited
to turbulent fronts propagating in absence of mean shear, as this reduces the
number of parameters to take in account and in certain situations permits to
use some simplification derived from homogeneous isotropic turbulence and
thus greatly simplifying the analysis of the results. Generality is maintained
throughout the work by focusing on those aspect of turbulence and turbulent
interfaces which have been found to be common to different types of flow.

In the following chapters, first the propagation of shear-less turbulent fronts
in Newtonian fluids is discussed, focusing on the role of strain and enstrophy
combined with an analysis of the scales dynamics of viscous and inertial
processes. In Chapter 3 properties and models of dilute polymer solutions are
introduced. In Chapter 4 the simulations of turbulent fronts in dilute polymer
solutions will be first introduced. Chapter 5 proceeds with the discussion of the
simulations’ results and analyses the effect of polymers on the turublent/non-
turbulent interface.
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2

One of the most delicate parts when approaching the study of the propagation
of turbulent fronts is the definition of when a parcel of fluid can be considered
turbulent. It is a non-trivial matter if one considers that still today there is no
consensus on a universal definition of what turbulent flow is (for example see
Tsinober 2001 [86] for a generous list of definitions used in literature). An
example of the difficulties in finding a definition for the concept turbulence is
shown in the definition given by Batchelor [4]: "[...] it is a well-known fact that
under suitable conditions, which normally amount to a requirement that the
kinematic viscosity ν be sufficiently small, some of these motions are such that
the velocity at any given time and position in the fluid is not found to be the
same when it is measured several times under seemingly identical conditions.
In these motions the velocity takes random values which are not determined by
the ostensible, or controllable, or, ’macroscopic’ data of the flow, although we
believe that the average properties of themotion are determined uniquely by the
data. Fluctuating motions of this kind are said to be turbulent."This and most
of the available definitions identifie turbulence as a global property of the flow
but fall short when there is the need to locally determine whether a portion
of the fluid is turbulent or not. Probably the most evident characteristic of
turbulence is indeed its fluctuating (both in time and space), chaotic dynamical
properties. It therefore is obvious, in the search for some robust turbulence
marker, to focus on the tensor of derivatives of the velocity field, in particular
on its decomposition in its symmetric and antisymmetric parts, i.e. strain
and vorticity. Hereafter it will be shown how vorticity is fundamental for the
identification of non-turbulent portions of the flow and how, together with the
strain, it is fundamental in the propagation of turbulent fronts.

9
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2 Propagation of turbulent fronts in Newtonian fluids

Figure 2.1: Velocity field vectors (arrows) superimposed over isocontour of ω2
i /2 in a DNS of a

propagating turbulent front. The color cut-off level is set at 2% of the average enstrophy
in the turbulent bulk of the flow.

2.1 Role of strain and vorticity in turbulence

The strain rate tensor S = 1
2 [∂ui/∂ui + ∂xj/∂xi] is the symmetrical part of

the velocity gradient tensor A = ∇�u = [∂ui/∂xj]. Its antisymmetric part
is the rotation rate tensor O = 1

2 [∂ui/∂xj − ∂u j/∂xi], where the non-zero
elements of O are the components of the vorticity vector �ω = ∇ × �u. Strain
and vorticity play a fundamental role in the amplification and break-down of
velocity fluctuations that ultimately lead to turbulence and sustain it. In first
place, there is not such a thing as a turbulent flow without vorticity, making
it one of the necessary conditions for the existence of turbulence. Another
defining element of turbulent flows is the mutual interaction between vorticity
and strain. Their nonlinear interactions are indeed responsible for the ability of
turbulent flows to draw energy from whatever forcing mechanism is available,
redistributing it [38]. Vorticity alone, more than the strain, revealed itself to
be one of the most robust ways to discern between regions of turbulent flows
from non-turbulent ones [8, 19, 36, 42, 95].

Figure 2.1 shows an example of a TNTI with the velocity field vectors superim-
posed to the enstrophy field. Thewhite area delimits the regionwhere enstrophy
fluctuations drop under 2% of their average value in the core of the turbulent
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2.1 Role of strain and vorticity in turbulence

region, while this fluid is to be considered non-turbulent, it still experience
some velocity fluctuations. Indeed, the TNTI is highly unsteady and the mo-
vement of its offshoots produces these irrotational velocity fluctuations in the
non-turbulent region. Such fluctuations decay further away from the interface
as (x − xI )−4 [7], where xI is the local position of the interface, and conse-
quently also viscous dissipation of kinetic energy occurs outside the turbulent
region [19]. Despite being unsteady and apparently chaotic these irrotational
fluctuations do not carry the characteristic increase in transport properties of
turbulent flows. Indeed, when weakly diffusive passive scalars are dispersed in
a turbulent flow, the boundaries of the region containing appreciable concentra-
tions of scalar are found to agree very well with the boundary of the rotational
region [19,37]. In the measure to which the turbulent region overlaps over the
rotational region of the flow, the study of the propagation of turbulence can be
reduced to the study of the mechanics of transport, production, diffusion and
dissipation of vorticity fluctuations in the neighbourhood of the interface. The
Equation 2.1 for the rate of variation of Ω = (ω2x + ω2y + ω2z )/2, also called
enstrophy, contains all these contributes for a case without body forces.

∂Ω

∂t
+ u j
∂Ω

∂xj
= ωiωj si j − ν ∂ωi

∂xj

∂ωi
∂xj
+ ν

∂Ω

∂xj∂xj
. (2.1)

On the left-hand side of Equation 2.1 one finds the rate of variation of enstrophy
and the advection u j

∂Ω
∂x j

, responsible for moving about existing enstrophy. The
last two terms on the right-hand side are the two viscous contributes−ν ∂ωi

∂x j

∂ωi

∂x j

and ν ∂Ω
∂x j∂x j

, which respectively dissipate and diffuse enstrophy. The average
of the first term on the right-hand side, ωiωj si j , is found to be always positive
in turbulent flows and thus it is usually referred to as enstrophy production [46].
The latter is given by the scalar product ω ·W between vorticity and the vortex
stretchingW = �ωTS = {ωj si j} and is responsible for the coupling between the
enstrophy and the total strain rate s2 = si j si j . The strain-vorticity interaction is
such a central point in turbulence, that Bradshaw [9] includes vortex stretching
in its definition: "[t]urbulence is a three-dimensional time-dependent motion in
which vortex stretching causes velocity fluctuations to spread to all wavelengths
between a minimum determined by viscous forces and a maximum determined
by the boundary conditions of the flow". Accordingly three-dimensionality is
also aminimumcondition for turbulence in 2Dflowswhere this termdisappears
due to the orthogonality between vorticity and strain, and one cannot talk of

11



2 Propagation of turbulent fronts in Newtonian fluids

turbulence and phenomena as reverse energy cascade due to the fact that vortex
coalescence can be observed [38, 46, 86]. The enstrophy production couples
the enstrophy equation with the equation for the rate of change of strain, which
is given in absence of volume forces by:

1
2
∂s2

∂t2
+
1
2

u j
∂s2

∂xj
= −si j sik ski − 1

4
ωiωj si j + νsi j∇2si j − si j

∂2p
∂xi∂xj

. (2.2)

Here indeed it can be seen how ωiωj si j is a source for the enstrophy equation
and a sink for the rate of variation of the strain. Similarly to the enstrophy
production the strain has its source term −si j sik ski due to nonlinear self-
interactions of strain. Likewise to ωiωj si j , strain production is not positive
definite and in turbulent flows it is positive only on average, while locally it
can contribute to the destruction of strain. The strain equation also contains
a dependence to the pressure field through the term si j

∂2p
∂xi∂x j

and a viscous
term, which results in contributions equivalent to the ones observed for the
enstrophy equation. It has been shown for homogeneous isotropic turbulence
that strain and enstrophy equations are mainly driven by the balance between
production and viscous terms [58, 81, 86], a balance that for enstrophy has
been found to hold locally both in space and time. Those are orders of ma-
gnitude higher than their corresponding terms associated with forcing [86] and
appear to have universal features among different kinds of flow [58]. Anot-
her apparently universal feature is the relative orientation between the local
vorticity vector and the strain eigenframe, which appears to follow the same
pattern in turbulent flows of different nature and Reynolds numbers [30]. The
strain eigenframe can be obtained by decomposing the symmetric strain rate
tensor in S = QΛQT, where Q = { �λ1 �λ2 �λ3} is a tensor with as columns the
eigenvectors �λi of S and where Λ is the diagonal matrix whose elements Λi

are the eigenvalues associated to �λi . The strain eigen-decomposition is closely
connected to the enstrophy production and it can be demonstrated that the
positiveness of ωiωj si j depends on the signs of the strain rate eigenvalues,
since −3Λ1Λ2Λ3 = −si j sjk ski = 3

4ωiωj si j [86]. The three eigenvalues are
identified by means of their relative magnitude: the largest eigenvalue is Λ1,
and it is always found to be positive, while the smallest one, Λ3, is always
negative. Finally, the intermediate eigenvalueΛ2 can assume both positive and
negative values. Therefore, the positiveness of ωiωj si j derives from Λ2 being
on average positive in all turbulent flows. Locally, it is still possible to find
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2.1 Role of strain and vorticity in turbulence

negative values ofΛ2 that would lead to locally negative enstrophy production.
As can be seen, the definition of the three eigenvalues is purely mathematical,
and especially the distinction between Λ1 and Λ2 when both are found posi-
tive and of similar magnitude should not be considered a physical one, as in
a fluctuating field they might switch role rapidly, continuously reverting the
axes of the eigenframe. Strain-vorticity orientation and enstrophy production
are linked by the relation ωiωj si j = ω2Λi cos2( �ω · �λi) which means that the
orientation between strain eigenframe and vorticity can affect the enstrophy
production in a stronger way than the strain and vorticity magnitude alone [86].

The orientations between vorticity and strain eigenvectors are another property
that appears to be constant among different turbulent flows [30]. Specifically
vorticity is found on average to be preferably aligned with �λ2, weakly aligned
with �λ1 and orthogonal to �λ3 [86]. Lüthi et al. [58] showed how these prefe-
rential orientations, in particular the fact that cos( �ω · �λi) ≈ 1, are ultimately
dependent on the viscous diffusion and destruction of vorticity. The alignment
cos( �ω · �λi) is indeedmore likely to be stronger in those regions of the flowwhere
νω∇2ω can be expected to be stronger [58] and viscosity is known to limit the
otherwise unbounded growth of the vortex stretching ωisi j [86]. Alignments
become particularly important in those regions where the topology of the flow
imposes particular orientations between vorticity and strain directly affecting a
number of flow properties. Tordella and Iovieno 2011 [83] found that different
levels of turbulence among regions of the same flow, and the inhomogeneity
originating from it, are enough to re-organize the moments of the velocity deri-
vatives in preferential directions. In their simulations, an initially homogeneous
isotropic turbulent flow is manipulated in such a way to reduce the intensity
of turbulent fluctuations in half of the domain. What has been observed in this
shearless mixing flow is an increase in the mixing region of anisotropy of the
velocity derivatives, reduction of compression of fluid filaments parallel to the
mixing layer and increase of compression of those orthogonal to it. Regions of
different turbulent kinetic energy also differ in their enstrophy content, so this
can be another example of the tendency of the vortical lines to tilt in presence
of strong enstrophy gradients and to affect turbulent fluctuations accordingly.
Such re-organization imposed by inhomogeneities in the flow is most extreme
for the case of the TNTI and it will be shown throughout this thesis how this
plays a major role in the propagation of the turbulent front.
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2 Propagation of turbulent fronts in Newtonian fluids

The relation between viscosity and large scale inhomogeneity had led to the
definition of two scalings for the TNTI. Corrsin and Kistler estimated the
thickness δv of the viscous dominated region of the interface (the viscous super
layer) to be in the order of the Kolmogorov scale η. Such scaling was confirmed
in several instances both in shearless (using oscillating grids experiments [43])
and sheared unbounded flows (planar jets [78, 98]). The evidence had been
found in the position of the peaks of conditional statistics of vorticity and the
peak of viscous diffusion close to the interface which all have sizes in the
order of few η. It is also evident that the complex large-scale features of the
interface are relevant to the interface. The layer mostly characterized by these
large scales is the one da Silva et al. [19] refers to as turbulent sublayer which
is the "region where the major exchanges between the irrotational fluid and
the fully turbulent core occur" [8]. This layer is roughly identified with the
region of rapid vorticity magnitude growth [19] and it has been found to scale
well with the Taylor microscale λ. The two scalings have been also associated
to different mechanics of turbulent propagation: one obviously is the small-
scale entrainment due to viscous diffusion of vorticity also called nibbling.
Beside this, a large-scale entrainment process takes place when pockets of
irrotational fluid are surrounded by large scale structure and advected inside
the turbulent bulk of the flow before acquiring vorticity. This process is usually
called engulfment [62] and its relevance on the global entrainment rate is still
debated [8,96]. The ongoing discussion extends also to the scaling of the TNTI:
recently Borrell and Jimenez 2016, while agreeing on a η scaling for the viscous
sublayer, demonstrated that in flows characterized by strong shear the observed
peaks of vorticity and η scaling can be the product of statistical artifacts [8].
These scaling are evinced from the topology of different conditional averages at
the interface, in thisway they depend on how conditional sampling is performed
and on how the interface is identified in first place. Moreover, the information
about the relevant scales at the interface is in this way limited to the scales
perpendicular to it. Another approach is to investigate relevant scale of the
phenomena leading to the entrainment through their spectral content as it is
going to be shown in the following paragraphs.
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2.2 Scale dynamics of enstrophy in a propagating shearless turbulent front

2.2 Scale dynamics of enstrophy in a
propagating shearless turbulent front

As previously noted, vorticity is one of the most evident markers of turbulence
and, therefore, it helps in understanding how turbulent fluctuations are gene-
rated, amplified, transported and destroyed in the flow. Equation 2.1 gives a
measure of exactly this and for the rest of the chapter the turbulent front will
be analysed in terms of its enstrophy budget. Focus will be given to the front
of a turbulent flow without mean shear as a simplified case representative of
many flows, where the turbulence is generated (and possibly sustained) away
from the interface. Such case also allows to reduce the number of parameters
in the study, as different levels of shear intensity do not need to be accounted
for. The analysis is moreover simplified by using one of the most studied and
basic classes of turbulent flows: homogeneous isotropic turbulence. Though
practically non-realizable, homogeneous isotropic turbulence (HIT) represents
an academical approximation of regions of actual turbulent flows, but with
independence from boundary conditions and other external influences [38,86].
It is a greatly simplified system in which statistics are invariant with respect
to both, translation and rotation, making it a statistically 1D problem. In nu-
merical simulations, HIT can be generated as the natural evolution of the
Navier-Stokes equation, starting from a random velocity field or the result of
an active stirring, usually via a body force. It has been extensively investigated
in literature, because it allows to study fundamental properties of turbulence
in a simplified framework with a limited parameter space (essentially reduci-
ble to its Re number). It is interesting to study how this prototypical kind of
turbulence propagates into quiescent fluid and with this purpose a set of direct
numerical simulations have been performed in which TNTI have been added
to an initially homogeneous isotropic turbulent flow.

A selected part of the results discussed in this section are published inCimarelli,
Cocconi, Frohnapfel and De Angelis 2015 [14]. In this numerical experiment,
the periodic computational domain is first "filled"with homogeneous isotropic
turbulence by a stochastic body forcing fi with a Gaussian distribution centred
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2 Propagation of turbulent fronts in Newtonian fluids

on the wave number |k| = 5 with variance σ = 0.6. The dimensionless Navier-
Stokes equations:

∂ui
∂t
+ u j
∂ui
∂xj
= − ∂p
∂xi
+

1
Re

∇2ui + fi (2.3)

have been numerically integrated via a pseudo-spectral solver according to
the scheme illustrated in Appendix A.1, 1024 × 512 × 512 Fourier modes
have been used for the space discretization of a tri-periodic domain of size
Lx × Ly × Lz = 4π × 2π × 2π. For the time discretization, a time step of
Δt = 5 · 10−5 has been used. Initial velocity fields have been selected from a
statistically stationary state at Reλ0 = u′λ0/ν=120, where u′ is the root mean
square of the velocity fluctuations and the initial Taylor length scale has been
defined as λ0 =

√
15u′2/(2si j si j). Further details on the simulation parameters

are given in Table 2.1. After an initial field has been selected, its velocity
fluctuations are artificially damped to zero in half of the domain by multiplying
the velocity in every point of the field by a function p(x) ∈ [0, 1] in such away as
to generate two turbulent/non-turbulent interfaces. Unresolved discontinuities
are avoided using a smooth damping function for the velocity fluctuations
preventing the appearance of numerical artifacts as Gibbs phenomena. The
damping function, similar to the one used by Tordella and Iovieno 2011 [83],
is given by:

p(x) = 1
2

[
1 + tanh

(
a

x
Lx

)
tanh

(
a

x − Lx/2
Lx

)
tanh

(
a

x − Lx

Lx

)]
(2.4)

and permits to tune the initial thickness of the interfacial region and hence
the steepness of the gradients thereby. Different choices of a have been tried
and in the end a value of a = 20π has been used. In particular, it has been
noticed that the choice of high values of parameter a introduces sharp and
persistent peaks of vorticity at the interface during all the propagation. As
most basic example no mechanism for sustaining turbulence is introduced in
the simulation of the propagation, which means that after the initial homoge-
neous isotropic condition is produced and the interface introduced, no further
forcing is provided during the propagation run. In doing this, any possible
influence from the forcing mechanism is prevented, producing a flow where
turbulence propagates and decays at the same time. Following such a proce-
dure, over 20 independent realizations have been produced and statics have
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2.2 Scale dynamics of enstrophy in a propagating shearless turbulent front
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Figure 2.2: The smoothing function from Equation 2.4 superimposed over plotted iso-surfaces of
the enstrophy field.

Table 2.1: Initial parameters of the simulation: l0 is the integral length scale of the initial condition
and Δx/η0 the initial resolution.

been ensemble averaged among these realizations. The position of the average
interface position is tracked in time by locating the outermost points where a
minimum level of enstrophy is reached for each y, z coordinate. This threshold
level has been set to 0.02Ωb or 2% of the average enstrophy in the midplane
of the turbulent flow (from now referred as ’bulk’) at a given time. Thus, the
threshold decreases in time with the same rate as the turbulence decay of the
bulk, it will be shown as this definition of thresholds permits to effectively
detect the region of enstrophy growth in this time and spatially evolving flow.
After an initial transient, the interface position defined in such a way shows a
growth rate which is proportional to

√
t, which is typical to for time evolving

shearless turbulent fronts [42]. Statistics are sampled only after this growth
rate is established at around 5 integral times scales from the beginning of the
decay, while Reλ = 50.
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Figure 2.3: Average interface positionwith respect to time. xI0 denotes the position of the interface
at the beginning of the decay. Adapted from [14].

2.2.1

The purpose of the following analysis is to gain a better understanding of which
contributes are more relevant to the propagation of the turbulent front and at
which scales each contribute is most active. The decaying flow is constituted
by a bulk of turbulent flow, which remains quasi-homogeneous and isotropic
for all the duration of the simulation. Further away in x−direction from the
center of the bulk the flow grows more and more inhomogeneous. Statistical
homogeneity in y − z direction is nevertheless maintained and such planar
homogeneity permits us to reduce equation 2.1 to:

∂〈Ω〉
∂t
= 〈ωiωj si j〉 − ν

〈
∂ωi
∂xj

∂ωi
∂xj

〉
− ∂〈Ωu〉
∂x

+ ν
∂2〈Ω〉
∂x2

, (2.5)

where〈Ω〉 = 〈ωiωi〉/2 and 〈·〉 indicate both the ensemble average and spatial
average in the homogeneous y − z planes. Here it can be seen that the major
differences from a completely homogeneous isotropic turbulent flow reside in
the fact that, in general, the diffusive and advective terms (respectively − ∂〈Ωu〉

∂x
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Figure 2.4: Average magnitude of the vorticity components ωp in the homogeneous plane and
ωx normal to it as a function of the distance from the average interface position. The
value are normalized by 〈Ω〉b the average magnitude of the total vorticity in the bulk.
Adapted from [14].

and ν ∂
2 〈Ω〉
∂x2

) are in general non-zero on average. Both terms contribute only
through their derivatives in the inhomogeneous direction already pointing out
as this inhomogeneity is required in order to arise the spatial fluxes necessary
to the propagation of the front. The presence of the interface hence leads to
both, the usual redistribution of fluctuations throughout the space of scales as
well as into the physical space. Again it can be observed as both the inertial
and viscous terms redistribute enstrophy both into the physical space (− ∂〈Ωu〉

∂x

and ν ∂
2 〈Ω〉
∂x2

) and into the scale space (〈ωiωj si j〉 and ν
〈
∂ωi

∂x j

∂ωi

∂x j

〉
) hence once

again this to process remain entangled in the two spaces.

Figure 2.5 shows the various terms of the enstrophy equations in function of the
distance x from the average position of the interface XI and normalized by the
Taylor microscale λ measured in the bulk of the flow. In the analysis the flow
is divided in three regions, identifiable from Figure 2.5: firstly the bulk region
for (x − XI )/λ) < 10 is shown. There turbulence is in good approximation still
homogeneous and isotropic, the total variation of enstrophy is dominated by
the production and the viscous dissipation sensibly in favour of the latter. These
two terms are mostly producing, redistributing and destroying enstrophy in the
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Figure 2.5: Components of the enstrophy equations as a function of the distance from the average
interface position. The inset is a magnification of the same plot at the interface region.
Adapted from [14].

scales space. The negligible contribution of the spatial fluxes (both diffusive and
advective) denotes that, in the physical space, enstrophy is redistributed roughly
uniformly in all the directions within this region, the presence of the interface
apparently has little effect on enstrophy dynamics in the bulk region. Also,
the importance of the balance between dissipation and production mechanics
in a turbulent flow is shown. As a matter of fact, all the other terms of the
enstrophy budget are some orders of magnitude smaller and the time variation
of enstrophy inmost of the flow appears to be determined only by the difference
between 〈ωiωj si j〉 and 〈ν∂ωi/∂xj∂ωi/∂xj〉.
Moving forward towards the interface, it is possible to identify a region around
−10 < (x − XI )/λ < −0.5 that from here on will be defined inhomogeneous
layer due to the growing effect of the inhomogeneous gradient of enstrophy
in the flow. Following the gradual reduction of enstrophy inside this layer,
both production and dissipation decrease in magnitude. Most notably, the
increasing mean gradient of enstrophy is accompanied by a non-negligible
contribution from the advective flux. Initially, the negative flux draws enstrophy
from the region −10 < (x − XI )/λ < −5, then it release enstrophy in the
region −5 < (x − XI )/λ < −0.5 where the advective flux becomes positive.
Enstrophy advection reaches its peak at (x − XI )/λ = −2 and for most of the
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2.2 Scale dynamics of enstrophy in a propagating shearless turbulent front

inhomogeneous layer it remains orders of magnitude larger than the viscous
diffusion.

Finally, the interfacial layer is reached for (x − XI )/λ > −0.5. In this layer the
intensity of the advective flux becomes comparable to the one of ωiωj si j, the
joint positive contribute of these two terms is strong enough to overcome the
viscous dissipation and to give rise to a positive total variation of enstrophy
in time ∂〈Ω〉/∂t. Also notable is a weak but positive viscous diffusion which
marks the presence of the viscous superlayer in this region. Despite being
small, the growth rate still allows the propagation of the turbulent front in face
of the general decay of turbulence in the rest of the flow. It must be stressed
that this growth is driven by the inviscid transport of enstrophy via velocity
fluctuations and cannot be addressable to diffusion alone. Also notable is the
fact that the regions defined here are independent from the time during decay,
hence the Reλ, at which they are considered considered. Comparing Figures
2.5 and 2.4 it is possible to see how the regions where the advective flux is more
intense also coincides with those regions where the anisotropy of vorticity is
stronger. The negative advection close to the bulk is thus affecting mainly the
in-plane component of vorticity, while its increase close to the interface can
be attributed to tilting of out-of-plane vorticity forced by the vicinity of the
interface itself.

2.2.2 Spectral Enstrophy Budget

If a more direct analysis of the scales dynamics is sought for, one way to investi-
gate it is to analyse the spectral content of the components of the enstrophy. Due
to the inhomogeneity in x−direction, the enstrophy spectrum will depend both
on the location in the physical space and on the wave-numbers. In particular,
for the symmetries of the problem, it is possible to reformulate the enstrophy
written in the wavenumber space along the homogeneous (y, z)-directions and
in physical space along the inhomogeneous x-direction, i.e. Ω̃ = Ω̃(x, kπ)whe-
re ˜(·) refers to a 2D Fourier transform in the homogeneous (y − z)-space and
kπ = ky,z .

This 2D spectrum of enstrophy is depicted in Figure 2.6 normalised by λ3/u′2
b

and as a function of the distance from the interface and thewave-number kλ. For
two different times during the decay they show how the maximum enstrophy
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Figure 2.6: Isocontours of log(〈Ω̂〉λ3/u′2
b
) in the (k, x − XI )-space for (a) t/t0 = 4.5 and (b)

t/t0 = 8. Adapted from [14].

is located in the bulk at a kλ of around 2.5, this correspond to a scale in the
physical of L/λ = 2π/(kλ) ≈ 2.51. Noteworthy is how the spectral distribution
of enstrophy remains rougly constant within all the bulk region, only into
the inhomogeneous layer a gradual reduction of the enstrophy reduction of
enstrophy appears and becomes more intense getting closer to the interface.
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2.2 Scale dynamics of enstrophy in a propagating shearless turbulent front

This region of enstrophy depletion corresponds to the region of Figure 2.5 at
−10 < (x−XI )/λ < −5where the advection acts as a sink. Similarly the positive
advection observed in Figure 2.5 here gives rise to an increase of enstrophy
in the outer part of the inhomogeneous layer for −5 < (x − XI )/λ < −0.5 at
intermediate to high wave-numbers kλ. This is particularly evident at t/t0 = 8,
where the peak reaches even higherwave-numbers than in the bulk region, while
small wave-numbers see a decay of enstrophy in both cases. The interfacial
layer sees a general decay of enstrophy at all wave-numbers, with a depletion
of the in-plane small scales which appears almost linear in space. For what
concerns the evolution of the spectral enstrophy in this hybrid Fourier-physical
space one should start from its formulation in the Fourier space only. The
enstrophy in the Fourier space is Ω̂ = ω̂iω̂∗

i /2, where ·̂ denotes the Fourier
transform and ∗ denotes the complex conjugate. In the case of homogeneous
isotropic turbulence, the balance equation for spectral enstrophy is:

∂Ω̂

∂t
= −ik jω̂

∗
i ω̂iu j + ω̂

∗
i

( 
ωj
∂ui
∂xj

)
− 2νk2Ω̂, (2.6)

where k2 = k2x + k2y + k2z and i is the imaginary unit. As for the spectral
enstrophy alone the budget equation due to the inhomogeneity in x−direction
will actually depend both, on the location in the physical space and on the
wave-numbers. Considering this inhomogeneity, the resulting equation will
be:

∂Ω̃

∂t
= −ikπω̃∗

i �ωiuπ︸���������︷︷���������︸
Tk

− ω̃∗
i

∂ω̃iu
∂x︸����︷︷����︸

Tx

+ ω̃∗
i

( �
ωj
∂ui
∂xj

)
︸���������︷︷���������︸

γ

− 2νk2ΠΩ̃︸��︷︷��︸
εk

+ ν
∂2Ω̃

∂x2︸︷︷︸
Dx

− ν ∂ω̃i
∂x
∂ω̃∗

i

∂x︸������︷︷������︸
εx

, (2.7)

where k2Π = k2y + k2z . Equation (2.7) allows us to analyse the dynamics of
enstrophy in both, the wavenumber and the physical space. Since the waven-
umber space kπ is isotropic, the integral of Equation (2.7) over a shell in the
(ky, kz)-space of radius k and thickness dk is considered. In such a way Equa-
tion (2.7) turns to be a function only of k and of the position x. Compared
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2 Propagation of turbulent fronts in Newtonian fluids

to Equation 2.1, the new coordinate k adds a further dimension to the budget
by showing the contributes from advection, diffusion, production and dissi-
pation at different wave-numbers. Thus, while the scale transfer in Equation
2.1 could only be inferred here the wave-number dependence is made explicit.
This formulation is only representative of the scales in y − z directions, while
the information about the scales in x−direction at best can only be deduced.
Looking into the details of Equation 2.7, it is possible to divide it in contri-
butes into the physical space and contributes into the Fourier space. γ is the
production term due to vortex stretching. Here, as in the conventional budget,
it represents a source of enstrophy due to non-local interactions of vorticity
and strain, it should not surprise therefore that in Equation 2.7 this only has
contributes in the Fourier space. The dissipative term in its spectral form gives
rise to two different contributes, εk and εx , which are related respectively to
the gradients into the in-plane wave-numbers k and to the spatial gradients in
x−direction. Similarly there are a spectral flux Tk which redistribute enstrophy
among different in-plane wave numbers and an inertial spatial flux that trans-
fers enstrophy towards different spatial locations in x−direction. The last flux
is the viscous diffusion in the physical space.

The analysis of the spectral budget can at some points be simplified, if the
terms from Equation 2.7 are regrouped in a spatial flux Sx = Tx + Dx , also the
dissipative terms and the production can be grouped into an effective source
term ξ = γ + εk + εx . In this way Equation 2.7 can be rewritten as:

∂Ω̃

∂t
= ξ + Sx + Tk, (2.8)

which immediately describes, as a function of k and the distance from the
interface (x−XI )/λ, how enstrophy is generated/destroyed and transferred into
both, the physical space and both the wave-number space. Here the analysis
proceeds following the subdivision introduced in the previous section studying
the spectral budgets of the bulk region in the following order: the inner and the
outer part of the inhomogeneous layer finishing with the interfacial layer.

As it has previously been done with the conventional budget, the bulk region is
first considered as this region behaves in good approximation like a decaying
homogenous isotropic turbulence. Indeed, looking at the time variation of
enstrophy in Figure 2.7, it can be seen how enstrophy is decaying over the
whole spectrum. The spectral flux Tk , here negative at small kλ and positive
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Figure 2.7: Spectral enstrophy budget within the bulk turbulent region for t/t0 = 4.3. The terms
of Equation (2.8) are shown in (a) while the different components of ξ and Sx from
Equation (2.7) are delineated in (b). Adapted from [14].

at large ones, represents the classical view of a direct cascade of enstrophy
from the large scales (kλ < 7) towards the smaller ones (kλ > 7). The
prevalent negativeness of the source term ξ means that the dissipative terms
are stronger at almost all the wave-numbers and only at kλ < 7 the production
term can overcome the dissipation. Despite the flow is homogeneous in the
bulk region, one can observe as a non-negligible Sx and εx arise here. These
show a maximum magnitude of about one half of their spectral counterparts
Tk and εk and in this region they can be interpreted as respectively the spectral
transfer and dissipation in the x−scales space (or wave-numbers kx). This is
confirmed by the fact that the integral

∫
Sxdk here is negligible, hence it does
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2 Propagation of turbulent fronts in Newtonian fluids

not produce any net transfer of enstrophy towards the interface but it is only
cascading it from low kx to larger ones. In a similar way, in the homogeneous
turbulent bulk, εk is the result of dissipation of enstrophy in the kx space.
This is again confirmed by the fact that

∫
εxdk ≈

∫
εkdk/2 which is what

is expected from isotropic turbulence. It will be shown how, getting closer to
the interface, the behaviour of the spatial terms Sx and εx will deviate from
what was observed here under the effect of the growing inhomogeneity in the
flow. There these terms will be less and less representative of the underlying
scale transfer and will become predominantly determined by the spatial mean
gradients. In fact, it is possible to observe a departure from the homogeneous
behaviour of the bulk region already in the inner part of the inhomogeneous
layer. The spectra of a representative section of this region are depicted in
Figure 2.8 for (x − XI )/λ = −7, a section which corresponds to the location
where the enstrophy drain due to inertial advection takes place in Figure 2.5.
Here, as in the bulk, enstrophy is decaying at all the scales. On the qualitative
level, here the spectra show the same general behaviour as in the bulk with the
only noticeable distinction of the spatial flux Sx , which is a sink for a slightly
large range of wave-numbers compared to how it was in the bulk.

Figure 2.9 shows how the spectra radically change in the outer part of the
inhomogeneous layer for (x − XI )/λ = −2. In this region enstrophy is being
released by the inertial advection from the inner textitinhomogeneous layer. It
can be observed how, while still negative, the variation of enstrophy is much
less intense than in the bulk and how the larger wave-numbers are already
at equilibrium. The reason for this reduced decay rate is attributable to the
now strong spatial flux Sx which is positive at all the scales, implying that
enstrophy is being advected at all scales from the inner inhomogeneous layer
and this flux strongly overcomes the underlying enstrophy cascade in the kx
space. Watching the inset of Figure 2.9, as expected it can be observed how
the flux Sx is an essentially inviscid process as the viscous diffusion Dx is
still negligible compared to the advection Tx . The diminishing intensity of
the enstrophy production γ preventsto overcome the dissipative terms, εx and
εk at all the scales, and that is in such a way that the source ξ is negative
everywhere. Also, Figure 2.9 shows that the dissipation εx due to the gradients
in the inhomogeneous direction is growing in magnitude when compared to εk
and it peaks at the same numbers as the production term γ. As in the rest of
the flow, the spectral transfer Tk here drains large-scale enstrophy and releases
it at smaller ones. The spatial flux Sx is observed to release enstrophy at larger
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Figure 2.8: Spectral enstrophy budget within the inhomogeneous layer at (x − XI )/λ = −7 where
the peak of enstrophy draining due to the spatial flux takes place. The terms of Equation
(2.8) are shown in (a) while the different components of ξ and Sx from Equation (2.7)
are delineated in (b). Adapted from [14].

wave-numbers compared to the one drained in the inner inhomogeneous layer.
Indeed, while the negative peak of Sx is located at kλ ≈ 2, the positive the
flux peaks closer to the interface at kλ ≈ 5. This is in agreement with the
representation of Sx as a flux in both the physical and the scales space, as
the enstrophy drained at large scales close to the bulk is advected towards the
interface and at the same time undergoes through a cascading process feeding
enstrophy close to the interface at smaller scales.
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Figure 2.9: Spectral enstrophy budget within the inhomogeneous layer at (x − XI )/λ = −2 where
the peak of enstrophy source due to the spatial flux takes place. The terms of Equation
(2.8) are shown in (a) while the different components of ξ and Sx from Equation (2.7)
are delineated in (b). Adapted from [14].

At the interface, depicted in Figure 2.10, it is finally possible to observe a non-
negative enstrophy variation at all the wave-numbers. Especially the largest
in-plane scales of the flow gain enstrophy while the intermediate to small ones
have reached an equilibrium. Again in this generally decaying flow this growth
cannot be attributed to the local production of enstrophy γ. Indeed, it remains
as in the outer inhomogeneous layer always weaker than the dissipation leading
to ξ being negative at all wave-numbers. Part of this is due to the increasing
relevance of the viscosity at the interface and in particular to the growth of
εx . The growth of enstrophy is again determined by the intensity of the spatial
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Figure 2.10: Spectral enstrophy budget within the interfacial layer at (x−XI )/λ = 0 for t/t0 = 4.3.
The terms of Equation (2.8) are shown in (a) while the different components of ξ and
Sx from Equation (2.7) are delineated in (b). Adapted from [14].

transport Sx , mostly sustained by the advection Tx . It is also interesting to
notice the apparently anomalous behaviour of the spectral transfer Tk that, due
to the strong anisotropy, at the interface does not enforce a transfer from small
to large wave-numbers anymore, but acts as a sink for all the in-plane scales
instead. In accordance with what was pointed out in the previous sections, this
is indicative of the spectral transfer of enstrophy due to vortex tilting from the
k in-plane space towards the kx at smaller scales. Finally, the viscous diffusion
here as in the budget of Figure 2.5 shows a weak but positive contribute. It
is interesting to point out how the in-plane scales of viscous diffusion Dx are
even larger than the ones mostly gaining from the spatial transport. This is
in apparent contrast with the typical figure of inertial processes being large-
scale phenomena and viscous processes being small-scale ones. It must be
remembered that Dx is directly representative of diffusion among scales in
the in-plane direction, while it has been observed as the out-of-plane scales of
viscous diffusion show thicknesses in the order of few Kolmogorov scales. It
appears then that diffusion is mostly active in sheets of relatively large in-plane
extension and Kolmogorov scale thickness.

As a confirmation of the observations made in the spectral analysis, one can
qualitatively assess the scales of the viscous diffusion at the interface. By
plotting the viscous diffusion over the surface of the TNTI, as can be seen
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Figure 2.11: Viscous diffusion of enstrophy in a 2D cross-section of the turbulent/non-turbulent
interface. Adapted from [14].

in figure 2.11, a qualitative observation reveals that the diffusion is mostly
positive in relatively large spots at the interface. The thickness of the viscous
diffusion dominated layer observed in previous studies [79], together with the
observations from spectral analysis, put together the picture of a thin layer
where vorticity fluctuations parallel to the interface diffuse most intensely
at large scales. The small-scale nibbling has more the form of a thin but
spread vortex sheet than that (often depicted in literature) of a fractal like
hierarchy of increasingly small structures that diffuse their vorticity down to
the Kolmogorov length scale. Indeed, by observing a cross-section of the field
of viscous diffusion ∂2Ω/∂xi∂xi in figure 2.12 as expected we see how viscous
diffusion is organized in thin stratified layers of alternating sign with thickness
usually around 4 − 5η. The outermost layer being mostly positive is the one
which in conditional averages produces the characteristic viscous dominated
region known as the viscous superlayer.
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Figure 2.12: Viscous diffusion field in a cross-section of the flow.
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3 Dilute polymer solutions models

3.1 Dilute polymer solutions and turbulent flows

In this chapter basics elements on the dynamics of dilute polymer solution will
briefly be introduced together with the kinetic theory which is the basis to the
most diffuse models for the dynamics of dilute polymer solutions. Polymers
are molecules constituted by several repetitions of a same molecular sub-group
called monomer. They are ubiquitous in modern industrial applications due
to their versatility but are also very common in nature (examples range from
the DNA chains to the pectin that thicken jellies and jams). In fluid flow
applications polymers gained attention due to some interesting non-Newtonian
phenomena that arise in flows of solvents in which they are diluted in small
concentrations. The most evident and most studied of such modifications is
certainly arise in turbulent bounded flows of dilute polymer solution, where
the drag of the flow can be found to be as little as 80% less than equivalent
Newtonian flow with matching viscosity [6]. Other anomalous phenomena are
for example the dye swelling in jets or rod climbing in rotating tank with a rod
in the centre [6, 41].

In dilute polymer solutions the Newtonian linear relation between stress and
strain fail to describe the flow for all but the most simple laminar cases. So-
me viscous-like relations can be used to a certain extent, but generally these
fail to describe even qualitative aspects of the flow when it transitions to the
turbulent state. In order to better model the rheology of diluted polymer so-
lutions molecular dynamics of the polymer chains have to be accounted for.
One of the most successful approaches to the problem is the kinetic theory,
which attempts to model polymer molecular dynamics via a stochastic ap-
proach. This theory in particular is geared towards modelling the behaviour of
high molecular weight, flexible polymers constituted by millions of unbran-
ched chains of a single type of simple monomer (e.g. without phenyl groups,
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3 Dilute polymer solutions models

cyclic sugars etc. [41]). Moreover, certain assumptions are required such to
limit the applicability of the model to dilute polymer solutions only. "Dilute
solution"means a mix of polymers dissolved in a solvent in which the addition
of polymers does not significantly alter the viscosity of the solvent: typical
concentrations are in the order of few polymer molecules per million solvent
molecules [41]. In the polymer chain the single links between the molecules

Figure 3.1: An atomic force microscope picture of a poly(2-vinylpyridine) (n×C7H7N ) chain of
about 1500 monomers at different degrees of un-coiling [72].

can rotate and bend allowing a great number of possible configurations of the
complete chain as it can be appreciated in Figure 3.1 for poly(2-vinylpyridine)
molecules. In absence of shear, the chain tends to assume a compact coiled
configuration like the one assumed on the bottom right of Figure 3.1, while
under the effect of velocity gradients the different velocities that different parts
of the chain experience tend to uncoil the chain stretching it. One of the most
typical example in the literature on turbulence of dilute polymer solutions is
the polyethilenoxide or PEO (monomer −CH2 − CH2 − O), which can form
single chains with up to millions of monomers for an extended length up to the
order of few micrometres [41].

For dilute polymer solutions, experimental evidence in laminar flows showed
that the rheology of the solution does not show any differences from the one
of their solvent [41]. Evident modifications in both the macroscopic and small
scale behavior of the flow start to arise only when the flow start to transition
to a turbulent state [41]. Evidence shows that, while changing the features of
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3.1 Dilute polymer solutions and turbulent flows

the flow at all scales, polymers more directly interact with the smallest scales
of the flow: for example, when drag reduction appears, polymers strongly
decrease Reynold stresses in the flow [93], increase the correlation length of
small scales and a shift of the energy content towards larger scales compared
to a Newtonian flow [87]. Nevertheless, suppression of turbulent properties
is not granted in all conditions and in certain instances polymers have been
found to actually increase the intensity of turbulent fluctuations [27,54,85]. A
direct interaction between small scales of the flow and single polymer chains
might look obvious, but it must be remembered that drag reduction in pipe
flow experiments manifests itself at Reynolds numbers in the order of 103 [41],
at these Reynolds numbers in the same experiments the length of all but the
heaviest fully stretched polymer molecules are one or two orders of magnitude
smaller than the Kolmogorov length scale. Nevertheless, the coupling between
the flow and the polymers strongly depends on the coupling between their
characteristic scales as the dependence between drag reduction and polymer
chain length demonstrate [41]. Hence, in order to compare flows of dilute
polymer solutions, the Reynolds equivalence is not enough and an additional
non-dimensional group comparing polymer and fluid scales is required. This
group usually takes the form of either the Deborah number or theWeissemberg
number. The Deborah number De = τ/To where To is the characteristic time
of the observed phenomena and τ is the polymer relaxation time, i.e., the time
required for the shear stress in a simple shear flow to return to zero in constant
strain conditions [67]. The Weissemberg number can be defined for shearing
flows as the product between the shear rate and the relaxation time such that
Wi = dU

dy τ. In a Newtonian fluid under such conditions, the shear stress would
immediately go to zero leading to a zero relaxation time while for a Hookean
elastic material the stress is maintained indefinitely and the relaxation time
is infinite. The Deborah number can be seen as an indicator of how much a
material undergoing a deformation with a characteristic time scale To behaves
as an elastic solid or a Newtonian fluid (with De = ∞ for solids and De = 0
for fluids). In reality, no perfectly Hookean or Newtonian material exists and
all materials show a behaviour in between the two: for example, water has a
relaxation time in the order of 10−12s and glass one of 28 hours [67]. The
relaxation time of a polymer depends on the shape its coils assume in a given
configuration and on its orientationwith respect to the perturbation. Thismeans
that polymer do not have a single relaxation time but a whole spectrum of them.
Nevertheless, in many models a single representative relaxation time is usually
assumed for simplicity. In the case of dilute PEO-water solution withmolecular
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weight Mw = 2 · 106g/mol, the typical relaxation time range is in the order of
10−4s depending on the polymer concentration [75].

At the polymer length scale, the smallest velocity gradients in the flow are
still perceived as a uniform shear [6], and the reaction of a polymer to these
gradients would happen at scales smaller than the Kolmogorov one. Never-
theless, polymers induce macroscopic changes at all scales of the flow. One
reason, at least for the case of the PEO, comes to the experimental evidence
of the formation of supermolecular structures between several polymer chains
even at low concentrations that would form reticulate structures of much larger
dimensions [48, 49], but there are other mechanisms with which small-scale
inputs can result in the production of large-scale alterations via triadic interac-
tions [87]. As it can be seen from this brief introduction to the topic, polymers
increase the complexity of the problem on several levels. The large spectrum
of configurations a single polymer chain alone can assume can add millions
of degrees of freedom to the problem and a single fluid parcel would contain
several of them. One is then forced to resort to a number of simplifications in
order to reach a numerically treatable formulation of the problem. In this pro-
cess a number of dependencies on the properties of the molecules employed,
on their interaction with the surrounding solvent and other polymer’s mole-
cules, all characteristics of the solution will be deliberately over-simplified or
ignored. The resulting models have the advantage of qualitatively capturing
some of the relevant dynamics of turbulent flows of dilute polymers solution.
Moreover, as for turbulence modelling, the success of a simple model can help
to direct the research in understanding what is mostly relevant in the observed
physical phenomenon. Thus, in the following the theory behind the FENE-P
model used in the rest of this work will be introduced.

3.2 The kinetic theory

Themost diffuse models in computational rheology of dilute polymer solutions
start from the kinetic theory in order to reach a continuum formulation of
the relation, or constitutive equation, between stress and deformation at a
macroscopic level, .i.e. at the level of the fluid element. The kinetic theory is a
coarse-grained model for the polymer conformation, which means it does not
try "to provide a description of the fluid at a molecular leveländ that "processes
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at atomistic levels are ignored" [67]. The contribution of the conformation of
the polymers molecules to the stress in a fluid particle is represented via the
ensemble average of the conformation of a number of modellised polymers.
The typical basic unit of such models is composed by two spherical bodies, or

(a) (b) (c)

Q Q Q

Figure 3.2: Various degrees of simplification of the polymermodel with its end-to-end vector Q. (a)
Multi chain dumbbell model with rigid connectors between the beads. (b) Multi-chain
dumbbell model with elastic connectors. (c) Single elastic dumbbell model.

beads, that are linked together. Due to its shape it is also referred to as ’dumbbell
model’. At an atomistic level the monomers are linked together with fixed bond
angles, bond lengths and torsion angles. It is possible to reduce the complexity
of the model by substituting concatenations of monomers over which a certain
correlation in the orientation persists with a single dumbbell element. Such
correlation length is called persistence length and is a measure of the degree
of flexibility of a molecule. On distances shorter than this persistence length,
the molecule behaves as a flexible elastic rod, while at larger distances the
correlation vanishes and the molecule will behave as a freely jointed chain
made of rigid or elastic links with completely flexible joints [70]. In the model,
the continuously distributed mass of the polymer molecule is assumed to be
distributed over a finite number of discrete beads at the junction points of the
chain. The beads not only account for the mass but are also the nodes on which
the external forces can act, while in the kinetic theory the links represent the
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internal reaction forces due to the chemical bonds. Depending on how coarse
the model is, the basic element can represent a limited subset of monomers of
the chain up to the whole polymer molecule, as depicted in Figure 3.2. Multi-
chain models, thought simplified, still require the addition of several hundred
degrees of freedom per point of the velocity field. With the computational
power currently available, those are applicable to only very simple flow cases.
With the purpose of studying relatively complex turbulent flows, here a single
dumbbell model will be used. It will be shown how this approach limits the
additional degrees of freedom to six, introducing six more equations to the
Navier-Stokes system andmaintaining a continuum formulation of the problem.
In the following part the derivation of the Finite Extensibility Nonlinear Elastic
(FENE) model is demonstrated following mostly Owens and Phillips [67]. An

Q

r1

r2

O

u(r2)

u(r1)

Figure 3.3: Single dumbbell model constituted of two beads linked by an elastic force.

elastic dumbbell immersed in a Newtonian solvent is considered as shown in
Figure 3.3. Such dumbbell consists of two beads with mass m and position
vectors �r1 and �r2 relative to some fixed coordinate system. The equations of
motion for the beads in the dumbbell are:

m
d
dt

( d �ri
dt

− �u(�ri)
)
= −ζ

( d �ri
dt

− �u(�ri)
)
+ �Fi + �Bi (3.1)

for i = 1, 2. Here �u(�ri) is the velocity of the solvent at position �ri of the ith bead,
�Fi is the force on the ith bead exerted by the spring and �Bi is the Brownian force
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due to the impact of the solvent molecules on the ith bead. The constant ζ is the
friction coefficient and it arises from the Stoke’s law: the drag force on the ith
bead is assumed to be directly proportional to the difference between the bead
velocity and that of the surrounding medium. With the hypothesis of spherical
beads, the friction coefficient is ζ = 6πηsa, where a is the radius of the bead,
and ηs is the solvent viscosity. In modelling solvent-beads interaction in such
a way, hydrodynamic interactions, i.e, the effect that one bead may have on the
velocity of the solvent in the vicinity of the other bead, are neglected. External
inertial forces and weak chemical bound forces, as the ones between solvent
and beads or beads with other beads, are neglected as well. The characteristic
time scale of the bead velocity fluctuations due to the Brownian forces is
represented by the ratio λB = m/ζ . When the considered time scales of the
flow are large compared to λb , the Brownian force �Bi can be written in the
form

�Bi =
√
2kTζ

d �Wi

dt
(3.2)

where �Wi = �Wi(t) is a multi-dimensional Wiener process, k is the Boltzmann
constant and T the temperature.

Given thatWiener processes are Gaussian-stochastic processes, are completely
characterized by the mean and auto-correlation of its components Wi, j :

E(Wi, j(t)) = 0, (3.3)
E(Wi, j(t)(Wi, j(t ′)) = min(t, t ′). (3.4)

The coefficient
√
2kTζ is derived by the principle of equipartition of energy.

This states that, for a system in equilibrium, the kinetic energy associated with
each physical component of the velocity d �ri/dt − �u(�ri) for the ith bead is kT/2.
The velocity of the flow can be expressed as the truncated Taylor expansion

�u(�ri) = �u(0) + ∇�uT �ri . (3.5)

If �Q = �r2 − �r1 denotes the end-to-end vector of the dumbbell, the two velocity
components can be subtracted in order to introduce the relative velocity

�V = d �Q
dt

− ∇�uT �Q. (3.6)
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In order to reformulate Equation 3.1 as a function of the relative velocity and
obtain the first-order system of equations

md �V = −(ζ �V + 2 �F)dt + 2
√

kTζd �Wt, (3.7)

d �Q = ( �V + ∇�uT �Q)dt. (3.8)

Here �F = �F1 = − �F2 and �Wt = ( �W2 − �W1)/
√
2. These equations are a system

of stocastic differential equation of a Ito processes, the first of which is driven
by the Wiener process �Wt . The probability that a dumbbell has an orientation�Q to �Q + d �Q and a velocity in the range �V to �V + d �V at time t is given by
Ψ( �Q, �V, t)d �Qd �V whereΨ( �Q, �V, t) is the dumbbell probability density function.
Then the equation that describes the time evolution of the probability density
function is the Fokker-Planck equation governing Ψ( �Q, �V, t) which is

∂Ψ

∂t
= − ∂
∂ �Q

[( �V + ∇�uT �Q)Ψ]
+
1
m
∂

∂ �V
[(ζ �V + 2 �F)Ψ]

+
2kT
m2
∂Ψ2

∂ �V2
. (3.9)

In this equation the first two right-hand-side terms determine the drift in time
of the distribution, while the third right-hand-side ones determine its diffusion.
The reaction force �F will be considered to be an entropic spring force law.
In such law, the extension of a polymer chain reduces the configuration space
of the polymer and its entropy, the restoring force arises by the tendency
of the chain to return to a higher entropy state when the extension force is
removed (Treloar (1975), Physics of Rubber Elasticity). Such restoration force
is represented by the law

�F = H f (Q) �Q, (3.10)

where H is a spring constant and f (Q) a scalar function of the dumbbell length
Q = | �Q |. The introduction of the relaxation time scale of the dumbbell as
λ1 = ζ/4H leads to

∂Ψ

∂t
= − ∂
∂ �Q

[( �V + ∇�uT �Q)Ψ
]
+

1
λb

∂

∂ �V
[(
�V + 1

2λ1
f (Q) �Q)

Ψ
]
+
2kT
mλb

∂Ψ2

∂ �V2
.

(3.11)
A contraction of the Equation 3.11 is seeked in such a way that it is defined for
the marginal probability density function of the end-to-end vector only

ψ( �Q, t) =
∫
�V
Ψ( �Q, �V, t)d �V . (3.12)
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In order to do so, first Equation 3.11 is integrated with respect to �V , obtaining
the continuity equation

∂Ψ

∂t
= − ∂
∂ �Q

[(� �V  +∇�uT �Q)Ψ
]
, (3.13)

where the velocity-space average� ·  is defined as

� · = 1
ψ

∫
�V
· Ψ( �Q, �V, t)d �V . (3.14)

Then Equation 3.11 is multiplied by λb �VT , integrated it with respect to �V and
letting λb → 0 it leads to

λb
∂

∂ �Q
· ( � �V �VT  ψ)

+ � �V  + 1
2λ1

f (Q) �Qψ = 0. (3.15)

Thirdly, multiplying Equation 3.11 by λb �V �VT and again integrating it with
respect to �V and letting λb → 0 it gives us the Maxwell-Boltzmann relation
for the kinetic energy of the dumbbell in equilibrium:

1
2

m � �V �VT = kTI. (3.16)

Combining Equations 3.14, 3.15 and 3.16, we finally obtain the contracted
Fokker-Planck equation

∂ψ

∂t
= − ∂
∂ �Q

[∇�uT �Qψ − 1
2λ1

f (Q) �Qψ − 2kT
ζ

∂ψ

∂ �Q
]
. (3.17)

We may define an ensemble average 〈·〉 for any function g of �Q by

〈g( �Q)〉 =
∫
R3

g( �Q)ψ( �Q, t)d �Q, (3.18)

and relate the extra-stress tensor T to the ensemble average of the dyadic
product �Q �F

T = −nkTI + ηs �γ + nH〈 �Q �QT f (Q)〉, (3.19)
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3 Dilute polymer solutions models

where n is the number density of the dumbbells. Equation 3.19 is also called
the Kramer form of the stress tensor. In order to obtain a constitutive relation
for the extra-stress T, we multiply Equation 3.17 by �Q �QT and integrate it over
R
3. Using the divergence theorem and assuming that ψ → 0 as | �Q | tends to its

maximum permissible length we obtain

∂

∂t
〈 �Q �QT 〉 − ∇�uT 〈 �Q �QT 〉 − 〈 �Q �QT 〉∇�u = 4kT

ζ
I − 1
λ1

〈 �Q �QT f (Q)〉. (3.20)

The left-hand side of Equation 3.20 is called upper-convected derivative of

〈 �Q �QT 〉, and is denoted by
�

〈 �Q �QT 〉.

3.3 The FENE model and the Peterlin closure

The Finite Extensibility Non-linear Elastic (FENE) model us as connector
force the law

�F = H �Q
1 − (Q2/Q2

0)
, (3.21)

where Q2 = tr( �Q �QT ) and Q0 is some finite constant. Such force law prevents
the spring to be extended beyond the length Q0. The problem with such con-
nector force lays in the treatment of the term 〈 �F �QT 〉 = 〈 �Q �QT f (Q)〉, which
implies knowing the ensemble average of the product �Q �QT f (Q) afore-hand.
The problem has been by-passed by using relation [6] as connector force instead

�F = H �Q
1 − 〈Q2/Q2

0〉
, (3.22)

in such a way that when the ensemble average of the diatic product 〈 �F �QT 〉 is
plugged into the Kramer expression 3.19 we obtain

T = τ + ηs �S = −nkTI +
nH〈 �Q �QT 〉
1 − 〈Q2/Q2

0〉
+ ηs �S. (3.23)
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The final relation for the evolution of the conformation tensor using the FENE-P
model is

∂

∂t
〈 �Q �QT 〉 − ∇�uT 〈 �Q �QT 〉 − 〈 �Q �QT 〉∇�u = 4kT

ζ
I − 1
λ1

〈 �Q �QT 〉
1 − 〈Q2/Q2

0〉
, (3.24)

where again the characteristic relaxation time of the polymer is λ1 = τ = ζ/4H.
In order to non-dimensionalize Equation 3.24, the quantity 〈 �Q �QT 〉 is divided
by the equilibrium length of the polymer 〈Q2〉eq defined as:

〈Q2〉eq =
3kT
H

1 + 3kT
HQ2

0

. (3.25)

This permits to redefine the conformation tensor as

C =
〈 �Q �QT 〉
1
3 〈Q2〉eq

, (3.26)

C2 =
Q2

1
3 〈Q2〉eq

, (3.27)

which at the equilibrium leads to C = I, leading to:

∂Ci j

∂t
+ uk
∂Ci j

∂xk
=
∂ui
∂xr

Cr j + Cir

∂u j

∂xr
+

1
λ1

(
1 +

3kT
HQ2

0

)
I − 1
λ1

Ci j

1 − (C2/C2
0 )
.

(3.28)

Now the maximum distance between polymers bead can be then defined as

L2
max =

Q2
0

1
3 〈Q2〉eq

, (3.29)

so that:

∂Ci j

∂t
+ uk
∂Ci j

∂xk
=
∂ui
∂xr

Cr j + Cir

∂u j

∂xr
− 1
λ1

[
L2
max − 3

L2
max − C2

Ci j − δi j
]
. (3.30)
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When normalized by 〈Q2〉eq the stress T = Ti jbecomes

Ti j = nkT[ L2
max − 3

L2
max − C2

Ci j − δi j]. (3.31)

It is possible to write nKT as a function of the polymer viscosity knowing that

ηp = nkTλ1
b

b + 3
, (3.32)

where b = HC2
0/kT = L2

max − 3. For dilute polymer solutions b is usually
large enough to permit to approximate ηp ≈ nkTλ1 so that the polymer stress
becomes [6]:

Ti j =
ηp

λ1

[
L2
max − 3

L2
max − C2

Ci j − δi j
]
. (3.33)

1
2

Du2

Dt
=
∂

∂sj

(
uipδi j + 2νuisi j

)
+
∂

∂xj
(uiTi j)−2νsi j si j−Ti j

∂ui
∂xj
+ fiui, (3.34)

where the term Ti j
∂ui
∂x j

is the rate of energy transfer to or from the potential
energy stored in form of polymer stretching. This is called free energy and is
given by [3]:

Ap = − ηp
2De

{(L2
max − 1) log[L2

max − Tr(Ci j)
L2
max − 3

] + 1
3
log(detC)}. (3.35)

The rate of variation of the free energy of the polymers is given by:

DAp

Dt
= Ti j

∂ui
∂xj

− 1
2De

tr(Ti j)[
L2
max − 3

L2
max − Tr(Ci j)

]. (3.36)

The second term on the left-hand side of Equation 3.36 is definite positive and it
hence represents the dissipation of free-energy due to the Stokes friction of the
solvent on the bead [21]. This becomes an additional source of dissipation for
the whole polymer-solvent system. During the coil stretch transition it reaches
the same magnitude of the solvent viscous dissipation and keeps growing at
higher mean extensions.
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3.3 The FENE model and the Peterlin closure

3.3.1 Limitations of FENE-P model

The FENE-Pmodel works best for long-chain stretched polymers with no bran-
ching and a certain degree of flexibility. In such conditions, it is able to capture
the main rheological behaviour of dilute polymer solution flows, among which
the shear thinning, drag reduction, alteration of the energy spectra [6, 41, 87].
Nevertheless it fails to capture quantitative properties of the flow. Reducing
the ensemble of polymer chains to one single representative dumbbell confi-
guration, the FENE-P loses all the information on higher order moments of the
configurations of the ensemble. Multi-dumbbell models and experiments on
DNA molecules [39, 53, 101] demonstrated the existence of several relaxation
times and modes while the FENE-P only represents one, which is commonly
imposed to be the slowest one. This arises from the reduction of the polymer
ensemble in a fluid parcel to one single representative polymer conformation
as well as from the single dumbbell approximation. Indeed, depending on the
assumed shape, in a multi-element chain, different numbers of elements with
different extensions and orientations can react to the imposed stress, leading to
different reaction forces for a given end-to-end distance and orientation. Hence,
the FENE-P model tends to underestimate the reaction force when the polymer
is at the equilibrium length or at a low extension [39, 90]. Also due to the
removal of the excluded-volume forces, the stress at low extensions is poorly
represented by the model. Similarly, the assumption of a uniform Brownian
bombardment on the polymer beads can lose validity in coiled sections of the
polymer and prevents a number of phoretic effects on the dumbbell [50]. The
kinetic theory also neglects polymer-polymer interactions, which nevertheless
have been shown to take place for dilute solutions as well [49]. Additional-
ly, excluded volume and intra-molecular interactions are responsible for the
erroneous prediction of the polymer concentration effects [15, 77]. Finally,
properties at the atomistic levels are at large not incorporated in the kinetic
theory in such a way that dependence on solvent-polymer forces, effect of the
monomer size and shape on the Brownian force, effects of temperature on the
equilibrium length and so on are not directly accounted for.

The difficulties previously encountered in the use of this model for quantitative
analysis reside in the difficulty to model a great number of properties of the
polymer molecules, the properties of its ensemble, as well as the properties of
the polymer-flow interaction through a three parameters model, namely τ, ηp
and L2

max with the addition of only six degrees of freedom to the system. On
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3 Dilute polymer solutions models

the other side, the success of this model of this model resides in its relative
simplicity. It is indeed capable to account for some atomistic behaviours of the
polymer-solvent interaction without the need to recur to a stochastic approach
and the simulation of large ensembles of polymer molecules for every fluid
parcel of the flow. The FENE-P hence presents advantages also over only
slightly more complex models, as the various multi-element FENE models, by
reducing several folds the number of degrees of freedom in the system.As it will
be shown in the rest of the chapter, the simulation of flows of dilute polymer
solutions requires higher resolutions compared to an equivalent Newtonian
flow, making the FENE-P the only viable solution for the simulation of such
flows up to today. The major drawback is that the behaviour of the model must
always be confirmed against qualitative observations of experimental results.

3.3.2

As it can be observed Equation 3.3 lacks a diffusive term, while in reality
polymer conformation has its own diffusivity, which is so small that it can
be easily neglected for the purposes of the FENE-P model. The resulting set
of equation is hyperbolic and does not have a stabilizing mechanism able to
prevent the formation of gradients of virtually infinite steepness in the con-
formation tensor field [88]. The effect is comparable to the shock formation
in compressible fluids, but due to the limited knowledge in polymer dynamics
it is hard to determine whether it is a problem limited to the model only or
whether it is actually present in real flows. The hyperbolic nature of the viable
viscoelastic models plagued the field of computational rehology of polymers
since its birth. According to Martien 2005 [60] äll existing numerical methods
break down when the Weissenberg number exceeds a critical value", with such
value being dependent on the geometry of the problem, the polymer model,
the numerical scheme, the initial and the boundary conditions and mesh. For
years it has been possible to obtain stable simulations only at very modest
Weissenberg numbers and even in these cases often at the price of some local
loss of positive definitiveness of the conformation tensor. Before proceeding in
illustrating the methods, used to stabilize the numerical methods it is important
to stress out that though the formation of shocks and the numerical instability
that it follows are a theoretically expected behaviour of the model, this might

46

Numerical issues: the high Weissenberg
number problem
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not reflect the physical behaviour of polymers in the flow. The absence of a
dissipative mechanism in the FENE-P equation permits the formation of arbi-
trarily small scales. Conformation tensor fluctuations at sub-Kolmogorov scale
would not have the possibility to interact with larger velocity gradients being
such an interaction effectively filtered out by the fluid viscosity. Incoherent
fluctuations at sub-Kolmogorov scales would remain trapped in such a range
and would most likely result in an increment of the molecular agitation and a
shift of the equilibrium length of the polymers. There is hence the possibility
for the definition of a "dissipative"mechanism in the sense of a transformation
of kinetic energy from turbulent fluctuations in the non-recoverable or anyway
low-grade energy form of sub-Kolmogorov scale exchange of energy between
polymer stretching and molecular agitation. During the years, a number of
techniques have been developed in order to deal with the high Weissenberg
problem, many of these being in some measure derived from the methods used
in compressible turbulence. All of them, by reducing the gradients to a mana-
geable level, have the effect to introduce enough dissipation to the scheme in
order to make it stable.

It shouldn’t be surprising that one of the earliest and simplest stabilization
method is the direct addition of an artificial diffusive term to the evolution of
the conformation tensor in the formof χ∇2Ci j .When enough artificial diffusion
is added, it is possible to increase the stability up at higher Weissenberg and
Reynolds numbers. When using this added diffusivity, it is usually considered
advisable to keep its value as small as possible and its ratio ν/χ over the
kinematic viscosity as large as possible. This can be considered as a Schmidt
number Sc of the polymers and, in literature, values close to one or smaller
are usually chosen for it [61, 68, 99]. By conjecturing that the small scales of
the conformation tensor in first approximation act like passive objects, one
can use the Schmidt number similarity to observe that Sc ≈ 1 coincide to
a Batchelor scale of the polymers λb = η/Sc1/2 ≈ η. Hence the choice of
Sc ≈ 1 is efficient from a computational point of view, as both the flow and the
conformation-tensor scales are equally resolved. It also gives an idea on the
increase of resolution needed with decreasing Schmidt numbers. For example,
a simulation which would be resolved for SC = 1 in a box of 2563 points with
Sc = 10 would require a box of 7683 points. This is not a negligible issue as
a code solving the Naviers-Stokes equations together with the FENE-P model
requires 3 times more memory compared to the Navier-stokes solver alone and
the computational costs are 5 times as high.
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Other approaches try to maintain the positive definiteness of the conformati-
on tensor through a different mathematical formulation of the problem. Fattal
and Kupferman (2004) [31] for example solved the evolution of the confor-
mation tensor in its logarithmic representation, Balci et al. 2011 [2] used
a square-root-conformation representation instead, while Vaithianathan and
Collins 2002 [88] applied matrix decompositions to the conformation tensor.
These stabilization methods cannot completely overcome the high Weissen-
berg number problem [12], but they can moderately increase the range at which
the computation remains stable. Only the method developed by Fattal and Kup-
ferman allows computations at considerably high Weissenberg numbers but it
cannot guarantee accuracy at these numbers.
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4.1 Set-up of the numerical experiment

One of the principal objectives of this thesis is to understand the relevant me-
chanics to the propagation of turbulent fronts by studying such propagation
in flows with altered turbulent dynamics. In order to do so, flows with poly-
mers have been taken in considerations due to their peculiar properties. Now
when one wants to study the turbulent/non-turbulent interface with a polymer
model, the approach followed in Chapter 2 presents some drawbacks. First, it
only allows to study a decaying flow, this prevents the computation of time
averages and requires instead the use of ensemble averages that need many
more independent realizations in order to converge. It also makes it hard to
discern effects related to the decay of the flow from the ones related to its
spatial evolution. With the introduction of the polymer model, the problem of
defining a meaningful initial condition for the conformation tensor also arises.
Artificially reducing the conformation tensor to the minimum extension in a
similar way to the velocity damping easily leads to loss of definite positiveness,
moreover it opens the question on how the arbitrarily imposed profile of con-
formation would affect the physical behaviour during the decay. While using
non-stretched polymers at the beginning of the decay would solve the former
problem, this would aggravate the latter. Finally, as it has been shown in Chap-
ter 3 polymers can lead in both experiments and simulations to contradictory
behaviors depending on the chosen parameters, initial and boundary conditi-
ons [27, 54, 67]. At the same time the FENE-P model chosen for the present
study is known to give some unsatisfactory results in certain set-ups [39] and
to the knowledge of the author it has not been validated before in the frame-
work of turbulent/non-turbulent interfaces without mean shear. A validation
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4 Simulation of a turbulent front in dilute polymer solutions

against the dynamics observed in experiments is required and again the set-up
of Chapter 2 is not suitable as it is not easily reproducible in experiments.

A different set-up has been then sought, such as to remain in the framework
of turbulent flows without mean shear and one of the most diffused classes
of such experiments are probably the ones utilizing oscillating grids in water
tanks. The validation against such a particular reference case had been possible
thanks to the availability of data from experiments performed at the Turbu-
lence Structure Laboratory of Tel Aviv University. Despite being limited by
the constraint imposed by the available technologies, these measurements are
suitable to validate the macroscopic behaviour of the FENE-P model in the
shearless turbulent/non-turbulent interface. Themodelling approach and its va-
lidation against experiments presented in the rest of the chapter are published
in Cocconi, De Angelis, Frohnapfel, Baevsky, Liberzon 2017 [16].

4.2 Modelling oscillating grid turbulence

4.2.1 Properties of oscillating grid turbulence

Performing a resolved DNS of a moving grid with the FENE-P model would
be extremely computationally expensive, further reducing the maximum at-
tainable Reynolds number of the simulation. A more efficient approach is to
produce a grid forcing model stirring a region of the flow in such a way to
reproduce the turbulent scales and dynamics of an actual oscillating grid. In
order to do so, some of the properties of these flow must first be discussed. A
test rig for the study of oscillating grid turbulence is commonly constituted by
a transparent water tank with a square cross-section in which a square grid is
immersed. In most experiments, the grid area completely fills the tank’s hori-
zontal cross-section trying to leave the smallest possible gap between the tank
walls and the grid. Via vertical rigid rods the grid is then connected to a motor
that imposes the periodic vertical motion. Thompson and Turner 1975 [82] and
Hopfinger and Toly 1976 [45] performed extensive studies of the turbulence
generated by oscillating grids of different size and shapes in mixing across
density interfaces. They found that, with certain choices of the grid and within
defined operation bounds, the turbulent flow can be characterized in terms of
few a parameters. In particular when the right grid geometry is chosen, the
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relevant parameters are the depth of the vertical oscillation motion or stroke S,
the oscillating frequency f , the distance between contiguous holes in the grid
or mesh size M , the solidity ratio, i.e. the ratio between the total cross-section
area of the tank and the total projected area of the grid bars. It has been found
that for a grid made of square bars, within well defined range of values for the
aforementioned parameters, the flow shows a number of properties that make
it suitable for the study of turbulent mixing [43, 45, 64, 82].

For example, the root mean square of the velocity fluctuations decays in inverse
proportion to the distance x in the inhomogeneous direction [45]. On the
opposite, inertial scales as the integral length scale or the Taylor microscale λ
are found to grow linearly with the same distance in such a way that both the
turbulent Reynolds number Re = l0u/ν and Reλ are approximatively constant
within the turbulent region [100]. The reported ratio between in-plane and
perpendicular velocity fluctuations are typically in the range of 1.1 − 1.2 [45]
making oscillating grid turbulence attractive for studies on quasi-isotropic
turbulence.

The turbulent properties of oscillating grid flows are the result of the correct
interaction between the wakes and the jets generated behind the grid bars.
It should hence generally be expected a departure from the aforementioned
properties in the vicinity of the grid where those jets and wakes are still in
formation. Cheng and Law 2001 [13] measured the mean values of velocity
fluctuations and Reynolds stresses at different grid-plan locations, showing that
up to 2 − 3M from the grid mid-position the flow over a bar exhibits stron-
ger rms of both u and v together with inhomogeneities in the locations over
grid crossings. Regarding the outermost part of the turbulent region instead, in
many of these experiments it is unfortunately unclear where the turbulent/non-
turbulent interface is located, if present at all. Also, many of the experiments
mentioned above were generally conducted in a steady state condition, which
means that before starting the measurement the flow is stirred until an equi-
librium between the energy injected and the dissipation is reached. However,
a number of studies can be found in literature about non-steady properties of
oscillating-grid turbulence. Most of these works had the purpose of identi-
fying the speed of propagation or the mixing region of a turbulent flow. In
a theoretical work, Long 1978 [57] first proposed a relation for the position
of the interface between turbulent and non-turbulent fluid. For a flow at high
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Reynolds number the average distance H of such interface from the turbulence
source can be plotted as

H ∝ (Kt)1/2. (4.1)

Here K is a parameter called "grid action", which is constant once a series
of experimental parameters are kept constant. Equation 4.1 had found good
agreement with experimental results [23, 24, 43], even though also other pro-
pagation rates have been reported in literature [52] under tight confinment or
rotation. In any case, none of the experiments mentioned above report what
happens in the final stage of propagation when the spatial decay of turbulence
fluctuations reaches an equilibrium with the local dissipation, preventing the
further propagation of the front.

4.2.2 Body force model implementation

Despite the popularity in the experimental community, only few attempts can
be found in literature of simulations of oscillating grid. The simulation of an
oscillating grid with its physical moving boundaries are too computationally
expensive, so the existing simulations mostly relied on a selection of boundary
conditions or body forces able to reproduce the effects of such a grid without
actually simulating it. As an example, Holzner et al. 2008 [43] imposed a set of
time-dependent, random velocities with length and time scales comparable to
the ones of an oscillating grid. Here we follow a similar approach, but instead
of directly imposing the velocities at one side of the domain we introduce a
body force and instead of forcing only over the 2-dimensional boundary of the
domain we force in a 3-dimensional region with finite thickness.

The body force distribution in space and time is determined by the following
procedure. First a random amplitude distribution A(y, z, t) in the y−z directions
is generated, this is done by assigning random values ∈ [−1, 1] at equispaced
nodes with separation M = 2π/8, the amplitude distribution is then obtained
in the remaining points of the y − z plane by a bi-cubic interpolation in
space intersecting the randomly assigned nodes. A new random distribution
is generated periodically with a frequency 1/T f . The passage between two
amplitudes distributions in time, A(y, z, nT f ) and A(y, z, (n+1)T f ), with n ∈ N,
is moreover smoothed by interpolating the two configurations in time, which
produces a function Ã(y, z, t). The forced region is periodic in the y − z cross-
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section of the domain, while it remains confined to a thickness of around M
in x-direction. The final 3-dimensional time varying distribution of the forcing
f (x, y, z, t) is given by

f (x, y, z, t) = K
2

(
1 + tanh

(
aΔ
2

− a|x |
))

Ã(y, z, t), (4.2)

where the parameter K sets the intensity of the body force while Δ and a
determine the thickness of the forced region. The transition in time between
two different random configurations is given by the two functions φ0(t) and
φ1(t):

φ0(t) =
Δt − mod(t,T f )

T f
, (4.3)

φ1(t) =
mod(t,T f )

T f
, (4.4)

where mod is the modulo function. An example of the body force distribution
at a given time is depicted as a height map in figure 4.1.

Figure 4.1: 3D representation of the amplitude distribution A(y, z, t) generated by the forcing
model.
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4.3 Validation and flow properties

As a first step, a set of Newtonian simulations have been performed in order to
validate the forcing model against some known experimental results on oscil-
lating grid turbulence. All the simulations presented hereafter were performed
over a computational grid of 512×256×256 Fourier modes before de-aliasing.
The simulation domain is a box with dimensions Lx × Ly × Lz = 4π×2π×2π.
The body-force modelling the grid energy input is added in a region of di-
mensions Δ × Ly × Lz at the centre of the domain as shown in figure 4.2. The

Figure 4.2: Depiction of the computational box with a slice of the enstrophy iso-contour for a
Newtonian simulation. Adapted from [16].

non-dimensional viscosity is set by the choice of Re, which is in this case is
ν = 1/Re = 1/200, while the simulation time step is Δt = 0.002. The standard
configuration for the body force is the one with 8 × 8 collocation points for a
characteristic forcing length of M = 2π/8 = 0.785, the maximum amplitude
is K = 3.8, a = 1.5π and the thickness parameter is Δ = 0.065. This sets the
total thickness of the region where the forcing is above 10% of the maximum
value to be about ±0.5M . For convenience, the bulk of the flow is defined to
be the two planes at a distance of 0.6M from the mid-plane and these planes
will be used to compute statistics relatively unperturbed by the forcing, but still
close to the maximum turbulence level of the flow. For example, this permits
to define an eddy turnover time as the ratio between the root mean squares of
velocity fluctuations in the bulk and the length scale M . Finally, the update
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frequency of the forcing which determines the correlation time of it is every
Tf = 0.1. The Newtonian statistics presented in the following chapter refer to
a statistical data-set of 10 independent simulations of the duration of about
16 eddy turnover times defined as M/u′

b
. All simulations start from an initial

condition of quiescent fluid. When the forcing action is introduced, the fluid is
perturbed and a patch of turbulence rapidly forms at the centre of the domain.
The two planar-symmetric turbulent fronts then start to advance into the irro-
tational region of the flow. The two fronts keep propagating until the enstrophy
locally advected and generated reaches an equilibrium with the one dissipated
and the local enstrophy remains constant. When this happens the average posi-
tion of the interface, as detected by the enstrophy threshold technique, remains
constant in time. Weak vorticity, which does not possess the self-sustaining
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Figure 4.3: Time variation of enstrophy.

mechanisms of actual turbulent fluctuations anymore, can still diffuse into the
non-turbulent region as can bee seen from figure 4.3. This also highlights the
risk that a too low vorticity threshold would not be capable to capture the actual
limit of the region where the flow manifests all the properties of turbulence
(i.e. increased mixing, energy cascade, self-amplification of fluctuations and
so on). It will be shown as other turbulent properties are required to validate
the choice of a threshold value.

As can be observed from Figure 4.4, when one considers the initial growth of
the turbulent patch, this follows the expected ∝ √

t law. This growth slowly
declines until it reaches a quasi-stationary state.
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Table 4.1: Newtonian simulations parameters.
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Figure 4.4: Average interface position with respect to the time.

How can be seen fromFigure 4.5, the decay of the velocity fluctuations u‖ in the
in-plane direction has been observed to follow a slope proportional to (x−x0)−1
in the turbulent region, where x0 = 0.09M is a virtual origin slightly offset from
the domain origin [45]. The fluctuations decay faster than the fitted curve after
the average interface position, but this is in accordancewith the observation that
velocity fluctuations decay faster outside the turbulent/non-turbulent interface
(specifically as a function of (x−xI )−4 from the local interface position xI [19]).
The integral length scale l0 =

∫
E(k)k−1dk/

∫
E(k)dk, depicted in Figure 4.5,

as expected shows a linear increase within the turbulent region. As a further
proof of the good choice of the threshold value for the interface detection, it
can be noticed that the growth of l0 departs from the observed trend of the
turbulent region at the sampled average position of the turbulent/non-turbulent
interface. The initial propagation of the interface also evolves according to a√

t law before slowing down and reaching a statistically steady position. In
order to rule out effects of the domain size, a simulation has been performed in
a domain with double the extension in x-direction and no effect on the interface
propagation was observable. When looking at the anisotropy of the velocity
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Figure 4.5: (a) Profiles of the magnitude of velocity fluctuations in the direction parallel to the
homogeneous planes y − z and normal to them as a function of the distance from
the average interface position. The black dashed line represent the fit with a function
inversely proportional to the distance from a virtual origin in the forced region. (b)
Variation of the integral length scale as a function of the distance from the average
interface position.
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Figure 4.6: Anisotropy in the magnitude of velocity fluctuations as a function of the distance from
the average interface position.

fluctuations in Figure 4.6 it is possible to see how the body force produces a
nearly isotropic flow in the centre of the domain. In the bulk the ratio between
the out-of-plane fluctuations u′

⊥ and the in-plane ones u′
‖ grows due to the

inhomogeneity of the flow until a constant value of 1.13 is reached. This value
is well within the range of values reported in experimental literature [45] but
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4 Simulation of a turbulent front in dilute polymer solutions

getting close to the interface, as expected, the anisotropy further increases until
it reaches a maximum value of 1.28 at the interface.

For the viscoelastic simulations, the same set-up has been used as in the
Newtonian case. One of the purposes of the present work is to discern possible
local effects of the polymers at the interface from the general effect on the
bulk of the flow. In order to do so a special set-up has been conceived in
order to obtain a viscoelastic turbulent flow with bulk properties closer to its
Newtonian counterpart. In fact, the forcing amplitude in the viscoelastic case
has been tuned in order to obtain a similar steady-state integral of the energy
computed among the point within the turbulent volume of the domain for the
two simulations. In both cases, this should allow the interfaces to drain from
a comparable supply of turbulent fluctuations, making the differences at the
interface that are due to the local effect of the polymers more apparent.

The polymer diffusivity χ has been set to be equal to the kinematic viscosity
such that χ = 1/200, τ = 2, L2

max = 5000 Here we focus only on phenome-
nological effects of the polymers on turbulent dynamics, thus despite different
sets of parameters have been tested, only the results from one of these sets will
be shown.

Experiments with a similar set-up have been produced by the Turbulence Struc-
ture Laboratory of Tel Aviv University. Instead of a planar grid, in their set-up a
spherical agitation grid in a water tank has been used. This was justified by the
necessity of avoiding any interaction between the turbulent front and the walls
of the tanks while maintaining a flow with only one inhomogeneous direction
(the radial one). The experimental observations will be used to verify that the
FENE-P model is able to reproduce the same flow features. The Reynolds
number in the experiment has been defined similarly to the simulation on the
average mesh size M of the agitation device and the root mean square of the
velocity fluctuations outside the envelope of movement of the grid. As for
the Newtonian case, the kinetic energy in the viscoelastic simulations initi-
ally increases and reaches a stationary state after a few eddy turnover times.
The main difference regards an initial overshoot in the viscoelastic simulation
that precedes the steady state. It is nevertheless well known that pre-averaged
models as the FENE-P perform poorly in transient flows and that an accu-
rate prediction of the polymer stress before sufficient extensions are reached
requires multi-mode models [101]. This may be imputable to a delay in the
äctivationöf the polymers, as it takes some time to the random fluctuations
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Figure 4.7: Time variation of the integral of the kinetic energy contained in the region between the
bulk and the interface. Gray areas mark ±1.96 standard errors of the mean. Adapted
from [16].

in the flow to stretch the polymers in an appreciable way. The forcing model
on the other hand can also be responsible for this delayed polymer effect, as
initially velocity gradients are not yet developed down to the smallest scales
of the spectrum. Once the polymers in the bulk start to stretch significantly,
the energy visibly drops and stabilizes. Such behaviour is not observable in
Figure 4.7 for the experiments, where the energy grows slower in the dilute
polymer solution when compared to the Newtonian case. This can be related
to the fact that the physical grid immediately generates the sharp gradients
required to stretch the polymers at its walls, while the forcing model requires
the cascading process to develop before these are produced. This behaviour
can be observed in a number of transitional statistics of viscoelastic simula-
tions and often makes them ill-suited for transient flows [28, 39, 65, 69]. The
combination of stronger forcing and Newtonian-like initial behaviour produces
an initial growth of the patch which is faster than its Newtonian counterpart.
Due to these reasons, it was not possible to study the transient growth of the
turbulent patch for the viscoelastic case, but only its final statistically statio-
nary state. Despite the differences in the transitory, in both simulations and
experiment the final maximum size of the patch of the polymer flow is smaller
than the Newtonian one, with a difference of about one mesh size M. The
smaller patch size is not imputable to lower enstrophy levels in the vicinity of
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Figure 4.8: Time variation of the average interface position for Newtonian fluid and the dilute
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Figure 4.9: Average profiles of enstrophy as a function of the distance from the average position for
the experiments (a) and for the simulations (b). The quantities have been normalized
by the average enstrophy of the bulk for the Newtonian case.

the interface, as can be seen from Figure 4.9, which on the contrary is hig-
her for the polymer case in both, experiments and simulations. A qualitative
comparison of the turbulent/non-turbulent interfaces in Figure 4.10 reveals
another apparent difference between the two cases: the interface produced in
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4.3 Validation and flow properties

the polymer flow is a smoother interface with less visible small-scale features.
Again, this observation has been confirmed in the experiment indicating that

Figure 4.10: Isosurfaces of ω2
i = 0.02ω

2
i,b

for a Newtonian simulation (left) and for a simulation
with polymers (right).

with the chosen set-up polymers produce interfaces that are less convoluted. To
quantify reduction in convolution one can estimates the fractal dimension of
the interface. Sreenivasaan et al. 1989 [76] and De Silva et al. 2013 [74], using
box counting algorithms, had estimated for turublent/non-turublent interfaces
a power law scaling with exponent D varying between −1.3 and −1.4 in free
and wall-bounded shear flows for a fractal dimension D f of the surface of about
2.35 ± 0.05. Following the same procedure 2D slices of the flow are divided
in square sectors of equal side Δ and the number of such "boxes"containing
parts of the interface is counted. The procedure is repeated for diminishing
size of the boxes and the fractal dimension D is extracted from the relation
N = ΔD [74]. Figure 4.11 (a) summarizes the results of the box-counting at
the steady-state in the simulations. The fractal dimension computed for the
Newtonian interface obtained with a least square fit on the box count is −1.31,
while when the polymers are introduced the fractal dimension drops to −1.25.
Comparing the integral length scales for the two cases in Figure 4.11 (b) it
appears that the polymer flow is characterized by larger scales. The integral
length scale grows at a steeper rate for the polymer case producing much larger
scales at the interface compared to the Newtonian fluid.
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Figure 4.11: (a) Number of boxes N containing portion of the interface against box size Δ/η. The
dotted line marks the box of size Δ = M . (b) Integral length scale as a function of
the distance from the interface.

4.4 Concluding Remarks

The forcing model developed for the simulation has been proven capable to
reproduce features of oscillating grid turbulence as the quasi-isotropy of ve-
locity fluctuations, their rate of decay, linear growth of integral scales and
initial growth rate of the turbulent region. The FENE-P model, of which the
application in turbulent/non-turbulent interface is scarce if not absent, has be-
en validated against ad-hoc experiments. Agreement between simulations and
experiment could not be found for the initial growth phase, though further in-
vestigations are required in order to knownweather shortcomings in the forcing
or in the polymer model are to be imputed. Once the steady state was reached,
the FENE-P proved to reproduce a number of flow features observed in the
real dilute polymer solutions of the experiments, proving yet another time the
capability of this model to capture the qualitative behaviour of turbulent flows
of dilute polymer solutions.
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5 Results and discussion

In the previous chapter the numerical set-up has been introduced and the si-
mulations have been compared to experiments in a similar set-up. The most
evident effects of the polymers in the flow can be resumed in a reduced maxi-
mum size of the turbulent patch and a reduction in the fractal complexity of
the turbulent/non-turbulent interface. In the following chapter possible reasons
for these phenomena are investigated. The flow will be first investigated in the
Eulearian frame of reference. In particular taking advantage of the numerical
approach the interaction between polymers, vorticity and strain will be directly
investigated. Comparison with the Newtonian case will be as before used in
order to spot the most relevant changes introduced by polymers. At the same
time statistics at the interface will be compared with the ones in the bulk of
the flow, allowing to detect deviations of polymers behaviour from the ones
expected for homogeneous quasi-isotropic turbulence. Statistics of orientati-
ons between vorticity field, strain eigenframe and polymer conformation tensor
are also analysed in this chapter. Such statistics have been in part previously
published in Cocconi, De Angelis, Frohnapfel, Baevsky, Liberzon 2017 [16].
In a second moment turbulent statistics along Lagrangian trajectories across
the turbulent/non-turbulent interface will be analysed. This allows for a better
assessment of the contributes on the observed Eulerian statistics at the interface
from the antagonists process of entrainment of non-turbulent fluid and of the
return to the laminar state of previously turbulent parts of the fluid.

5.1 Eulerian statistics

The statistics presented in this section are ensemble averaged across all the
realizations performed and averaged in time in the steady state interval tu′

b
/M ∈

[7, 16] for a total of 60 independent samples. As it has been observed from
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Figure 5.1: Spectra of kinetic energy compute over homogeneous planes y − z in the bulk (a) and
at the average interface position (b).

the integral scales, the flow with polymers lead to an increased size of the
large scales. As expected also the energy spectra taken in the bulk of the flow
shown in Figure 5.1 (a) confirm an increase in the energy content of the largest
scales (small wave-numbers k) with a reduction in the energy of the smaller
ones. Nevertheless, the differences are little and the two flows experience
relatively similar distribution of energy in the bulk of the flow. The reduction
of energy is more evident for the spectra sampled at the average interface
position of Figure 5.1 (b). Indeed, looking at Figure 5.2 it can be seen how
getting closer to the interface the difference in the Kolmogorov scales between
the two cases increases so that both small and large scales have increased
sizes at the interface for the polymer case. One of the main advantages of the
numerical approach over the experimental one is the possibility to measure
the state of the conformation tensor for every point of the field. In such a way
orientation and extension state of the polymers can be obtained, allowing to
directly study the polymer-fluid interaction. For example the average end-to-
end extension of the polymers is given by the trace of the conformation tensor
tr(C). In Figure 5.3 this has been normalised by the maximum extension
L2
max to show the distribution of the average stretching with the distance from

the interface. One can see there how the polymers are most stretched in the
forced region and the bulk, where the strongest velocity gradient resides. There
average extensions up to 30% of L2

max are reached while getting close to the
non-turbulent region the average extension quickly decays as the intensity
of turbulent fluctuations also decay. Noteworthy is the presence of residual
extension into the non-turbulent region: this can in part be explained by the
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presence of weak irrotational fluctuations that can still stretch the polymers
and in part by the presence of fluid particles ëxtrained"from the turbulent flow
that retains some degree of polymer extension. While stretching and relaxing
polymers store, release and dissipate energy. Figure 5.4 (a) depicts the free
energy Ap stored into polymers compared to the kinetic energy. While both
Newtonian and polymer flows present comparable maximum kinetic energies,
the total energy available to the flow is roughly 30% higher. Part of the excess
of free energy is continuously exchanged with flow, part of it though is being
dissipated by means of Stokes friction during the relaxation of the chain. This
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Figure 5.4: (a) Average profiles of kinetic energy and free energy of the polymers. (b) Viscous and
polymer dissipation rates. Both as a function of the distance from the average interface
position.

is depicted in Figure 5.4 (b) together with the viscous dissipation for the two
flows. As expected, the maximum viscous dissipation rate is lower for the
polymer case, while the dissipation of free-energy due to polymer relaxation
results comparatively much larger. The larger polymer dissipation is ultimately
responsible for the dissipation of the additional kinetic energy injected by the
body force into the flow and captured by polymers and stored in form of end-
to-end extension. As velocity gradients are the driving mechanism for both
the unfolding and relaxing of polymers, free energy and polymer dissipation
are deeply interconnected to strain and vorticity. Indeed, when the polymers
are taken in account the budget equation for the enstrophy presents an extra
term due to the polymer stress interacting with vorticity. When also the forcing
contribution is added, Equation 2.1 becomes:

1
2
∂ω2
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= −1
2

u j
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(5.1)
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Figures 5.5 and 5.6 depicts the terms of Equation 5.1 as a function of the
distance from the mean interface position XI . The time variation has been

−2 0 2

−5

0

5

(x−XI)/M

〈·〉
λ
3
/
u
′2 b

∂t P

ε T

D

−1 0 1

−0.5

0

0.5

Figure 5.5: Enstrophy budget for theNewtonian case. The right scale refers to fm , i.e. themaximum
possible amplitude of the body force.
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Figure 5.6: Enstrophy budget for the polymer case. The right scale refers to fm , i.e. the maximum
possible amplitude of the body force.

directly computed by finite differentiation in time of the enstrophy profiles.
Both plots show how enstrophy is steady in time everywhere, even at the mean
interface position there is no appreciable variation in time of enstrophy.

While looking at Figure 5.5 a parallel can be drawn with the budget studied in
Chapter 2: similarly to the decaying case, the advection here draws enstrophy
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from the most turbulent part of the flow and releases it towards the interface.
Also, similarly to the decaying case, viscous diffusion is practically negligible
everywhere. For the Newtonian case in the forced region we observe the expec-
ted approximate Tenneks and Lumley balance between enstrophy production
P and destruction ε . The production though is slightly weaker than the dissi-
pation and the enstrophy lost through the latter and through advective fluxes is
compensated by the one injected by the body-force (not shown). Getting closer
to the interface the production decays faster than the dissipation and the rate of
variation of enstrophy is kept constant only by the increasing relative weight of
the advection. By looking at the budget for the polymer case of Figure 5.6 it can
be seen how the viscous dissipation in the bulk is in magnitude about one third
stronger than the production. The enstrophy sink in the forced region is further
reinforced by the advection and the viscoelastic contribution Ve, this stronger
sink is compensated by a much stronger enstrophy injection from the forcing
compared to the Newtonian case. Particularly interesting is the behaviour of
the viscoelastic term while where the turbulence is most intense it leads to a
destruction of enstrophy, away from the bulk the relaxation of the polymers
with its energy release leads to a small but positive contribute to the enstrophy
variation. In the inset of Figure 5.6 it is also possible to see that the contri-
bute from the polymers becomes negligible about half mesh size M before
the average interface position where the enstrophy variation appears where the
dominant terms are again dissipation, production and advection. Interesting is
the fact that the advection appears to be more intense in the polymer flow when
scaled in inertial units. It is possible that in certain condition the increased ad-
vection could tip-off the other propagation-reducing effects of polymers, thus
explaining these cases reported in literature of increased propagation speed in
dilute polymer solutions [54].

5.1.1 Conditional statistics

The statistics previously presented average together samples homogeneous in
their x coordinate. In this way, though, the sample in the region close to the
average position of the interface includes both, turbulent and non-turbulent
samples. The homogeneity of the turbulent property of the sample close to
the interface region can be improved by means of conditional sampling. In
in interface studies this generally means that samples are averaged together
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5.1 Eulerian statistics

when they possess the same distance from the instantaneous local distance of
the interface. Details on how this distance can be defined and how conditional
statistics are performed can be found in Appendix. Obviously, these statistics
maintain a certain sensitivity to the arbitrary choice of the enstrophy thres-
hold. The initial choice of a 2% enstrophy threshold proved to be good enough
to detect the changes in conventional statistics, marking the passage between
turbulent and non-turbulent region and hence constitute the reference value
for the present study. Nevertheless, also statistics at 0.5% and 10% threshold
will be occasionally shown in order to assess the effect of different thresholds
on the robustness of the observations made. One typical observation in con-

−2 −1 0 1 2
0

0.1

0.2

0.3

(x− xI)/λ

ω
2 i
/
ω

2 ib

(a)

0.005

0.02

0.1

−20 0 20
(x− xI)/η

−2 −1 0 1 2
0

0.1

0.2

0.3

(x− xI)/λ

ω
2 i
/
ω

2 ib

(b)

0.005

0.02

0.1

−20 0 20
(x− xI)/η

Figure 5.7: Conditional enstrophy profiles normalised by the average enstrophy in the bulk for
three different thresholds ω2
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. (a) Newtonian case, (b)

polymers.

ditional statistics across turbulent/non-turbulent interfaces is a steep jump of
enstrophy. Here when the threshold ω2

i,th
is set to 0.005ω2

i,b
(or 0.5% of the

mean bulk enstrophy) the enstrophy jump across the interface is barely visible
for the polymer case. High thresholds, as in the case of ω2

i,th
= 0.1ω2

i,b
, show a

steep jump in the enstrophy profile but also introduce an unrealistic peak at the
interface. The 2% threshold capture the jump of enstrophy across the interface
for the polymer case without introducing any peak in the profile, confirming
to be a reasonable threshold choice. The relatively steep jump observed in the
conditional enstrophy is not observable in the conditional profiles of turbulent
kinetic energy of Figure 5.8. It is interesting to observe how as the initial build-
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Figure 5.8: Conditional averages of kinetic energy normalised by their values in the bulk.

up of turbulent kinetic energy moving from the interface towards the bulk is
comparable for the two cases. From the conditional averages it appears that the
polymer flow in the interface region experiences reduced turbulent enstrophy
but with very similar levels of kinetic energy. In homogeneous isotropic tur-
bulence on average strain and enstrophy fluctuations are in equilibrium being
si j si j = ω2i /2. In Figure 5.9 for both, polymer and Newtonian flows the ex-
pected equilibrium is found in the turbulent region far from the interface. The
equilibrium is nevertheless lost in the region around the interface and this is
particularly apparent in the Newtonian case where, moving towards the non-
turbulent region, vorticity fluctuations decays much faster than the strain rate.
For the polymer case, the difference is less intense and strain rate fluctuations
decrease only marginally slower than the vorticity ones into the non-turbulent
region. Borrell and Jimenz [8] exploited the existence of a non-equilibrium
region in their definition of interface layer for a turbulent boundary layer iden-
tifying it with it. Also, as found by Borrell and Jimenez [8] to rectilinear
distances, it is possible to observe that the interface thickness for both cases
scales with λ, but the polymer one appears to be sharper due to a reduction
of the thickness of the non-equilibrium region, as it can be seen by the ratios
ω2i /(2si j si j of Figure 5.10. Indeed, the region of stronger inhomogeneity has
a thickness on the order of 1.4λ or about 30η for the Newtonian case while
for the Polymer case we have a thickness around 0.4λ or 10η. Similarly to the
strain, the conditional averages of the polymer extension of Figure 5.11 present
non-zero values well into the non-turbulent region. Also, the steepness of the
growth of the average extension moving towards the turbulent region is not
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as marked as for strain and enstrophy. More information can be obtained by
watching at the joint pdf of the polymer extension respect to the distance from
the interface. Figure 5.12 shows how close to the bulk of the flow the occur-
rences of non-stretched polymers is relatively low, while in the non-turbulent
region almost all the samples have the minimum extension. It also shows that
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two concurrent behaviours are observable: medium to large extensions in the
bulk (0.17 < tr(C)/L2

max < 0.4) decay almost linearly with the distance from
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5.1 Eulerian statistics

the interface up to a distance of about 0.3λ before the interface. On the other
side in the region between −0.3λ and the interface an increasing frequency
of weak extensions (around 0.03L2

max is observable. Especially the relatively
large extensions in the irrotational region are likely to be due to residual ex-
tension from extrained fluid particles that do not reach the minimum extension
up to distances of about 3λ from the interface. Conversely it is likely that
the high frequency of lightly extended polymers inside the turbulent region
within 1 − 2λ from the interface are partially due the presence of recently
entrained fluid particles. In this region a large number of fluid particles are
little stretched or not stretched at all. Together the two trends produce a peak
of extensions below 7% of the maximum allowed close to the turbulent/non-
turbulent interface. Firstly, the peak highlights how at the steady state the two
phenomena of entrainment and extrainment bring different contributes to the
statistics of the interface, and secondly how the polymer action at the interface
is likely to be dominated by stretching and relaxing at very low extensions.
Low-extension range is known to present some difficulties for FENE models,
as these tend to underestimate the polymer reaction force, overestimating its
extension [39], which helps to explain the overestimation of the maximum
patch size for polymers compared to the experiment. Concluding from con-
ditional statistics it appears that polymers in the region around the interface
are mostly transitioning to a quasi un-stretched state or first uncoiling from it.
In the same region the ratio ω2i /2si j si j appears much different from the one
observed for the Newtonian flow, possibly highlighting a local polymer effect
on the dynamics between strain and vorticity

5.1.2 Strain and vorticity

In Chapter 2 the importance of the dynamics between strain and vorticity
in the framework of turbulence propagation have been illustrated. Here it
is shown how the interaction between polymers and velocity gradients alter
those dynamics in both the bulk and in the turbulent/non-turbulent interface.
In the FENE-P model the polymers are influenced by the velocity gradients
through the terms ∂ui

∂xr
Cr j + Cir

∂u j

∂xr
. This can be rewritten as sirCr j + Cir sr j

[87], highlighting the direct dependence to the strain field. In the evolution of
the conformation tensor the strain contribution must counteract the one from
the elastic reaction force in order to stretch the polymers. It is possible to
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Figure 5.13: Probability density function of the strain eigenvalues Λi (a) in the bulk and (b) at the
interface. Adapted from [16].

observe how polymers in return alter the strain field, especially considering the
influence of the latter on the enstrophy dynamics. In Figure 5.13 changes in

Bulk Interface
Newtonian Polymer Newtonian Polymer

〈Λ1〉 1.34 1.12 0.49 0.39
〈Λ2〉 0.29 0.15 0.14 0.07
〈Λ3〉 -1.70 -1.28 -0.64 -0.47

Table 5.1: Average values of the strain rate eigenvalues from the DNS.

the strain eigenframe are investigated through the probability density functions
of its eigenvalues. In in Figure 5.13 (a) it can be seen how both polymer
and Newtonian flow in the bulk show a typical relative distribution of the
eigenvalues Λi for turbulent flows. The polymer flows apparently experience
lower probability of extreme events with reduced tails of the distribution for all
the eigenvalues but for the negative tails of the intermediate eigenvalueΛ2. The
same trend is observable in Figure 5.13 (b) for the interface: again, the negative
events of Λ2 have the same frequency for both the polymer and the Newtonian
flow, all the other extreme events are reduced for the polymer case compared
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to the Newtonian one. The trend is also confirmed by the average values of
Λi recapitulated in Table5.1 where one can also note as the largest variation
between Newtonian and polymer case happens for the intermediate eigenvalue
Λ2. The main difference from the bulk is an increased weight of the tails for
the polymer eigenvalues denoting that relatively extreme straining events are
more frequent for the polymer case. On average Λ1Λ2Λ3 = − 1

4ωiωj si j so it
can be expected that the reduced frequency of positive events of Λ2 leads to a
reduced positive contribution to the enstrophy production.

However, Lüthi et al. 2005 [58] demonstrated how the contribution to the
enstrophy production dependsmore on the orientation of those eigenvectorwith
vorticity than on their magnitude alone, as the relationωiωj si j = ω2iΛicos2( �ω ·
�λi) highlights. Thus, independently from the intensity of the vorticity and the
eigenvalue Λi , if the associated eigenvector �λi is perpendicular to the local
vorticity vector, there is no net change in enstrophy. In Figure 5.14 (a) and (b)
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Figure 5.14: Probability density function of the cosine of the angle between the vorticity vector and
the three strain eigenvector �λi . (a) in the bulk, (b) at the interface. Adapted from [16].

the probability density function of the alignment between the eigenvectors �λi
and the vorticity �ω is shown respectively for the bulk and the interface. The bulk
does not show any strong deviation from the Newtonian case for the polymer
flow and in general it follows the same behaviour observed for a number of other
turbulent flows [87]. For both it can be seen how |cos( �ω · �λ2)| having a higher
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frequency of values close to 1 shows that �λ2 is the eigenvector most strongly
aligned with the vorticity. The orientation with �λ1 has almost equal probability
for all the angles denoting a random alignment. Finally higher probability
of values of the cosine close to zero means that �λ3 is more likely found to
be orthogonal to the vorticity vector. The only notable difference between
polymer and Newtonian flow in the bulk is indeed a higher probability that �λ3
and vorticity are orthogonal for the Newtonian case. In Figure 5.14 (b) the same
alignments are depicted for the turbulent/non-turbulent interface. It is useful
to remember that in this region the vorticity has to align with the interface
and hence orientation between strain and vorticity is also representative of the
orientations between strain and the interface itself. Comparing the Newtonian
case at the interface with the bulk an increased alignment with the �λ1 is
observable, while the alignment with the compressive eigenvector �λ3 is further
reduced. Henceforth for the Newtonian flow an enhanced enstrophy production
can be expected at the interface due to a combination of reduced negative
contribution from compressive events ( �λ3) and increased positive one from
stretching events( �λ1). A similar trend is observed for �λ3 in polymers, but in
this case a further increase in �λ2 alignment is observed without the increase in�λ1 alignment observed for the Newtonian case. Lüthi et al. [58] noted how the
strongest positive contributes to ωiωj si j comes from ω2iΛicos2( �ω · �λ1), hence
from the vorticity being parallel to �λ1. Therefore, a stronger �λ2 alignment
leads to weaker, yet positive, contributes to the enstrophy production due to
the fact that the eigenvalue Λ2 can have negative values and its positive values
are smaller compared to Λ1 ones. In Figure 5.13 (b) it has been seen that
the pdf of Λ2 in the polymer case, compared to the Newtonian case, shows a
reduced frequency of positive events without a comparable reduced frequency
of negative ones. This fact, coupled with the observed alignment, further
moves the balance in favour of negative enstrophy production events for the
polymer flow at the interface. The change in those in alignments is connected
to the interaction between polymers and the velocity derivatives field so it is
interesting to study how these stretch with respect to the strain eigenframe
and vorticity. Similarly to the strain rate the polymer orientation and extension
state in the FENE-P model has the representation of a tensor, its directionality
is determined by its eigenframe and in particular the polymer orientation is
represented by the eigenvector associated to the strongest eigenvalue of the
conformation tensor. Figure 5.14 (c) depicts the cosine of the angle between
the principal polymer eigenvector �ε1 and the strain eigenframe �λi in the bulk
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and at the interface. For the interface only those samples with a minimum
maximum eigenvalue of 1.5 have been used in order to avoid the contribution
from non-stretched polymers for which the orientation is ill-defined in the
model. Figure 5.15 depicts for the bulk a picture observed before in other
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Figure 5.15: Probability density function of the cosine of the angle between the largest conforma-
tion tensor eigenvector �ε1 and the three strain eigenvector �λi . (a) in the bulk, (b) at
the interface. Adapted from [16].

homogeneous isotropic turbulence studies with polymers [89,90]. In particular
�ε1 is preferentially aligned with �λ1, it is randomly oriented respect �λ2 and it
is more likely to be orthogonal to �λ3. At the interface the alignment between
polymers and both �λ1 and �λ2, is further increased as well as the orthogonality
with �λ3 denoting that polymers are more uniformly aligned with the strain
eigenframe. Polymers in homogeneous isotropic turbulence are also known to
be preferably aligned with vorticity [89,90]. Indeed, 5.16 shows how polymers
are preferably oriented along the vorticity vector in the bulk of the flow, so
that the orientation between strain and polymers partially reflects the one with
vorticity. The interface sees this trend exacerbated with polymers on average
almost parallel to the vorticity. It is important to note how the vorticity vector at
the interface is parallel to the interface itself so that polymers can be considered
strongly aligned with the latter. The preferential orientation along the interface
also lets infer that, while stretching, polymers tend to oppose the inertial
mechanism that try to further increase the surface of the interface.

Being aligned with vorticity, polymers can only weakly directly interact with it,
in fact this would require to affect the asymmetric part of the velocity gradient
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Figure 5.16: Probability density function of the cosine of the angle between the largest conforma-
tion tensor eigenvector �ε1 and the vorticity vector. Adapted from [16].

tensor in the plane orthogonal to the polymers. Hence, by stretching and rela-
xing, the polymers mainly influence the strain. This is particularly important
for the vortex stretching, as when aligned to vorticity, polymers can only either
adverse the stretching of vorticity or enhance vortex compression. The stronger
alignments of the polymers with �λ1 and �λ2 observed in Figure 5.15 can be thus
expected to lead to reduced enstrophy production via a combination of reduc-
tion of stretching and enhanced vortex compression. Figure 5.17 compares the
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Figure 5.17: Probability density function of the cosine of the angle between the largest conforma-
tion tensor eigenvector �ε1 and the vortex stretching vector �W = {ω j si j }.
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orientation between the vortex stretching vector �W = ωisi j and the polymer
eigenvector �ε1. The plot indeed shows how the increase of alignment between
polymers and the two eigenvectors �λ1 and �λ2 previously observed coincide
with an increased alignment between polymers and the vortex stretching vec-
tor �W = ωisi j , when compared to the bulk of the flow. The final effect of these
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Figure 5.18: Probability density function of the enstrophy production ωiω j si j normalized by its
average value. (a) in the bulk (b) at the interface, μ3 is the estimated skewness of the
distribution. Adapted from [16].

changes in the orientation statistics at the interface is to move the typical distri-
bution between positive enstrophy production events (stretching) and negative
ones (compression). In Figure 5.18 (a) and (b) such changes are investigated
through the pdf of the enstrophy production, for both cases, in the bulk and
at the interface. These distributions have been normalized by the average of
ωiωj si j of the sections to which they refer in order to highlight the differences
in the balance. In Figure 5.18 (a) it can be seen how the distributions for the
polymer case and the Newtonian one almost collapse in the bulk. Only a small
increase in weak negative events is observable for the polymer case and it
appears that despite the action of the polymers that effectively introduce new
stresses into the flow in the bulk, vorticity and strain reorganize according
to the observed üniversal"pattern. The same does not hold anymore for the
interface, as can be seen from Figure 5.18 (b). First it can be observed how
for both cases the distribution between compression and stretching is strongly
shifted towards stretching events when compared to the bulk. Strong stretching
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events can be up to eight times stronger than the strong compressive events of
the same likelihood, while at the bulk they were at best two time stronger. The
prevalence of stretching events at the interface is peculiar when it is observed
that the interface is an inherently viscous region and viscosity in homoge-
neous isotropic turbulence is known to be the main bounding factor against
the growth of the vortex stretching [58]. In the pdfs for the polymer case the
significant changes in the interactions between strain and vorticity previously
observed lead to an increased weight of vortex compression compared to the
Newtonian one. The observed shift also appears to be robust to the choice of
the threshold, as shown in Figure 5.19, and it becomes more evident when the
threshold is lowered. The pdf of the strain rate production si j sjk ski , unlike
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Figure 5.19: Probability density function of the normalized enstrophy production ωiω j si j at the
interface with different thresholds ω2

i, th
/2 for the interface sampling.

ωiωj si j , shows how polymers shift towards negative events in both the bulk
and the interface. How it has been noted before, the strain field is more directly
coupled with the polymers and thus more apparently affected everywhere in
the flow. Recapitulating, at the interface the flow re-organizes itself. Vorticity
close to the interface has to tilt and align parallel to it, the intermediate and
the positive strain eigenvector becomes more strongly aligned along vorticity
while the compressive one is more likely to be orthogonal to it compared to
the bulk of the flow. The change in alignments are reflected in a distribution
of enstrophy and strain production more skewed towards positive events of
both, strain and enstrophy production. The shifted weight towards stretching
(positive) events denotes how the interface is a region particularly active in

80



5.1 Eulerian statistics

0 50 100
10−6

10−2

102

−sijsjkski/〈−sijsjkski〉Bulk

p
df

(a)

Newtonian μ3 = 8

Polymer μ3 = 6

0 100 200
10−6

10−2

102

−sijsjkski/〈−sijsjkski〉I
p
df

(b)

Newtonian μ3 = 11

Polymer μ3 = 8

Figure 5.20: Probability density function of the normalized strain rate production si j sjk ski nor-
malized by its average value. (a) in the bulk (b) at the interface, μ3 is the estimated
skewness of the distribution. Adapted from [16].

amplifying and redistributing fluctuations towards smaller scales. Polymers at
the interface are found to re-orient preferably along the vorticity direction (i.e.
parallel to the interface) and are also aligned with the local vortex stretching
vector. The observable effect on strain and enstrophy production dynamics is to
oppose the suppression of negative events observed for the Newtonian flow at
the interface while leaving the occurrence of positive ones relative unaltered.
The bulk, in comparison, sees changes only for the distribution of the negative
strain rate production while the pdfs of enstrophy production are almost the
same. Therefore, there is an apparent local effect of polymers at the interface
over enstrophy mechanics that tends to oppose the effect of vortex stretching
and surely contributes to the observed increase of the scales of the interface’s
features. For the case of the enstrophy production, the effect of polymers can be
expected to be linked to their preferential alignment with the vortex stretching.
Polymers are either opposing vortex stretching while extending or enhancing
vortex compression while relaxing. This, though, is hardly assessable through
Eulerian statistics only and this is where Lagrangian analysis can help.
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5.2 Lagrangian Statistics

The Lagrangian statistics have been obtained by seeding the domains of the
same 10 simulations with tracers and sampling the integrated position of the
particles after fixed time intervals. Along the trajectories, also the local speed,
velocity gradient tensor and polymer conformation tensor have been sampled.
1000 tracers have been seeded in each run for a total of 100′000 sampled
trajectories for a sampling time of about 30τη after the steady state is reached.
The focus of this analysis are the statistics of trajectories crossing the interface,
hence tracers have been added only in regions within a distance between
1M and 3M from the centre of the domain and spanning its whole y − z
cross-section. This allows to have a good concentration of particles in the
region around the turbulent/non-turbulent interface, increasing the number of
interface crossings detected for a given number of seeded particles. Conditional
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Figure 5.21: Position in time of a sub-sample of the Lagrangian tracers, the colour encodes the
enstrophy in logarithmic scale.

Lagrangian statistics are performed by averaging together samples among all
the trajectories with the same distance in time from the instant tI at which
the interface has been crossed. The crossing events are identified by means
of enstrophy thresholding as done before for the interface detection in the
Eulerian statistics. In this way two kind of crossing events can be univocally
discerned: in the first case a trajectory that starts with zero vorticity is identified
to be in the irrotational region and interface crossing tI is identified at the first
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instant at which the enstrophy overcomes the selected threshold. These events
are tagged as entrainment events. A second type of event is identified when
the enstrophy of a trajectory is at some point in time above the threshold but it
decays and remains below it for the remaining time of the simulation. In this
case the last time at which the enstrophy is found above the average is identified
as the interface crossing time tI and the event is tagged as extrainment. This
strategy permits to easily tag, separate and average together a subset of all
the entrainment and extrainment events with the limitation of failing to detect
all those events where the same trajectory crosses the interface in more time
points. The dataset of sampled trajectories is pruned to accept only trajectories
with a length of at least ±10τη . Entrainment and extrainment events, especially
in the polymer case, have different mechanics and the Lagrangian statistics
permit to better discern their contribution to the Eulerian statistics observed in
the previous section.

5.2.1 Entrainment
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Figure 5.22: Conditional averages in time of entrainment events with respect to the distance from
the interface crossing. Energy normalized by the energy in the bulk.

First the statistics of trajectories undergoing entrainment are considered. In
Figure 5.22 (a) the conditional energy profiles with respect to the time tI at
which the interface is crossed are shown. In this and in the following plots (t −
tI )/τη = 0 represents the point in time where the interface is crossed; negative
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times refer to times before the interface crossing, hence to the irrotational
region. Positive times, on the other hand, refer to the turbulent region. It is
possible to see in for (t − tI )/τη < 0 that the initial growth of the energy during
the entrainment phase is relatively similar for both cases with slightly less
energy for the polymer case. Nevertheless after the interface crossing energy
rises more steeper in the polymer flow until it peaks at (t − tI )/≈ 5τη and under
the turbulence-reducing effect of the polymers it drops again until it reaches
a local plateau. In order to have an impression of the distances travelled by
the particle and the location in the flow of the observed features of the energy
profiles, it is interesting to consider the average position of the particles from
the interface. Figure 5.22 (b) depicts the average position of the particles respect
to the position xI at which its trajectory crosses the interface. Here positive
distances represent the irrotational region, while negative ones represent the
turbulent one. For (t − tI )/≈ −20τη particles start on average at about 1M
from the position of interface crossing and approach the interface with a
quasi-constant velocity in x-direction. After the interface crossing, despite the
observed increase of kinetic energy, the particles seem to proceed at a slower
pace towards the bulk of the flow, confirming the observations of previous
studies [98]. This is valid for both, the Newtonian and the polymer case, even
though on average polymers appear to have a slightly higher speed towards the
bulk. Figure 5.23 (a) shows how the enstrophy increases and reaches a plateau
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Figure 5.23: Conditional averages in time of entrainment events with respect to the distance from
the interface crossing. (a) Enstrophy normalized by the enstrophy in the bulk, (b) ratio
between enstrophy and strain.
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in both cases, similarly to what has been observed before in the Eulerian
conditional statistics. The plateau is reached in both cases within 10τη from
the interface crossing, but for the polymer case it is possible to observe a
sharper gradient and a distinct peak of enstrophy at about 5τη . The peak is the
mark of the transition of the polymers to a stretched state. At this point they
start to react back to the flow and suppress enstrophy. Again, similarly to the
conditional Eulerian statistics, the ratio between enstrophy and strain in Figure
5.23 (b) shows a steeper slope for the polymers compared to the Newtonian
case, confirming that for polymers vorticity across the interface reaches the
equilibrium with strain faster than in the Newtonian flow. The transition of
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Figure 5.24: Conditional averages in time of entrainment events with respect to the distance from
the interface crossing. (a) polymer extension normalized by average extension in the
bulk, (b) free energy Ap .

polymers to the stretched state is easily observable in the conditional profile of
polymer stretching in Figure 5.24 (a) which reach a plateau around the same
time at which enstrophy does. A plateau is observed at around 10τη , where
polymers reach and average extension of around 17% of the maximum allowed
one. Furthemore it can be noted how the polymer in the irrotational region
have almost negligible extension and they start to significantly stretch only
within the turbulent region. Figure 5.24 (b) depicts the energy stored in the
polymers as free energy Ap . The energy stored in the polymers keeps growing.
The plateaus observed in the Lagrangian entrainment statistics are consistent
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with observations in previous studies that stated that entrained particles tend
to station in the whereabouts of the interface for some time [96, 98].

5.2.2 Extrainment

It is interesting to observe how the extrainment process, which also affects the
mechanics of the turbulent/non-turbulent interface, unfolds. In the following
set of plots negative (t − tI )/τη are portions of trajectories that are within the
turbulent region while positive (t − tI )/τη represent portions of trajectories in
the irrotational region. The turbulent kinetic energy shown in Figure 5.25 (a)
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Figure 5.25: Conditional averages in time of extrainment events with respect to the distance from
the interface crossing. Energy normalized by the energy in the bulk.

appears to be maintained during the extrainment relatively flat gradients for
both the polymer and the Newtonian case, the main difference being a lower
level of kinetic energy for the polymer one. Similarly to the entrainment case
there is no direct correlation between turbulent kinetic energy and velocity
respect to the interface position. Indeed, by looking at Figure 5.25 (b) one
can see how tracers in the polymer case starts slightly further away from
the interface respect to Newtonian tracers indicating slightly larger speeds
towards the interface. Once crossed the interface the tracers appear to station
just outside it reaching within 10τη a negligible speed in x-direction. From
the distance statistics of both entrainment and extrainment events it appears
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that particles after crossing the interface tend to remain in its whereabouts
and especially there is a delay between the entrainment of a particles and its
actual mixing into the bulk of the flow. The introduction of polymers seems
to slightly increase the exchange of particles between bulk and interface by
increasing both the speed of trajectories towards the bulk during entrainment
as well as the speed of trajectories towards the interface during extrainment.
As can be observed from Figure 5.26 (a) on average the sampled trajectories of
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Figure 5.26: Conditional averages in time of extrainment events with respect to the distance from
the interface crossing.(a) Enstrophy normalized by the enstrophy in the bulk, (b) ratio
between enstrophy and strain.

the particles undergoing extrainment show similar profiles of enstrophy for the
Newtonian and the polymer case. Interestingly the transition from the turbulent
to the non-turbulent region is demarcated by only a light change in the slope of
the profiles. While enstrophy profiles appear almost unchanged, polymers still
affect the strain. Indeed, due to a faster decay of strain fluctuations the ratio
ω2i /2si j si j of Figure 5.27 (b) is larger compared to theNewtonian case. Looking
at the average polymer extension in Figure 5.27 (a) it can be noticed how this is
lower than the threshold of activation observed for the entrainment statistics of
Figure 5.23, so it can be expected that polymers are not themajor responsible for
the decay in enstrophy of these particles. Moreover, a small residual extension
is maintained for more than 10τη after the crossing of the interface confirming
that what observed for the non-turbulent region in the Eulerian conditional
statistics of Figures 5.11 is partly imputable to the expulsion of stretched
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Figure 5.27: Conditional averages in time of extrainment events with respect to the distance from
the interface crossing.

particles from the turbulent region. The free energy in Figure 5.27 (b) follows
the decay of the average extension and similarly retains some non-zero level
quite far from the interface crossing. The Lagrangian analysis is concluded
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Figure 5.28: Probability density function of the normalized enstrophy production from the La-
grangian tracers at the interface crossing. (a) Entrainment events, (b) extrainment.

with a comparison of enstrophy production dynamics between entrainment
and extrainment events in the proximity of the interface. Indeed, the plots
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of Figure 5.28 depict the probability distribution of the enstrophy production
normalized by its average value at the interface of the Lagrangian tracers for
which t−ti = ±τη . In the case of entrainment events, the normalized production
shows a much larger probability of extreme events for the polymer case. In
both cases the distribution maintains a prevalence of positive events over the
negative ones and, overall, they both positively contribute to the enstrophy
variation at the interface. For the case of extrainment events, as expected,
much weaker enstrophy production is observed, the distributions are flatter and
more similar toGaussians than the ones previously observed even though a little
prevalence of positive enstrophy production is still present. More noticeably,
both the distributions are very similar further showing that both Newtonian and
Polymer trajectories undergo to similar decay histories. When observing these
pdfs, it is hard to draw a parallel with their Eulerian equivalent. In particular,
from these distributions, it is not possible to detect the shift towards more
negative events observed for the Eulerian statistics with polymers. Similarly,
caution should be used in trying to link the Lagrangian conditional profiles of
the statistics shown here to their Eulerian counterparts. It is obvious that the
entrainment and extrainment events brings very different contributions to the
global statistics of the interface. The extrainment statistics depict another side
of the interface, where properties of the two regions blend smoothly and the
border between the two regions is more blurred. The sharp gradients across the
turbulent/non-turbulent interface observed in the Eulerian conditional statistics
in this sense appear to be more related the Entrainment events. Nevertheless,
at the steady state it can be expected that entrainment events are as likely and
equally important as the extrainment ones. Unfortunately, a balance between
the two could not be performed being the sampling algorithm capable to track
only the first (entrainment) and the last (extrainment) interface crossing for any
given trajectory. Themajority of interface crossings are from particles that after
entrainment/extrainment remain or return to the whereabouts of the interface
and undergo to extrainment/entrainment many times along the same trajectory.
As evidence suggests, both entrained and extrained particles tend to remain
close to the interface, and these events can be expected to consist of a relevant
number of all the entrainment/extrainment events at the steady state. Indeed,
all the events tagged either as entrainment or extrainment by the algorithm
used here represents around 21% of all the detected crossings of the enstrophy
threshold for the Newtonian case and 17% for the polymer case. In total around
79−83% of the events remain untagged and represent all those cases where the
threshold is crossed due to either internal turbulent fluctuations of enstrophy or
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actual multiple crossing of the interface by the same trajectory. The Lagrangian
statistics are hence representative of only a limited subset of the trajectories
crossing the interface and cannot explain the Eulerian statistics shown in the
previous sections alone. Nevertheless, it is interesting to study the differences
between the entrainment and extrainment processes as these may be more or
less predominant during different phases of the life of a turbulent patch. For
example, during the growing phase at the interface, the entrainment events will
prevail leading to different global properties compared to the steady state case.
Conversely, in a receding flow the extrainment events will be determinant to
the interface properties. These factors are particularly important in order to
understand the behaviour of the polymer model in the transient phases of the
turbulent patch. Extrainment showed to be the strongest contribution to the
observed presence of stretched polymers in the non-turbulent region. At the
steady-state these can accumulate producing a shell around the irrotational side
of the interface of uncoiled polymers capable to apparently affect the strain
field in that region. Being currently unable to address the transient phase of
the polymers, it is not possible to determine if the observed mechanics of
polymer re-organization of strain/vorticity alignments and their effect on the
strain/enstrophy production can be generalized also to the growing phase of
the turbulent patch.
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In this thesis the relatively unexplored topic of the mechanics of turbulent
propagation in dilute polymer solutions has been studied with the objective
of increasing the current understanding on turbulent propagation not only of
this particular kind of flow but also of Newtonian turbulent flows in general.
Among the many open issues in the understanding of turbulent propagation
there is the one of properly assessing the two dichotomies of small versus large
scales role and of viscous versus inertial dynamics. Polymers in this framework
permit to study the propagation of turbulence in conditions where inertial
dynamics and scale distribution have been altered compared to Newtonian
turbulence, without affecting the physical mechanism of molecular viscous
diffusion. Preliminary spectral analysis on shearless turbulent/non-turbulent
interfaces of a Newtonian decaying flow highlighted the presence of a complex
system of viscous and non-viscous fluxes, with sources and sinks in different
regions of the flow and at different turbulent scales. In particular a central role
of large-scale inhomogeneities in the flowhas been found. The inhomogeneities
prompt advective fluxes of enstrophy from the bulk towards the interface which
feed turbulent fluctuations near the interface and further the propagation and
enstrophy growth despite the general decay in the rest of the flow. It has been
observed that while conditional statistics in literature confirm the presence of a
thin layer dominated by viscous diffusion [79], the spectral analysis found that
scales parallel to the interface of such regions are relatively large. Qualitative
observations of the viscous diffusion of enstrophy near the interface confirm
the presence of waves of alternating positive and negative diffusion with thin
thickness normally to the interface but with relatively large extension parallel
to it.

DNS of turbulent fronts in a continuously forced set-up have been performed
withNewtonian and FENE-Pmodels for the constitutive relation between stress
and deformation. The employing of a coarse grained model as the FENE-P is

91



6 Conclusions

imposed by the current limitations on the computational power available and
requires a validation against experimental observation in order to confirm the
trends observed in the simulations. A number of difficulties have been en-
countered during this study that might limit the generality of the observations
made. First, both experiments and simulations with polymers present some
sensitivity to the parameters chosen and results cannot be generalized to all the
parameter space. The limits of both, the experimental and numerical technique
limited the flow to small Reynolds numbers and again polymers are known
to lead to contradictory behaviours with increasing Reynolds numbers [51]
partially due the fact that polymers interact differently with the different tur-
bulent structures that can arise at different Reynolds numbers. On another side
Reynolds number’s effects are expected to be less influential on a region like
the turbulent/non-turbulent interface where by definition turbulent fluctuations
are almost completely decayed.

Both simulations and experiments confirmed a reduction of the maximum pro-
pagation of the turbulent region for the dilute polymer case, even with compa-
rable levels of turbulent fluctuations respect to the Newtonian case. Also, both
experiments and simulations showed a reduction in the fractal-like complexity
of the interface for the polymer case, leading to flatter interface featuring larger
scales. Unfortunately it has not been possible to study the growth rate of the
turbulent region for the polymer case due to the fact that the FENE-P model
requires few eddy turnover times in order to reach sufficient average extensions
to start to affect the flow. Despite its deficiencies in properly predicting the tran-
sient behaviour, the FENE-P model proved itself again to qualitatively predict
the behaviour of dilute polymer solutions even in this non-canonical case. The
dynamics of vorticity and strain at the turbulent/non-turbulent interface have
been extensively investigated permitting to observe how those are altered by
the introduction of the polymeric stress. Like many other anisotropic Lagran-
gian tracers, polymers have been found to assume the orientation of the local
vorticity, leading to a direct interaction with the vortex stretching. In those
regions of the flow that are still approximatively isotropic this does not lead
to appreciable differences in the distribution of positive and negative events of
the normalized enstrophy production ωiωj si j/〈ωiωj si j〉 as polymers seem to
affect both kind of events in the same way and a üniversal"balance is conser-
ved. At the interface though, the balance moves for dilute polymer solutions
towards more intense compressive events. This globally leads towards lower
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production of enstrophy at the interface, shift towards larger scales, reduced
convolution of the interface and entrainment flux.

Through Lagrangian tracking it has been possible to separate trajectories in
three different groups: trajectories that enter the turbulent region and remain
within it, trajectories that leave the turbulent region without returning turbu-
lent again and, finally, trajectories that cross the interface several times in both
directions. It has been possible to univocally identify and tag only the first two
type of trajectories, but those already showed how particles crossing the inter-
face from the irrotational region towards the turbulent one have dramatically
different statistics respect to the ones crossing the interface in the opposite
direction. In particular entrainment appears to be responsible for the relatively
steep gradients observed in conditional Eulerian statistics of many quantities.
On the opposite side extrainment events have very flat profiles that tend to
smooth the aforementioned gradients. It can be argued that the balance bet-
ween entrainment and extrainment events defines the Eulerian statistics of the
interface partially explaining some of the differences observed between diffe-
rent type of flows or even between different regions of the same flow [8, 95].
The distinction between the extrainment and entrainment Lagrangian statis-
tics is even more marked for the polymer case. Indeed, since polymers are in
the coiled conformation at the beginning of the entrainment, they only little
affect the enstrophy at the interface, allowing for faster growths in the more
energetically stirred polymer flow. On the other hand, extrainment events have
very similar enstrophy and energy profiles and areresponsible for the obser-
ved presence of residual polymer stretching in the non-turbulent region. The
residual stretching of the polymers after extrainment might be significant for
the largest class of events represented by trajectories crossing the interface
multiple times. Along those trajectories, polymers can constantly maintain a
certain degree of extension and react more rapidly during subsequent entrain-
ment events. In wall-bounded flows, polymers have been observed to strongly
interact with near-wall turbulent structures. Near the wall polymers are indeed
more intensely affecting the flow [34], they are strongly aligned with coherent
vortical structures and increase the anisotropy of turbulent fluctuations, while
far from the wall they have a more isotropic behaviour [29, 51]. Similarly, for
the flow investigated in this thesis the polymers have more freedom of orien-
tation in the bulk of the flow where the properties of both polymers and flow
better approximate the ones of homogeneous isotropic turbulence.
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Concluding, it has been possible to obtain some further insight on the mecha-
nismwithwhich polymer affect turbulence and interactwith coherent structures
in the flow. At the border between the turbulent and the irrotational region, it is
possible to see a strong alignment with the large (though thin) organized struc-
ture which is the turbulent/non-turbulent interface. A preferential alignment of
polymers with large coherent structures means that the polymer stresses can
affect larger turbulent scales at the interface compared to the ones affected in
more turbulent, chaotic and isotropic regions of the flow. These observations
can probably be extended to flow control applications, where the control might
be more easily applicable and more effective in those regions of a flow where
turbulence experiences a reduced degree of freedom and is forced to organize
in large structures.
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A.1 Numerical Implementation

The incompressible Navier-Stokes equations and the evolution of the polymer
conformation tensor are discretized by means of a pseudo-spectral method
based on Fourier series and are integrated in time through a partially implicit
Crank-Nicholson/Runge-Kutta scheme following the implementation used in
De Angelis et al. 2005 [21].

The momentum conservation is given by:

∂ui
∂t
+ u j
∂ui
∂xj
= − ∂p
∂xi
+

1
Re

∇2ui + gi + fi, (A.1)

where fi is the ith-component of the body force and gi is the ith-component
of the added polymer contribution

gi =
1

Re

∂T p
ij

∂xj
. (A.2)

Using the FENE-P model the stress Ti j is given by:

T p
ij =
ηp

τ

(
L2
max − 3

L2
max − Tr(Ci j)

Ci j − δi j
)
. (A.3)

Here τ is the relaxation time of the polymer chain, ηp is the ratio between
the asymptotic zero-shear-rate viscosity of the solution with polymers and
the solvent viscosity. L2

max is the maximum allowed extension of the polymer
chains andCi j is the conformation tensor that represents the average orientation
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and extension of the polymer chains at a given point of the field. The evolution
of the conformation tensor in the current implementation is governed by

∂Ci j

∂t
+ uk
∂Ci j

∂xk
= −1
τ

(
L2
max − 3

L2
max − Tr(C)Ci j − δi j

)
+
∂ui
∂xr

Cr j

+ Cir

∂u j

∂xr
+ χ∇2Ci j, (A.4)

where the diffusive term χ∇2Ci j is added in order to increase the stability of
the simulation. The Navier-Stokes equations when transformed in the Fourier
space assume the form

∂ûi
∂t
= ĥi − ki

k2
(ki ĥi) + 1

Re
∇2ûi + ĝi − ki

k2
(ki ĝi) + f̂i − ki

k2
(ki f̂i) (A.5)

where ĥi = ˆu jωkεi jk . The Equation A.5 is then integrated in time using a third
order Runge-Kutta scheme in the form:

ûn+1
i = ûn

i + anĤn
i + bnĤn−1

i − an + bn
2Re

k2
(
ûn+1
i + ûn

i

)
+

an + bn
2Re

(
B̂n+1
i + B̂n

i

)
(A.6)

Where B̂i = ĝi − ki
k2
(ki ĝi) + f̂i − ki

k2
(ki f̂i) and hatHi = ĥi − ki

k2
(ki ĥi). The

non-linear term is integrated using an Adam-Bashforth scheme and the linear
term by using an implicit Carnk-Nicolson one.

Lagrangian statistics have been computed by seeding the flow at random coor-
dinates within a desired region of it. The particles’ positions are then integrated
at each time step using the Eulerian velocities. Being in general the particles’
positions not coincident to the discretized points of the domain the particle
velocity is obtained by a bicubic interpolation of the velocities of the neigh-
bouring points. The same applies for all the other sampled quantities at the
particles’ positions.
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Name K Δ Tf M u′ Re λ Reλ
Base 3.8 0.065 0.1 Ly−z/8 0.50 80 0.65 65
A1 5.8 0.065 0.1 Ly−z/8 0.58 91 0.61 70
A2 6.8 0.065 0.1 Ly−z/8 0.65 102 0.59 76
A3 3.8 0.065 0.1 Ly−z/8 0.75 117 0.56 84
T1 3.8 0.065 0.05 Ly−z/8 0.71 112 0.59 84
T2 3.8 0.065 0.3 Ly−z/8 0.38 59 0.70 53
D1 3.8 0.075 0.1 Ly−z/8 0.52 82 0.65 68
M1 3.8 0.065 0.1 Ly−z/4 0.50 157 0.76 76
M2 3.8 0.065 0.1 Ly−z/16 0.44 34 0.46 41

Table A.1: Parameters for the characterization of the forcing.All simulationswere run atRe = 200,
Δt = 0.001.

A.2 Forcing characterization

The thicknessΔ is usually chosen to beΔ ≈ M in order to have a more isotropic
energy injection scales. With our forcing model the governing parameters
are the maximum amplitude A0, the forcing interval Δtu , the mesh-size M
and Δ. A number of simulations have been performed with the purpose of
assessing the effect of each of these parameters and it has been observed
how, within the range used, the forcing produced results consistent with the
ones expected from oscillating grid turbulence. The data-set presented here
refers to a single simulation re-initialized every time with different forcing
parameters. All simulations, apart the ones at different forcing frequency 1/Tf

and different mesh size M , share the same random number time-sequence
for the generation of the forcing distribution. This has been made in order
to allow a direct comparison between single runs. The forcing parameters
used in this parametric study are recapped in Table A.1 where also some flow
statistics, sampled in the middle of the forced region, are presented. Figures
A.1–A.2–A.3–A.4 show the effect of the choice of the various parameters over
the average energy in the middle of the forced region and over the interface
position detected by a threshold of enstrophy equal to the 2% of the bulk
enstrophy. While the growth phase of the patch seems to be accelerated
by parameters that increase the energy content of the forced region the final
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Figure A.1: Kinetic energy in the forced region(a)and average interface position (b).
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Figure A.2: Kinetic energy in the forced region(a)and average interface position (b).

patch size appears to be less sensitive to changes in the forcing parameters.
According to this metric the parameters that affect the most the final position
of the turbulent front are the energy injection scales M and Δ.
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Figure A.3: Kinetic energy at the center of the forced region (a), average interface position (b).
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Figure A.4: Kinetic energy at the center of the forced region (a), average interface position (b). In
this case for the sake of comparison the interface position has been normalized by the
box half size Lx
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Name L2max τ ηp χ u′ Re λ Reλ
Base 5000 2 0.1 1/200 0.45 70 0.77 69
ET1 5000 2 0.06 1/200 0.47 73 0.74 70
ET2 5000 2 0.25 1/200 0.44 69 0.79 68
TA1 5000 0.8 0.1 1/200 0.43 68 0.75 64
TA2 5000 4 0.1 1/200 0.41 66 0.72 60
TA3 5000 7 0.1 1/200 0.50 78 0.72 71
P1 5000 4 0.25 1/200 0.41 64 0.72 62
P2 3600 5 0.25 1/200 0.36 62 0.76 60
CHI 5000 2 0.1 1/100 0.45 70 0.47 69

Table A.2: Parameters for the test of the polymer parameters. All simulationswere run atRe = 200,
Δt = 0.001.

A.3

Within a limited range of values, also the effect of the choice of the FENE-P
model parameters has been assessed. A set of simulations have been perfor-
med with fixed forcing parameters and different parameters for the polymer
model. The simulations have all the same random number time-sequence for
the generation of the forcing distribution in order to have a better comparison.
The FENE-P parameters used in this parametric study are recapped in Table
A.2 where, like previously done for the forcing study, also some flow statistics
sampled in the middle of the forced region are presented. The simulations
have been stopped at the time at which turbulence for the base case stops
propagating. In Figures A.5–A.10–A.11–A.12 show like for the Newtonian
study little sensitivity of the detect interface position with respect to the model
parameters. For the cases TA1,TA2,TA3 in Figure A.10, a consistent trend
of reduction of the kinetic energy could be found at increasing values of τ.
The same leads to contradictory results for the interface propagation, where all
three cases led to larger patches than the base case. Simulations P1 and P2 test
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Figure A.5: Kinetic energy at the center of the forced region (a), average interface position (b).
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Figure A.6: Kinetic energy at the center of the forced region (a), average interface position (b).

Kcoiled =
ηp

τ

L2
max − 3

L2
max − Tr(Ci j)

(A.7)

is computed for small extensions (below 1% of the maximum allowed). The-
refore, these simulations have almost the same polymer reaction force in the
small extension range. These simulations, though having the largest reductions
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Figure A.7: Kinetic energy at the center of the forced region (a), average interface position (b).
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Figure A.8: Kinetic energy at the center of the forced region (a), average interface position (b).

in the kinetic energy in the tested parameter space, lead to very similar profiles
of the patch growth further underlying the importance of the low extensions
regime for the FENE-P model in turbulent/non-turbulent interfaces. Finally,
simulation CHI has been realized in order to test the effect of the artificial dif-
fusivity on the energy and the propagation. This simulations show maximum
differences below 2% for both, energy and propagation when the artificial
diffusivity is double the one of the base case.
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Figure A.9: Kinetic energy at the center of the forced region (a), average interface position (b).
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Figure A.10: Kinetic energy at the center of the forced region (a), average interface position (b).

A.4

Several methods can be found in literature that permit to track the position
of the turbulent/non-turbulent interface. Each of them can lead to different
detected interfaces, often producing results that are difficult to compare [8].
Some further detail on the interface detection techniques is given here in
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Figure A.11: Kinetic energy at the center of the forced region (a), average interface position (b).
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Figure A.12: Kinetic energy at the center of the forced region (a), average interface position (b).

order to better clarify the origin of some variability in the literature results.
As it has been introduced in the first chapter of the thesis, several quantities
present relatively sharp changes across the interface and, virtually, any of these
quantities can be used for interface detection. Scalar quantities are particularly
suitable for such purpose and, for example, velocity magnitude, enstrophy,
temperature, concentrations of scalars (both passive and reacting) had been
used for interface detection purposes [19,36,42]. The basic principle involves
setting a maximum value or threshold of such scalar quantity, above which the
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fluid can be considered with a certain confidence to be turbulent. Then all the
points of the field are tagged as turbulent when the scalar quantity is above
the threshold, and non-turbulent when it is below. Further post-processing
is required in order to extract the boundary between the two regions and
a number of algorithms have been developed in order to do so. This has
introduced a further source of variability in the interfaces detected by different
studies. Part of the post-processing usually implies removing internal pockets
of irrotational fluid trapped inside the turbulent region as well as isolated
turbulent bubbles in the irrotational region detached by themass of the turbulent
flow. When this pocket/bubble remotion is applied to 2D slices of the scalar
field, parts that in the more complex 3D field would result connected to the
main irrotational/turbulent body are also removed. The error associated to
this remotion is usually considered negligible and to the knowledge of the
author only Borrell and Jimenez [8] implemented an algorithm that accounts
for connected 3-dimensional regions at the cost of a sensible increase of the
computational costs. In these study the turbulent/non-turbulent interface has
been identified bymean of an enstrophy threshold, i.e, non-turbulent regions are
identified in the flow where the vorticity magnitude falls below a certain level.
Such approach has proved itself one of the most robust techniques for interface
detection, though it presents the problem of the choice of ameaningful value for
the threshold Ωth . Following this method, the average position of the interface
has been define as XI = 〈xI 〉 where xI = xI (y, z) is the instantaneous position
of the interface detected by finding the outermost point where enstrophy, Ω =
ωiωi/2 with ωi denoting vorticity, equals a given threshold. Figure A.13
shows a comparison between the interface detected by the algorithm used in
the present work and the one detected by a simplified implementation of the
algorithm used in Borrell and Jimenez 2016 [8]. As in both, experiments
and simulations a certain level of noise is always present in the non-turbulent
region, 0 level thresholds are not practically applicable. Moreover, it can be
argued that not any arbitrarily low enstrophy fluctuation denotes turbulence.
Hence, the choice for the threshold depends on empirical observations and
on constraints dependent on the particular flow case. For example in certain
time and space evolving flows a single constant value for the threshold would
fail to properly detect the interface at every stage of the flow. In these cases
the threshold should be dependent on some local-in-time or -space turbulent
property. In the present work a time-dependent threshold has been used and,
following Wolf et al. 2013 [98], a value of 2% of the mean enstrophy in the
bulk of the flow at a given time has been used ( Ωth = 0.02Ω0). Such a choice
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Figure A.13: Example of the interface by two different detection algorithms. Right: only the
outermost thresholded points are selected. Left: simplified algorithm from Borrell
and Jimenz algorithm prior the removal of pockets and bubbles.

has proven well suited through the study for identifying the region of the
flow where propagation takes place. In Chapter I it permits to properly detect
the interface in the location of maximum positive enstrophy variation of the
single-points budgets. In chapter IV it properly detect the interface at the end
of the region of linear growth of the integral scale and the region of maximum
velocity anisotropy.

Once identified the interface, it is possible to define properties related to the
distance from the interface. This consists in defining a new local reference sys-
tem centered at the local position of the interface. Then, statistics are sampled
averaging together all the points at the same coordinate respect to its local
interface position. Different choices of this reference system can give different
results, especially at growing distances from the interface. The simplest choice
is to use the horizontal distance Δx referred to the outermost detected interface
position for every coordinate couple (y, z). In doing so, the local reference
system maintains the same angle respect to the global one, and changes its
position only. This has the disadvantage of hiding the contribution from inner
parts of the interface, but it permit to depict statistics at the interface as well as
to return to the fully turbulent (classical) statistics far enough from it. This is
the approach used here and in Chauhan et al.,Westerweel et al. and da Silva and
Taveira [11, 78, 97]. A second approach consists in defining a local reference
system oriented as the direction normal to the local interface. This approach is
used for example in Watanabe et al. 2016 [96] and da Silva and Pereira [73].
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Figure A.14: Conditional averaging procedure.

This technique improves the quality of the statistics near the interface, espe-
cially for strongly convoluted ones, but the local axes tend to intercept each
other further away from it, making the samples at larger distances far from
homogeneous. Borrell and Jimenez 2016 [8] use a third approach in which,
for every point p of the field, they find the ball distance Δb from the interface
defined as the minimum radius of a sphere with center in p and surface tangent
to the interface. Then they compute statistics as a function of the distance Δb .
The operation of generating the new reference systems for all the points of the
field has computational cost of Nplog(N) and was deemed to expensive for the
application of this study. As already pointed out, the three approaches give in
general different results mostly in the mid to far distance to the interface. The
more regular is the interface, though, themore similar are the statistics obtained
by the three methods. Another source of arbitrariness in the compute statistics
is the choice of the enstrophy threshold. In experiments, a value is chosen such
that it is preferably of some orders of magnitude lower than average values in
the bulk but still robustly above the magnitude of the noise in the non-turbulent
region [42]. In such a way, there is a range of thresholds for which the turbulent
volume enclosed by the detected interface do not changes much [19]. Borrell
and Jimenez, though, pointed out that this plateau spans over several decades
of Ω and that both, turbulent statistics and the topology of the interface can
change considerably within this range. They suggest, nevertheless, an order
of magnitude for the choice of the interface [8]. Here, the threshold is time
dependent and defined as the a fraction of the average enstrophy of the bulk.
The position at which this average is computed corresponds to a plane at a
distance of x = 0.6M from the middle of the domain, which is just outside the
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forced region. The chosen threshold equals 2% of the average bulk enstrophy,
such a value roughly correspond to the threshold used for similar flows and
Reλ in [42, 43, 98], and an half of the one used for jet flows in [7, 95]. The
interface is highly fluctuating and in both, simulations and experiments, can
reach deep into the turbulent bulk [8, 19]. In order to avoid effects of the body
force on the statistics, all those samples within the forced region have been
eliminated from the computation. For the Lagrangian statistics the conditional
averaging is performed with respect to the time. For the entrainment events
only trajectories that start with vorticity below the threshold are selected, and
the first time at which the enstrophy threshold is overcome is identified as the
time of interface crossing tI . Conversely for extrainment events only trajecto-
ries that end with vorticity below the threshold are selected, and the last time
at which the enstrophy decays below the threshold is tagged as the time of
interface crossing tI . In both cases, samples that cross the threshold before
the steady state phase is settled are eliminated from the data set. Then, a new
time reference system is defined as t − tI and conditional statistics are obtained
by ensemble averaging all the samples at the same distance in time from the
interface.
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