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Zusammenfassung  

Diese Dissertation befasst sich mit der Bewertung der Modellierung der Erdbebengefährdung und der 

Schäden durch Vergleich mit historischen Erdbeben und Schadensinformationen. Ina Cecic, Präsidentin 

der European Seismological Commission, bemerkt dazu: „Ich freue mich zu bemerken, dass wir die 

Aktivitäten für interdisziplinäre Aufgaben immer weiter ausdehnen und über die „reine“ Seismologie 

hinaus auf andere Bereiche vordringen, die im wirklichen Leben miteinander verbunden sind. Dies ist 

besonders wichtig für die Bereiche Bildung und Ö ffentlichkeitsarbeit, da nur das Bewusstsein für die 

Gefahren in unserer Umgebung und das Wissen darüber, was zu tun ist, langfristig Leben retten kann.“ 

In dieser Arbeit wird zunächst ein systematischer Rahmen für die flächenbezogene Bewertung der 

Qualität der seismischen Gefahrenkarten entwickelt. Seit vielen Jahrzehnten ist die 

Erdbebengefährdunskarte in den meisten Ländern ein zwingender Bestandteil der Konstruktionspraxis. 

Anstrengungen zur Beurteilung der tatsächlichen Qualität dieser Karten sind essentiell. Unterschiedliche 

Metriken und Kriterien werden angewendet und detailliert diskutiert. Ich untersuche diese Frage am 

Beispiel des Einflußes der Magnituden-Häufigkeit.  

Zweitens wurden in den letzten vier Jahrzehnten zahlreiche Forschungsberichte und -dokumente 

veröffentlicht, die sich mit der Anfälligkeit von Gebäuden für Bodenbewegungen aufgrund von Erdbeben 

in China befassen, da eine umfassende Bewertung der seismischen Anfälligkeit von Gebäuden eine 

Schlüsselaufgabe der Erdbebensicherheits- und Schadensbewertung ist. Aus diesem Grund habe ich 

zuerst 69 Artikel und Dissertationen unter die Lupe genommen und untersuchte die Gebäudeschäden, die 

durch Erbeben in dicht besiedelten Gebieten entstanden sind. Sie stellen Beobachtungen dar, bei denen 

die makroseismischen Intensitäten gemäß der chinesischen offiziellen Seismic Intensity Scale bestimmt 

wurden. Aus diesen vielen Studien werden die mittleren Fragilitätsfunktionen (abhängig von der Makro-

seismischen Intensität) für vier Schadensgrenzzustände von zwei am weitesten verbreiteten 

Gebäudetypen abgeleitet: Mauerwerk und Stahlbeton. Ich habe auch 18 Veröffentlichungen untersucht, 

die analytische Fragilitätsfunktionen (abhängig von der Spitzenbeschleunigung - PGA) für dieselben 

Schadensklassen und Gebäudekategorien bereitstellen. Auf diese Weise wird eine solide 

Fragilitätsdatenbank für seismisch gefährdete Gebiete auf dem chinesischen Festland erstellt, die sowohl 

auf Intensität als auch auf PGA basiert. Es wird ein umfassender Ü berblick über die Probleme bei der 

Bewertung der Fragilität für verschiedene Gebäudetypen gegeben. Ein notwendiger Vergleich mit 

internationalen Projekten mit ähnlichem Schwerpunkt wird durchgeführt. Basierend auf der neu 

gesammelten Fragilitätsdatenbank wird ein neuer Ansatz zur Ableitung der Intensität-PGA-Beziehung 

unter Verwendung der Fragilität als Brücke vorgeschlagen, und es werden optimierte Intensität-PGA-

Beziehungen entwickelt. Dieser Ansatz führt zur Verringerung der Streuung in der traditionellen 

Intensitäts-PGA-Beziehung.  

Drittens, für die Risikoanalyse wird der Gebäudebestand, der durch ein Erdbeben gefährdet ist benötigt. 

Diese Studie entwickelt einen Ansatz einesgeo-kodierten Bestandsmodells für Wohngebäude für das 

chinesische Festland durch. Hierbei werden die Daten der Volkszählung in einem 1 km × 1 km Rahmen als 

Proxy benutzt. Zur Bewertung der Modellleistung wird die in diesem Kapitel entwickelte Wohnfläche auf 

Bezirksebene mit Aufzeichnungen aus dem statistischen Jahrbuch verglichen. Es zeigt sich, dass die in 

dieser Studie entwickelte Grundfläche nach Bereinigung um einheitliche Baukosten durchaus mit der 

Grundflächenstatistik von Shanghai vergleichbar ist. Die Anwendung dieses Modells in der Risikoanalyse 
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des Erdbebens in Wenchuan M8.0 wird ebenfalls durchgeführt. Der auf der Grundlage dieses 

Expositionsmodells für Wohngebäude geschätzte Gesamtverlust entspricht in etwa dem Verlustwert, der 

aus Schadensmeldungen auf der Grundlage von Felduntersuchungen abgeleitet wurde. Diese 

Kongruenzen verdeutlichen die Robustheit des hier entwickelten Wohnungsbestandmodells. Schließlich 

wird die Schadensabschätzung mithilfe verschiedener Methoden durchgeführt und ein Vergleich mit 

Schäden angestellt, die aus Schadensmeldungen abgeleitet wurden. Zur Verbesserung des 

Verlustverteilungsmusters wird die Entwicklung eines regionalen Human Development Indexes 

vorgeschlagen. Sensitivitätstests werden durchgeführt, um die Auswirkungen jedes Faktors auf die 

Ermittlung des endgültigen Verlusts zu überprüfen. 
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Abstract  

This thesis focuses on the evaluation of modelling seismic hazard and loss through comparison with his-

torical earthquake and loss information, based on the long recording history and frequent occurrence of 

earthquakes in mainland China.  Efforts are made to calibrate seismic hazard and risk model in a statistical 

way, and to figure out whether the historical damage information can effectively constrain the predicted 

results by various models. It’s worth to note that, this kind of model calibration is not targeted at damage 

to individual building caused by specific earthquake, but at damage to groups of buildings in certain re-

search area based on statistical analysis of historical earthquakes. 

This work firstly presents a systematic frame for area-based assessment of seismic hazard map perfor-

mance. Since seismic hazard map has been used in regulating engineering design practice in many coun-

tries for many decades, efforts in assessing how well these maps actually perform is essential. Different 

metrics and criteria are applied and discussed in detail. I study the effect of modelled earthquake sources 

as compared to historic earthquake sources.  

Secondly, to better understand the susceptibility of the current buildings to be damaged in potential 

earthquake hazards in mainland China, a comprehensive evaluation of building seismic fragility is essential, 

which is also one key task of earthquake safety and loss assessment. Many research reports and papers 

have been published over the past four decades that deal with the vulnerability of buildings to ground 

motion caused by earthquakes in China. Therefore, I first scrutinized 69 papers and theses studying build-

ing damage for earthquakes occurred in densely populated areas. They represent observations where 

macro-seismic intensities have been determined according to the Chinese Official Seismic Intensity Scale. 

From these many studies the median fragility functions (dependent on intensity) are derived for four 

damage limit states of two most widely distributed building types: masonry and reinforced concrete. I 

also inspected 18 publications that provide analytical fragility functions (dependent on peak ground ac-

celeration - PGA) for the same damage classes and building categories. Thus, a solid fragility database 

based on both intensity and PGA is established for seismic prone areas in mainland China. A comprehen-

sive view of the problems posed by the evaluation of fragility for different building types is given. Neces-

sary comparison with international projects with similar focus is conducted.  Based on the newly collected 

fragility database, a new approach is proposed in deriving intensity-PGA relation by using fragility as the 

bridge and reasonable intensity-PGA relations are developed. This novel approach may allow to decrease 

the scatter in traditional intensity-PGA relation development, i.e., by further classifying observed macro-

seismic intensities and instrumental ground motions based on difference in building seismic resistance 

capability. 

Thirdly, after the construction and evaluation of seismic hazards and the vulnerability of buildings to these 

seismic hazards, an evaluation of the currently exposed building stock value is also necessary. Therefore, 

a high-resolution residential building stock model for mainland China is further developed, by disaggre-

gating administrative level census data into 1km×1km scale using population as the proxy. For evaluation 

of the model performance, floor area in districts of Shanghai developed in this study is compared with 

records from statistical yearbook. It turns out that, with certain adjustment the district level floor area 

developed in this study is quite consistent with that recorded in Shanghai statistical yearbook. Provincial 

level comparison of the modelled building stock value with that modelled in previous studies also vali-

dates the reliability of the model developed in this study. Furthermore, an application of the modelled 
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results in loss assessment of 2008 Wenchuan M8.0 earthquake is also conducted. The overall estimated 

loss based on the modelled residential building stock is quite approximate to the loss estimated from 

damage reports, which are based on field investigation and considered to be the most reliable source of 

damage information. These congruences convincingly validate the robustness of the residential building 

stock model developed here. 

Finally, based on the hazard map constructed for Shanxi Rift System in Northern China, the vulnerability 

databased collected by extensive review of previous studies, and the country-wide building stock model 

developed, loss estimations in terms of both single earthquake scenario and multi-scenario are performed 

by using empirical method (using the macro-seismic intensity map as the hazard input) and analytical 

method (using the instrumental ground motion records as the hazard input). For single earthquake sce-

nario, loss estimation results and distribution pattern are compared with that derived from damage re-

ports based on post-earthquake field investigations. For multi-scenario based probabilistic loss, compari-

son is made between loss estimated from analytical method and from empirical method. Sensitivity tests 

of estimated loss to input parameters of the loss modelling chain are also conducted, e.g. by changing the 

parameters in hazard map construction, exposure model development and quantifying the consecutive 

change on modelled loss. 
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1 Introduction 

1.1 Motivation 

Increasing loss of human life and property due to earthquakes in past years have increased the demand 

of seismic risk analysis for people to be better prepared for potential threat. The rapid urbanization and 

building construction have increased the exposure of people and property to potential earthquake threat 

in the future. China, as the world’s most populous nation, on one hand, is experiencing economic, social 

and urban change at unprecedented rates. One the other hand, devastating earthquakes have been rec-

orded throughout Chinese history. For example, the Huaxian Mw8.0 earthquake that occurred in 1556 in 

Shaanxi province, killed an estimated 830,000 people, which is the highest known death toll resulting from 

an earthquake. To date, three of the top ten deadliest earthquakes and over 40% of all fatalities from 

earthquakes throughout the world have occurred within mainland China (Wong, 2014). With the central-

ization and increase of population near urban centers and megacities, earthquakes occur in these places 

will cause much more damage than in the past. Therefore, the quantification of seismic risk is extremely 

important. 

Seismic risk  model can play a key role in the following aspects: (i) to assess the potential seismic hazard 

and loss for a target area from both deterministic and probabilistic view; (ii) to support the long-term plan 

for seismic risk mitigation and preparedness; (iii) to prioritize decision making in emergence response and 

disaster management; and (iv) to optimize retrofitting strategies. Seismic risk modelling results provide 

the spatial distribution of expected damage and loss to exposed elements in an earthquake of different 

magnitudes. Key modules to derive such information include (i) hazard: which predicts  the ground shak-

ing distribution generated by potential earthquake; (ii) vulnerability: which establishes a relation between 

hazard and structural damage; (iii) exposure: which evaluates the stock value exposed to potential hazard.  

Different researchers have applied different assumptions in modelled the seismic hazard, exposed stock 

value and their vulnerability. Therefore, uncertainty exists in every step of the risk modelling chain. In this 

regard, a comprehensive and deep-going understanding of each of these three modules are essential to 

better optimize the final modelled loss. This also outlines the focuses of this thesis. 

As the output of the hazard module, a seismic hazard map predicts the effects of future earthquakes of 

different magnitudes based on the characterisation of the pattern and frequency of earthquake occur-

rence in specified sources and the use of ground-motion prediction equations (GMPEs) to quantify how 

shaking level varies with distance from the hypocentre. Seismic hazard map has been used for many dec-

ades as a tool to set the codes and standards for the structural design of buildings and infrastructure in 

many countries. Although hazard maps are used worldwide in making costly policy decisions for earth-

quake-resistant construction, whilst how well these maps actually perform is unknown (Brooks et al., 

2016). In addition, there is no established formal procedure or standard for checking whether the hazard 

model is a reasonable reflection of the reality or not (Mak and Schorlemmer, 2016; Musson, 2004). Mean-

while, the “unexpected” occurrences of ground motions in the low hazard zones indicated by the PSHA 

map in a number of past earthquakes have triggered arguments and rebuttals on the performance of 

PSHA predictions (Frankel, 2003, 2013a, 2013b; Gülkan, 2013; Hanks et al., 2012; Stein et al., 2003, 2011, 

2012, 2013; Stirling, 2012). In this regard, a systematic frame to conduct an area-based evaluation of the 
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performance of seismic hazard map will be explored and presented first in this thesis by using a long 

historical earthquake catalogue occurred in the test region of Shanxi Rift System of Northern China. 

In the vulnerability module, the susceptibility of structure to ground shaking is depicted by a fragility curve. 

Building fragility curves, defined as expected probability of exceeding specific building damage state under 

given earthquake ground shaking, have been developed for different typologies of buildings. They are 

required for the estimation of fatalities and monetary losses due to building structural damage in seismic 

risk analysis. However, the application of the existing fragility curves has been considered as a challenging 

task, since different approaches and methodologies are spread across scientific journals, conference pro-

ceedings, technical reports and software manuals, hindering the creation of an integrated framework that 

could allow the visualization, acquisition and comparison between all the existing curves (Maio and Tsionis, 

2015). In this regard, a comprehensive review of the available fragility curves that specially developed for 

Chinese buildings from 87 papers and thesis will be performed. 

As to the exposure module, the modelling of building stock value and its spatial distribution across China 

is not readily available at high-resolution (e.g. 1km×1km scale). In those published studies related to 

building stock model development, e.g. Yang and Kohler (2008) and Hu et al. (2010), the simulation and 

evolution of building stock value (taking the mainland China as a whole) were designed and targeted for 

resource consumption and environmental impacts purposes, which cannot meet the needs of catastrophe 

modelling in risk analysis due to their coarse resolution. International projects e.g. PAGER (Jaiswal et al., 

2010) and Gunasekera et al. (2015) also conducted global exposure modelling that covered the building 

stock value in mainland China. However, these global models cannot fully make use of the census data 

available in each country and usually assuming a uniform distribution of building stock value per capita 

for each province or even for each country, which might be convenient, but not realistic, especially for 

unevenly developed countries like China. Furthermore, the extent of the natural hazards, in most cases, 

are dependent on the geological structure (earthquakes) or along the riverside (floods), instead of being 

restricted to administrative boundary. In this regard, to better cope with this spatial mismatch between 

natural hazards and administrative boundary, a geo-coded building stock model with resolution of  

1km×1km will be established and evaluated for mainland China. 

After getting all the ingredients from hazard, vulnerability and exposure module ready, seismic loss esti-

mations from both deterministic and probabilistic view are performed using techniques based on differ-

ent ground motion indicators (namely macro-seismic intensity, peak ground acceleration, spectral accel-

eration and spectral displacement) and using various descriptions of monetary loss (e.g. net loss, gross 

loss, direct loss, indirect loss). One way to check the reasonability of seismic loss models is by comparison 

with real losses derived from post-earthquake surveys. However, a common problem in real loss values is 

that, for small earthquakes, the scattering of loss values is large; while for large earthquakes, the chance 

of its occurrence is very rare, thus hindering people to rely on each specific earthquake to calibrate the 

modeled loss, especially the multi-scenario based probabilistic loss. In this case, damage information of 

historical earthquakes is resorted to, to calibrate the losses estimated by different scholars and agencies. 

China has a long history of recording historical devastating natural disasters including major losses during 

earthquakes and associated secondary events, which can be dating back to 1831 B.C. (Gu, 1989). Such a 

lengthy data collection can be found only in a small number of places throughout the world and is of 

tremendous importance to seismologists, builders, engineers and economists. Based on this bunch of 

damage information, Daniell (2014) developed an empirical loss function for mainland China during his 

PhD study. The advantage of this loss function compared with others is its normalization of historical loss 

with socio-economic indicator (e.g. Human Development Index) and its calibration of damage functions 
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of previous events to relate to the present conditions. Therefore, the loss estimated based on the empir-

ical loss function developed in Daniell (2014) will be used to evaluate losses estimated purely from mod-

elled parameters. In this regard, a series of sensitivity tests will also be conducted from both deterministic 

and probabilistic view. 

1.2 Achievement of this thesis 

Hazard and loss estimation rely on models that are based on many (more or less) coarse assumptions. 

Measuring hazard and risk models against historic observations is rarely done but should be considered 

highly relevant as otherwise we simply have to believe in the models. Since the assessment of seismic loss 

requires three layers of information: hazard, exposure and vulnerability. Hazards refer to the occurrence 

probability of various natural disasters. Exposure captures the attributes of all exposed elements in terms 

of value, location and relative importance (e.g. critical facilities and infrastructure) to potential hazards. 

Vulnerability describes the susceptibility of those exposed elements to different hazards. Deep-going 

studies are conducted in each of these parts. 

With focus on the Shanxi Rift System in Northern China, a new methodology is developed – based on an 

old idea – to check modelled hazard against the historic earthquake catalogue for various return periods, 

including a comparison with other hazard map performance evaluation methods found in the literature.  

To have a thorough understanding of the susceptibility of exposed building property to potential seismic 

hazards, 87 recent papers and theses on fragility curves for major building types in mainland China are 

scrutinized, partly from field damage observations, partly from analytic evaluations. Compilation of these 

many papers provides a sound estimate of fragility curves for Chinese residential building stock available 

including their uncertainties. In addition, a noval approach is proposed to develop the relationship be-

tween Peak Ground Acceleration and macro-seismic Intensity based on the compiled fragility database. 

This part of work is submitted to Natural Hazards and Earth System Sciences.  

Another important achievement of this study is the development of a country-wide exposure model for 

mainland China on a 1x1 km grid size from census data issued by the Chinese government. Comparisons 

of the modelled results with records from yearbook and from previous studies reveal the robustness and 

reliability of the exposure developed in this study. Most importantly, this model can be flexibly combined 

with seismic hazard map to assess potential risk and can be conveniently updated with the availability of 

new data. 

Finally, modelled losses are evaluated based on comparison with the actual damage reports from post-

earthquake investigations and based on the processing of the long-lasting records of damage information 

in mainland China, from both deterministic and probabilistic view. 

1.3 Structure of this thesis 

The thesis is structured as follows: 

Chapter 1 briefly describes the motivation of this study; the contributions being achieved and the organ-

ization structure of this thesis. 
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In Chapter 2, an area-based test of seismic hazard maps is conducted to trade time with space by using a 

long historical earthquake catalogue, from which a database of peak ground acceleration (PGA) values 

was generated. Since seismic hazard map has been an element of good engineering design practice in 

modern countries for many decades. Efforts in assessing how well these maps actually perform is essential. 

Problems in current hazard map performance evaluation studies are summarized and discussed in detail. 

Different performance evaluation metrics and criteria are applied. In general, Chapter 2 presents a sys-

tematic frame for assessment of seismic hazard map performance. 

In Chapter 3, a literature review of the currently available building fragility analysis for major building 

types in China is conducted by collecting information from hundreds of papers, thesis, book, reports, con-

ference proceedings etc. From these many studies the median fragility functions (dependent on intensity 

and PGA) are derived for four damage limit states of two most widely distributed building types: masonry 

and reinforced concrete. A solid fragility database based on both intensity and PGA is thus established for 

seismic prone areas in mainland China. A comprehensive view of the problems posed by the evaluation 

of fragility for different building types is given. Necessary comparison with international projects with 

similar focus is conducted.  Based on the newly collected fragility database, a new approach is proposed 

in deriving intensity-PGA relation by using fragility as the bridge and reasonable intensity-PGA relations 

are developed. 

In Chapter 4, to better serve the risk analysis targeted at near-real-time post-earthquake mitigation and 

pre-earthquake allocation, an approach to develop the geo-coded grid-level residential building stock 

model for mainland China is introduced in detail, which is accomplished by disaggregating administrative 

level census data into 1km×1km scale using population as the proxy. Provincial-level based comparison 

of the modelled results with that from previous studies has achieved good consistency. For further eval-

uation of model performance, district level residential floor area developed in study is compared with 

records from statistical yearbook and high compatibility is observed. Finally, application of the modelled 

results in risk analysis by assuming the recurrence of 2008 Wenchuan Ms8.0 scenario earthquake further 

validates the robustness and reliability of the model. Additionally, limitations and future optimization di-

rection are also outlined. 

Chapter 5 performed the assessment of seismic loss by employing the hazard scenarios in Chapter 2, vul-

nerability curves in Chapter 3 and the residential building stock model developed in Chapter 4. The loss 

assessment was performed both for single scenario earthquake and for multi-scenario earthquakes by 

using empirical method and by analytical method. Sensitivity tests to quantify the sensitivity of estimated 

loss to parameters in hazard/vulnerability/exposure module were performed. Optimization direction for 

future loss assessment was also given. Sensitivity tests to figure out the impacts of input components on 

final estimated loss were discussed in detail as well. 

Chapter 6 gives a summary of the work in this thesis.  

Chapter 7 points out the limitations of this thesis and outlines the future optimization directions. 
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2 Area-based consistency check of 
probabilistic seismic hazard maps 
using historical earthquake records 

2.1 Background introduction 

2.1.1 Importance of seismic hazard assessment 

Estimating the hazard of natural earthquakes is crucial for setting the codes and standards for the struc-

tural design of buildings and infrastructure, and more generally, for prioritizing risk mitigation efforts 

(Sørensen et al., 2012). Hazard maps predict the effects of future earthquakes of different magnitudes 

based on the characterisation of the pattern and frequency of earthquake occurrence in specified sources 

and the use of ground-motion prediction equations (GMPEs) to quantify how shaking level varies with 

distance from the hypocentre. Seismic hazard map has been used for many decades as a tool to display 

the spatial variation of hazard levels for good engineering design practice in modern countries. It is an 

integral component in building codes and standards for the design of critical structures such as dams, 

offshore structures, and nuclear power plants (Atkinson, 2007). Construction of such a hazard map entails 

multi-disciplinary information spanning from geology, geodesy, paleo-seismology, observed and modelled 

seismicity, as well as structural dynamics (Ward, 1994, 1995). Seismic hazard of a given location is de-

scribed as the exceedance probability of various ground motion thresholds that are expected to occur in 

a given period, via a process called probabilistic seismic hazard assessment (PSHA). The most commonly 

adopted approach of PSHA was developed by Cornell (1968) and has been widely applied to engineering 

(e.g. McGuire, 1976, 1995). 

2.1.2 PSHA map and its validation 

PSHA calculations rely on several models and assumptions, such as the identification of seismic sources, 

their frequency-magnitude distributions, and the GMPEs (Tasan et al., 2014). There are two different 

types of uncertainties in the procedure: epistemic and aleatory. Epistemic uncertainties result from inad-

equate understanding and can be reduced by gathering more data or by refining the models. The logic-

tree method is used to assign different weights to multiple models that are considered possible. Aleatory 

uncertainties are due to the intrinsic variability of nature and can be modelled but not reduced. 

Hazard maps are used worldwide in making costly policy decisions for earthquake-resistant construction, 

whilst how well these maps actually perform is unknown (Brooks et al., 2016). It is not obvious how to 

validate a probabilistic statement on ground motion exceedance with a return period of 475 years. In 

addition, there is no established formal procedure or standard for checking whether the hazard model is 

a reasonable reflection of the reality or not (Mak and Schorlemmer, 2016; Musson, 2004). Meanwhile, 

the “unexpected” occurrence of ground motions in the low hazard zones indicated by the PSHA map in a 

number of past earthquakes has led to arguments and rebuttals on the performance of PSHA predictions 
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(Frankel, 2013a, 2013b, 2003; Gülkan, 2013; Hanks et al., 2012; Stein et al., 2003, 2011, 2012, 2013; Stir-

ling, 2012). In this regard, Iervolino (2013) elaborated in detail why hazard maps cannot be validated by 

individual earthquakes. 

The major obstacle in hazard map validation/confirmation/consistency-check is the incomparability be-

tween the short observation time in seismology (around 100 years at maximum for instrumental networks, 

and several centuries for historical intensity data) and the long recurrence intervals of large earthquakes. 

In addition, large earthquakes generate ground motions of long return periods which are of engineering 

interests: several hundreds of years at plate boundary locations and thousands of years or more in conti-

nental interiors. As illustrated in Beauval et al. (2008), for a meaningful comparison with a 20% uncertainty 

level, a minimum observational time window of 12000 years is required for estimating hazards corre-

sponding to a 475-year return period at a single site. Thus, validation of the probabilistic hazard results at 

a site with actual instrumental records and even with historical intensities is hardly possible. 

2.1.3 Area-based test to trade time with space 

As the validation of seismic hazard at a site is scientifically impossible because of the short observation 

time as compared to the seismic cycle, efforts have shifted from validation at a specific site to PSHA map 

consistency-checks for an entire region. It requires trading time with space by combining multiple sites in 

space to compensate for the short period of ground motion records at each single site. This area-based 

technique was first proposed by Ward (1995). The hypothesis is that for a typical PSHA map showing 

ground motions to be exceeded with 10% probability at least once in 50 years, one should expect that the 

observed ground motions exceed the calculated threshold in around 10% of the area on the PSHA map. 

Based upon this assumption, the area-based approach has been adopted in a series of follow-on studies 

by using historical intensities or instrumental ground motion records (Atkinson, 2007; Brooks et al., 2016, 

2017; Fujiwara et al., 2009; Mak and Schorlemmer, 2016; Mezcua et al., 2013; Miyazawa and Mori, 2009; 

Stirling and Gerstenberger, 2010; Stirling and Petersen, 2006; Tasan et al., 2014). 

However, when testing PSHA map performance with actual records, the typically small set of observations 

makes the conclusion (whether a PSHA model under testing should be rejected by the observation data) 

very sensitive to minor variations in the observed dataset (Albarello and D’Amico, 2008; Stirling and Pe-

tersen, 2006; Tasan et al., 2014). Even though potential uncertainties were carefully considered, the area-

based tests of the same PSHA model for the same study region can lead to quite contrasting conclusions 

even based on the same set of empirical intensity records (Stirling and Petersen, 2006) or instrumental 

ground motion records (Stirling and Gerstenberger, 2010). According to Mak et al. (2014), this could be 

due to the insufficient statistical power of the observation record length, which refers to the probability 

of a test to confidentially reject a PSHA model based on the observational dataset. The statistical power 

is calculated based on one predefined confidence interval (typically 95%) and two quantities: the ratio of 

the observed (true) to modelled annual rate of exceedance and the observation time-window length, 

counted as multiples of the return period. Mak et al. (2014) found out (in their Figure 2) that, even if the 

discrepancy between the true and the modelled hazard is huge, the use of short time window observa-

tions generally leads to a low probability to reveal such a discrepancy, thus leading to a false conclusion 

that the modelled hazard is consistent with the observation. 

In addition to the aforementioned low statistical power of small observational datasets, the influence of 

the usually unknown site effects, caused by local soil conditions and reflected in the uncertainty of ground 

motion prediction equations (GMPEs), can significantly degrade the validation/confirmation of PSHA 
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results (Scherbaum et al., 2004). Another source of misfit, as mentioned in the discussion section of Stir-

ling and Gerstenberger (2010), could be the handling of aftershock-generated ground motions in instru-

mental records, as aftershocks will almost certainly generate higher number of observed ground motions 

of lower levels in comparison with the forecasted exceedance rate (Mak and Schorlemmer, 2016). The 

PSHA methodology models both the occurrences of earthquakes and ground motions at a site as Poisson 

processes (Beauval et al., 2010), and is achieved by the removal of aftershocks from the earthquake cat-

alogue. Thus, the predicted ground motion exceedance in the PSHA map is related to mainshock activities 

only, and ground motion records related to aftershocks should also be eliminated before conducting PSHA 

performance check. In Stirling and Gerstenberger (2010), the removal of aftershock-generated instrumen-

tal records led to the non-rejection of the PSHA model. However, in many previous studies, the elimina-

tion of aftershock-generated ground motions is either insufficient or simply undone. This is first of all due 

to the difficulty to differentiate ground motion records relating to mainshocks from those of aftershocks, 

and secondly, the data volume may shrink by over 50% if aftershock-related ground motions were com-

pletely eliminated. 

2.1.4 The focus of this chapter 

As discussed in the previous subsection, efforts of PSHA map validation/confirmation/consistency-check 

using historical intensity or instrumental ground motion records are inevitably affected by the short re-

cording history, site effects and aftershocks. In this work, an area-based test of PSHA maps is conducted 

by using a long historical earthquake catalogue, from which a database of peak ground acceleration (PGA) 

values was generated. The acceleration database was calculated by combining the declustered historical 

earthquake catalogue with the same GMPE as used for constructing the PSHA map, to avoid uncertainty 

in relation to aftershocks and site effects. Thus, the actual occurrence probabilities of PSHA map predic-

tions against probabilistic estimations can be instantly compared. In essence, the areal-based compatibil-

ity test is conducted between the PSHA map established based on a specific seismic source model with a 

specific GMPE and the historical earthquake catalogue only. 

The test region chosen is the Shanxi Rift System, China, for which a 550-year and complete catalogue for 

M≥5 (“M” is the abbreviation of magnitude) earthquakes has been established (Xu and Gao, 2014). The 

PSHA models, in terms of PGA, were generated using open source software CRISIS2015 (Aguilar-Meléndez 

et al., 2017) for return periods of 101-year, 475-year, 975-year, 2475-year, corresponding to exceedance 

probabilities of 39%, 10%, 5% and 2% in 50 years, respectively. 

For the construction of the PSHA map, the catalogue of historical earthquake activities was employed to 

derive the frequency-magnitude relationship of each area and fault source. It is further assumed that the 

events occur randomly in the source areas and along the faults, whereas the geography or the sequence 

of earthquakes do not constrain the PSHA prediction. Therefore, the acceleration database generated 

using the 550-year catalogue can be viewed as relatively independent information (Ward, 1995). 

The same GMPE was used for generating the acceleration database from the historical catalogue and for 

constructing PSHA maps. This allows the full focus on checking the impacts of the catalogue-length and 

detecting the difference in the seismicity pattern on the performance of PSHA maps with different return 

periods. 
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2.2 Acceleration database construction  

The Shanxi Rift System, located in the west of the North China Plain and in the east of the Ordos Block, is 

one of the most seismically active zones in China. The 1556 Huaxian M8.3 earthquake that caused over 

800,000 fatalities, the deadliest known earthquake in human history, occurred there. Seismic hazard as-

sessment for the Shanxi Rift System and its neighbouring areas was conducted in several studies previ-

ously (Li, 2015; Li et al., 2017; Liu et al., 2013; Xie et al., 2011). In this study, PSHA maps were constructed 

using the open source software CRISIS2015 (Aguilar-Meléndez et al., 2017), based on the work seismic 

source parameters developed in Li (2015; refer to Table 2 and Table 3 in his submitted paper 4). Generally, 

fours steps are followed to construct a PSHA map. Firstly, the identification of seismic sources (both area 

sources and fault sources), which are defined mainly based on geological structure and historical seismic-

ity. Secondly, the frequency-magnitude distribution of earthquakes for each seismic source, modelled as 

the Gutenberg-Richter (G-R) relationship (Gutenberg and Richter, 1956). Thirdly, the development or se-

lection of GMPE(s), which relates the ground motion at the site of interest to earthquake magnitude, 

distance to site and local site conditions. Finally, a hazard curve for each specific site can be established 

with contributions from all seismic sources being integrated. 

In the database of Li (2015), the Shanxi Rift System was zoned into 28 area sources and 21 fault sources 

(Figure 2-1), every one of which was assumed to contain a sufficient number of seismic events for esti-

mating the recurrence parameters required by the probabilistic method. In each seismic source, only M

≥5 earthquakes were used for two reasons. Firstly, multiple studies (Huang et al., 1994a, 1994b; Ren, 

2011; Xu and Gao, 2014) suggested that the historical catalogue for M≥5 earthquakes in the last 550 

years (i.e. 1467-2017) occurred in Northern China is considered complete. Besides, earthquakes with mag-

nitudes lower than 5 generally did not cause serious damage according to empirical observation (Wang 

et al., 2016), thus those events are of marginal engineering interest. 

The maximum earthquake magnitude needs to be pre-defined in CRISIS2015 for each seismic source. For 

the fault sources, the maximum magnitude was derived from the empirical relationship between fault 

length (L) and maximum historical magnitude (Leonard, 2010; refer to Table 3 for Mw - L). Maximum 

earthquake magnitude in each area source was uniformly set as M6, with the assumption that M≥6 

earthquakes are mainly related to fault sources and earthquakes with M<6 are attributed to area sources 

as background seismicity. This assumption is based on the fact that previous disastrous earthquakes in 

the Shanxi Rift System mainly occurred within the fault segments (Figure 2-1). 
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Figure 2-1: Topographic map of the study area modified after Li (2015). The 28 irregular brown polygons are the area 
sources and the 21 red lines are the fault sources used for generating the PSHA hazard map based on the database 
of Li (2015). Blue dash parallelogram is the Shanxi Rift System, which defines the range of PSHA map to be generated. 
The five blue dots (A, B, C, D, E) are the five key cities located in the Shanxi Rift System, namely Datong, Xinzhou, 
Taiyuan, Linfen and Yuncheng. Black hollow circles are the 150 M≥5 historical earthquakes in the 550-year declus-
tered catalogue compiled by Xu et al. (2014). Among them, the red circles represent three historical M≥8 earthquakes, 
namely the Hongdong M8.0 earthquake in 1303, the Huaxian M8.3 earthquake in 1556 and the Sanhe-Pinggu M8.0 
earthquake in 1679. 

The GMPE adopted was taken from Yu et al. (2013; refer to Table 6), which is in terms of PGA and specially 

developed for the Fifth National Seismic Zonation Map of China that was issued in 2016. It should be kept 

in mind that GMPEs from other sources are also available, but Yu et al. (2013) was chosen to ensure that 

the same GMPE was used for generating the PSHA map and for constructing the acceleration database 

based on the historical catalogue. By doing this, the statistical uncertainty due to the misfits in relation to 

site amplification can be avoided. Hence, the focus could be put on the impact of catalogue-length and 

the difference in the seismicity pattern on the performance of PSHA maps with different return periods. 

The G-R relations of the 550-year historical catalogue and of the seismic source model for generating the 

PSHA maps are given in Figure 2-2, which will be discussed in detail in Section 2.5.1. 
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Figure 2-2: G-R relations of the 550-year historical catalogue (red) and of the seismic sources (both area source and 
fault source) adopted in PSHA construction (blue). 

Finally, based on the source model parameters from Li (2015) and the GMPE from Yu et al. (2013), four 

PSHA maps in terms of PGA were constructed with 39%, 10%, 5% and 2% exceedance probability in 50 

years. In other words, the PGA thresholds predicted in each map correspond to return periods of 101-

year (Figure 2-3(a)), 475-year (Figure 2-4(a)), 975-year (Figure 2-5(a)) and 2475-year (Figure 2-6(a)), re-

spectively. 

In order to check the PSHA map performance, an acceleration database was synthetized directly from 

historical records (hereafter, the historical catalogue-based acceleration database) by using the catalogue 

compiled by Xu and Gao (2014), which is considered complete for M≥5 events in the last 550 years (i.e., 

1467-2017) in Northern China. Following the assumption of Poisson distribution that earthquakes occur 

randomly in time, aftershocks in this catalogue were removed using the well-known method of Gardner 

and Knopoff (1974), thus, there are only 150 M≥5 mainshocks left in the historical catalogue. For sim-

plicity, the depths of seismic source zones in the PSHA model and historical earthquake records were set 

as zero. It is noteworthy that the PSHA maps constructed in this study are mainly employed to illustrate 

the methodology but not intended for practical engineering application. 

2.3 Methodology  

The main focus of this work is to use an area-based method to check the consistency between PSHA maps 

and the acceleration database generated by the 550-year historical catalogue. This concept of area-based 
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PSHA map consistency check was first proposed by Ward (1995) and subsequently employed by Stirling 

and Petersen (2006), Albarello and D’Amico (2008), Fujiwara et al. (2009), Stirling and Gerstenberger 

(2010), Tasan et al. (2014), Mak and Schorlemmer (2016) and Brooks et al. (2016) based on the use of 

macro-seismic intensity or instrumental records. The detailed metrics and criteria employed to vali-

date/compare/confirm PSHA performance vary from one study to another. As in previous studies, the 

basic assumption is also followed in this study that the observed likelihood of exceeding acceleration 

threshold on a PSHA map, when averaged over an area, should follow in proportion to the theoretically 

predicted likelihood. 

The test region of the Shanxi Rift System was divided into 9501 equal-sized geocells, identified by index 𝑖, 

with dimension of 0.05° ×0.05° (approximately 5km×5km). For instance, at geocell 𝑖, the natural loga-

rithmic value of PGA threshold in PSHA map with return period 𝑇𝑅1 = 101 years is expressed as 𝑧1,𝑖; and 

likewise k=2,3,4 is assigned to return periods 𝑇𝑅2 = 475-year, 𝑇𝑅3 = 975-year, 𝑇𝑅4 = 2475-year, respec-

tively. The annual rate of exceeding PGA threshold 𝑧𝑘,𝑖  in PSHA map at geocell 𝑖 by historical catalogue-

based acceleration database (using all 𝑁𝐶=150 historical M≥5 earthquakes within the catalogue length 

𝑇𝐶 = 550-year) can be formulated as: 

𝜆𝑘,𝑖(𝐼𝑀 ≥ 𝑧𝑘,𝑖) =
1

𝑇𝐶
∑ [1 − Φ(

𝑧𝑘,𝑖−𝑔(𝑀𝑛,𝑅𝑖,𝑛)

𝜎
)]

𝑁𝐶
𝑛=1  (2.1) 

where 𝑔(𝑀𝑛 , 𝑅𝑖,𝑛) is the median logarithmic acceleration generated at geocell 𝑖 by the 𝑛𝑡ℎ earthquake 

with magnitude 𝑀𝑛 and distance 𝑅𝑖,𝑛 (from the epicentre to the geocell); 𝜎 is the standard deviation of 

the GMPE developed in Yu et al. (2013) for Northern China, which is equal to 0.543 in natural logarithmic 

form; Φ is the normal distribution, indicating the probability that historical earthquake generated accel-

eration is lower than the PSHA map threshold 𝑧𝑘,𝑖. 

According to the assumption of Poisson distribution, at geocell 𝑖, the probability of exceeding PSHA pre-

dicted ground motion 𝑧𝑘,𝑖  by historical catalogue-based acceleration database within 50-year is:  

𝑃𝑘,𝑖(𝐼𝑀 ≥ 𝑧𝑘,𝑖) = 1 − exp[−𝜆𝑘,𝑖(𝐼𝑀 ≥ 𝑧𝑘,𝑖) × 50] (2.2) 

For an area-based test, all the 𝑁𝑆 geocells are taken as a whole. The average rate of exceeding PSHA map 

predicted thresholds (that varies across geocells) within 50-year is: 

�̅�𝑘 =
1

𝑁𝑆
∑ 𝜆𝑘,𝑖(𝐼𝑀 ≥ 𝑧𝑘,𝑖) × 50
𝑁𝑆
𝑖=1  (2.3) 

When taking all geocells as a whole, the corresponding average probability of exceedance, instead of av-

eraging the exceedance probability of each geocell directly (which is of no physical meaning), should be 

derived from the average rate of exceedance 𝜆̅𝑘, that is: 

�̅�𝑘 = 1 − exp(−𝜆̅𝑘) (2.4) 

Strictly speaking there is no such a quantity as average probability in probability theory. For instance, �̅�𝑘 

in Eq. (4) is not a probability but an estimate of a probability. Estimates can be averaged, whereas proba-

bilities cannot. To avoid cumbersome wording, I stick here and further on to the notion of average prob-

ability. 

Theoretically, for PSHA map with a return period of 101 years (k=1), the PGA threshold at each geocell on 

the map is expected to be exceeded with 39% probability within 50 years (39% = 1 − exp(−50/101)). 
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For PSHA maps of return periods 475-year, 975-year and 2475-year, the corresponding expected exceed-

ance probabilities are 10%, 5% and 2%, respectively. To avoid confusion, hereafter the term “theoretical 

exceedance probability” will be restricted to the expected exceedance probability of 39%, 10%, 5% and 

2% for PSHA maps with return periods of 101-year, 475-year, 975-year and 2475-year (k=2, 3, 4). Mean-

while, the term “observed exceedance probability” will be restricted to the actual probability of exceeding 

PSHA predicted ground motion thresholds by historic-record-based accelerations within 50 years. 

If the input information (seismic source characterization, G-R relation, GMPE) for generating the PSHA 

maps were ideal and the historical catalogue was long enough (relative to the return period of the PSHA 

map considered), the “theoretical exceedance probability” and “observed exceedance probability” would 

be identical at all return periods. However, in real cases the probabilistic hazard models are never perfect 

due to the existence of aleatory and epistemic uncertainties, and the length of the historical catalogue is 

always limited. Therefore, the observed exceedance probability is expected to be reasonably close to the 

theoretical exceedance probability for short return periods, namely, 39% (101-year) and 10% (475-year), 

as these return periods are within the range of the catalogue length of 550 years. For long return periods 

like 975-year and 2475-year, the PSHA results are expected to be over-predicted, i.e. the average observed 

exceedance probability should likely be lower than the theoretical exceedance probability. Such effect is 

resulted from the fact that the G-R relation of the PSHA source model is usually derived by extrapolating 

to magnitude range beyond the empirically observed magnitude range of the historical records. 

2.4 Results  

The PSHA maps in terms of PGA with return periods of 101-year, 475-year, 975-year and 2475-year are 

plotted in panel (a) of Figure 2-3, Figure 2-4, Figure 2-5 and Figure 2-6, respectively. These maps show 

similar color patterns but with different thresholds. In each panel, the maximum ground motion threshold 

is annotated by its value, namely, 132, 460, 721 and 1109 (unit: cm/s2) in the four PSHA maps. The PGA 

values for the five key cities in Shanxi Rift System as well as the maximum and minimum PGA thresholds 

in each PSHA map are summarized in Table 2-1 and plotted in Figure 2-7. 

Table 2-1: The PSHA-predicted PGA values (plotted in Figure 2-7) at the five key cities (indicated by A, B, C, D, E in in 
Fig. 1)  as well as the maximum and minimum PGA values with return period of 101-year, 475-year, 975-year and 
2475-year. 

City A B C D E 

 
Maximum  

PGA (cm/s2) 

 
Minimum  

PGA (cm/s2) 

Longitude 113.45 112.65 112.5 111.5 111 

Latitude 40.06 38.44 37.91 36.11 35.01 

Return Period (year) PGA (cm/s2) 

101 58.3 81.6 60.7 132 112 132 10 

475 164 271 186 380 343 460 25 

975 238 392 275 540 512 721 37 

2475 359 578 421 793 794 1109 58 



Area-based consistency check of probabilistic seismic hazard maps using historical earthquake records 

13 

  

Figure 2-3: (a) PSHA map constructed by CRISIS2015 in terms of PGA with a return period of 101 years (39% in 50 
years). The maximum value (132 cm/s2) is annotated. (b) Distribution of the observed probability of exceeding PSHA-
predicted PGA value at each geocell by the historical catalogue-based acceleration database. The black contour line 
indicates the benchmark exceedance probability of 39%. The histogram in the upper left corner summarizes the num-
ber of geocells within each probability range (there are 9501 geocells in total with dimensions of 5km×5km). The 
black line above the histogram is the corresponding normal distribution curve of these observed exceedance proba-
bility. Grey solid circles in both panels are the 150 M≥5 historical earthquakes in the 550-year catalogue. 

  

Figure 2-4: (a) PSHA map constructed by CRISIS2015 in terms of PGA with a return period of 475 years (10% in 50 
years). The maximum value (460 cm/s2) is annotated. (b) Distribution of the observed probability of exceeding PSHA-
predicted PGA value at each geocell by the historical catalogue-based acceleration database. The black contour line 
indicates the benchmark exceedance probability of 10%. The histogram in the upper left corner summarizes the num-
ber of geocells within each probability range (there are 9501 geocells in total with dimensions of 5km×5km). The 
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black line above the histogram is the corresponding normal distribution curve of these observed exceedance proba-
bility. Grey solid circles in both panels are the 150 M≥5 historical earthquakes in the 550-year catalogue. 

The distributions of the observed probability of exceeding PSHA map predicted ground motions within 50 

years by the historical catalogue-based acceleration database (calculated by Eq. (2.2)) are shown in panel 

(b) of Figure 2-3 – Figure 2-6 for the four return periods. It is not surprising to see from these maps that 

the zones of higher observed exceedance probabilities generally cluster around the locations of historical 

earthquakes, as the accelerations used to compare with the PSHA map predictions are directly generated 

from those historical earthquakes. The contour lines in panel (b) of Figure 2-3 – Figure 2-6 represent the 

theoretical probability of exceeding the PGA threshold in the PSHA map within 50 years, namely, 39%, 

10%, 5% and 2%. Ideally, if the PSHA results match perfectly with the predictions from historical records, 

it would be expected that all the geocells had the same colour as that of the theoretical exceedance prob-

ability of 39%, 10%, 5% and 2% in panel (b) of Figure 2-3 – Figure 2-6, respectively. However, it is not 

possible in reality. The distribution of observed exceedance probability at each geocell is statistically sum-

marized in the histogram in each panel (b) of Figure 2-3 – Figure 2-6. The number above each bar in the 

histogram indicates the number of geocells within corresponding exceedance probability range. The nor-

mal distribution curve based on the observed exceedance probabilities of all geocells is also plotted on 

each histogram, with the average observed exceedance probability as the expectation value and the 

standard deviation as the sigma of the normal distribution. 

  

Figure 2-5: (a) PSHA map constructed by CRISIS2015 in terms of PGA with a return period of 975 years (5% in 50 
years). The maximum value (721 cm/s2) is annotated. (b) Distribution of the observed probability of exceeding PSHA-
predicted PGA value at each geocell by the historical catalogue-based acceleration database. The black contour line 
indicates the benchmark exceedance probability of 5%. The histogram in the upper left corner summarizes the num-
ber of geocells within each probability range (9472 out of 9501 geocells are included in total for better visualization). 
The black line above the histogram is the corresponding normal distribution curve of these observed exceedance 
probability. Grey solid circles in both panels are the 150 M≥5 historical earthquakes in the 550-year catalogue. 
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Figure 2-6: (a) PSHA map constructed by CRISIS2015 in terms of PGA with a return period of 2475 years (2% in 50 
years). The maximum value (1109 cm/s2) is annotated. (b) Distribution of the observed probability of exceeding PSHA-
predicted PGA value at each geocell by the historical catalogue-based acceleration database. The black contour line 
indicates the benchmark exceedance probability of 2%. The histogram in the upper left corner summarizes the num-
ber of geocells within each probability range (9447 out of 9501 geocells are included in total for better visualization). 
The black line above the histogram is the corresponding normal distribution curve of these observed exceedance 
probability. Grey solid circles in both panels are the 150 M≥5 historical earthquakes in the 550-year catalogue. 

It is clear from the histogram in panel (b) of Figure 2-3 – Figure 2-6 that, for return period 101-year as 

shown in Figure 2-3(b), the majority of the geocells have an observed exceedance probability lower than 

the theoretical exceedance probability of 39%, which indicates the relative over-prediction of the 101-

year PSHA map compared with the predictions based on the historical catalogue-based acceleration da-

tabase. For return period of 475-year as shown in Figure 2-4(b), the observed exceedance probabilities of 

geocells are more evenly centred around the theoretical exceedance probability of 10% with a slight left-

ward clustering, as revealed by the expectation value in the normal distribution function. For return pe-

riod of 975-year as shown in Figure 2-5(b), the average exceedance probability is highly identical to the 

theoretical exceedance probability of 0.05, whilst the majority of the geocells has an exceedance proba-

bility that is obviously lower than the theoretical probability of 0.02 for return period of 2475-year as 

shown in Figure 2-6(b). However, the expectation value of the normal distribution curve in Figure 2-6(b) 

is slightly higher than 0.02. This is due to the higher weight of geocells with higher exceedance probability 

when averaging over the whole study region. The average observed exceedance rate and probability to-

gether with the theoretical exceedance rate and probability for each return period are summarized in 

Table 2-2. 

Table 2-2: Area-based PSHA map performance evaluation criteria including average exceedance probability, the 
metrics M0, M1 proposed in Stein et al. (2015),  , the relative metric M2 proposed in this study, and average exceed-
ance rate for statistical power test in Mak et al. (2014). 

Return Period (year) Average Exceedance Rate (year-1) Average Exceedance Probability M0 M1 M2 

 Theoretical Observed Theoretical Observed    

101 0.495 0.290 0.39 0.252 0.038 0.027 7% 
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475 0.105 0.083 0.10 0.080 0.020 0.003 3% 

975 0.051 0.048 0.05 0.047 0.003 0.002 4% 

2475 0.020 0.024 0.02 0.024 0.004 0.001 5% 

Note: M0, M1, M2 are three metrics used for assessing PSHA map performance. See text for further ex-

planation. 

 

Figure 2-7: PGA values predicted by PSHA for four return periods (101-year, 475-year, 975-year and 2475-year) at the 
five key cities in the Shanxi Rift System as well as the maximum and minimum PGA predictions in each PSHA map. 

2.5 Discussion  

2.5.1 Source of discrepancy 

As summarized in the area-based result in Section 2.4, compared with historical catalogue-based acceler-

ation database, the PSHA map of 101-year return period is over-predicted and that of 475-year return 

period is slightly over-predicted. Meanwhile, the PSHA map of 975-year return period is consistent with 

the acceleration database, whereas the map is slightly under-predicted for 2475-year return period. 

One possible explanation for such results is the difference in the earthquake distribution pattern between 

the seismic source model for PSHA and that implied by the historical records. It is noteworthy that for 

generating a PSHA map, the dataset of historical earthquake activities was only employed to obtain the 

frequency-magnitude relation of each area and fault source, whilst the geography or sequence of the 

earthquakes did not have a role in the PSHA (Ward, 1995). Previous studies on the comparison between 

probabilistic hazard estimates computed by the source-zone method and by the smoothed seismicity 

method (Beauval et al., 2006; Goda et al., 2013) indicated that the source-zone method tends to predict 
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higher probabilities of exceedance at low ground motion thresholds. This may help explain the over-pre-

diction of PSHA map in this study for return periods of 101-year and 475-year. Furthermore, in the typical 

source-zone method, the effect of large earthquakes, that are capable of generating high levels of ground 

motions, is smoothed or divided into the whole fault source. This may lead to the fact that PSHA map 

tends to be under-predicted as compared with the actual accelerations generated by large earthquakes 

at higher return period (e.g. 2475-year). 

In order to verify the explanation above, the frequency-magnitude (G-R) relations are derived and shown 

in Figure 2-2, both for the 550-year long historical catalogue and for the seismic source model in generat-

ing the PSHA maps.  The source model includes fault sources and area sources; the G-R relation for M≥6 

earthquakes is summed-up from all seismic fault sources and for 5≤M<6 earthquakes from all area 

sources. It is clearly seen from Figure 2-2 that, for relatively low magnitude events (M<6), the PSHA source 

model exhibits higher occurrence frequency, whilst historical catalogue exhibits higher occurrence fre-

quency for larger magnitude events (M>7.5). These discrepancies in the frequency-magnitude relations 

at the two ends have then led to the over-prediction of PSHA map at relatively short return period (101-

year and 475-year, as shown in Figure 2-3(b) and Figure 2-4(b)), and the under-prediction at longer return 

period (2475-year as shown in Figure 2-6(b)). One may argue that the G-R relation in PSHA is typically 

extrapolated to the magnitude range beyond the empirical magnitude range of the historical earthquake 

records, which would lead to over-prediction of the PSHA map at long return periods. In this study, the 

fact is that the historical catalogue has higher occurrence frequency for M>7.5 earthquakes than in the 

seismic source model of PSHA, and the PSHA map of return period 2475 on average is under-predicted 

according to the area-based test (average exceedance probability for 2475-year is lower than its corre-

sponding theoretical probability of 2%, as listed in Table 2-2). 

Besides, it is noteworthy that the b-value of the G-R relation based on the historical catalogue is obviously 

too low (b=0.65). Although this is consistent with the findings from Ren et al. (2011), in which low b-values 

were also found in other regions of China, it remains an option that the historical catalogue at M≥5 level 

is not as complete as expected for the test region, despite the claims made in Xu and Gao (2014), Huang 

et al. (1994a, 1994b) and Ren (2011). 

2.5.2 Varying criteria in assessment of PSHA map performance 

As summarized in Table 2-2, according to the area-based test of using average probability as the indicator, 

PSHA map is over-predicted compared with the acceleration database based on the historical catalogue 

for return periods of 101-year and 475-year; but it is slightly under-predicted for return period of 2475-

year and consistent at 975-year return period. Possible sources of discrepancies were discussed in Section 

2.5.1. The next question is: Would the assessment conclusion of the over-/under-prediction of PSHA map 

change when other judgement criteria are used? Since in previous studies, various criteria/metrics have 

been proposed and applied in evaluating PSHA map performance (e.g. Albarello and D’Amico, 2008; Fuji-

wara et al., 2009; Mak and Schorlemmer, 2016; Tasan et al., 2014; Ward, 1995). 

These methods can be briefly categorized into three types: the area-based metric type (Brooks et al., 2016, 

2017; Stein et al., 2015), the fit of the 95% confidence interval or two-tail test type (e.g. Mak and Schor-

lemmer, 2016; Stirling and Gerstenberger, 2010; Stirling and Petersen, 2006; Tasan et al., 2014) and the 

likelihood method type, which is to pick up the most probable PSHA model based on actual observation 

(e.g. Albarello et al., 2015; Albarello and D’Amico, 2008). Beyond these methods, Mak et al. (2014) also 
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proposed the concept of statistical power to reveal how confident a PSHA model can be rejected by ob-

servational data.  

Therefore, in the following part,  metrics proposed by Stein et al. (2015) with certain modification are 

selected and will be firstly applied to illustrate an alternative way in assessing the performance of the 

PSHA maps. Then, the statistical power test proposed by Mak et al. (2014) will be performed to further 

figure out how “powerful” that the PSHA map can be concluded as inconsistent with the acceleration 

database generated from the historical catalogue. 

2.5.2.1 Metrics in Stein et al. (2015) 

The metric 𝑀0 = |𝑓 − 𝑝| proposed in Stein et al. (2015) was firstly applied, where 𝑝 refers to the theo-

retical probability of exceeding PSHA map predicted PGA thresholds within 50 years, namely 39%, 10%, 

5% and 2% for return periods of 101-year, 475-year, 975-year and 2475-year, respectively; 𝑓 is the aver-

age observed probability of exceeding PSHA map predicted accelerations by historical catalogue-based 

accelerations in 50 years, as calculated from Eq. (2.1)-(2.4) and listed in Table 2-2. Actually, the metric 𝑀0 

is similar to the area-based criteria in Section 2.5.1 by comparing theoretical exceedance probability with 

average observed exceedance probability for each return period. The derived𝑀0 values are listed in Ta-

ble 2-2 for 5km×5km dimension geocells. As can be seen that, if 𝑀0 is used as the metric to assess the 

PSHA map performance, the discrepancy between PSHA map and historical catalogue-based acceleration 

database basically decreases with the increase in return period. 

However, as pointed out in Stein et al. (2015) and Brooks et al. (2016), the limitation of using the metric 

𝑀0 lies in that a map with exceedances at exactly as many sites as predicted (𝑀0 = 0) could still signifi-

cantly over-predict or under-predict the level of shaking, since no spatial variation among geocells are 

considered. Therefore, they also proposed another metric 𝑀1, which is defined as the average square 

misfit between the maximum observed and predicted shaking at each site in the study region. From my 

point of view, the accelerations predicted in PSHA map are only the thresholds with certain exceedance 

probability, but not the maximum acceleration for that specific site, as emphasized in Beauval et al. (2010) 

in a comment on the work of Miyazawa and Mori (2009). Hence, instead of directly comparing PSHA pre-

dicted acceleration and the maximum observed acceleration at each of the geocells, I have modified the 

calculation of 𝑀1 by measuring the average of square misfit between the observed exceedance probabil-

ity at each geocell with the corresponding theoretical probability for each return period, namely 𝑀1 =

∑
(𝑃𝑘,𝑖−𝑝)

2

𝑁𝑆

𝑁𝑆
𝑖=1 , where 𝑃𝑘,𝑖  is the observed exceedance probability at geocell 𝑖 as defined in Eq. (2.2) and 𝑝 

has the same meaning as that in metric 𝑀0. The 𝑀1 values are also listed in Table 2-2 for 5km×5km 

dimension geocells. 

Based on 𝑀1, the misfit between PSHA map predictions and historical catalogue-based accelerations also 

decreases with the increase in return period. The discrepancy for the return period of 101-year remains 

to be the largest. 

Both 𝑀1 and 𝑀0 metrics indicate that the absolute discrepancy for the return period of 101-year seems 

to be much higher than that for the other three return periods. However, the theoretical probability of 

exceeding PSHA acceleration thresholds within 50 years actually decreases rapidly with the increase in 

return period, e.g. from 39% of 101-year to 2% of 2475-year. Thus, a more reasonable quantification met-

ric for calibrating the discrepancy between the PSHA map and the historical catalogue-based accelerations 

should also take such rapid decrease of theoretical exceedance probability into consideration. Therefore, 

a third metric 𝑀2 = 𝑀1/𝑝 is proposed, which measures the spatial variation of exceedance probability 
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misfit relative to the corresponding theoretical probability. The values of 𝑀2 are also listed in Table 2-2 

for 5km×5km dimension geocells. From the changes of 𝑀2, it is clear that the discrepancy between PSHA 

map and historical records generated acceleration databases, although remains the largest for 101-year, 

but not that exaggerated compared with other three return periods. 

So far, the discrepancies measured by the metrics above are all in terms of exceedance probability, which 

might be less straightforward for cross-comparison compared with using ground motion as the indicator. 

Therefore, to better illustrate how far the PSHA predictions deviate from the historical catalogue-based 

accelerations, the difference in PGA between PSHA map and historical catalogue-based acceleration da-

tabases are roughly derived. This is achieved by multiplying the maximum PGA thresholds (as listed in 

Table 2-1 and shown in Figure 2-7) with the values of M2 for each return period. Finally,  the difference in 

PGA is approximated to be 9, 13.5, 18.6 and 55 (cm/s2) for return periods of 101-year, 475-year, 975-year 

and 2475-year, respectively. This difference in terms of the ground motion level can thus provide more 

direct impression on how far the PSHA predictions deviate from the historical catalogue-based accelera-

tions. 

2.5.2.2 Statistical power test in Mak et al. (2014) 

Besides the metric method used in Stein et al. (2015) and Brooks et al. (2016, 2017), previous studies 

(Mezcua et al., 2013; Stirling and Gerstenberger, 2010; Stirling and Petersen, 2006; Tasan et al., 2014) also 

referred to the confidence interval or one/two tail test to assess the consistency between PSHA map and 

observation data. This stems from the widely applied assumption that the exceedance rate/frequency of 

PSHA map predictions follows a Poisson process. Therefore, a Poisson probability density distribution can 

be established, with the PSHA map modelled hazard (in terms of exceedance rate) as the expectation 

value. In addition, a confidence interval (e.g. 95%) with an upper-bound exceedance rate and lower-bound 

exceedance rate can also be determined. In those confidence interval tests, the judgement is made as 

follows: If the observed rate of ground motion exceedances falls within the boundary of the predefined 

confidence interval, the model is regarded as consistent with the observation; otherwise, the model is 

rejected by the observation. 

However, as argued in Mak et al. (2014), even if the actual hazard is different from that being modelled, 

there is still a probability that the observed rate of exceedance does not exceed the boundaries of the 

confidence interval, thus failing to reveal the discrepancy and generating the false comfort that the PSHA 

map prediction is consistent with observation. Therefore, they proposed the concept of statistical power 

test, which is defined as the probability that the PSHA model can be confidently rejected by observation. 

If the statistical power is over 90%, then the discrepancy between modelled hazard and observed hazard 

is obviously high and the PSHA model is considered to be rejected by observation data. 

To conduct the statistical power test, three parameters are needed: the ratio of the observed to the mod-

eled annual rate of exceedance, the historical earthquake records length (accumulated over all observed 

sites) and the range of confidence interval (here 95% is used). The average observed exceedance rates for 

each return period (as defined in Eq. (2.3)) are given in Table 2-2 for 5km×5km dimension geocells. Cor-

respondingly, the modelled/theoretical exceedance rates for each return period are also given in Table 

2-2, which is simply the ratio between observation time window (i.e. 50-year in this study) and each return 

period, namely 0.5, 0.11, 0.05 and 0.02. It is clear that the ratio between the observed and modelled 

annual rate of exceedance is unaffected by the length of observation time. 
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Based on sensitivity tests, the average observed exceedance rate for geocells with coarser resolution (e.g. 

25km×25km and 50km×50km) remains the same as that for 5km×5km dimension geocells for each re-

turn period. To better illustrate the statistical power test, four coarser PSHA maps with 25km×25km di-

mension were generated in Shanxi Rift System. Then the statistical test was applied to the 397 geocells 

with dimension of 25km×25km. Since the historical catalog length is 550-year, the cumulative length of 

historical records is thus calculated by multiplying 550  with 397 (number of geocells). More calculation 

details can refer to Mak et al. (2014). As shown in Figure 2-8, the area of the shaded region indicates the 

probability that the observed exceedance rate falls outside of the confidence interval of the theoreti-

cal/modelled exceedance rate. The statistical power is defined as the percentage of the shaded area in 

the Poisson distribution of the observed exceedance rate, which is 100%, 99%, 12% and 53% for return 

periods of 101-year, 475-year, 975-year and 2475-year, respectively. The higher the statistical power, the 

higher confidence that the PSHA model can be rejected by the observation. For return periods of 101-

year and 475-year, the PSHA maps are rejected by the observation data, given that the statistical power 

is approaching 100%. For 975-year, the discrepancy between the PSHA map and the observation is quite 

low; while for 2475-year, it is difficult to draw a conclusion, since the probability to reveal the discrepancy 

between PSHA map and observation is only of moderate level. 

  

  

Figure 2-8: Statistical power test based on average exceedance rate for geocells with dimensions of 25km×25km at 
return periods of (a) 101-year (b) 475-year (c) 975-year (d) 2475-year. Following the assumption of Poisson distribu-
tion, the statistical power refers to the probability that the observed exceedance rate (blue curve) falls outside of the 
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95% confidence interval (black dash-dotted line) of the theoretical exceedance rate (black curve). Mathematically it 
equals to the area of the shaded region. 

However, it should be noticed that the shape of the Poisson distribution in the statistical power test is 

very sensitive to the cumulative length of records, which is related to the number of geocells used. When 

the dimension of the observation geocells is further enlarged, e.g. to 50km×50km, and only 105 geocells 

are available in the research area, then the cumulative length of historical records is 550×105 years. Fol-

lowing the same calculation process as that for 25km×25km dimension geocells, the refreshed statistical 

power for return periods of 101-year, 475-year, 975-year and 2475-year for 50km×50km dimension geo-

cells is 100%, 59%, 8% and 18% (as shown in Figure 2-9). In this case, only PSHA map for return period of 

101-year can be rejected. Consistency between PSHA map for return period of 475-year and the observa-

tion turns to be difficult to conclude. PSHA maps of 975-year and 2475-year gain improved probabil-

ity/confidence to conclude that PSHA map is consistent with observation. 

  

  

Figure 2-9: Statistical power test based on average exceedance rate for geocells with dimensions of 50km×50km at 
return periods of (a) 101-year (b) 475-year (c) 975-year (d) 2475-year. Following the assumption of Poisson distribu-
tion, the statistical power refers to the probability that the observed exceedance rate (blue curve) falls outside of the 
95% confidence interval (black dash-dotted line) of the theoretical exceedance rate (black curve). Mathematically it 
equals to the area of the shaded region. 
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Hence, based on the statistical power test for geocells with dimension of 25km×25km and 50km×50km, 

the shared conclusion is that PSHA map of 101-year is rejected by historical observation; while PSHA map 

of 975-year is highly consistent with historical observation. For return period 475-year and 2475-year, the 

consistency between PSHA and historical catalogue-based acceleration database hinges on the dimen-

sion/number of the geocells used in PSHA map. Correspondingly in real cases, it depends on the number 

of observation sites. 

2.6 Conclusion  

To assess PSHA map performance, an area-based test of PSHA maps was conducted by using a long his-

torical earthquake catalogue, from which a database of peak ground acceleration (PGA) values were gen-

erated. The historical catalogue was declustered and the same GMPE was used in construction of the 

PSHA maps and in generating the historical catalogue-based acceleration database, to avoid uncertainty 

in relation to aftershocks and site effects and to examine the role of the seismic source model only. Four 

PSHA maps with 39%, 10%, 5%, 2% exceedance probability within 50-year in terms of peak ground accel-

eration (PGA) were constructed using CRISIS2015. The PGA thresholds predicted in each map thus corre-

spond to return period of 101, 475, 975 and 2475-year, respectively. 

The PSHA map performance was firstly assessed by comparing the theoretical exceedance probability 

with observed probabilities of exceeding the PSHA predictions by the historical catalogue-based acceler-

ations within 50-year. Histogram of observed exceedance probability for each return period was shown. 

Representative performance assessment metrics proposed in previous studies, e.g. Stein et al. (2015) 

were applied with necessary modification. The statistical power test of Mak et al. (2014) were also con-

ducted for geocells with varying dimensions. Generally, PSHA map of return period 101-year has the larg-

est discrepancy with historical catalogue-based accelerations and 975-year the smallest. Possible sources 

of the discrepancy from seismicity distribution pattern were discussed in detail. A main cause might be 

related to the difference in frequency-magnitude relation of the 550-year historical catalogue and of the 

seismic source model used in PSHA map construction. The differences in exceedance probabilities were 

also approximately converted to differences in PGA values for straightforward cross-comparison. 

This work sheds light on the usage of judgement criteria in area-based test to assess PSHA map perfor-

mance, since the performance of PSHA map hinges on the metric used and may change with the dimen-

sion of geocells or number of observation sites. Furthermore, the comparison of PSHA map with historical 

catalogue-based acceleration database in this study has totally avoided contaminations from aftershocks 

and from site effects, caused by local soil conditions and reflected in the uncertainty of GMPE. These 

effects are difficult to handle when testing PSHA maps with actual instrumental records or empirical in-

tensities, but should be dealt with special caution, since they may degrade the conclusion on seismic haz-

ard map’s performance, as revealed by the work of Stirling and Petersen (2006) and Stirling and Gersten-

berger (2010). 

2.7 Data/Code availability 
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The open source software CRISIS2015 (Aguilar-Meléndez et al., 2017) in calculating PSHA map is available 

from https://sites.google.com/site/codecrisis2015/home (last accessed July 2019). The seismic source pa-

rameters from Li (2015) was provided by Dr. Bin Li through personal request. The historical earthquake 

catalogue from Xu and Gao (2014) was provided by Dr. Weijin Xu through personal request. Some figures 

were plotted using Generic Mapping Tools (Wessel and Smith, 1998) from http://gmt.soest.ha-

waii.edu/home (last accessed July 2019).

https://sites.google.com/site/codecrisis2015/home
http://gmt.soest.hawaii.edu/home
http://gmt.soest.hawaii.edu/home


Review of fragility analyses for major building types in China with new implications for intensity-PGA 
relation development 

24 

3 Review of fragility analyses for major 
building types in China with new 
implications for intensity-PGA relation 
development 

3.1 Background introduction 

Field surveys after major disastrous earthquakes have shown that poor performance of buildings in earth-

quake affected areas is the leading cause of human fatalities and economic losses (Yuan, 2008). The eval-

uation of seismic fragility for existing building stocks has become a crucial issue due to the frequent oc-

currence of earthquakes in the last decades (Rota et al., 2010). Building fragility curves, defined as 

expected probability of exceeding specific building damage state under given earthquake ground shaking, 

have been developed for different typologies of buildings. They are required for the estimation of fatali-

ties and monetary losses due to building structural damage. The development of fragility curves can be 

divided mainly into two approaches: empirical methods and analytical methods. Empirical methods are 

based on post-earthquake surveys for groups of buildings and considered to be the most reliable source, 

because they are directly correlated to the actual seismic behavior of buildings (Maio and Tsionis, 2015). 

Numerous post-earthquake investigations have been conducted for groups of buildings to derive the em-

pirical damage matrices. A damage matrix is a table of predefined damage states and percentages of spe-

cific building types at which each damage state is exceeded due to particular macro-seismic intensity lev-

els. However, as pointed out by Billah and Alam (2015), empirical investigations are usually limited to 

particular sites or seismo-tectonic/geotechnical conditions with abundant seismic hazard and lack gener-

ality. Moreover, they usually refer to the macro-seismic intensity, which is not an instrumental measure 

but is based on a subjective evaluation (Maio and Tsionis, 2015). By contrast, analytical methods are based 

on static and dynamic nonlinear analyses of modelled buildings, which can produce slightly more detailed 

and relatively more transparent assessment algorithms with direct physical meaning (Calvi et al., 2006). 

Therefore, analytical methods are conceived to be more reliable than empirical results (Hariri-Ardebili and 

Saouma, 2016). Nevertheless, variations in the different practices of analytical fragility studies, such as 

selection of seismic demand inputs, use of analysis techniques, characterization of modelling structures, 

definition of damage states thresholds as well as usage of damage indicators by different authorities, can 

create discrepancies among various analytical results even for exactly the same building typology. In ad-

dition, analytical fragility studies for groups of buildings are computationally demanding and often tech-

nically difficult to perform. 

Despite the limitations of each fragility analysis method, both empirical and analytical fragility curves are 

essential in conducting seismic risk assessment. However, the application of the existing fragility curves 

has been considered as a challenging task, since different approaches and methodologies are spread 

across scientific journals, conference proceedings, technical reports and software manuals, hindering the 

creation of an integrated framework that could allow the visualization, acquisition and comparison be-

tween all the existing curves (Maio and Tsionis, 2015). In this regard, the first purpose of this study is to 
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describe and examine available fragility curves, specially developed for Chinese buildings from 87 papers 

and theses using empirical and analytical methods. The median fragility functions from these previous 

research findings for the main building types in seismic prone areas in mainland China are then outlined 

and compared with international projects with similar focus.  

Furthermore, based on the empirical and analytical fragility database collected, the second purpose of 

this work is to propose a new approach in deriving intensity-PGA relation by using fragility as the bridge. 

The main concern behind this attempt is that intensity-PGA relation is quite essential in seismic hazard 

assessment, while traditional practices in deriving such a relation are generally region-dependent and 

have large scatter (Caprio et al., 2015). Traditionally, intensity-PGA relations are developed using instru-

mental PGA records and empirical intensity observations within the same geographical range. In this chap-

ter, I try to establish intensity-PGA relation using fragility as conversion media. Formally, this is achieved 

by the elimination of the fragility values from the fragility–intensity and from the fragility–PGA relation. 

Theoretically, reasonable results should emerge if the building types used in analytic fragility analyses and 

those investigated in the empirical field surveys are close enough.  

This study is organized as follows. In Section 3.1, the necessity of fragility database construction and the 

pros and cons of main fragility analysis methods are briefly introduced. In Section 3.2, a literature review 

of fragility studies in mainland China and related concepts are provided. Section 3.3 presents the discrete 

fragility database extracted from reviewed papers and theses. In Section 3.4, median empirical and ana-

lytical fragility curves are derived for major building types in seismic prone areas in mainland China. Com-

parisons with international projects with similar focuses are also conducted in this section. In Section 3.5, 

it is introduced in detail the new approach in developing intensity-PGA relation by using fragility as bridge, 

which is quite comparable with relation developed by traditional practice. In Appendix and Code/Data 

availability, accesses to supplementary documents mentioned in the context are provided. 

3.2 Review of building fragility studies in mainland China 

3.2.1 Empirical method 

As documented in Calvi et al. (2006), the first application of empirical method to investigate building fra-

gility at large geographical scale was carried out in the early 1970s. In mainland China, since the 1975 

Haicheng M7.5 earthquake, around 112 post-earthquake surveys have been conducted for M≥4.7 earth-

quakes (Ding, 2016). Currently, the main processes in post-earthquake field investigation and macro-seis-

mic intensity determination in mainland China basically follow the workflow proposed by Hu (1988) based 

on the field work of Tonghai earthquake in the 1970s (Wang et al., 2007). In this workflow, the key concept 

of “average damage index” is introduced. That means, in each post-earthquake field survey unit (vil-

lage/town/street), the number of different types of buildings in each damage state are firstly investigated; 

median damage index of five damage states D5, D4, D3, D2, D1 as defined in GB17742-2008 are used in 

later on calculation, namely 0.93, 0.70, 0.43, 0.20, 0.05 for these five damage states respectively. For each 

building type in each field survey unit, the corresponding average damage index is derived by summarizing 

the products of percentage of building in each damage state and its damage index. Generally, there should 

be one or two predefined reference building types, thus the average damage index of other surveyed 

building types can be further scaled to the damage index of the reference building type. In the end, the 

overall average damage index for each survey unit is calculated by summarizing the products of each 
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building type’s scaled damage index and that building type’s weight in the survey unit. Once the average 

damage index in the survey unit is determined, the corresponding macro-seismic intensity can be directly 

derived from the predefined empirical relation between macro-seismic intensity and damage index of 

reference building type (GB17742-2008). In mainland China, currently three reference building types are 

used to determine macro-seismic intensity: (1) Type A: wood-structure, soil/stone/brick-made old build-

ing; (2) Type B: single- or multi-storey brick masonry without seismic resistance; (3) Type C:  single- or 

multi-storey brick masonry sustaining shaking of intensity degree VII. A detailed building structural dam-

age state description for judgement of macro-seismic intensity scale in China is given in Appendix Table A 

(a non-official translation of the latest version of China seismic intensity scale: GB17742-2008). 

Given the importance of building fragility in seismic risk assessment and loss mitigation, in total I reviewed 

87 existing fragility analyses from papers and theses for the main building typologies in seismic prone 

areas in mainland China. It’s worth to note that, in Ding (2016), a very detailed collection of empirical 

fragility database was provided for 112 M≥4.7 events since the 1975 M7.5 Haicheng earthquake based on 

available post-earthquake surveys. However, due to the lack of building seismic resistance capability in-

formation in this database, it is not suitable for the later-on fragility analysis. Thus, I did not use this data-

base and instead collected my own empirical fragility database from individual publications and M.S./Ph.D 

theses. In mainland China, the main building types of concern are masonry and reinforced concrete (RC) 

buildings (Sun and Chen, 2009), given the wide distribution of masonry in rural and township areas and 

the increasing popularity of RC buildings in urban areas. Historical earthquakes that caused serious build-

ing damage mainly occurred in seismic prone provinces including Sichuan (Chen et al., 2017; Gao et al., 

2010; He et al., 2002; Li et al., 2015; Li et al., 2013; Sun et al., 2013; Sun et al., 2014; Sun and Zhang, 2012; 

Ye et al., 2017; Yuan, 2008; Zhang et al., 2016), Yunnan (He et al., 2016; Ming et al., 2017; Piao, 2013; Shi 

et al., 2007; Wang et al., 2005; Yang et al., 2017; Zhou et al., 2007; Zhou et al., 2011), Xinjiang (Chang et 

al., 2012; Ge et al., 2014; Li et al., 2013; Meng et al., 2014; Song et al., 2001; Wen et al., 2017), Qinghai 

(Piao, 2013; Qiu and Gao, 2015), Fujian (Bie et al., 2010; Zhang et al., 2011; Zhou and Wang, 2015) and 

other seismic active zones (A, 2013; Chen, 2008; Chen et al., 1999; Cui and Zhai, 2010; Gan, 2009; Guo et 

al., 2011; Han et al., 2017; He and Kang, 1999; He and Fu, 2009; He et al., 2017; Hu et al., 2007; Li, 2014; 

Liu, 1986; Lv et al., 2017; Ma and Chang, 1999; Meng et al., 2012; Meng et al., 2013; Shi et al., 2013; Sun 

and Chen, 2009; Sun, 2016; Wang et al., 2011; Wang, 2007; Wei et al., 2008; Wu, 2015; Xia, 2009; Yang, 

2014; Yin et al., 1990; Yin, 1996; Zhang and Sun, 2010; Zhang et al., 2017; Zhang et al., 2014; Zhou et al., 

2013). The main outputs of these post-earthquake surveys are empirical damage probability matrices 

(DPMs), which can be used to derive the discrete conditional probability of exceeding predefined damage 

limit states under different macro-seismic intensity degrees. That is, for the DPMs, macro-seismic inten-

sity degree is usually used as the ground motion indicator. In mainland China, detailed definition of each 

intensity degree is provided in Chinese Official Seismic Intensity Scale GB17742-2008 (see the non-official 

English translation in Appendix Table A). 

3.2.2 Analytical method 

As summarized in Introduction section, the main drawback of empirical method lies in the subjectivity on 

allocating each building to a damage state and the lack of accuracy in the determination of the macro-

seismic intensity affecting the region (Maio and Tsionis, 2015). Furthermore, the interdependency be-

tween macro-seismic intensity and damage as well as the limited or heterogeneous empirical data are 

commonly identified as the main difficulties to overcome in the calibration process of empirical ap-

proaches (Del Gaudio et al., 2015). By contrast, analytical methodologies produce more detailed and 
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transparent algorithms with direct physical meaning, that not only allow detailed sensitivity studies to be 

undertaken, but also allow for the straightforward calibration of the various characteristics of the building 

stock and seismic hazard (Calvi et al., 2006). Different from the empirical fragility that is directly collected 

from post-earthquake survey, the derivation of analytical fragility curve is often based on nonlinear fine-

element analysis. Popular analytical methods include push-over analysis (Freeman, 1998; Freeman, 2004), 

adaptive push-over method (Antoniou and Pinho, 2004), and incremental dynamic analysis (IDA) 

(Vamvatsikos and Cornell, 2002; Vamvatsikos and Fragiadakis, 2010). Within these approaches, most of 

the methodologies available in literature lie on two main and distinct procedures: the correlation between 

acceleration or displacement capacity curves and spectral response curves, as the well-known HAZUS or 

N2 methods (FEMA, 2003; Fajfar, 2000), and the correlation between capacity curves and acceleration 

time histories, as proposed in Rossetto and Elnashai (2003). 

The major steps in using analytical methods to study building fragility include: the selection of seismic 

demand inputs, the construction of building models, the selection of damage indicator and the determi-

nation of damage limit state criteria (Dumova-Jovanoska, 2000). To combine empirical post-earthquake 

damage statistics from actual building groups with simulated/analytical damage statistics from modelled 

building types under consideration, quite a few studies deriving analytical fragility curves for masonry and 

RC buildings in mainland China were examined. The analysis techniques in these studies vary from static 

push-over analysis or adaptive push-over method (Cui and Zhai, 2010; Liu, 2017), to dynamic history anal-

ysis or incremental dynamic analysis (Liu et al., 2010; Liu, 2014; Liu, 2014; Sun, 2016; Wang, 2013; Yang, 

2015; Yu et al., 2017; Zeng, 2012; Zheng et al., 2015; Zhu, 2010) as well as based on necessary statistical 

assumptions (Fang, 2011; Gan, 2009; Guo et al., 2011; Hu et al., 2010; Zhang and Sun, 2010).  

3.2.3 Damage state definition 

As predefined, building fragility curve describes the exceedance probability of specific damage state given 

an ensemble of earthquake ground motion levels. To describe the susceptibility of building structure to 

certain ground motion level, four damage limit states are used: slight damage (LS1), moderate damage 

(LS2), serious damage (LS3) and collapse (LS4). These four limit states divide the building into five struc-

tural damage states, namely negligible (D1), slight damage (D2), moderate damage (D3), serious damage 

(D4) and collapse (D5). The relation between damage limit states and structural damage states is illus-

trated by Figure 3-1. Hereafter, fragility curves in this study specifically refer to the probability of exceed-

ing four damage limit states (LS1, LS2, LS3, LS4) under different ground motion levels.  

 

Figure 3-1: Corresponding Relation between structural damage states (DS1, D2, D3, DS4, DS5) and limit states (LS1, 
LS2, LS3, LS4) (modified from Wenliuhan et al., 2015). 

Standard definitions of building structural damage states have been issued in different countries and ar-

eas. In the European Macro-seismic Scale 1998 (EMS1998) proposed by European Seismological 
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Commission (ESC), five grades of structural damage are defined: negligible to slight damage (Grade 1), 

moderate damage (Grade 2), substantial to heavy damage (Grade 3), very heavy damage (Grade 4) and 

destruction (Grade 5). In the HAZUS99 Earthquake Model Technical Manual, developed by Department of 

Homeland Security, Federal Emergency Management Agency of the United States (FEMA) in 1999, gener-

ally four structural damage classes are used for all building types: slight damage, moderate damage, ex-

tensive damage and complete damage. Other damage state classifications like MSK1969 proposed by 

Medvedev and Sponheuer (1969) and AIJ1995 (Nakamura, 1995) in Japan issued by Architectural Institute 

of Japan are summarized in Table 3-1. In mainland China, the latest standard GB17742-2008 was issued 

in 2008 by China Earthquake Administration (CEA), in which detailed damage to structural and non-struc-

tural components are defined for each damage state (Table 3-2). 

Table 3-1: Example of major damage states classification methods (modified after Rossetto and Elnashai, 2003). 

vulnerability HAZUS1999 EMS1998 MSK1969 AIJ1995 China2008 

0 no damage 

10 slight damage Grade 1 D1 Light D1 

20 D2 

30 Grade 2 D2 Minor D3 

40 

50 moderate 
damage 

Grade 3 D3 

60 Moderate D4 

70 

80 extensive dam-
age 

Grade 4 D4 Major 

90 D5 

complete dam-
age 

100 Grade 5 Partial col-
lapse 

Table 3-2: Detailed definition of building damage states in GB17742-2008, China. 

Damage 

state 

Structural damage Non-structural damage Performance-based Descrip-

tion 

D1 Negligible Cracks only in very few 

non-structural compo-

nents 

No need to repair, instant use 

D2 Very few components have visible cracks Obvious cracks can be 

found 

No need to repair or after 

slightly repairing, can be used 

directly 

D3 A few components have slight cracks, very few 

have obvious cracks 

Most components have 

serious damage 

Certain repair work should be 

done before continued use 

D4 Most components have serious damage, a major-

ity have obvious cracks 

Most components par-

tially destroyed 

The damage is difficult to re-

pair 

D5 The majority components have serious damage, 

the building structure is close to collapse or al-

ready collapsed 

Non-structural compo-

nents are commonly de-

stroyed 

To repair the building back to 

normal is impossible 

Notes about qualifiers: "very few": <10%; "a few": 10%-50%; "most": 50%-70%; "majority": 70%-90%; "commonly": >90%. 

In empirical method, fragility curve is derived from damage probability matrices (DPMs) based on post-

earthquake field surveys. DPMs describe the proportions of buildings in each structural damage state (D1, 
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D2, D3, D4, D5) at given intensity scale, and can be used to derive the probability of exceeding each dam-

age limit state 𝑃[𝐿𝑆𝑖] (i=1,2,3,4), as illustrated in Eq. (3.1): 

𝑃[𝐿𝑆𝑖] = 1 − 𝑃[𝐷𝑖](𝑖 = 1); 𝑃[𝐿𝑆𝑖] = 𝑃[𝐿𝑆𝑖−1] − 𝑃[𝐷𝑖](𝑖 = 2…𝑁)                                                   (3.1) 

where N refers to the total number of damage limit states (here N=4); for each building type, 𝑃[𝐷𝑖] refers 

to the proportion of building in each structural damage state i. 

In analytical method, fragility curve is derived by Eq. (2), with the assumption that building response to 

seismic demand inputs follows the lognormal distribution: 

𝑃[𝐿𝑆|𝑆𝑑] = Φ [
1

𝛽𝐿𝑆
ln(

𝑆𝑑

𝑆𝐶|𝐿𝑆
)]                                                                                                                             (3.2)

  

where 𝑃[𝐿𝑆|𝑆𝑑] is the probability of being in or exceeding damage limit state LS due to ground motion 

indicator 𝑆𝑑  (e.g. the inter-storey displacement, spectral acceleration, peak ground acceleration etc.); 

𝑆𝐶|𝐿𝑆 refers to the median value of damage state indicator at which the building reaches the threshold of 

the damage state LS; 𝛽𝐿𝑆 represents integrated uncertainties from seismic demand input, building capac-

ity and model uncertainty, generally within the range of 0.6-0.8; Φ[] is the normal cumulative probability 

distribution. 

3.3 Fragility database analysis 

3.3.1 Building typology and seismic resistance level classification 

During the past four decades, more than 2000 M≥4.7 earthquakes have occurred in mainland China and 

its neighbouring areas (Xu et al., 2014). Up to 2014, post-earthquake field surveys have been conducted 

for at least 112 damaging earthquakes that occurred in the densely populated areas in mainland China, 

since the 1975 M7.3 Haicheng earthquake (Ding, 2016). These damaging earthquakes mainly clustered in 

seismic prone provinces in southwestern China (e.g. Sichuan, Yunnan) and western China (e.g. Xinjiang 

Uygur, Tibet, Qinghai), as shown in Figure 3-2. The main building types in these areas are featured by 

masonry, reinforced concrete (RC), brick-wood, soil, stone as well as chuandou-timber (a typical building 

type with timber frame in mountainous area of Tibet, Qinghai and Sichuan). Due to the limitation in fra-

gility data abundance, I mainly focus on studying the seismic fragility of the two most widely distributed 

building types: masonry and RC buildings (Sun and Chen, 2009). Masonry buildings are mainly composed 

of brick and concrete. RC buildings include building structures such as RC core wall, frame structure and 

frame-shear wall. 
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Figure 3-2: The distribution of earthquakes occurred in mainland China and its neighboring area, for which field sur-
veys were conducted. Detailed earthquake catalogue can be found from the online supplement, which is newly com-
piled based on Ding (2016) and Xu et al. (2014). 

The seismic resistance level of masonry and RC buildings is further divided into two classes: level A and 

level B. The assignment of seismic resistance level in this study is mainly based on supplementary infor-

mation given in each scrutinized literature, including building age, construction material, seismic re-

sistance code at construction time, load-bearing structure etc. Given the changes in building quality and 

corresponding code standard over the past four decades in China, buildings constructed in different ages 

though with the same nominal resistance level of each period, are reassigned with different seismic re-

sistance levels according to the latest standard. The referred grouping criteria is given in Table 3-3 (more 

building classification details can be found from the online supplement in Data/Code availability section). 

Generally, “level A” includes buildings with seismic resistance level assigned as pre/low/moderate-code, 

and “level B” includes buildings assigned as high-code. 

Table 3-3: Divisions of seismic design level for Chinese buildings (modified after Lin et al., 2010). 

Seismic Resistance 

Design Level (PGA) 

Construction Age 

before 1978 1979-1989 1989-2001 After 2001 

IX (0.4g) pre-code moderate-code high-code high-code 
VIII (0.3g) pre-code moderate-code moderate-code high-code 

VIII (0.2g) pre-code low-code moderate-code high-code 

VII (0.15g) pre-code low-code low-code moderate-code 

VII (0.10g) pre-code pre-code low-code low-code 

VI (0.05g) pre-code pre-code pre-code low-code 
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3.3.2 Outlier check 

After grouping the empirical and analytical fragilities based on building type (masonry and RC) and seismic 

resistance level (A and B) in Section 3.3.1, the empirical fragility database based on macro-seismic inten-

sity (Figure 3-3) and analytical fragility database based on PGA (Figure 3-4) for four damage limit states 

(LS1, LS2, LS3, LS4) are thus constructed (data can be found from the online supplement). The Y-axis “fra-

gility” of Figure 3-3 and Figure 3-4 refers to the exceedance probability of each damage limit state at each 

ground motion level. As can be clearly seen, the scatter of fragilities vary across building types and seismic 

resistance levels. For empirical fragilities, the scatter may relate to the uneven abundance of damage data 

for buildings investigated in post-earthquake field surveys, the subjective judgement of damage states as 

well as the rough division of building structure types. For analytical fragilities, the scatter may come from 

the difference in the selection of seismic demand inputs, the use of analysis techniques, the detailing of 

the modelled building structure, the definition of damage state as well as the difference in damage indi-

cators used by different researchers. Thus, before deriving consecutive building fragility curves from these 

discrete fragility data in Figure 3-3 and Figure 3-4, the outliers need to be firstly removed from these 

originally collected datasets. 

 

Figure 3-3: The distribution of empirical fragility data from post-earthquake field surveys, depicting the relation be-
tween the exceedance probability of each damage limit state (LS1, LS2, LS3, LS4) at given macro-seismic intensity 
levels. The fragility datasets are grouped by building types (masonry and RC) and seismic resistance levels (A and B). 
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Figure 3-4: The distribution of analytical fragility data derived from non-linear analyses, depicting the relation be-
tween the exceedance probability of each damage limit state (LS1, LS2, LS3, LS4) at given PGA levels. The fragility 
datasets are grouped by building types (masonry and RC) and seismic resistance levels (A and B). 

To figure out the outliers in the originally collected fragility database, the box-plot check method was 

applied. For each building type (Masonry_A, Masonry_B, RC_A, RC_B) and in each damage limit state (LS1, 

LS2, LS3, LS4), the corresponding series of fragility data was sorted from the lowest to the highest value. 

Three quantiles (Q1, Q2, Q3) were used to divide each fragility series into four equal-sized groups and they 

correspond to the 25%, 50% and 75% quantile value in each series. A discrete fragility value (Qi) was as-

signed as an outlier if 𝑄𝑖 − 𝑄3 > 1.5 × (𝑄3 − 𝑄2) or 𝑄1 − 𝑄𝑖 > 1.5 × (𝑄2 − 𝑄1). The box-plot check re-

sults are shown in Figure 3-5 for empirical fragility data and in Figure 3-6 for analytical fragility data. 
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Figure 3-5: Outlier-check using box-plot method for empirical fragility data. Five macro-seismic intensity levels are 
used to classify the original fragility datasets: VI, VII, VIII, IX, X. “A” and “B” represent the pre/low/moderate-code and 
high-code seismic resistance level, respectively (more classification details are available from online supplement). LS1, 
LS2, LS3, LS4 are the four damage limit states. Outliers are marked by red crosses and red lines within each box indi-
cates the 50% quantile fragility value. 
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Figure 3-6: Outlier-check using box-plot method for analytical fragility data. Twelve PGA levels are used to group the 
discrete analytical fragility datasets: 0.1-1.2 g.  “A” and “B” represent the pre/low/moderate-code and high-code 
seismic resistance level, respectively (more classification details are available from online supplement). LS1, LS2, LS3, 
LS4 are the four damage limit states. Outliers are marked by blue hollow circles and blue dot within each box indicates 
the 50% quantile fragility value. 

3.4 Derivation of representative fragility curves 

After removing outliers, details of the remaining fragility dataset (e.g., the number of data points, median 

and standard deviation of these data) for each damage state of each building type are plotted in Appendix 

Figure C1-C4 and summarized in Appendix Table B. It is worth to iterate that, as aforementioned in the 

Introduction section, the organization of this study is centred on two focuses. The first one is to construct 

a comprehensive fragility database for Chinese buildings from 87 papers and theses using empirical and 

analytical methods, which is one key component of seismic risk assessment. Based on the empirical and 

analytical fragility database collected, the second focus is to propose a new approach in deriving intensity-

PGA relation by using fragility as the bridge. In this regard, a representative fragility curve should be firstly 

derived for each damage state of each building type, and I refer to use the median fragility values to derive 

such a curve. 
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3.4.1 Median fragility curve 

To derive a representative fragility curve for each damage limit state (LS1, LS2, LS3, LS4) of each building 

type (Masonry_A, Masonry_B, RC_A, RC_B), the median values (50% quantile) of each fragility series in 

Figure 3-5 and Figure 3-6 are used.  Cumulative normal distribution is assumed to fit the discrete median 

empirical fragilities and log-normal distributions is assumed to fit the discrete median analytical fragilities. 

For each damage limit state of each building type, the parameters μ𝐿𝑆 and σ𝐿𝑆 in the consecutive fragility 

curve can be regressed following Eq. (3.3): 

𝑃(𝑋|𝐿𝑆) = Φ [
𝑋𝑖𝑛𝑡−μ𝐿𝑆

σ𝐿𝑆
] 𝑜𝑟𝑃(𝑋|𝐿𝑆) = Φ [

1

σ𝐿𝑆
ln (

𝑋𝑃𝐺𝐴

μ𝐿𝑆
)]                                                                 (3.3)        

where 𝑃(𝑋|𝐿𝑆) represents the exceedance probability of each damage limit state LS given ground motion 

level 𝑋  (𝑋  refers to 𝑋𝑖𝑛𝑡, namely macro-seismic intensity in terms of empirical fragility; and𝑋 refers to 

𝑋𝑃𝐺𝐴, namely PGA in terms of analytical fragility). 

The median fragility curves derived from empirical data and from analytical data are plotted in Figure 3-7 

and Figure 3-8, respectively. As can be clearly seen from Figure 3-7  and Figure 3-8, there are two obvious 

trends: (1) for the same building type (masonry or RC), the higher the seismic resistance level (A<B), the 

lower the building fragility, which applies for all damage limit states; (2) for the same seismic resistance 

level, RC building has lower fragility than masonry building, which also applies for all damage limit states. 

These two trends indicate the reliability of the newly collected fragility database, the reasonability of the 

criteria in grouping building types and seismic resistance levels, as well as the suitability of using median 

fragility values to develop representative fragility curves for further analysis. However, some extra abnor-

mality is also noteworthy, e.g. in the median fragility curve developed for LS4 of “RC_B” in Figure 3-8, the 

probability to exceed LS4 damage limit state remains 0 even when PGA is higher than 0.8 g, which is 

obviously not the case in reality. Detailed source of such abnormality and its effect on the intensity-PGA 

relation to develop will be discussed in Section 3.5.3. 



Review of fragility analyses for major building types in China with new implications for intensity-PGA 
relation development 

36 

 

Figure 3-7: Median fragility curves derived from empirical fragility datasets, which depict the relation between 
macro-seismic intensity and exceedance probability of each damage limit state (LS1, LS2, LS3, LS4) for masonry and 
RC building types (Note: these median fragility curves are of varying robustness; see Section 3.4.1 and Section 3.5.3 
for more details). 
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Figure 3-8: Fragility curves derived from analytical fragility datasets, which depict the relation between PGAs (unit: g) 
and exceedance probability of each damage limit state (LS1, LS2, LS3, LS4) for masonry and RC building types (Note: 
these median fragility curves are of varying robustness; see Section 3.4.1 and Section 3.5.3 for more details). 

Mathematically, the goodness of fit of the consecutive fragility curve regressed from the discrete median 

fragilities can be measured by statistical indicator 𝑅2 (Draper and Smith, 2014). Higher 𝑅2 value indicates 

a better fit of the regressed fragility curve, since it is defined as the ratio between SSR and SST: SSR is the 

sum of squares of the regression (𝑆𝑆𝑅 = ∑ (�̂�𝑖 − �̅�𝑖)
2𝑛

𝑖=1 ), and SST is the total sum of squares (𝑆𝑆𝑇 =

∑ (𝑦𝑖 − �̅�𝑖)
2𝑛

𝑖=1 );𝑦𝑖  refers to the original discrete fragilities for each damage limit state, �̅�𝑖  refers to the 

mean fragility, �̂�𝑖  refers to the predicted fragility by the fitted fragility curve. As shown in Table 3-4, the 

𝑅2 values are generally above 0.95, which indicates the normal or lognormal distribution assumption in 

Eq. (3.3) is very suitable to match the discrete fragility datasets. Noticeably, there are also three low 𝑅2 

values (≤0.8) in Table 3-4 for damage limit state LS1, LS2, LS3 of building type “RC_A”, which may indicate 

the low quality (e.g. high scatter) of the originally collected fragility data. As can be cross validated from 

Figure 3-4 and even better Figure 3-6, the analytical fragility data for “RC_A” are more scattered than for 

other building types. This thus directly leads to the low 𝑅2 values in fitting the median fragility curve for 

damage limit state LS1, LS2, LS3 of “RC_A”. 

Table 3-4: The median fragility curve parameters regressed from empirical and analytical fragility data. 
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data_source build_type fort _level damage_state μ𝐿𝑆 σ𝐿𝑆 𝑅2 

Empirical masonry A LS1 6.926 1.539 0.99 

LS2 8.418 1.378 1 

LS3 9.412 1.189 1 

LS4 10.57 1.298 1 

B LS1 7.658 1.393 0.98 

LS2 9.283 1.298 0.99 

LS3 10.43 1.505 0.99 

LS4 11.59 1.553 1 

RC A LS1 7.779 1.304 1 

LS2 9.057 0.9367 1 

LS3 9.893 0.9269 1 

LS4 10.95 0.9626 1 

B LS1 8.135 1.191 1 

LS2 9.511 1.067 1 

LS3 10.54 0.8831 1 

LS4 11.77 1.075 1 

Analytical masonry A LS1 0.1732 0.7512 1 

LS2 0.33 0.7512 1 

LS3 0.5862 0.6383 0.99 

LS4 0.9416 0.4983 0.97 

B LS1 0.3499 0.7573 1 

LS2 0.6743 0.8101 1 

LS3 1.281 0.8125 1 

LS4 2.595 0.8581 0.99 

RC A LS1 0.223 0.6615 0.80 

LS2 0.353 0.7699 0.77 

LS3 0.694 0.6111 0.73 

LS4 1.404 0.4818 0.98 

B LS1 0.315 0.539 0.99 

LS2 0.46 0.5269 0.99 

LS3 0.811 0.346 0.95 

LS4 1.374 0.1763 0.91 

Note: “fort_level” A & B represent the pre/low/moderate-code and high-code seismic resistance level, respectively; “damage_state” 

LS1, LS2, LS3, LS4 represent the four damage limit states: slight, moderate, serious-, collapse, respectively; “μ𝐿𝑆” and “σ𝐿𝑆” are the 

regression parameters between intensity/PGA and the corresponding fragilities of each damage limit state; 𝑹𝟐 indicates the fitness 

quality of the regressed median fragility curve, as plotted in Figure 3-7 and Figure 3-8. 

3.4.2 Fragility curve comparison with international projects 

Given the import role of fragility curve for future seismic risk assessment and loss estimation especially in 

seismic prone areas, the empirical and analytical fragility database derived from 87 individual papers and 

theses are constructed. The median and standard deviation of the fragility series for each damage state 

of each building type are plotted in Appendix Figure C1-C4 and listed in Appendix Table B. To derive new 

intensity-PGA relation by using fragility as the bridge, the median fragility curves for masonry and RC 

building types with seismic resistance levels A and B are regressed, as shown in Figure 3-7 and Figure 3-8. 

However, the robustness of these median fragility curves varies across damage states and building types, 

as will be discussed in detail in Section 3.5.3. Here, to better place such a review work, it is worth to 

compare it with international projects with similar focus. Therefore, I also checked the fragility outputs 

from several international projects, including PERPETUATE, SYNER-G, PAGER, HAZUS and GEM. Based on 

the fragility curve robustness analysis in Section 3.5.3, median fragility curves developed for building type 

“Masonry_A” are of relatively highest robustness. Thus, the comparison of the median fragility curves in 

this chapter with these international projects (in terms of PGA) will be based on “Masonry_A” building 
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type only. To avoid over complexity, the scatter attached to each fragility curve is not taken into account 

in this comparison. 

3.4.2.1 PERPETUATE project 

The main goal of European PERPETUATE project was to develop European guidelines for evaluation and 

mitigation of seismic risk to cultural heritage assets, applicable in the European and other Mediterranean 

countries. As written in their project homepage, the risk assessment of heritage buildings requires the 

assessment of both architectonic and artistic assets contained in them, which needs improvement in 

methods of analysis and assessment procedures rather than in intervention techniques for common build-

ings and infrastructures. Besides that, a verification approach in terms of displacement rather than in 

terms of strength is more reliable and effective for heritage building. However, the fragilities collected in 

this study are mainly for general masonry and RC buildings and mainly in terms of macro-seismic intensity 

or PGA, not displacement. Therefore, the fragility outputs from PERPETUATE project and this study are 

not so comparable. 

3.4.2.2 SYNER-G project 

European SYNER-G project focused on reviewing fragility for masonry and RC buildings in Europe, includ-

ing the collection of existing fragility functions, building recategorization, and harmonization of intensity 

measure and limit states. In the final output of SYNER-G project, fragility curves were given in terms of 

PGA, with some of them converted from macro-seismic intensity or spectral acceleration (SA) (Crowley et 

al., 2011a; Crowley et al., 2011b; Kaynia et al., 2013; Pitilakis et al., 2014). Comparisons between mean 

fragility curves developed in SYNER-G project (Crowley et al., 2011b; refer to Table 6.3 and Table 6.5) with 

the median analytical fragility curves developed in this study for “Masonry_A” building type are plotted 

in Figure A5. It is noteworthy that, in SYNER-G outputs, the typically four damage limit states were further 

harmonized into two: yielding damage state (LS2) and collapse state (LS4). 

As can be seen from Figure C5, the fragility in SYNER-G project for typical European masonry buildings is 

much higher than “Masonry_A” in this study. The discrepancy of masonry building fragility between 

SYNER-G (Silva et al., 2014) and this study is potentially related to the following factors. Firstly, the differ-

ence in use of ground motion indicator (part of SYNER-G’s PGA-related fragility curves are converted from 

intensity, SA related fragility curves; the analytical fragility curves in this study are purely PGA-related) 

may play a role. Besides that, difference in building classification is difficult to accurately calibrate but 

certainly contributes to the final fragility discrepancy. Furthermore, the harmonization of damage limit 

states in SYNER-G project (from four to two) makes the fragility difference between these two damage 

states subtle (as shown in Figure C5), and also hinders the fragility comparison for each damage limit state 

accordingly. Lastly, in SYNER-G project, the mean fragility curves are provided; but in this study, median 

fragility curves are developed for nominally similar masonry buildings. In all, these differences combined 

together lead to the fragility discrepancy for general masonry buildings’ fragility curves in this study and 

those in SYNER-G project. 

3.4.2.3 PAGER project 

The ongoing PAGER project (Prompt Assessment of Global Earthquakes for Response) of United States is 

an automated system specialized in estimating the seismic ground shaking distribution, the number of 

people and settlements exposed to that severe shaking, and the scale/range of possible fatalities and 

economic losses. For these purposes, vulnerability functions are used, which are different from the fragil-

ity functions I focus on in this study. The main difference lies in that, vulnerability functions can be derived 
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either directly from historical damage information, or indirectly from fragility function combined with 

consequence functions, which describe the probability of loss given a level of performance (e.g. collapse 

damage state). Thus, direct comparison between the outputs of PAGER project and this study is not avail-

able. 

3.4.2.4 HAZUS project 

The ongoing HAZUS project of United States, is developed and updated to provide local, state and regional 

officials with the tools necessary to plan and stimulate efforts to reduce risk from earthquakes and to 

prepare for emergency response and recovery from an earthquake (FEMA, 2003; FEMA, 2008). HAZUS 

offers a series of fragility curves for typical building types based on HAZUS building taxonomy. Here for 

comparison with fragility curves in this study for “Masonry_A”, I extracted HAZUS fragility curves devel-

oped for two specific masonry building types: mid-rise reinforced masonry bearing walls with wood or 

metal deck diaphragms (RM1M) and high-rise reinforced masonry bearing walls with precast concrete 

diaphragms (RM2H) from HAZUS Earthquake Technical Manual (refer to Table 5.16a-d). These fragility 

curves are based on median spectral displacement of the damage state of interest and an assumed de-

mand spectrum shape that relates spectral response to PGA. The reference spectrum used to derive 

HAZUS fragility curve represents ground shaking of a large-magnitude (i.e. M≈7.0) western United States 

earthquake for soil sites (e.g. site class D) at site to source distances of 15km or greater. 

Comparisons between the fragility curves of HAZUS for “RM1M, RM2H” and those developed in this study 

for “Masonry_A” are plotted in Figure C6 (RM1M) and Figure C7 (RM2H). In HAZUS four code levels 

(pre/low/moderate/high) are provided; but in this study, only two seismic resistance levels “A” and “B” 

are assigned to the analytical fragilities extracted from individual literature (more details can be found 

from online supplement). As can be seen from Figure C6 and Figure C7, the median fragility of “Masonry_A” 

in this study is basically between the median fragility of high-code and moderate-code of “RM1M” and 

“RM2H” building types, which indicates the compatibility between HAZAU and this study’s median fragil-

ity curves for general masonry buildings, compared with the mean fragility curves in SYNER-G project. 

3.4.2.5 GEM project 

The ongoing Global Earthquake Modelling (GEM) project, is motivated to “serve the public good in a col-

laborative, credible, open and transparent manner, and to make risk assessment inclusive to create a ho-

listic culture of awareness and resilience, bringing a once-scarce resource available to all sectors and ben-

eficiaries”. GEM project has integrated outputs from three other European projects: SHARE, SYNER-G and 

NERA. SHARE focused on seismic hazard harmonization in Europe and covers all of Europe and the Ma-

ghreb countries. The hazard model is developed with the OpenQuake Engine. SYNER-G partners devel-

oped an unified methodology and tools for systemic vulnerability assessment in Europe. NERA focused on 

the creation of a European research infrastructure for risk assessment and mitigation. Besides the fragility 

outputs from SYNER-G project, GEM online fragility database also integrates fragility curves from HAZUS 

(Yepes-Estrada et al., 2016). Therefore, the comparison with GEM fragility curves developed for European 

and American building types will not be repeated. For mainland China, the fragility curves integrated in 

GEM database is solely from Tang et al. (2011) developed for Chinese schools, and only for RC building 

with spectral acceleration (SA) as the ground motion indicator. To avoid uncertainty introduced from con-

verting SA to PGA, the comparison with fragility curves in Tang et al. (2011) is also skiped. 
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3.5 New approach in deriving intensity-PGA relation 

Intensity-PGA relation has an important application in seismic hazard assessment, since the use of macro-

seismic data can compensate for the lack of ground motion records and thus help in reconstructing the 

shaking distribution for historical events. Traditionally, intensity-PGA relations are developed using instru-

mental PGA records and macro-seismic intensity observations within the same geographical range (Bilal 

and Askan, 2014; Caprio et al., 2015; Ding et al., 2014; Ding, 2016; Ding et al., 2017; Ogweno and Cramer, 

2017; Worden et al., 2012). These relations are generally region-dependent and have large scatter (Caprio 

et al., 2015). In this section, I propose a new approach in deriving intensity-PGA relation based on the 

newly collected empirical and analytical fragility database. For each building type and each damage limit 

state, an empirical fragility curve (exceedance probability vs. macro-seismic intensity) and an analytic fra-

gility curve (exceedance probability vs. PGA) are available, as derived from the median fragilities in Section 

3.4.1. By eliminating the same fragility value, the corresponding pair of macro-seismic intensity and PGA 

can be derived. Thus, for a series of fragility values, the corresponding intensity-PGA relation can be fur-

ther regressed based on the paired intensities and PGAs. Ideally, the overlap of all these regressed inten-

sity-PGA relations would be expected, regardless of the difference in building type, seismic resistance 

level and damage state. 

3.5.1 Difference between this new approach and previous practices 

Compared with this new approach in intensity-PGA relation development, previous practices directly re-

gressed intensity and PGA datasets within the same geographical range, but no further classification of 

datasets was conducted, as based on building type or damage state in this study. The lack of further clas-

sification of PGA and intensity datasets may explain why the previously derived intensity-PGA relations 

generally have high scatter. The reason lies behind is that, although macro-seismic intensity is a direct 

macro indicator of building damage, higher instrumental ground motion (e.g., PGA) does not necessarily 

mean higher damage to all buildings. Instead, damage is more determined by the seismic resistance ca-

pacity of different building types. Thus, further division of intensity and instrumental ground motion rec-

ords based on affected building types should promisingly help decrease the scatter of regressed intensity-

PGA relation. 

Furthermore, local site effect also contributes to the amplification of instrumental peak ground motions 

(PGA or SA), when combining intensity and PGA datasets from areas with different geological background 

together. This in turn increases the scatter of regressed intensity-PGA relation. In this regard, it is worth 

to emphasize that, in this newly collected PGA-related analytical fragility database, the PGA parameter is 

not the real instrumental records as used in regressing traditional intensity-PGA relation, but the input 

PGA records used in experimental fragility analysis (push-over analysis, incremental dynamic analysis, dy-

namic history analysis etc.). Therefore, the regional dependence (here I mainly refer to site condition), 

which contributes to the scatter of traditional Intensity-PGA relation, is not a source of uncertainty in the 

newly developed relation. 

3.5.2 Derivation of initial intensity-PGA relation 

As a tentative approach, here the relation between intensity and PGA is derived by using median fragility 

as the bridge for each damage limit state of each building type. It is deeply aware that uncertainty is 

inherent in every single step of empirical and analytical fragility analyss. However, the trial of using the 
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median fragility as the bridge to develop intensity-PGA relation, more importantly, aims at providing a 

new approach in this regard compared with traditional practice, not to backwards reduce the uncertain-

ties (building structure, seismic demand inputs, computation methods etc.) in deriving empirical and an-

alytical fragility. By using Eq. (3.3) for PGA-fragility and intensity-fragility respectively and eliminating fra-

gility as variable, the following relations can be derived: 

ln(𝑃𝐺𝐴) = 𝛼 + 𝛽 ∗ 𝐼𝑛𝑡, 

𝑤𝑖𝑡ℎ𝛼 = ln(𝜇𝑃𝐺𝐴) −
σ𝑃𝐺𝐴

σ𝐼𝑛𝑡
∗ 𝜇𝐼𝑛𝑡,𝛽 =

σ𝑃𝐺𝐴

σ𝐼𝑛𝑡
                                                                                               (3.4) 

In which, the parameters μ𝑃𝐺𝐴,μ𝐼𝑛𝑡,σ𝑃𝐺𝐴,σ𝐼𝑛𝑡 are taken from Table 3-4 with values varying across build-

ing types and damage limit states. 

These intensity-PGA relations are plotted in Figure 3-9 (grouped by building types) and Figure 3-10 

(grouped by damage limit states). Theoretically, higher damage states can occur only at higher intensities 

or PGA values. For instance, a LS4 damage state at intensity III would not happen, as reflected by the 

curves in Figure 3-9 and Figure 3-10: LS1 have the lowest PGA or intensity starting point, while LS4 has the 

highest. Thus, the intensity-PGA curve is truncated at fragility values above 1%. Ideally, it would be ex-

pected that all intensity-PGA relations overlap with each other, whether grouped by building type or by 

damage state. As a matter of fact, for building type “Masonry_A” and “Masonry_B” in Figure 3-9, the four 

intensity-PGA curves of four damage limit states do coincide very well. Meanwhile, the discrepancy in 

intensity-PGA relations of “RC_A” for damage states LS1, LS2, LS3 in Figure 3-9 is also not surprising, given 

the relatively high scatter in the original analytical fragility datasets of “RC_A” (as discussed in Section 

3.4.1 and verified by Appendix Figure C1-C4). 

3.5.3 Source of abnormality in intensity-PGA curves 

For building type “RC_A” and “RC_B” in Figure 3-9, it is clear that for the same intensity levels, the corre-

sponding PGA values of damage limit state LS4 are much higher than that of damage limit states LS1, LS2, 

LS3. For fixed fragility value, this may due to the underestimation of intensity by the median empirical 

fragility curve in Figure 3-7, or the overestimation of PGA by the median analytical fragility curve in Figure 

3-8, or a combination of both effects. In this regard, damage data scarcity at higher damage limit states 

may contribute to the abnormal high PGA values of LS4 in Figure 3-9. When reviewing the fragility data 

collection process, it is clear that the construction of empirical fragility database requires the combination 

of damage statistics from multiple earthquake events that cover a wide range of ground motion levels. 

Generally, large magnitude earthquakes occur more infrequently in densely populated areas, thus dam-

age data tend to cluster around the low damage states and ground motion levels. This limits the validation 

of high damage states or ground motion levels (Calvi, 2006). According to Yuan (2008), those seriously 

damaged buildings in earthquake affected area are mainly masonry buildings, not so many RC buildings. 

Therefore, the cause of the abnormal high PGA values of damage state LS4 for “RC_A” and “RC_B” can be 

attributed to the relative scarcity of damage data at higher intensity/PGA level, especially for RC buildings. 
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Figure 3-9: Intensity-PGA relations grouped by building types. Only intensity and PGA values with truncated exceed-
ance probability ≥1% for each damage limit state of each building type are plotted, since higher damage states can 
appear only for higher intensities or PGA values (see Section 3.5.2 for more details). 

As to building type “Masonry _A” and “Masonry _B” in Figure 3-9, for the same intensity level, the PGA 

values revealed by four damage states of “Masonry_B” are generally higher than that in “Masonry_A”. 

This can be more clearly seen from Figure 3-10, in which the intensity-PGA relations are grouped by dam-

age limit states. How to explain this abnormal phenomenon that given the same intensity level, the PGA 

values revealed by “Masonry_B” are generally higher than that by all the other three building types? In 

fact, compared with “Masonry_A”, buildings assigned as type “Masonry_B” generally have much higher 

seismic resistance capacity. In this study, level “A” refers to buildings assigned as pre/low/moderate-code 

seismic resistance capacity, and level “B” refers to buildings assigned as high-code (building classification 

details can be found on the online supplementary material). That is, according to the grouping criteria in 

Table 3-3, buildings assigned as “Masonry_B” mainly refer to those built after 2001 with seismic resistance 

level VIII and above. This is obviously a very high code standard. Thus, for the same ground motion level, 

the damage posed on “Masonry_B” should be much slighter than on “Masonry_A”. Therefore, for the 

same PGA level, the corresponding intensity revealed by “Masonry_B” should be lower than by “Ma-

sonry_A”. 
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Figure 3-10: Intensity-PGA relations grouped by damage limit states. Only intensity and PGA values with truncated 
exceedance probability ≥1% for each damage limit state of each building type are plotted, since higher damage states 
can appear only for higher intensities or PGA values (see Section 3.5.2 for more details). 

Actually in mainland China, the macro-seismic intensity level in post-earthquake filed surveys is deter-

mined by damage states of three reference buildings types, namely (1) Type A: wood-structure, 

soil/stone/brick-made old building; (2) Type B: single- or multi- storey brick masonry without seismic re-

sistance; (3) Type C:  single- or multi- storey brick masonry sustaining shaking of intensity degree VII. While 

in this study, buildings assigned as “Masonry_B” mainly refer to those constructed after 2001 with seismic 

resistance level VIII and above, and their seismic resistance capability is obviously much higher than all 

those three referred Type A/B/C building types. Therefore, intensity levels derived from damage to those 

less fragile “Masonry_B” buildings tend to be underdetermined. This may help explain why for the same 

intensity level, the corresponding PGA revealed by intensity-PGA relation of “Masonry_B” is higher than 

that of “Masonry_A”. 

Based on above discussion and the initial analysis in Section 3.4.1, it is clear that (a) Due to the high scatter 

in originally collected fragility database (as validated by the low 𝑅2 values in Table 3-4), the intensity-PGA 

relations derived for LS1, LS2, LS3 of “RC_A” are of low robustness; (b) Due to the damage data scarcity, 

intensity-PGA relations for LS4 of “RC_A” and LS4 of “RC_B” are also not fully reliable; (c) Due to the high 
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seismic resistance capability attached to “Masonry_B”, the intensity-PGA relations derived for all damage 

limit states of “Masonry_B” have the probability to underestimate intensity (or overestimate PGA) com-

pared with “Masonry_A”. Therefore, intensity-PGA curves derived for “Masonry_A” are of relatively high-

est robustness/reliability. Actually, the four intensity-PGA curves of “Masonry_A” do coincide very well as 

expected (Figure 3-9). According to Yuan (2008), those seriously damaged buildings in earthquake af-

fected areas are mainly masonry buildings. Therefore, the median empirical and analytical fragility curves 

derived for “Masonry_A” (with uncertainties shown in Appendix Figure C1-C4 and Table B) are also con-

sidered to be the most representative ones for seismic prone areas in mainland China, compared with 

those developed for other buildings types in this study. 

3.5.4 Average intensity-PGA relation derived for “Masonry_A” 

According to the analysis in Section 3.5.3, intensity-PGA curves derived for four damage limit states of 

“Masonry_A” are of relatively highest robustness and have no such intensity underestimation problem as 

“Masonry_B”. Therefore, I first focus only on building type “Masonry_A” and average its four PGA values 

for discrete intensity values, to derive the corresponding averaged PGA values, as listed in Table 3-5. If I 

match the data points in Table 5 with a linear relation between intensity and ln(PGA), I find Eq. (3.5): 

ln(𝑃𝐺𝐴) = 0.521 ∗ 𝐼𝑛𝑡 − 5.43 ± ε(𝑃𝐺𝐴: g)                                                                                  (3.5) 

where ε follows the normal distribution, with 0 as the median value and the standard deviation is σ.  

By integrating the uncertainty in both original empirical and analytical fragility data of “Masonry_A” (as 

shown in Appendix Figure C1-C4 and Table B) into the intensity-PGA relation, the averaged standard de-

viation σ in Eq. (3.5) is estimated to be 0.3 (the detailed uncertainty transmission methodology is given in 

Appendix D). As the “Masonry_A” type is the most common and relevant with buildings damaged in his-

torical earthquakes (Section 3.5.3), I recommend using Eq. (3.5) for building damage assessment for earth-

quakes occurred in mainland China, especially in seismic active provinces e.g. Sichuan and Yunnan (Figure 

3-2). 

Table 3-5: The mean PGA values derived from intensity-PGA relations of “Masonry_A” based on the newly proposed 
approach. 

intensity VI VII VIII IX X 

PGA(g) 0.1 0.16 0.3 0.48 0.78 

 

3.5.5 Comparison with other intensity-PGA relations 

Based on the analysis in Section 3.5.3, if I only remove those obviously unreliable intensity-PGA curves, 

namely LS1, LS2, LS3, LS4 of “RC_A” and LS4 of “RC_B”, the range of PGA values derived from the remain-

ing intensity-PGA relations are shown in Table 3-6. For comparison, the recommended PGA range for each 

intensity degree in the Chinese Official Seismic Intensity Scale (GB17742-2008) is listed in Table 3-7. The 

PGA values for intensity VI, VII in my results are higher than those in GB17742-2008; while for intensity 

VII, IX and X, the PGA values are quite comparable. It is also found that the recommended PGA ranges in 

GB17742-2008 are indeed the same as those given in GB17742-1980, which was issued in the 1980s 
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around four decades ago. At that time, available damage data used to derive the intensity-PGA relation 

in China was quite scarce. Therefore, damaging earthquakes occurred in the United States before 1971 

were also largely used, which may not be representative of the situation in China today. Thus, one possible 

explanation for the relatively low PGAs for low intensity levels (VI, VII) in Table 3-7 (GB17742-1980/2008) 

is that, the buildings in the 1980s were more fragile than nowadays buildings. Since macro-seismic inten-

sity is a direct macro indicator of building damage, nowadays buildings generally have better seismic re-

sistance capacity and thus require higher ground motion (PGA) than buildings in the 1980s to be equally 

damaged. 

Table 3-6: The PGA ranges derived from more intensity-PGA relations. 

intensity VI VII VIII IX X 

PGA(g) 0.06-0.14 0.12-0.25 0.21-0.43 0.36-0.73 0.58-1.25 

Table 3-7: The recommended intensity-PGA relations in China (GB17742-2008/1980). 

intensity VI VII VIII IX X 

PGA

(g) 

mean 0.06 0.13 0.25 0.5 1.0 

range 0.05-0.09 0.09-0.18 0.18-0.35 0.35-0.7 0.7-1.4 

 

Since the recommended PGA ranges in GB17742-2008 are not so representative of the current building 

status in mainland China, comparisons with the latest intensity-PGA relation developed in Ding et al. (2017) 

are also conducted. Ding et al. (2017) adopted traditional practice in regressing the macro-seismic inten-

sities and instrumental PGA records within the same geographical range, by using records for 28 M≥5 

earthquakes occurred during 1994-2014 in mainland China. The PGA values for intensity VI-IX in Ding et 

al. (2017) are listed in Table 3-8. When comparing the results in Table 3-5 and Table 3-6 with that in Table 

3-8, PGA values are quite consistent for both low intensity (VI, VII) and high intensity (VIII, IX) levels, 

though these data are separately developed by the new approach and by traditional practice. This con-

gruence shows the reasonability of the new approach proposed here in developing intensity-PGA relation. 

Table 3-8: The latest intensity-PGA relation derived by traditional practice for mainland China (Ding, 2017). 

intensity VI VII VIII IX 

PGA
(g) 

mean 0.09 0.16 0.3 0.55 

range 0.06-0.12 0.09-0.22 0.22-0.41 0.41-0.75 

 

3.6 Conclusion 

An empirical fragility database was established by evaluating 69 papers and theses, mostly from the Chi-

nese literature, that document observations of macro-seismic intensities reflecting earthquake damage 

occurred in densely populated areas in mainland China over the past four decades. These publications 

provide empirical fragilities dependent on macro-seismic intensities for four damage limit states (LS1, LS2, 

LS3, LS4) of four building types (Masonry_A, Masonry_B, RC_A, RC_B). Analytical fragility database was 
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also established by scrutinizing 18 papers and theses with results on modeling fragilities for the nominally 

same building types and the same damage states either by response spectral methods or by time-history 

response analysis. These analytic methods provide fragilities as functions of PGA. From this wealth of data, 

the median fragility curves were derived for these building types by removing outliers. Based on the newly 

collected empirical and analytical fragility database, possible comparisons with several international pro-

jects including PERPETUATE, SYNER-G, PAGER, HAZUS, GEM were also conducted. 

A new approach was proposed by using fragility as the bridge to derive intensity-PGA relations inde-

pendently for each building type and each damage state. The potential sources of abnormalities in these 

newly derived intensity-PGA relations were discussed in detail. Ideally the individual intensity-PGA curves 

should all coincide and allow us to derive an average relation between intensity and PGA. The coincidence 

is not 100% perfect and deviations for the cases where they occur were discussed. Given the high damage 

data abundance and wide distribution of masonry buildings in mainland China, for studies referring to 

historical earthquakes and their losses in seismic active regions, e.g. Sichuan and Yunnan, I recommend 

utilizing the intensity-PGA relation derived from “Masonry_A” buildings in Eq. (3.5).  

However, for engineering application, due to the scattering in original fragility datasets and simplification 

in using median fragility to derive intensity-PGA relation in the newly proposed approach, the use of the 

preliminary intensity-PGA relations developed here should be with caution. It’s also worth to note that, 

buildings used for empirical intensity determination and for analytical studies do not coincide: a “Ma-

sonry_A” building in a post-event field survey may encompass a wider range than in an analytic study. 

Therefore, following the novel idea of using fragility as the bridge to develop intensity-PGA relation in this 

study, possible extensions in the future can be performing fragility analysis for more specifically designed 

building types that are more representative of those widely damaged building types in the fields. 

3.7 Data/Code availability 

More fragility extraction and building classification details are available from online supplement in: 

https://www.jianguoyun.com/p/DaPyWSEQgPb4Bhi--NUB  

 (Filename: Supplementary_building_classification_details.pdf). 

The earthquake catalog in plotting Figure 3-2 is in: 

(Filename: EQ_list_with_field_survey.xlsx). 

The empirical and analytical fragility data in Figure 3-3 and Figure 3-4 are available in: 

(Folder name: data_Fig3-4). 

 

https://www.jianguoyun.com/p/DaPyWSEQgPb4Bhi--NUB
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4 Residential building stock modelling 
for mainland China  

4.1 Background introduction 

With the theme of last year’s International Day for Disaster Reduction (IDDR2018) being “Target B: Re-

ducing the number of affected people by disasters by 2030”, the awareness of the impacts of natural 

disasters on human society has been increasing over the years. Demands from public sector for quantifi-

cation of disaster risk is thus more urgent than before. As spoken by António Guterres, the current United 

Nations Secretary-General, in IDDR2018, that “Disasters cost hundreds of billions of dollars, hitting the 

poorest countries disproportionately and pushing millions into poverty. We must tackle disaster risks and 

leave a more resilient planet to future generations.” To better cope with the frequent occurrence of earth-

quakes and other natural hazards (typhoon, flood, tsunami etc.), the development of sound hazard risk 

models should be given top priority, since these hazards can lead to tremendous and often crippling eco-

nomic losses especially in the countries of the developing world. According to the estimation in Daniell et 

al. (2011), during 1900-2011, worldwide economic losses (direct and indirect) associated with the occur-

rence of over 7000 damaging earthquakes (amongst 1996 events caused fatalities) reached USD 2.1 tril-

lion (in 2010 price level). 

To develop a seismic risk model, three layers of information are essential: hazard, exposure and vulnera-

bility. Hazard refers to the occurrence frequency and severity of earthquakes. Exposure captures the at-

tributes of exposed elements in terms of value, location and relative importance (e.g. buildings, critical 

facilities and infrastructure) to potential earthquake. Vulnerability describes the susceptibility of those 

exposed elements to earthquake. Among the exposed elements, buildings are considered as the most 

important asset category in seismic risk assessment, since the major source of loss and fatality that occur 

during earthquakes are related to building damage and collapse (Neumayer and Barthel, 2011; Yuan, 

2008). As such, estimation of the building stock and the value at risk is an important and integral part of 

any risk modeling effort. Specifically in developing and disaster vulnerable countries like China, rapid ur-

banization process has led to massive increase in both the asset value and population exposed to seismic 

hazards (Hu et al., 2010; Yang and Kohler, 2008). Therefore, a country-level modelling of the building stock 

and its spatial distribution across China is quite essential. 

Ideally, if building stock value of the research portfolio is already known, e.g. in an insurance portfolio, 

building attributes (i.e. the location, geometry, height, construction age and material, occupancy type etc.) 

are used mainly for building vulnerability determination. However, in most cases, the building stock value 

is not available and obtaining such detailed information for every building in a large region is not practi-

cable. Therefore, the aforementioned building attributes, which are usually provided in administrative 

level in census data, are also used to estimate the building stock value. In this case, appropriate proxy (e.g. 

population density) is required to disaggregate administrative level census data into finer scale. The use 

of proxy is quite a reasonable approach in dasymetric modelling and has been frequently adopted in pre-

vious studies (e.g. Gunasekera et al., 2015; Silva et al., 2015; Thieken et al., 2008). 
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When disaggregating census data into finer scale, it cannot be carried out by simply assuming that the 

assets within an administrative unit are evenly distributed, since in reality people and buildings tend to 

be concentrated in settlements e.g. along the riverside or within alluvial plains (Figueiredo and Martina, 

2016). In regard of this, more sensible techniques have been applied and documented in the literature. 

For example, Silva et al. (2014) disaggregated the building stock at parish level for mainland Portugal 

based on the population density profile at 30×30 arc-sec resolution cells from LandScan. The LandScan 

population density profile was produced by apportioning best available census counts into cells based on 

probability coefficients, which in turn were derived from road proximity, slope, land cover and night-time 

lights (Dobson et al., 2000). 

In mainland China, the modelling of building stock value and its spatial distribution across China is scarcely 

done at high-resolution (e.g. 1km×1km scale). In those published studies related to building stock model 

development, e.g. Yang and Kohler (2008) and Hu et al. (2010), the simulation and evolution of building 

stock value (taking the mainland China as a whole) were designed and targeted for resource consumption 

and environmental impacts purposes, which cannot meet the needs in risk analysis due to their coarse 

resolution. International projects e.g. PAGER (Jaiswal et al., 2010) and Gunasekera et al. (2015) also con-

ducted global exposure modelling that covered the building stock value in mainland China. However, 

these global models cannot fully make use of the census data available in each country and usually as-

suming a uniform distribution of building stock value per capita for each province or even for each country, 

which might be convenient, but not realistic, especially for unevenly developed countries like China. A 

recent work of Wu et al. (2018) established a high-resolution (1km×1km scale) asset value model for 

mainland China based on the net capital stock value estimated for 344 prefectures in mainland China 

using the perpetual inventory method (Wu et al., 2014). However, their orginal asset data to be disaggre-

gated into grid level was actually restricted to prefecture level. Furthermore, the extent of the natural 

hazards, in most cases, are dependent on the geological structure (earthquakes) or along the riverside 

(floods), instead of being restricted to administrative boundary. Therefore, to better cope with this spatial 

mismatch between natural hazards and administrative boundary, building stock model should be geo-

coded with relatively higher resolution and be disaggregated from more detailed census data. 

The organization of this Chapter is as follows: the census data sources and methodology to develop the 

high-resolution building stock for mainland China will be firstly introduced. Then, to evaluate the model 

performance, provincial and district level comparison of the modelled results with that in previous studies 

and yearbook records will be conducted. An application of the building stock in seismic risk analysis will 

also be given. It is worth to note that the building types classified in the census data is different from that 

in Chapter 3 based on building vulnerability. Therefore, a recategorization process of the building types 

in this Chapter to the four major building types in Chapter 3 (Masonry_A, Masonry_B, RC_A, RC_B) will be 

introduced later in Chapter 5. 

4.2 Data Sources and Methodology 

This section will introduce the details of building related census data used to develop the building stock 

model and the methodology to disaggregate these administrative level census data into grid level. The 

census data used in this study for building stock modelling are extracted from the Tabulation of the 2010 

Population Census of the People’s Republic of China (hereafter abbreviated as “2010census”, 

http://www.stats.gov.cn/tjsj/pcsj/rkpc/6rp/indexch.htm), particularly for residential buildings. Like in 

most countries of the world, the national level population and housing census are carried-out at 10-year 

http://www.stats.gov.cn/tjsj/pcsj/rkpc/6rp/indexch.htm
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interval, and currently the latest version was issued in 2010. In 2010census, there are two types of tables: 

Long Table and Short Table. Long Table includes summaries based on the surveys of 10% of the overall 

population in mainland China, while in the Short Table summaries are based on the surveys of the whole 

population. Building stock model related census data (e.g. building occupancy type, height classes, con-

struction material etc.) are extracted from the Long Table of 2010census. Supplementary demographic 

information (e.g. the overall population, the average number of person per family and average floor area 

per person) were extracted from the Short Table of 2010census. The numbering of these data in 2010cen-

sus is summarized in Table 4-1. 

Table 4-1: Main data sources used in this study. 

Data source Data description Resolution 
Data loca-
tion 

Indicator in the 
text 

Notes 

2010 China 
Sixth Census 
Short Table 

overall population 

urban/township/rural 
level for each of the 
31 provinces/munici-
palities in mainland 
China;  
(the urbanity level in 
the census is defined 
according to the ad-
ministrative belong-
ing of the surveyed 
population) 

Table 1-
1a, 1-1b, 
1-1c  

N/A 

Based on surveys of  
100% of the popula-
tion in mainland 
China 

2010 China 
Sixth Census 
Long Table 

Number of families living 
in buildings grouped by 
usage (purely residence, 
mixed with produc-
tion/business, no resi-
dence) 

Table 9-
1a, 9-1b, 
9-1c 

N/A 

Based on surveys of 
10% of the overall 
population in main-
land China 

Number of families 
dwelled in buildings 
grouped by storey num-
ber (1, 2-3, 4-6, 7-9, ≥10) 

Number of families 
dwelled in buildings 
grouped by construction 
material (steel/RC, 
mixed, other, 
brick/wood) 

2010 China 
Sixth Census 
Short Table 

Average population per 
family 

Table 1-
1a, 1-1b, 
1-1c 

D3 of Fig. 1 Based on surveys of 
100% of the popula-
tion in mainland 
China 

Average residential floor 
area per person (unit: 
square meter) 

Table 1-
14a, 1-
14b, 1-14c 

D4 of Fig. 1 

2015 GHS 
population 
density pro-
file 

provides the population 
density in each geo-
coded grid 

1km×1km N/A λ 

The original resolu-
tion is 250m× 250m 
and was resampled to 
1km×1km  

2015 Shang-
hai Statistics 
Yearbook 

GDP and population in 
each district 

District level 
Page 495-
545 

N/A 
To derive the uniform 
construct cost (UCC)  

2015 China 
Construction 
Yearbook 

Yearly construction 
value added in each 
province 

Provincial level Table 1-2 N/A 
These data are used 
to evaluate modelled 
building stock value 

 

For each of the 31 provinces and municipalities in China, the building related census data in the Long Table 

are categorized into three urbanity levels (urban, township and rural), based on the administrative be-

longing of the surveyed population. The values of these building related census data for each urbanity 

level of each province are listed in Table 4-2. Compared with provincial level census data used in previous 

studies, one advantage of the 2010census data is its further categorization of data into three urbanity 

levels, which better reflects the regional difference within one province/municipality. 
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Table 4-2: Building related data extracted from the Tabulation of the 2010 Population Census of the People’s Republic of China (abbreviated as “2010cencus”). 

 

Prov_ID Province 
2015 GHS 

pop. 

floor 
area 
per 
cap-
ita 

per-
son 
per 

fam-
ily 

Number of families grouped by 
usage 

Number of families grouped by building height 
(storey) 

Number of families grouped by construc-
tion material 

Amp. 
Fac-
tor 
(F2 
in 

Fig.1) 

living prod/comm mixed 1 2-3 4-6 7-9 ≥10 steel/RC mixed 
brick-
wood 

others 

URBAN 

1001 Anhui 12162978 29.42 2.71 331730 9035 287 44093 82489 175486 20922 17775 135377 176462 26705 2221 1.32 

1002 Beijing 18597540 27.81 2.40 517975 6482 988 127740 33290 193270 21919 148238 226367 212873 83192 2025 1.47 

1003 Chong-
qing 

8391462 29.77 2.65 258417 3956 247 17185 39448 39087 85383 81270 131656 112494 13433 4790 1.21 

1004 Fujian 12699884 30.29 2.70 360721 13488 736 30557 97680 135725 79915 30332 213350 124702 23948 12209 1.25 

1005 Gansu 5282457 26.69 2.68 160717 3134 107 24489 21076 75051 34161 9074 78731 66665 15057 3398 1.20 

1006 Guang-
dong 

56519993 26.37 2.63 1466895 34218 513 152601 299326 453172 412315 183699 748196 663772 76682 12463 1.43 

1007 Guangxi 8478357 30.71 2.93 238044 5912 264 26305 53876 99335 52485 11955 86601 138730 16271 2354 1.18 

1008 Guizhou 5485811 25.94 2.82 157713 5141 19 17373 38055 50766 49256 7404 78055 75834 7703 1262 1.19 

1009 Hainan 2327452 25.42 3.17 56383 1602 68 9674 14288 13787 13124 7112 41510 10814 4948 713 1.26 

1010 Hebei 14836541 30.10 2.95 419978 3950 96 100741 42944 230919 29889 19435 155581 211716 54745 1886 1.19 

1011 Hei-
longjiang 

14367419 23.72 2.58 455996 6911 418 122051 20020 130862 173283 16691 163427 188650 104208 6622 1.20 

1012 Henan 18527056 34.02 3.05 521036 7612 215 79535 122569 244091 64920 17533 190648 307902 28268 1830 1.15 

1013 Hubei 17537483 33.22 2.82 502439 12733 349 40937 132838 179474 126270 35653 180316 298109 33900 2847 1.21 

1014 Hunan 12911981 33.45 2.89 358447 9813 501 32935 92165 160007 62887 20266 132713 201615 31404 2528 1.21 

1015 Jiangsu 30857658 33.86 2.81 876264 14961 802 129293 224580 412115 65052 60185 325288 469388 92721 3828 1.23 

1016 Jiangxi 7844695 29.76 3.19 201690 3594 201 17052 46727 85663 48457 7385 111658 76679 15396 1551 1.20 

1017 Jilin 10270924 25.21 2.62 329782 4910 1777 59861 13029 149906 96067 15829 175788 108325 48852 1727 1.17 

1018 Liaoning 22172958 25.76 2.57 768884 7122 843 111439 28046 366106 211530 58885 321935 381031 71386 1654 1.11 

1019 Inner 
Mongolia 

8302698 24.86 2.67 251738 6951 631 84432 24977 133932 11690 3658 105902 87092 61924 3771 1.20 

1020 Ningxia 2215109 28.38 2.71 64336 1829 29 10922 7958 44770 1313 1202 24606 34483 6352 724 1.23 

1021 Qinghai 1470242 27.77 2.74 41342 1229 62 4877 8035 20737 6292 2630 13527 26113 2415 516 1.26 

1022 Shaanxi 9021036 28.81 2.70 269044 4820 362 33723 56478 122687 37356 23620 89287 173753 8694 2130 1.22 

1023 Shandong 28921044 32.41 2.80 855282 15616 242 252471 88326 432226 67205 30670 348873 356038 161295 4692 1.19 

1024 Shanghai 20557127 25.11 2.52 604654 9991 928 60506 116799 304794 27780 104766 268377 249438 93734 3096 1.33 

1025 Shanxi 9837996 25.77 2.88 282847 4319 87 53815 47879 157087 18683 9702 90187 163209 29124 4646 1.19 

1026 Sichuan 15732199 30.70 2.67 499024 9628 630 47158 79975 198299 136824 46396 218827 247875 34088 7862 1.16 
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1027 Tianjin 10012251 25.51 2.65 237060 2606 167 34902 12083 143755 28570 20356 58333 156521 23467 1345 1.58 

1028 Xinjiang 6578245 28.00 2.56 201621 2686 84 32261 24343 129144 12124 6435 88699 94628 18420 2560 1.26 

1029 Tibet 289534 31.81 2.45 8394 973 7 2930 4798 1580 47 12 5449 2227 1020 671 1.26 

1030 Yunnan 6531449 31.27 2.59 200602 7122 172 21262 45555 93027 36704 11176 102015 85386 13317 7006 1.21 

1031 Zhejiang 21732071 30.97 2.54 675858 19305 774 80859 193447 332899 50666 37292 220048 393843 74559 6713 1.23 

TOWNSHIP 

2001 Anhui 13372970 32.20 2.95 355306 19130 477 144219 160370 67744 1426 677 95625 182264 91921 4626 1.21 

2002 Beijing 1548053 33.20 2.52 41959 1129 143 21808 2812 16414 710 1344 6224 20550 15964 350 1.42 

2003 Chong-
qing 

6393138 34.91 2.73 187287 7816 357 35957 71385 40448 41156 6157 46425 112018 23805 12855 1.20 

2004 Fujian 8616342 37.67 3.09 224647 11851 318 44154 105240 65529 18822 2753 100650 83984 28551 23313 1.18 

2005 Gansu 3949838 25.92 3.17 101071 5160 124 58128 13450 30226 4198 229 31721 30839 34944 8727 1.17 

2006 Guang-
dong 

17954335 26.41 3.52 357650 15136 348 119634 161452 60743 27235 3722 124661 175520 63890 8715 1.37 

2007 Guangxi 10216390 34.43 3.34 264485 12263 480 94666 111560 58971 11002 549 53729 175149 42500 5370 1.10 

2008 Guizhou 6142030 28.39 3.12 159970 12522 41 65929 60006 34332 11785 440 44016 89287 28725 10464 1.14 

2009 Hainan 1986929 23.78 3.42 45035 2592 51 26889 15458 4359 607 314 19912 12356 14449 910 1.22 

2010 Hebei 17723090 30.74 3.40 454034 12232 203 338450 45232 73026 3484 6074 90952 165751 204531 5032 1.12 

2011 Hei-
longjiang 

7326077 22.67 2.63 230438 7764 526 152211 13711 54825 16851 604 26869 70838 130084 10411 1.17 

2012 Henan 18079108 32.04 3.60 435993 14307 304 242151 151413 53669 2676 391 91696 240373 114219 4012 1.11 

2013 Hubei 10287748 38.10 3.12 267951 11284 318 65151 136106 59020 18152 806 75159 150951 47125 6000 1.18 

2014 Hunan 15928705 36.74 3.18 413160 16084 1397 107304 216464 90305 12926 2245 103618 225168 92116 8342 1.16 

2015 Jiangsu 17599234 39.53 3.00 493818 16021 436 194665 224247 86379 2299 2249 99148 264939 142526 3226 1.15 

2016 Jiangxi 12539807 33.57 3.54 283781 10796 1125 57795 138466 80093 17102 1121 144491 98662 45425 5999 1.20 

2017 Jilin 4483838 22.51 2.70 139477 4710 1966 90313 10161 37025 6460 228 34567 30467 73754 5399 1.14 

2018 Liaoning 5202389 26.23 2.75 168663 5618 94 100064 11565 51923 9229 1500 51280 52098 69815 1088 1.08 

2019 Inner 
Mongolia 

5916056 24.38 2.74 172725 9637 1622 124351 14566 41832 1422 191 43195 35332 90983 12852 1.17 

2020 Ningxia 1035570 24.82 3.14 25273 1397 58 16542 2590 7308 176 54 6140 7109 12255 1166 1.23 

2021 Qinghai 1234007 21.94 3.06 28364 1806 1694 15491 4641 9622 386 30 8482 9814 8928 2946 1.27 

2022 Shaanxi 8393227 28.85 3.05 218969 10349 295 103810 63776 53427 6133 2172 61288 115983 30075 21972 1.20 

2023 Shandong 19633228 32.14 3.03 555539 16773 117 412345 53861 102936 2235 935 105549 177664 274908 14191 1.13 

2024 Shanghai 3396024 30.25 2.45 100049 3066 715 24233 44272 29262 638 4710 35992 46750 19423 950 1.34 

2025 Shanxi 8095334 25.43 3.24 208837 7124 292 128133 41454 42626 2929 819 49930 87194 66418 12419 1.16 

2026 Sichuan 16239393 34.47 2.80 494678 24545 2048 133695 170345 141458 64579 9146 144800 259633 80423 34367 1.11 

2027 Tianjin 1604748 29.64 2.98 36626 688 6 20978 1965 12727 559 1085 5896 13066 18217 135 1.44 

2028 Xinjiang 3536191 26.04 2.75 95090 2368 50 57285 7087 32598 301 187 31109 21827 34576 9946 1.32 

2029 Tibet 434071 33.52 2.89 10835 1334 69 5712 5333 1058 39 27 5633 2406 2961 1169 1.23 

2030 Yunnan 9948973 30.04 3.29 249892 15089 538 95990 113777 49076 5598 540 85728 73181 58444 47628 1.14 

2031 Zhejiang 14032915 38.53 2.66 435571 17019 321 78393 215994 143891 9590 4722 88524 262572 92204 9290 1.16 
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RURAL 

3001 Anhui 33868749 34.04 3.12 972114 12697 1032 594442 384935 5062 259 113 122416 440296 399437 22662 1.10 

3002 Beijing 3290554 35.39 2.76 85494 2139 89 81788 2698 2877 93 177 2991 19546 63298 1798 1.36 

3003 Chong-
qing 

13097499 42.04 2.72 436237 8496 810 215548 219389 6337 3076 383 34275 160849 146892 102717 1.08 

3004 Fujian 16023424 41.24 3.16 447940 13851 615 152099 279696 27946 1860 190 105558 152003 108638 95592 1.10 

3005 Gansu 16457361 21.94 3.89 444734 2789 233 434394 12043 911 94 81 23583 50990 233241 139709 0.94 

3006 Guang-
dong 

38073367 25.99 3.74 825588 7932 862 473821 328499 27016 3542 642 168179 388958 244088 32295 1.22 

3007 Guangxi 28020960 28.82 3.47 788492 7837 834 494076 294396 7474 300 83 100152 424443 210891 60843 1.01 

3008 Guizhou 22795976 27.92 3.29 657275 13176 244 526145 137494 5485 1206 121 80232 208026 247780 134413 1.03 

3009 Hainan 4368909 21.29 3.63 109378 771 69 101212 8248 437 217 35 22309 16584 68949 2307 1.09 

3010 Hebei 41534503 30.09 3.50 1138877 6755 525 1108487 32754 3591 510 290 65563 351042 689663 39364 1.04 

3011 Hei-
longjiang 

17284909 20.92 3.19 472849 3926 1647 469755 3174 2668 1148 30 5933 44163 339849 86830 1.13 

3012 Henan 58426898 32.23 3.58 1593259 18790 715 1263614 341472 6231 554 178 170146 778487 632719 30697 1.01 

3013 Hubei 28165214 38.64 3.40 805308 11381 807 395220 405959 12191 2267 1052 87280 373421 286599 69389 1.01 

3014 Hunan 37755133 34.27 3.54 1008324 9900 2170 496152 516168 5569 262 73 113888 408562 427367 68407 1.05 

3015 Jiangsu 32006376 42.35 3.03 978352 13096 999 526012 444382 17344 893 2817 77218 494838 411206 8186 1.06 

3016 Jiangxi 26204945 33.81 3.86 627420 6578 1410 251425 373710 8390 355 118 184327 209487 198186 41998 1.07 

3017 Jilin 12897767 20.98 3.35 353543 2220 2523 347297 3170 4561 676 59 11283 35524 274007 34949 1.07 

3018 Liaoning 16672483 25.95 3.12 519784 3994 237 512930 6643 3709 390 106 31856 123657 360371 7894 1.02 

3019 Inner 
Mongolia 

11385344 22.17 2.97 337168 4773 1167 331674 6301 3644 77 245 10616 34647 206674 90004 1.12 

3020 Ningxia 3527454 22.12 3.54 86461 1371 35 80927 1965 4863 64 13 4944 9056 60381 13451 1.13 

3021 Qinghai 3342860 18.51 4.06 71842 604 1521 69459 2789 181 7 10 2675 9718 36221 23832 1.11 

3022 Shaanxi 20689727 31.22 3.54 572916 6711 497 481090 94599 3360 348 230 60338 235474 142395 141420 1.01 

3023 Shandong 49116344 31.95 3.07 1549890 8748 182 1511164 40165 6807 399 103 77610 400711 1025247 55070 1.03 

3024 Shanghai 2871449 38.83 2.37 90972 1752 1153 31644 57352 3415 49 264 8884 48551 33963 1326 1.29 

3025 Shanxi 19386995 25.09 3.44 521669 4921 593 481296 38553 6348 290 103 34053 138101 243316 111120 1.07 

3026 Sichuan 47518958 36.63 3.10 1625052 36122 3253 1067677 574735 16573 1425 764 147168 513785 611594 388627 0.92 

3027 Tianjin 3007476 25.95 3.21 78318 570 30 74498 686 3345 110 249 2325 7772 68306 485 1.19 

3028 Xinjiang 13521011 22.35 3.55 314397 2226 115 309505 2663 4345 82 28 11730 36704 207565 60624 1.20 

3029 Tibet 2468309 27.55 4.95 44816 1260 718 27819 17858 360 26 13 2594 5152 23631 14699 1.07 

3030 Yunnan 30987983 25.61 3.89 756974 10742 1276 461191 296513 6950 2470 592 68863 112129 239753 346971 1.04 

3031 Zhejiang 22254831 49.12 2.67 740469 17587 807 152558 544733 58732 1649 384 60829 419761 236627 40839 1.10 
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To disaggregate the urbanity-level based census data into grid-level, population density is also used as the 

proxy, as is a common practice in risk analysis (Aubrecht et al., 2013). The population density profile cho-

sen in this study is developed by Global Human Settlement (GHS) project of the European Union 

(http://data.europa.eu/89h/jrc-GHS-ghs_pop_gpw4_globe_r2015a) in 2015, which was disaggregated 

from census or administrative units to geo-girds, informed by the distribution and density of built-up area 

as mapped in the Global Human Settlement Layer (GHSL) global layer. In the 2015 GHS population density 

profile, the number of population in each geo-grid is given, which is proved to be of high resolution and 

accuracy when compared with real cases (Gunasekera et al., 2015). The original resolution of the 2015 

GHS population density profile is 250m×250m, for calculation convenience it is resampled to 1km×1km 

resolution before further going analysis. The provincial/municipal boundary (level 1) vector layer dataset 

defining the spatial boundaries of mainland China is from the Global Administrative Areas (GADM, 

www.gadm.org). 

After getting all the input data source (all with publicly available sources) ready for residential building 

stock modelling, a top-down spatial scaling method will be performed to disaggregate the urbanity-level 

based census data for each province/urbanity in mainland China into 1km×1km resolution grids. The 

flowchart in Figure 4-1 provides a brief overview of this modelling process. Detailed explanations of each 

component and step are as follows. 

http://data.europa.eu/89h/jrc-ghsl-ghs_pop_gpw4_globe_r2015a
http://www.gadm.org/
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Figure 4-1: Flowchart of the residential building stock modelling process for mainland China. 

4.2.1 Assign urbanity attribute (urban/township/rural) to the geo-coded 

grids in the 2015 GHS population density profile 

As outlined above, the population and housing related census data for each of the 31 provinces/munici-

palities in mainland China are categorized into three urbanity levels: urban, township and rural. Therefore, 

the geo-coded grids in 2015 GHS population density profile should also be assigned with an urbanity at-

tribute first, before disaggregating the urbanity-level based census data into each grid. For each prov-

ince/municipality, this is achieved by applying the population reallocation approach developed by 

Aubrecht et al. (2015) and also illustrated in detail in Gunasekera et al. (2015). 

Following this population reallocation approach, the urban/township/rural population proportion of each 

province can be derived from the Short Table of 2010census (as listed in Table 4-2). For example, in Shang-

hai City, the population proportion of urban/township/rural urbanity level is 76.64%, 12.66% and 10.7%, 

respectively. Then the grids (1km×1km) in 2015 GHS population density file of Shanghai are sorted from 
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the largest to the smallest, and the population in those largest and most populated geo-codes grids are 

summed up and selected until the 2010census urban population share (i.e. 76.64% for Shanghai) is 

reached. These selected grids are thus assigned with urbanity attribute “urban”. The smallest population 

of these selected grids is taken as the threshold to divide urban and non-urban grids (for Shanghai this 

urban/non-urban population density threshold is 4938 per km2). For the remaining non-urban grids, the 

same process is repeated iteratively until the township population ratio (i.e. 12.66% for Shanghai) is 

reached. These secondly selected grids are assigned with urbanity attribute “township” and the smallest 

population among these grids is taken as the threshold to divide township and rural grids (for Shanghai 

this township/rural population threshold is 2751 per km2). The remaining grids are thus assigned with 

“rural” attribute. The distribution of the assigned urban/township/rural grids in Baoshan District of Shang-

hai is shown in Figure 4-1 as an example. 

Reiterate the above calculations for all the 31 provinces/municipalities in mainland China, then all the 

geo-coded grids in the 2015 GHS population profile can be assigned with urban/township/rural attribute 

accordingly. The corresponding population urbanity thresholds for each province/municipality are pro-

vided in Appendix G. 

4.2.2 Step 1----Extract the building related census data from the Long Table 

of 2010census (statistics derived from surveys of 10% population of 

mainland China 

As in many other countries, the population and housing census data in mainland China are particularly 

surveyed for residential buildings. Therefore, accurately speaking, the building stock model to construct 

in this study is mainly for residential building stock. Related census data for assessment of residential 

building stock value include the number of families living in building types grouped by building occupancy 

(i.e. residential, commercial, other), by number of storey (i.e. 1, 2-3, 4-6, 7-9, ≥10), and by construction 

material (i.e. steel/reinforced-concrete, mixed, brick/wood, other). As already listed in Table 4-1, these 

data are extracted from the Long Table of the 2010census, based on the survey of 10% of the overall 

population in mainland China. Therefore, to evaluate the whole building stock value across China, these 

building related 2010census data should be extended from 10% to 100% population first by multiplying 

the factor of 10 (namely factor F0 in Step 1-1 of Figure 4-1). 

After multiplying the factor of 10, the overall number of families living in building types grouped by build-

ing storey or construction material is considered to be complete for each urbanity level of each prov-

ince/municipality. With the family number living in each building type known, by multiplying the average 

number of population per family (namely factor F1 in step 1-2 in Figure 4-1), which was also provided in 

the Short Table of 2010census, the overall population living in building types grouped by storey (1, 2-3, 4-

6, 7-9, ≥10) or construction material (steel/RC, mixed, other, brick/wood) can thus be instantly derived 

for each province and each urbanity level. 

Up to now, the geo-codes grids in the 2015 GHS population density profile have been assigned with ur-

banity attribute and the population living in each building type is also derived for each province and each 

urbanity level from the 2010census. It is noteworthy that the changes in population or building from 2010 

to 2015 has not been considered yet. In rapid urbanization countries like China, the increasing construc-

tion of buildings and the population inflow from township/rural areas to urban areas are not negligible. 

Therefore, the population derived from 2010census needs to be further amplified to 2015 level, and 
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mathematically this amplification factor (factor F2 in Step 1-3 of Figure 4-1) is assumed to be equal to the 

ratio between 2015 GHS population and 2010census derived population (already amplified from 10% to 

100% population). 

As listed in the last column in Table 4-2, the amplification factor F2 varies for each urbanity level of each 

province (namely factor F2 in Step 1-3 of Figure 4-1). For each province, F2 in the urban area is generally 

higher than in township/rural area, which is quite reasonable. However, it should be noted that the in-

crease in building construction area from 2010 to 2015 is also assumed to be equal to the population 

increase. The reasonability of such assumption and the performance of the residential building stock 

model will be further evaluated in the Results and Discussion section. 

After getting the population living in each building type for each urbanity level of each province derived, 

the urbanity-level based population data can be disaggregated into the geo-coded grids with the same 

urbanity attribute in 2015 GHS population density profile, by multiplying the apportionment weight 

(namely factor F3 in step 1-4 of Figure 1). F3 is defined as the population share of each grid relative to the 

summed population from grids with the urbanity level for each province. 

4.2.3 Step 2----Disaggregate population and building related census data 

from urbanity level into grid-level 

As explained in Section 4.2.2, by multiplying the original building related records extracted from 2010cen-

sus with factor F0, F1, F2 and F3 in Step 1 of Figure 1, the population in each grid living in building types 

grouped by storey (1, 2-3, 4-6, 7-9, ≥10) or by construction material (steel/RC, mixed, other, brick/wood) 

can be derived. 

To further estimate the residential building stock value, more detailed building classification for construc-

tion pricing is needed. Therefore, the next step is to recategorize the building types classified by five storey 

classes and four construction material classes into sub-types in terms of both storey and construction 

material. Theoretically 20 building sub-types can be derived. Considering the fact that in real cases, most 

brick/wood buildings are with quite low height (1 or 2-3 storey), while steel/RC-made buildings are gen-

erally quite high with height of 10-storey and above. Therefore, it is further assumed for “brick/wood” 

building type, there are only two storey classes (1, 2-3). While for “steel/RC”, “mixed”, and “other” build-

ing types defined in 2010census, all five storey classes (1, 2-3, 4-6, 7-9, ≥10) are available (namely Assump-

tion 1 in Step 2-1 of Figure 4-1). Thus, the buildings in each grid can be further classified into 17 building 

sub-types (as listed in Table 4-3). 

In each grid, the number of population living in buildings of five storey classes or four construction mate-

rials is already derived in Step 1. Thus, multi-variate equations can be established, in which 17 unknown 

variables need to be solved from 9 equations. Therefore, further reasonable approximations need to be 

made (namely Assumption 2 in Step 2-2 of Figure 4-1), to make sure that in each grid the sum of popula-

tion living in the 17 building sub-types is equal to the population living in building types grouped by con-

struction material or by storey class. The MATLAB script illustrating the multi-variate equations’ solving 

process is provided in Data/Code Availability section. 
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4.2.4 Step 3----Derive the number of population living in each of the 17 

building sub-types 

With necessary assumption and approximation and by solving the multi-variate equations mentioned in 

Section 4.2.3, the population living in each of the 17 building sub-types can be derived for each grid. In 

the Short Table of 2010census, the average residential floor area per capita is also provided for each ur-

banity level of each province (namely factor F4 in Step 3-1 of Figure 4-1). Therefore, the floor area of the 

17 building sub-types in each grid can be directly derived. Comparison between the modelled floor area 

with statistical yearbook recorded residential floor area for Shanghai will be performed in the Results and 

Discussion section. 

With the building floor area known in each grid, to model the building stock value, another key component 

is the replacement value per square meter of each of the 17 buildings sub-types (namely factor F5 in Step 

3-2 of Figure 4-1). Given the specialty/uniqueness of the building classification in this study, there is no 

official construction prices evaluated for the building types used here. Therefore, the construction price 

per square meter for each of the 17 building sub-types is derived (as listed in Table 4-3) by averaging the 

values given from different sources (e.g. China Construction Statistical Yearbook, the World Housing En-

cyclopedia, real-estate agency reports etc.). It should be noted that, due to the disparity of urbanization 

level, the actual construction price varies across urbanity levels and provinces/municipalities in mainland 

China. Therefore, when applying the residential building stock model to target area for risk analysis, the 

construction price should be justified accordingly. In this study, the set of averaged construction prices in 

Table 4-3 for the 17 building sub-types is used mainly to initially evaluate the replacement value of the 

residential building stock in each geo-coded grid. 

Table 4-3: Averaged construction price per square meter for each of the 17 building sub-types used in this study to 
estimate the building stock value in mainland China. 

Construction  
material 

Storey class 
Building type  
abbreviation 

Construction price (RMB/m2) 
in 2015 current price) 

brick/wood 
1 BRIWOMC1 2050 

2-3 BRIWOMC23 2350 

steel/RC 

1 STLRCMC1 3700 

2-3 STLRCMC23 3900 

4-6 STLRCMC46 4100 

7-9 STLRCMC79 4300 

≥10 STLRCMC10 4500 

mixed 

1 MIXEDMC1 2800 

2-3 MIXEDMC23 3000 

4-6 MIXEDMC46 3200 

7-9 MIXEDMC79 3400 

≥10 MIXEDMC10 3600 

others 

1 OTHERMC1 2600 

2-3 OTHERMC23 2800 

4-6 OTHERMC46 3000 

7-9 OTHERMC79 3200 

≥10 OTHERMC10 3400 
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4.2.5 Step 4----Derive the replacement value of the 17 building sub-types in 

each grid 

As elaborated in Step 3, after multiplying the floor area with construction price, the replacement value of 

the 17 building sub-types within each grid can be evaluated. By summing up the replacement value of all 

the geo-coded grids, the overall residential building stock value in mainland China can also be derived (in 

RMB of 2015 current price). It is worth to emphasize that in this residential building stock model, the term 

“building replacement value” is used, which refers to the amount that will be needed to rebuild a property 

exactly as it was prior to its destruction regardless of any depreciation due to its age (Gunasekera et al., 

2015). 

4.3 Results and Discussion 

4.3.1 Results----urbanity-level (urban/township/rural) based sum of 

modelled floor area and replacement value 

Following the efforts of extensive data survey, collection and processing, with the modelling components 

and steps being explained in detail in Data Sources and Methodology section, a high-resolution (with 

1km×1km resolution) building stock model for mainland China targeted for future seismic risk assessment 

is established by disaggregating urbanity-level based census data into grid level. Since the census data are 

mainly related residential buildings, the model developed is thus particularly for residential buildings. As 

listed in Table 4-4, the modelled residential building floor area and replacement value (unit: RMB, in 2015 

current price) in each grid are aggregated into urbanity level (urban/township/rural) for each prov-

ince/municipality. 
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Table 4-4: Modelled residential building floor area and replacement value for urban/township/rural area of 31 provinces/municipalities in mainland China and comparison with net 
capital stock value estimated in Wu et al. (2014) using perpetual inventory method. 

Prov_ID Province 
Initially modelled residential 

floor area (m2) 

(A): Initially modelled residential 
 building stock replacement value  

(RMB in 2015 current price) 

(C): Net capital stock value  
modelled  in Wu et al. (2014,  
RMB in 2012 current price) 

(A)/(C) 

  urban township rural urban township rural   

1 Anhui 3.57E+08 4.30E+08 1.15E+09 5.08E+11 4.97E+11 1.08E+12 3.86E+12 0.54 

2 Beijing 5.16E+08 5.13E+07 1.16E+08 1.92E+12 1.48E+11 2.22E+11 3.85E+12 0.59 

3 Chongqing 2.50E+08 2.23E+08 5.50E+08 5.63E+11 4.29E+11 8.25E+11 2.98E+12 0.61 

4 Fujian 1.40E+08 2.46E+08 1.07E+09 3.61E+11 5.14E+11 2.02E+12 4.73E+12 0.61 

5 Gansu 1.41E+08 1.02E+08 3.61E+08 2.31E+11 1.14E+11 2.71E+11 1.56E+12 0.39 

6 Guangdong 1.11E+09 4.16E+08 1.40E+09 2.97E+12 8.05E+11 1.74E+12 1.07E+13 0.52 

7 Guangxi 2.27E+08 2.94E+08 8.84E+08 5.42E+11 5.78E+11 1.29E+12 4.74E+12 0.51 

8 Guizhou 1.42E+08 1.74E+08 6.36E+08 2.19E+11 1.98E+11 4.88E+11 2.08E+12 0.44 

9 Hainan 1.82E+07 2.37E+07 1.43E+08 3.98E+10 3.87E+10 1.63E+11 7.86E+11 0.31 

10 Hebei 3.90E+08 5.16E+08 1.33E+09 7.75E+11 8.23E+11 1.56E+12 6.82E+12 0.46 

11 Heilongjiang 3.37E+08 1.65E+08 3.64E+08 8.39E+11 2.56E+11 3.68E+11 3.19E+12 0.46 

12 Henan 6.30E+08 5.79E+08 1.88E+09 1.12E+12 1.02E+12 2.56E+12 9.30E+12 0.51 

13 Hubei 5.82E+08 3.92E+08 1.09E+09 1.30E+12 6.09E+11 1.40E+12 5.44E+12 0.61 

14 Hunan 4.31E+08 5.83E+08 1.29E+09 7.75E+11 7.86E+11 1.36E+12 5.22E+12 0.56 

15 Jiangsu 8.27E+08 5.98E+08 1.73E+09 2.72E+12 1.67E+12 3.91E+12 1.27E+13 0.65 

16 Jiangxi 2.33E+08 4.20E+08 8.84E+08 3.85E+11 5.35E+11 8.45E+11 2.93E+12 0.60 

17 Jilin 2.48E+08 9.70E+07 2.79E+08 1.04E+12 2.60E+11 5.10E+11 4.52E+12 0.40 

18 Liaoning 4.35E+08 1.14E+08 5.86E+08 1.68E+12 2.92E+11 1.07E+12 6.82E+12 0.45 

19 Inner Mongolia 2.01E+08 1.38E+08 2.60E+08 1.20E+12 4.73E+11 5.94E+11 5.39E+12 0.42 

20 Ningxia Hui 6.27E+07 2.57E+07 7.80E+07 1.83E+11 5.62E+10 1.22E+11 8.53E+11 0.42 

21 Qinghai 4.07E+07 2.56E+07 6.07E+07 1.26E+11 5.47E+10 8.76E+10 6.26E+11 0.43 

22 Shaanxi 2.59E+08 2.42E+08 6.46E+08 7.19E+11 5.22E+11 9.62E+11 4.25E+12 0.52 
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23 Shandong 7.49E+08 5.27E+08 1.85E+09 1.74E+12 1.05E+12 3.23E+12 1.32E+13 0.46 

24 Shanghai 4.70E+08 1.10E+08 1.68E+08 1.99E+12 3.68E+11 3.92E+11 4.57E+12 0.60 

25 Shanxi 2.53E+08 2.06E+08 4.86E+08 6.58E+11 3.61E+11 5.89E+11 3.27E+12 0.49 

26 Sichuan 4.72E+08 5.51E+08 1.76E+09 7.95E+11 7.67E+11 1.81E+12 5.77E+12 0.58 

27 Tianjin 2.19E+08 4.45E+07 1.18E+08 1.43E+12 1.90E+11 3.27E+11 3.88E+12 0.50 

28 Xinjiang 1.81E+08 8.60E+07 3.10E+08 5.37E+11 1.96E+11 2.92E+11 2.19E+12 0.47 

29 Tibet 8.73E+06 1.22E+07 6.92E+07 2.41E+10 3.06E+10 8.57E+10 3.37E+11 0.42 

30 Yunnan 1.77E+08 2.33E+08 8.66E+08 2.83E+11 3.30E+11 8.14E+11 3.27E+12 0.44 

31 Zhejiang 4.56E+08 4.10E+08 1.59E+09 1.20E+12 8.98E+11 2.84E+12 7.80E+12 0.63 

In total: 1.06E+10 8.04E+09 2.40E+10 2.89E+13 1.49E+13 3.38E+13 1.48E+14 0.53 

Note: (a) In this study, for each of the 17 building sub-types in each grid of urban/township/rural level in each province/municipality, the same unit construction price is used; (b) The 
modelled floor area and replacement value in this study are particularly for residential buildings; (c) The net capital stock value estimated in Wu et al. (2014) refers to the depreciated 
asset value of residential, non-residential buildings, and infrastructure as well; (d) The building construction price used in this study and that in Wu et al. (2014) are not equal. 
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As can be observed that up to year 2015, the total modelled residential building floor area for mainland 

China total reaches 42.64 billion m2. By applying the same replacement price for the same building sub-

type (in total 17) in all the urban/township/rural areas of the 31 provinces/municipalities, the initially 

modelled residential building stock value in whole mainland China is approximately to be 77.6 trillion RMB 

(in 2015 current price). It is clear that, like all other building stock, the Chinese building stock is a compli-

cated economic, physical and social system (Yang and Kohler, 2008). The economic disparity and geo-

graphic climatic diversity are widely spanned and the standardization in building construction also varies 

in different periods. Therefore, it is mainly for calculation convenience that this study applies the same 

unit construction price for all the provinces and all the urbanity levels. However, in future seismic risk 

assessment, to improve accuracy, the unit construction price of specific building types in the target study 

area should be adjusted accordingly. 

4.3.2 Discussion 

In this chapter, the building stock model is established through the disaggregation of urbanity-level based 

2010census data into grid level by using 2015 GHS population density profile as the proxy. Due to the 

approximation and assumption made in this modelling process, the reasonability and consistency of the 

modelled results need to be cross validated. Due to the typical lack of officially accumulated building stock 

value from the government (Wu et al., 2018), direct comparison of the modelled floor area and replace-

ment value with that from census or statistical yearbooks for whole mainland China is not availabl. Instead, 

the estimated stock value in previous studies is resorted to compare the modelled results with that in this 

study at provincial level. 

4.3.2.1 Provincial-level based comparison between the modelled building value in this study and 

the net capital stock value estimated in Wu et al. (2014) 

Previous studies on the capital stock estimation of mainland China mainly employed the perpetual inven-

tory method (PIM), in which economy indicators e.g. gross fixed capital formation, total investment in 

fixed assets etc. were used. In general, these estimations are almost exclusively limited at national or 

provincial levels (Wu et al., 2014). Such coarse spatial resolution forms a major obstacle in applying the 

model in disaster loss estimation, due to the mismatch between the hazard extent and the administrative 

boundary. To better address this gap, Wu et al., (2014) estimated the net capital stock value (WKS) for 

344 prefectures in mainland China by using the perpetual inventory method (PIM). In which, the WKS 

value (as listed in their Table A1) was calculated in 2012 current price, with the depreciation of all exposed 

assets (i.e. residential and non-residential building structures, tools, machinery, equipment and infrastruc-

ture) being considered. 

To better evaluate the reliability and consistency of the modelled results in this study, the estimated net 

capital stock value in Wu et al. (2014) for prefectures within the same province is aggregated into provin-

cial level first, as shown in Table 4-4. The ratio between the modelled residential building stock value in 

this study (represented by “A”) and net capital stock value (represented by “C”) in Wu et al. (2014) for 

each province is calcuated in column “(A)/(C)” of Table 4-4 for straightforward comparison. The value of 

(A)/(C) varies within the range of 0.31-0.65, which indicates the high consistency between the residential 

building replacement value modelled in this study and the net capital stock value (for residential and non-

residential buildings, infrastructure and other exposed elements) estimated in Wu et al. (2014), in spite 

of the differences in methodology and assumptions used in these two studies. 



Residential building stock modelling for mainland China 

63 

4.3.2.2 District-level based comparison between the modelled building floor area in this study and 

that recorded in statistical yearbook for Shanghai 

It is found out a grid-level building stock model for Shanghai was developed in Wu et al. (2019), by dis-

aggregating the census-level building floor area using building footprint map (extracted from high-resolu-

tion remote sensing data), combined with LandScan population density data as well as a financial appraisal 

of construction price according to building occupancy. Regretfully, Wu et al. (2019) did not separate resi-

dential floor area from non-residential floor area. Therefore, direct comparison of the modelled results 

with their outputs is not available. However, the district-level residential and non-residential floor area 

records used in their study for model performance evaluation, which were extracted from Shanghai 2015 

Statistical Yearbook, turns out to be a good reference for this study to evaluate the modelled results at 

district-level. 

To compare with the district-level residential floor area records in Shanghai statistical yearbook, the mod-

elled floor area in each grid in Shanghai (Figure 4-2) is aggregated into district level (summarized in Table 

4-5). As can be seen from Figure 4-2 that grids with high floor area typically cluster in downtown area 

(including eight administrative districts, namely Yangpu, Hongkou, Zhabei, Putuo, Changning, Xuhui, 

Jing’an and Huangpu) and in Pudong district. This corresponds to the fact that these districts are the most 

developed in Shanghai. As can be further validated from the 3D-view of population distribution in panel 

(d) of Figure 4-2, that these districts also have the highest population density in Shanghai. 

 

Figure 4-2: An example illustrating the modelled floor area for Shanghai: (a) the distribution of modelled floor area 
in each grid with resolution of 1km×1km; (b) in each grid, the floor area of the 17 building sub-types and the overall 
population “GRIDPOP” in each grid; (c) the legend of panel (a) and panel (d); (d) the 3D-view of the modelled floor 
area and the population distribution (the height of box in each grid is proportional to its population density). The 
background satellite map is provided by Bing map service that integrated in QGIS platform (https://qgis.org/en/site/). 
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Table 4-5 gives a summary of the population in 2015 GHS population density profile, the modelled floor 

area (classified by storey classes), as well as the 2015 statistical yearbook recorded population and floor 

area for districts/counties in Shanghai. For more direct comparison, the initially modelled floor area (with-

out adjustment) and the yearbook recorded floor area in each district of Shanghai are plotted in Figure 

4-3. The correlation between the initially modelled floor area and that recorded in yearbook turns out to 

be high, as indicated by the R2 value (0.9103). However, when it comes to the absolute floor area value, 

the total residential floor area modelled in Shanghai is around 808 km2, while the yearbook recorded 

residential floor area is 611 km2, which means the initially modelled results is overpredicted (around 1.3 

multiples of the yearbook records). Therefore, additional efforts are required to adjust the initially mod-

elled results, to make the modelled floor area in each district more reasonably distributed and to de-

amplify the overprediction of the overall modelled results. 

 

Figure 4-3: Comparison of the modelled floor area (before and after adjustment) with2015 Shanghai statistical year-
book recorded floor area in each district of Shanghai. 
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Table 4-5: Comparison of modelled floor area with Shanghai Statistical records in 2015. 

District 

Initially modelled population and floor area (km2) Adjustment factor adjusted 
floor area  

(km2) 

2015 Shanghai Statistical Yearbook records 

2015 GHS 
pop1 

pop1. 
(%) 

1 2-3 4-6 7-9 ≥10 
Sum of floor area in 

 all storey classes 
UCC 

De-amp. 
factor 

floor area diff. 
(%) 

residential floor 
area (km2) 

2015 statistics  
pop2 

pop2 
(%) 

Baoshan 2.70E+06 10% 12.7 23.6 33.5 2.8 10.8 83.3 0.83 

1.32 

52.4 -3% 54 2.02E+06 8% 

Chongming 6.67E+05 3% 7.0 12.6 1.4 0.0 0.2 21.3 0.74 12.0 23% 9.7 7.02E+05 3% 

Fengxian 1.26E+06 5% 8.6 15.8 10.9 0.8 3.2 39.4 0.85 25.2 17% 21.6 1.17E+06 5% 

Jiading 2.49E+06 9% 12.1 22.2 30.2 2.5 9.7 76.7 1.03 60.0 78% 33.6 1.57E+06 6% 

Jinshan 8.54E+05 3% 5.7 10.5 7.8 0.5 2.2 26.7 0.91 18.4 25% 14.7 7.97E+05 3% 

Minhang 4.20E+06 16% 15.3 29.0 58.9 5.1 19.6 127.9 0.92 88.6 18% 75.2 2.54E+06 10% 

Pudong 4.74E+06 18% 27.6 51.1 49.5 3.9 15.2 147.2 1.11 124.0 -13% 142.9 5.45E+06 22% 

Qingpu 1.33E+06 5% 8.5 15.6 12.5 0.9 3.6 41.1 0.90 27.9 32% 21.2 1.21E+06 5% 

Songjiang 1.96E+06 7% 9.7 18.0 23.4 1.9 7.4 60.5 0.84 38.2 -3% 39.5 1.76E+06 7% 

Downtown 5.99E+06 23% 22.9 43.3 82.5 7.2 27.5 183.4 1.06 147.3 -26% 198.5 7.05E+06 29% 

 Sum: 
2.62E+07 

      Sum: 807.5   Sum: 
594.0 

-3% 610.9 
Sum: 

2.43E+07 
 

Note: In “Adjustment factor”, “UCC” is the abbreviation of Uniform Construction Price, derived in Table 4-7 and used to adjust the development disparity in districts of Shanghai; “De-amp. factor” is the 

averaged de-amplification factor, derived in Table 4-6 and used to adjust the amplification of population from 2010 census to  2015 GHS population; “Downtown” area includes eight administrative districts 

of Shanghai, namely Yangpu, Hongkou, Zhabei, Putuo, Changning, Xuhui, Jing’an and Huangpu. 

Table 4-6: Derivation process of the de-amplification factor “1.32” in Table 4-5. 

Shanghai urbanity Modelled floor area (km2), without adjustment Ratio (%) Amp. Factor from 2010 census to 2015 GHS population De-amp. factor 

1024 469.6 63% 1.33 

1.32 2024 110.4 15% 1.34 

3024 167.8 22% 1.29 
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Looking backward the modelling process in Section 4.2, it is clear that the disaggregation of urbanity level 

floor area into each grid did not integrate the development disparity of districts/counties within the same 

province/municipality. Therefore, the initially modelled floor area is firstly rectified by using the index of 

Uniform Construction Cost (UCC) to reflect the development inequality across districts in Shanghai, which 

has been used in previous studies (e.g. Gunasekera et al., 2015). The UCC index of each district in Shanghai 

is developed from the population and per capita GDP in 2015, which is defined as the triple root of the 

ratio between each district’s GDP/capita and the average GDP/capita of Shanghai in 2015. As listed in 

Table 4-7, the higher the UCC index value, the more developed the corresponding district. 

Table 4-7: Derivation of Uniform Construction Cost (UCC) in Table 4-5 from Shanghai 2015 Statistical Yearbook, to 
reflect the development disparity among districts of Shanghai. 

District Population District GDP GDP/capita UCC  

Baoshan 202400 1.10E+11 54147 0.83 

Chongming 70160 2.72E+10 38791 0.74 

Fengxian 116760 6.68E+10 57246 0.85 

Jiading 156620 1.63E+11 104084 1.03 

Jinshan 79710 5.70E+10 71509 0.91 

Minhang 253950 1.84E+11 72603 0.92 

Pudong 545120 7.11E+11 130414 1.11 

Qingpu 120830 8.27E+10 68476 0.90 

Songjiang 175590 9.69E+10 55212 0.84 

Downtown 704540 7.96E+11 113012 1.06 

 sum:  
2425680 

sum:  
2.29E+12 

average:  
94607 

 

Note: “Downtown” area includes eight districts of Shanghai located in the downtown area, namely Yangpu, Hongkou, Zhabei, Putuo, 

Changning, Xuhui, Jingan and Huangpu. 

By multiplying the initially modelled floor area value with the UCC index in each district of Shanghai, the 

overall modelled floor area turns from 808 km2 to 785 km2. Although the overall floor area changes slightly, 

the application of UCC adjustment reallocates the floor area in each district, making it more proportionally 

related to the development level of each district. While, since compared with the yearbook recorded floor 

area 611 km2 for Shanghai, the UCC index adjusted floor area 785 km2 remains to be an obvious overpre-

diction. Thus, de-amplification adjustment needs to be made as well. By checking the whole modelling 

process in Figure 4-1 carefully, it is found out that the overprediction of the modelled floor area for Shang-

hai may be attributed to the use of amplification factor F2 in Figure 4-1). F2 is used to synchronously 

amplify the building related census data from year 2010 to 2015 level. Mathematically it is equal to the 

ratio between 2015 GHS population and 2010census population for each urbanity level of each province. 

For example, the amplification factor F2 in Shanghai is 1.33/1.34/1.29 for urban/township/rural level, re-

spectively. 

In real cases, the increase of population in each urbanity level may not necessarily lead to the proportional 

increase of its residential floor area. Therefore, de-amplification of the initially modelled area for whole 

Shanghai is attempted here. The derivation of the de-amplification factor of Shanghai is achieved by sum-

marizing the product between the amplification factor of each urbanity level (F2) and its modelled floor 

area proportion. As shown in Table 4-6, the final de-amplification of Shanghai is 1.32. 
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After applicating the de-amplification factor to the modelled floor area in Shanghai after UCC index ad-

justment (which is 785 km2 in total), the final modelled floor area in each district of Shanghai is listed in 

Table 4-5. To better illustrate the difference between the initially modelled floor area and that adjusted 

by UCC index and de-amplification factor in each district of Shanghai, the comparison of modelled floor 

area (before and after adjustment) with statistical yearbook recorded floor area is plotted in Figure 4-3. 

As can be clearly seen from Figure 4-3, the value of the correlation indicator R2 improves from 0.9103 

(before adjustment) to 0.9393 (after adjustment). More importantly, after the adjustment of initially mod-

elled floor area by UCC index and the de-amplification factor, the overall modelled floor area in Shanghai 

turns to 594 km2, only a 3% difference compared with the statistical record of 610.9 km2. This further 

indicates the reasonability of the adjustment made and the reliability of the modelled residential floor 

area in this study for Shanghai. 

4.3.2.3 Application of the model to seismic loss estimation 

Since the model developed in this study is mainly targeted for seismic risk analysis, the performance of 

the model is further evaluated by its application to the estimation of empirical loss in scenario earthquake. 

The hazard component to use for this loss assessment test is the macro-seismic intensity map of Wen-

chuan Ms8.0 earthquake (Figure 4-4), which was issued by China Earthquake Administration (CEA) based 

on the post-earthquake field investigations. The vulnerability function to use was the empirical loss func-

tion developed in Daniell (2014, Page 242) for mainland China. This empirical loss function was developed 

based on historical seismic damage and loss related to earthquakes occurred in mainland China. And such 

information was retrieved through extensive collection of damage and loss records from journals, books, 

reports, conference proceedings and even newspapers etc. Finally, based on the modelled residential 

building floor area in this study for Sichuan province and the unit construction price listed in Table 4-3, 

the estimated empirical loss to residential buildings caused by the recurrence of Wenchuan Ms8.0 earth-

quake  is around 432 billion RMB (in 2015 current price). The distribution of loss ratio, i.e., the ratio be-

tween the estimated loss and the modelled residential building stock value, in counties/districts of Si-

chuan Province that damaged in Wenchuan Ms8.0 earthquake is shown in Figure 4-5. 

In other reports and studies on the loss assessment of Wenchuan earthquake, e.g. in Yuan (2008), the 

estimated loss to residential buildings was around 170 billion RMB (in 2008 current price). The officially 

issued loss estimated by the Expert Panel of Earthquake Resistance and Disaster Relief (EPERDR, 2008) to 

residential buildings in Sichuan province was around 98.3-435.4 billion RMB, with the median around 

212.32-247.25 billion RMB (in 2008 current price). It should be noted that in those studies, the unit con-

struction price used for rural/urban/township building replacement was around 800-1500 RMB per 

square meter, which is 1/2.5-1/1.5 of the unit construction price used in this study as listed in Table 4-3. 

To lower down the gap in construction price used in this study and in previous studies, the estimated loss 

value (432 billion RMB) in this study is further divided by 1.5-2.5, then the rectified loss turns to be around 

144-288 billion RMB. Then the estimated loss range based on the buildings stock model developed in this 

study and the empirical loss function developed in Daniell (2014) is quite compatible with that given in 

previous studies. This compatibility further validates the robustness of the residential building stock 

model. Therefore, the grid level building stock model developed in this study can be regarded as a reliable 

component input for further seismic risk assessment. 
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Figure 4-4: Macro-seismic intensity map of 2008 Wenchuan Ms8.0 earthquake, modified based on the version issued 
by China Earthquake Administration (CEA). 
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Figure 4-5: Distribution of estimated residential buildingloss ratio (the ratio between loss and exposed stock value) 
in affected districts/counties in Sichuan Province, by assuming the recurrence of the 2008 Wenchuan Ms8.0 earth-
quake. 

4.4 Conclusion 

In this Chapter, a grid-level residential building stock model (in terms of floor area and replacement value) 

targeted for seismic risk analysis for mainland China is developed, by using 2015 GHS population density 

profile as the proxy and by disaggregating the administrative level 2010census data into 1km×1km scale. 

To evaluate the model performance, the residential building stock value is compared with the net capital 

stock value estimated in Wu et al. (2014) using perpetual inventory method at provincial level. The mod-

elled stock value in these two studies are indeed quite consistent for all the 31 provinces in mainland 

China. Furthermore, district level comparison of the residential floor area developed in this study with 

records from statistical yearbook of Shanghai is also conducted. It turns out that the floor area developed 

in this study is highly compatible with floor area recorded in the yearbook of Shanghai. Necessary adjust-

ment to the modelled results is conducted to more reasonably reflect the development disparity among 

districts within Shanghai. To further validate the performance of the model in seismic risk assessment, an 

empirical loss estimation by assuming the recurrence of 2008 Wenchuan M8.0 scenario earthquake is 

performed. By lower down the gap in unit construction price used in this study and in previous studies, 

the overall estimated loss turns to be quite approximate to loss derived from damage reports based on 
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field investigation. These congruences indicate the reliability of the residential building stock model de-

veloped in this study. 

The geo-coded grid-level residential building stock model developed here is flexible to update when more 

detailed census or statistics data are available. And it can also be conveniently combined with hazard data 

and vulnerability information for risk assessment to specific research area. 

The limitation of this work is that, currently the modelling focus is only on residential building stock, given 

the availability of detailed census data. While, when disastrous earthquakes occur, although the damage 

to and the collapse of buildings is the main cause of fatality and economic loss, damages to those non-

residential buildings (office, school, hospital, hotel, warehouse, factory, shop, cinema etc.) as well as life-

line projects, infrastructures and the consecutive losses are not negligible. Therefore, in further work, 

more efforts should be made to estimate the stock value of non-residential buildings and infrastructures 

at risk. Furthermore, the replacement value developed in this study did not integrate the depreciation of 

the exposed buildings. These limitations also outline the optimization direction for future study. 

4.5 Data/Code Availability 

2015 GHS population density profile:  

http://data.europa.eu/89h/jrc-GHS-ghs_pop_gpw4_globe_r2015a. 

2010 China Sixth Population Census Tabulation: http://www.stats.gov.cn/tjsj/pcsj/rkpc/6rp/indexch.htm 

2015 China Statistical Yearbook On Construction: http://tongji.cnki.net/kns55/navi/Year-

Book.aspx?id=N2017020307&floor=1 

2015 Shanghai Statistics Yearbook: http://tjj.sh.gov.cn/html/sjfb/201701/1000201.html  

An example illustrating the multi-variate equation solving process in Method section:  

Input file:  https://www.jianguoyun.com/p/DdOYRvoQgPb4Bhi-hdUB  

MATLAB script: https://www.jianguoyun.com/p/DcAageEQgPb4BhjHhdUB  

 

 

http://data.europa.eu/89h/jrc-GHS-ghs_pop_gpw4_globe_r2015a
http://www.stats.gov.cn/tjsj/pcsj/rkpc/6rp/indexch.htm
http://tongji.cnki.net/kns55/navi/YearBook.aspx?id=N2017020307&floor=1
http://tongji.cnki.net/kns55/navi/YearBook.aspx?id=N2017020307&floor=1
http://tjj.sh.gov.cn/html/sjfb/201701/1000201.html
https://www.jianguoyun.com/p/DdOYRvoQgPb4Bhi-hdUB
https://www.jianguoyun.com/p/DcAageEQgPb4BhjHhdUB
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5 Comparison of modelled loss against 
historical damage information  

Typically, the risk assessment of future potential seismic disasters entails three layers of information: haz-

ard, exposure and vulnerability (Figure 5-1). Hazards refer to the distribution patterns and occurrence 

frequencies of various earthquake generated ground motions. Exposure captures the attributes of all ex-

posed elements in terms of value, location and relative importance (e.g. critical facilities and infrastruc-

ture) to potential earthquakes. Vulnerability describes the susceptibility of those exposed elements to be 

damaged during an earthquake. 

 

Figure 5-1: Layers of information in risk/loss assessment process. 

Current earthquake risk/loss assessment methods can be divided into two types: the empirical method 

(e.g. ATC-13, 1985; Chen et al., 1997; Chan et al., 1998; Musson, 2000; Erdik et al., 2003; Jaiswal and Wald, 

2013;) and the analytical method (e.g. Kircher et al., 1997; Bommer et al., 2002; Erdik et al., 2003; Cardona 

et al., 2008; FEMA, 2008). In empirical method, macro-seismic intensity is used as the ground shaking 

predictor, which is a natural choice for loss modelling application, since intensity is directly related to 

levels of damage in different categories of building (Musson, 2000). Furthermore, there are extensive 

databases of building damage and corresponding intensities, which permit the derivation of empirical 

damage functions (Bommer et al., 2002). Another key advantage of empirical loss estimation is that the 

exposed stock value of building and infrastructure can be represented by a macroscopic indicator e.g. 

Gross Domestic Product (GDP).  This advantage allows the empirical method to be frequently used in post-

earthquake rapid loss estimation. 

The general form of analytical method for single scenario loss estimation was firstly proposed by Kircher 

et al. (1997) and elaborated in the HAZUS manual (FEMA, 1999), also called as the spectral displacement 

loss model (Spence et al., 2003). The analytical loss estimation method is considered to represent the 

state-of-the-art in earthquake loss estimation, at least for building damage due to ground shaking (Bom-

mer et al., 2002). In this method, quantitative measures of ground shaking are used (e.g. peak ground 

acceleration, spectral acceleration, spectral displacement etc.); exposed building groups are analyzed in 
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a similar manner to the engineering analysis of a single structure. Thus, detailed information on building 

inventory (e.g. construction material, height, age, occupancy type, load-bearing structure etc.) needs to 

be known, which is not always straightforward to retrieve. Furthermore, building vulnerability function in 

analytical loss estimation method is derived from building capacity curve (based on engineering parame-

ter to characterize the nonlinear behavior of each specific building type), fragility curve (relation of quan-

titative ground shaking and probability of being in each damage limit state given specific shaking), and the 

consequence model (relation between damage state and loss ratio). A summarization of the differences 

between empirical method and analytical method is listed in Figure 5-2.  

 

Figure 5-2: Differences between loss estimation by using analytical method and empirical method. 

The loss assessment can be performed for either one earthquake scenario or for multi-scenario (also dis-

tinguished by deterministic or probabilistic scenario, e.g. in Yeats et al., 1997).  To validate the estimated 

loss for single earthquake scenario, the loss value derived from post-earthquake field surveys is consid-

ered to be the most reliable source. To validate the estimated loss for multi-scenario earthquakes, the 

empirical loss function is regarded as a representative of the historical damage information in this study, 

since the derivation of an empirical loss function entails a time-consuming and labor-intensive collection 

of historical earthquake related damage information that extensively distributed among papers, books, 

conference proceedings, newspapers etc.  

In this chapter, probabilistic (single scenario based) and probabilistic (multi-scenario based) loss estima-

tion will be presented by using both empirical and analytical loss estimation methods. Then, evaluation 

of these modelled loss will be given. For single scenario loss estimations, two sets of comparisons are to 

be conducted. Firstly, loss estimated with the empirical loss function developed by Daniell (2014) for 

mainland China will be compared with actual loss derived from field investigation, by using the macro-

seismic intensity map of the 2008 Wenchuan Ms8.0 earthquake occurred in Sichuan province as the haz-

ard input. Secondly, sensitivity tests of estimated loss to intensity-PGA conversion relations will be dis-

cussed. This starts from the fact that, after the occurrence of a damaging earthquake, to support the 

government in emergency response and disaster management, a rapid loss modelling result is required. 

In this case, a macro-seismic intensity map (required for empirical loss estimation) can only be converted 

from instrumental ground motion records (e.g. PGA, SA). Therefore, the difference between estimated 

loss by using different intensity-PGA conversion relations will be explored. 
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Multi-scenario based probabilistic loss to be estimated is mainly to quantitatively assess the socio-eco-

nomic impact of potential earthquake hazard in a densely populated area, which is also of potential inter-

est for insurance and reinsurance industries and helpful for governments to plan effective actions for 

seismic risk mitigation and preparedness. Since currently it is still not available to predict when and where 

future earthquakes will occur and how strong they will be, to evaluate the modelled probabilistic loss, a 

more practical way is to fully make use of the historical damage information, and try to derive a robust 

empirical loss estimation, which can be regarded as a tool to calibrate modelled probabilistic loss. In this 

regard, the empirical loss function developed in Daniell (2014) for mainland China has been validated to 

be a reliable source. Hence, the evaluation of modelled probabilistic loss for multi-scenario earthquake 

can be achieved by comparing loss estimated by using empirical method with the empirical loss function 

in Daniell (2014). Furthermore, sensitivity tests by changing the elements in hazard and vulnerability com-

ponents (e.g. GMPE function, intensity-PGA relation) will also be conducted to quantify the sensitivity of 

the probabilistic loss to changes in these parameters. 

To perform the loss estimation and evaluation above, the seismic source parameters in Chapter 2 to con-

struct the hazard map for Shanxi Rift System in Northern China will be used to generate the earthquake 

scenarios (single earthquake scenario and multi probabilistic scenarios), i.e. as the “hazard” component 

of the loss estimation. The analytical fragility curves and the intensity-PGA relation developed in Chapter 

3 for major building types in mainland China  will be used to derive the “vulnerability” component. Mean-

while, the grid-level residential building stock model developed for mainland China in Chapter 4 will serve 

as the “exposure” component.   

5.1 Single earthquake scenario loss estimation and evaluation 

5.1.1 2008 Wenchuan Ms8.0 earthquake in Sichuan Province, China  

Although the empirical loss function developed by Daniell (2014) has been proved to be excellent in pred-

icating historical loss, to further validate the perfomance of this empirical loss function in estimating the 

seismic loss based on today’s exposure in China, a single scenario loss estimation and evaluation test will 

be presented by assuming the recurrence of the 2008 Wenchuan Ms8.0 earthquake in Sichuan Province, 

China. The estimated loss using the empirical loss function in Daniell (2014) will be compared with the 

loss estimated directly from damage reports, which are based on post-earthquake filed investigations and 

considered to be most reliable source of damage information.  

The great Wenchuan Ms8.0 earthquake occurred on May 12, 2008 in the Sichuan Province of China. It is 

the most serious earthquake disaster in China since the great Tangshan Earthquake (Ms=7.8, July 28, 

1976). According to official reports, there were 69,225 deaths, 379,640 injuries and 17,939 missing as of 

Aug. 11, 2008. The China Earthquake Administration (CEA) quickly sent hundreds of experts to the field 

immediately after the event, to investigate the damage and assess the economic losses (Yuan, 2008). The 

macro-seismic intensity map and peak ground acceleration records in damaged area are shown in Figure 

5-3. 
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Figure 5-3: Comparison of PGA records with macro-seismic intensity map of Wenchuan earthquake (Li et al., 2008; 
note the extent of the intensity map is slightly different from the final intensity map issued by China Earthquake 
Administration). 

5.1.2 Damage reports of Wenchuan earthquake based on post-earthquake 

investigation 

In the post-earthquake damage reports (Chen and Tao, 2018; refer to their Table 6-1-61), the damaged 

buildings in Sichuan and its neighboring provinces were divided into rural and township/urban classes, 

but without further classification of building types. For rural buildings, the number of damaged rooms 

were recorded and for township/urban buildings, the total damage area of different damage states was 

given. The average size of a rural room is assumed to be 15 m2 and the construction price is assumed to 

be around 1000 RMB/m2. For township/urban buildings, the average construction price is assumed to be 

2500 RMB/m2. The direct loss to buildings in Sichuan Province is estimated to be around 169 billion RMB 

from these damage reports (Table 5-1, note this table does not include all the seriesly damage coun-

ties/districts, e.g. Wenchuan County). The distribution of loss proportion/quota (the percentage of loss in 

each county compared with the overall loss) estimated from damage reports for the 29 counties/districts 

in Sichuan Province in Table 5-1  is shown in Figure 5-4.  

Table 5-1: Summary of damaged buildings in 29 seriously damaged counties/districts of Sichuan Province (data pro-
vided by Sichuan Earthquake Administration, through personal communication). 

adm2_name adm3_name 

number of damaged township/ur-
ban buildings (unit: m2) 

number of damaged rural buildings 
(unit: room, 1 room=15m2) 

loss esti-
mated from 
the damage 

reports (RMB) 
D4/D3 D2 D1 D4/D3 D2 D1 

Abazhou Lixian 785700 77700 0 31306 16038 0 2.41E+09 

Mianyang Jiangyou 1470904 7018450 4032820 434096 354136 49212 2.17E+10 

Guangyuan Lizhou 6482800 4659400 0 422800 253500 0 2.80E+10 

Guangyuan Chaotian 485400 121300 0 27816 19555 5478 1.77E+09 

Guangyuan Wangcang 1577200 223000 0 84949 101918 170686 5.99E+09 

Mianyang Zitong 498000 1092000 827100 251687 235582 21525 7.89E+09 

Mianyang Youxian 903448 3018480 491760 161380 183697 95836 9.63E+09 

Deyang Jingyang 616300 396300 10491000 221100 147300 0 8.59E+09 

Abazhou Xiaojin 271000 61700 353100 40854 47377 0 1.68E+09 
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Mianyang Fucheng 230194 1363295 2044943 28298 69664 29865 3.68E+09 

Deyang Luojiang 529400 260753 1171247 67100 134800 0 3.73E+09 

Abazhou Heishui 166300 10900 367900 27384 41327 0 1.16E+09 

Chengdu Chongzhou 13112 176749 373693 76040 151970 140000 2.72E+09 

Guangyuan Jiange 1491500 1012900 0 143100 341800 0 9.12E+09 

Mianyang Santai 1177820 5642140 5060860 427933 842074 561383 2.39E+10 

Nanchong Langzhong 525000 1120000 2630000 32554 0 0 3.68E+09 

Mianyang Yanting 320178 787212 707516 36448 62516 72111 2.95E+09 

Abazhou Songpan 84800 243300 360000 11808 64894 0 1.23E+09 

Guangyuan Cangxi 331600 1372400 0 145772 251692 176496 6.58E+09 

Ya'an Lushan 1680 12480 1062600 2300 44700 0 6.51E+08 

Deyang Zhongjiang 55160 247100 4012750 83498 202552 762188 5.23E+09 

Guangyuan Zhaohua 170600 235600 279200 48483 182925 30595 2.82E+09 

Chengdu Dayi 325000 347000 799000 5160 12445 27350 1.57E+09 

Ya'an Baoxing 4286 32467 173462 5300 36200 0 4.37E+08 

Bazhong Nanjiang 191300 106500 0 35300 46300 0 1.39E+09 

Deyang Guanghan 22400 126100 541547 65400 404900 0 4.26E+09 

Ya'an Hanyuan 115555 70935 180830 192100 76600 0 3.56E+09 

Ya'an Shimian 152600 167300 0 7500 22500 0 8.22E+08 

Abazhou Jiuzhaigou 167700 263100 543700 11291 55357 0 1.41E+09 

In total: 19166937 30266561 36505028 3128757 4404319 2142725 1.69E+11 

Note: D4, D3, D2, D1 refers to damage state of collapse, serious damage, moderate damage and slight damage, re-

spectively; and the corresponding empirical loss ratio to estimate building loss from the damage reports is 0.9, 0.9, 

0.5, 0.1. 

 

 

Figure 5-4: Distribution of building loss proportion/quota in counties/district of Sichuan Province with damage re-
ports. 

For comparison the county/district losses derived from damage reports in Table 5-1, the empirically esti-

mated losses in these 29 counties/districts are shown in Figure 5-6, which is estimated based on the 
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official intensity map of Wenchuan earthquake issued by China Earthquake Administration (Figure 4-5) 

and the empirical loss function developed in Daniell (2014; Figure 5-5) as well as the residential building 

stock model developed in Chapter 4 for Sichuan Province. 

 

Figure 5-5: Empirical loss function developed in Daniell (2014) for mainland China, based on extensive collection of 
historical seismic damage information. 

 

Figure 5-6: Distribution of estimated building loss proportion/quota for counties/districts in Table 5-1, based on the 
exposure model in Chapter 4, the empirical loss function in Daniell (2014) and the macro-seismic intensity map in 
Figure 4-5. 

The misfit between damage reports based loss proportion/quota (or surveyed loss quota) in Figure 5-4 

and empirically estimated loss quota in Figure 5-6 are illustrated in Figure 5-7. As can be clearly seen, the 
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estimated loss quota is highly consistent with the surveyed loss quota for most counties/districts, except 

in Santai and Lizhou, where surveyed loss quota is obviously higher than estimated; while in Chongzhou 

and  Dayi, the surveyed loss is lower than estimated.  

 

Figure 5-7: Misfit in loss quota for 29 counties/districts with damage reports in Sichuan Province. 

According to field investigation, the southwestern rupture of the Longmenshan Fault (where the Wen-

chuan earthquake occurred) stopped  at the intersection area between Chongzhou and Dayi, so the dam-

age to buildings also stopped in between. This may explain why the empirically estimated (“modelled” in 

Figure 5-7) loss quota is higher than the actual surveyed loss quota (“surveyed” in Figure 5-7) in 

Chongzhou and Dayi. According to Ding (2017), abnormal high ground motions were recorded during 

Wenchuan earthquake in Lizhou and Sanzhou, which may lead to the higher surveyed loss quota (“sur-

veyed” in Figure 5-7) than empirically estimated (“modelled” in Figure 5-7) in these two counties. 

Generally, the loss proportion distribution based on field investigation is highly consistent with that based 

on the empirical loss function in Daniell (2014), the exposure model developed in Chapter 4 and the 

macro-seismic intensity map of Wenchuan earthquake issued by China Earthquake Administration. This 

consistency further validates the robustness of the empirical loss function in Daniell (2014) in evaluating 

the empirical loss based on today’s exposure (as developed in Chapter 4, in 2015 price). Therefore, the 

empirical loss function develop for mainland China in Daniell (2014) is continuely regarded as a trustwor-

thy representative of the historical seismic damage information, and can thus be used to calibrate/evalu-

ate the seismic loss estimated by using other methods, e.g. the analytical method in both single-scenario 

based loss estimation and multi-scenario based probabilistic loss estimation. 
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5.2 Comparison of deterministic loss estimated by using 

empirical and analytical method 

After validating the robustness of the empirical loss function developed in Daniell (2014) by comparing 

this empirical loss with filed investigation surveyed loss in Section 5.1, this empirical loss function is con-

sidered to be a reliable representative of the historical seismic damage information in mainland China. 

Therefore, in this section, loss estimated from empirical method will be compared with loss estimated 

from analytical method, based on several synthetic earthquake scenarios of different magnitudes for 

Shanxi Rift System (the ground shaking is in terms of PGA). 

To calculate empirical loss, in which macro-seismic intensity map is used as the hazard input, conversion 

of the PGA values (in ground shaking maps of synthetic scenarios) to intensity is needed by using Intensity-

PGA conversion relation. Such conversion is also quite necessary after the occurrence of a damaging 

earthquake. Since to support the government in emergency response and disaster management, a rapid 

loss modelling result is required. In this case, a macro-seismic intensity map (required for empirical loss 

estimation) can only be converted from instrumental ground motion records (e.g. PGA, SA). It is also ob-

vious that using different Intensity-PGA relations will definitely lead to difference in modelled loss. There-

fore, in this section, sensitivity tests to quantify the sensitivity of empirically estimated loss to changes in 

Intensity-PGA relation will be presented. Then, the components required to conduct analytical loss esti-

mation will be illustrated in detail. Finally, comparison between the modelled loss using empirical and 

analytical method will be given. 

5.2.1 Synthetic scenarios generated based on the seismic source parameters 

in Chapter 2 to construct the seismic hazard map in Shanxi Rift System  

To quantify the sensitivity of the empirically modelled loss to changes in Intensity-PGA conversion relation, 

four synthetic earthquake scenarios are generated first (with magnitude of 6.3, 7.5, 8.2 and 9.8), based 

on the seismic source parameters in Chapter 2 to construct the seismic hazard map in Shanxi Rift System. 

The GMPE relation used to generate the ground shaking maps of these synthetic scenarios is developed 

by Yu et al. (2013) for Northern China, which is in terms of PGA. The PGA distribution of these four syn-

thetic earthquake scenarios is shown in Figure 5-8. 



Comparison of modelled loss against historical damage information 

79 

 

Figure 5-8: PGA distribution map of the four synthetic earthquake scenarios with magnitude of 6.3, 7.5, 8.2 and 9.8 
(the background layer represents the administrative extent of Shanxi Province). 

5.2.2 Empirical loss estimation 

To perform empirical loss estimation, the PGA related ground shaking map in the synthetic scenarios 

needs to be converted from PGA to macro-seismic intensity first. Therefore, a brief review of the existing 

Intensity-PGA conversion relations is necessary. As shown in Figure 5-9, among the scrutinized relations, 

three are developed for mainland China (Ma et al., 2014; Ding et al., 2017; Xin et al., 2019); two are for 

California, USA (Wald et al., 1999; Worden et al., 2012); three are for European countries (Ambraseys, 

1975; Faccioli and Cauzzi, 2006; Tselentis and Danciu, 2008); and three are developed using data from 

different countries and regions, therefore tagged das “global“ (Medvedev and Sponheuer, 1969; Murphy 

and O‘Brien, 1977; Caprio et al., 2015). 
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Figure 5-9: Comparison of different Intensity-PGA conversion relations. 

5.2.2.1 Comparison of PGA-MDR relation (i.e. empirical loss function) derived from Intensity-PGA 

conversion relation 

After the conversion of the PGA value in the synthetic ground shaking map in Figure 5-8 into intensity 

(using the relations in Figure 5-9), the derived intensity is then combined with the empirical loss function 

in Daniell (2014, Figure 5-5) to build the relation between PGA and the empirical mean damage ratio (MDR, 

i.e. loss ratio). A summarization of such PGA-MDR relations derived from different Intensity-PGA conver-

sion relations is given in Figure 5-9. These PGA-MDR relations will be used later in Section 5.3 for proba-

bilistic loss estimation. 

 

Figure 5-10: A summarization of PGA-MDR relations derived from different Intensity-PGA conversion relations, 
combined with the empirical loss function developed in Daniell (2014, Figure 5-5). 
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5.2.2.2 Empirical loss estimated by using median intensity derived from Intensity-PGA relation and 

by integrating the standard deviation of the derived intensity 

After a visual comparison of the PGA-MDR relations in Figure 5-10, finally five of them are chosen to per-

form the empirical loss calculation for the four synthetic earthquake scenarios in Figure 5-8. The five PGA-

MDR relations are derived based on the Intensity-PGA conversion relation in Ma et al. (2014), Ding et al. 

(2017), Xin et al. (2019; as explained in detail in Chapter 3), Worden et al. (2012) and Caprio et al. (2015). 

The empirical loss calculated using these PGA-MDR relations (based on the exposure model in Chapter 4) 

are summarized in Table 5-2 and Table 5-3, without or with the integration of variance in derived intensity, 

respectively. The integration of the variance in derived intensity in Table 5-3 is achieved by adding a ran-

dom variable to the converted intensity from each PGA level, and this variable is assumed to follow the 

normal distribution, with zero as the  expectation value and sigma of the Intensity-PGA relation as the 

sigma value.Then for the fixed PGA, the value of the converted intensity changes with the loop, thus the 

corresponding MDR also changes with the loop. Here, for better visualization, only ten loops of the mod-

elled empirical loss are listed in Table 5-3. 

Table 5-2: Empirically modelled median loss by using different Intensity-PGA conversion relations. 

Mag loss_Xin loss_Ding loss_Worden loss_Caprio loss_Ma 

6.3 3.56E+09 4.64E+09 2.47E+09 4.58E+09 8.68E+09 

order: 4 2 5 3 1 

7.5 2.98E+10 3.58E+10 2.08E+10 3.6E+10 5.66E+10 

order: 4 2 5 3 1 

8.2 2.71E+11 2.28E+11 1.92E+11 2.63E+11 2.3E+11 

order: 1 4 5 2 3 

9.8 5.9E+11 4.82E+11 4.22E+11 5.66E+11 4.46E+11 

order: 1 3 5 2 4 

 

Table 5-3: Empirically modelled loss by using different Intensity-PGA conversion relations, with the variance of the 
converted intensity from fixed PGA level being considered. 

Xin loop 

6.3 

3.56E+09 1.15 

7.5 

2.98E+10 1.15 

8.2 

2.71E+11 1.02 

9.8 

5.9E+11 1.02 

0.58 1 3.85E+09 1.08 3.24E+10 1.09 2.78E+11 1.02 5.89E+11 1.00  
2 3.47E+09 0.98 3.54E+10 1.19 2.70E+11 1.00 5.94E+11 1.01  
3 3.97E+09 1.12 3.30E+10 1.11 2.80E+11 1.03 5.89E+11 1.00  
4 3.60E+09 1.01 3.46E+10 1.16 2.62E+11 0.97 6.06E+11 1.03  
5 4.06E+09 1.14 3.37E+10 1.13 2.81E+11 1.04 6.13E+11 1.04  
6 4.69E+09 1.32 3.51E+10 1.18 2.76E+11 1.02 6.15E+11 1.04  
7 4.02E+09 1.13 3.24E+10 1.09 2.78E+11 1.03 6.17E+11 1.05  
8 4.19E+09 1.18 3.44E+10 1.16 2.77E+11 1.02 5.99E+11 1.02  
9 4.02E+09 1.13 3.29E+10 1.11 2.97E+11 1.09 5.89E+11 1.00  
10 5.18E+09 1.46 3.98E+10 1.34 2.80E+11 1.03 6.11E+11 1.04 

Ding loop 

7.5 

4.64E+09 1.11 

7.5 

3.58E+10 1.06 

8.2 

2.28E+11 1.03 

9.8 

4.82E+11 1.01 

0.31 1 5.24E+09 1.13 3.79E+10 1.06 2.34E+11 1.02 4.71E+11 0.98  
2 4.93E+09 1.06 3.77E+10 1.05 2.31E+11 1.01 4.83E+11 1.00  
3 5.71E+09 1.23 3.67E+10 1.02 2.35E+11 1.03 4.91E+11 1.02  
4 5.40E+09 1.16 3.74E+10 1.04 2.30E+11 1.01 4.94E+11 1.03  
5 4.61E+09 1.00 3.76E+10 1.05 2.26E+11 0.99 4.94E+11 1.03  
6 5.30E+09 1.14 3.91E+10 1.09 2.32E+11 1.02 4.91E+11 1.02  
7 5.24E+09 1.13 3.84E+10 1.07 2.33E+11 1.02 4.88E+11 1.01  
8 5.00E+09 1.08 3.77E+10 1.05 2.36E+11 1.04 4.71E+11 0.98  
9 4.77E+09 1.03 4.09E+10 1.14 2.41E+11 1.06 4.81E+11 1.00  
10 5.13E+09 1.11 3.72E+10 1.04 2.44E+11 1.07 4.92E+11 1.02 

Worden loop 

6.3 

2.47E+09 1.61 

7.5 

2.08E+10 1.39 

8.2 

1.92E+11 1.05 

9.8 

4.22E+11 1.06 

0.73 1 4.71E+09 1.91 2.95E+10 1.42 1.92E+11 1.00 4.22E+11 1.00  
2 3.85E+09 1.56 3.00E+10 1.45 1.89E+11 0.99 4.37E+11 1.04  
3 4.08E+09 1.65 2.89E+10 1.39 2.11E+11 1.10 4.44E+11 1.05 
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4 4.42E+09 1.79 3.10E+10 1.49 2.04E+11 1.06 4.62E+11 1.09  
5 3.81E+09 1.54 2.86E+10 1.38 2.03E+11 1.06 4.45E+11 1.05  
6 3.35E+09 1.35 2.75E+10 1.32 2.22E+11 1.16 4.49E+11 1.06  
7 3.34E+09 1.35 2.71E+10 1.31 1.93E+11 1.01 4.45E+11 1.05  
8 3.48E+09 1.41 3.14E+10 1.51 1.98E+11 1.03 4.48E+11 1.06  
9 5.17E+09 2.09 2.79E+10 1.34 2.05E+11 1.07 4.64E+11 1.10  
10 3.49E+09 1.41 2.67E+10 1.28 2.06E+11 1.07 4.53E+11 1.07 

Caprio loop 

6.3 

4.58E+09 2.57 

7.5 

3.60E+10 2.10 

8.2 

2.63E+11 1.24 

9.8 

5.66E+11 1.12 

1.4 1 1.13E+10 2.47 8.25E+10 2.29 3.05E+11 1.16 6.31E+11 1.12  
2 1.18E+10 2.58 6.95E+10 1.93 3.01E+11 1.14 6.39E+11 1.13  
3 9.88E+09 2.16 8.09E+10 2.24 2.98E+11 1.13 6.38E+11 1.13  
4 1.19E+10 2.59 7.35E+10 2.04 3.40E+11 1.29 6.62E+11 1.17  
5 1.09E+10 2.38 7.76E+10 2.15 3.15E+11 1.19 6.33E+11 1.12  
6 1.11E+10 2.41 8.63E+10 2.39 3.61E+11 1.37 6.78E+11 1.20  
7 1.30E+10 2.83 7.23E+10 2.01 3.44E+11 1.31 5.82E+11 1.03  
8 1.05E+10 2.28 7.98E+10 2.21 3.48E+11 1.32 5.76E+11 1.02  
9 1.31E+10 2.87 6.89E+10 1.91 3.39E+11 1.29 6.34E+11 1.12  
10 1.45E+10 3.17 6.66E+10 1.85 3.18E+11 1.21 6.65E+11 1.18 

Ma loop 

6.3 

8.68E+09 1.47 

7.5 

5.66E+10 1.19 

8.2 

2.30E+11 1.06 

9.8 

4.46E+11 1.03 

0.62 1 1.35E+10 1.56 6.54E+10 1.15 2.46E+11 1.07 4.57E+11 1.03 

2 1.29E+10 1.48 7.00E+10 1.24 2.37E+11 1.03 4.57E+11 1.03 

3 1.33E+10 1.53 6.79E+10 1.20 2.61E+11 1.13 4.49E+11 1.01 

4 1.30E+10 1.49 6.52E+10 1.15 2.38E+11 1.03 4.64E+11 1.04 

5 1.17E+10 1.35 6.63E+10 1.17 2.50E+11 1.09 4.57E+11 1.03 

6 1.34E+10 1.54 6.98E+10 1.23 2.54E+11 1.10 4.98E+11 1.12 

7 1.23E+10 1.41 6.57E+10 1.16 2.61E+11 1.13 4.55E+11 1.02 

8 1.23E+10 1.42 6.66E+10 1.18 2.30E+11 1.00 4.52E+11 1.02 

9 1.30E+10 1.49 6.79E+10 1.20 2.44E+11 1.06 4.46E+11 1.00 

10 1.27E+10 1.46 6.91E+10 1.22 2.25E+11 0.97 4.53E+11 1.02 

Note: the value in red behind each author in the first column represents the sigma in each Intensity-PGA relation; the number in 

blue represents the average loss modelled in the following ten loops; the value filled in yellow represents the average amplifica-

tion of the average loss in blue, compared with the median loss in Table 5-2. 

Based on the empirically estimated loss values in Table 5-2 and Table 5-3, the following conclusions can 

be made: 

1. Generally, the loss in Table 5-3 is higher than the median loss in Table 5-2, due to the integration of the 

variance of the converted intensity from PGA; 

2. For each intensity-PGA relation, the overestimation of loss in Table 5-3 (compared with the median loss 

in Table 5-2) decreases with the increase of magnitude; 

3. The loss overestimation factor (the ratio between the estimated loss in Table 5-3 and the median loss 

in Table 5-2) generally follows the order among different intensity-PGA relations:  

    Caprio > Worden > Ma > Xin >= Ding; 

4. In Table 5-3, the higher the  sigma value of the Intensity-PGA conversion relation, the higher the in-

crease in estimated loss (compared with median loss in Table 5-2), since the variance of the converted 

intensity from PGA is integrated. 

5.2.3 Analytical loss estimation 

To perform analytical loss assessment, the PGA based ground shaking map in Figure 5-8 can be used di-

rectly as the hazard input. The exposure input to be used is the grid-level building stock model developed 

in Chapter 4. Within each grid of this exposure model, there are 17 building sub-types that derived from 

census data. To make use of the analytical fragility curves developed in Chapter 3, the 17 building sub-
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types in the exposure model need to be recategorized into the four major buildings types classified in 

Chapter 3 (namely Masonry_A, Masonry_B, RC_A, RC_B), for which the analytical fragility curves have 

been derived. The analytical vulnerability curve to be used in analytical loss estimation method is derived 

from the fragility curve developed in Chapter 3 combined with the consequence model (relation between 

damage state and mean loss ratio) (Silva et al, 2015). The details of this building recategorization process 

are given as follows. 

5.2.3.1 Recategorization of 17 building sub-types in the exposure model (Chapter 4) into the four 

building types classified by vulnerability (Chapter 3) 

In the grid-level building stock model developed in Chapter 4, there are 17 specific buildings sub-types in 

each grid, classified by construction material and storey class given in 2010census data, as shown in 5-11. 

 

Figure 5-11: 17 building types in the building stock model developed in Chapter 4. 

To perform the analytical loss assessment based on the analytical fragility curve developed in Chapter 3 

for four major building types in mainland China, the 17 building sub-types in Figure 5-11 need to be recat-

egorized into the four building types in Chapter 3 (namely Masonry_A, Masonry_B, RC_A, RC_B). Based 

on the similarity in seismic resistance capability among these 17 specific building types, the initially de-

signed reclassification scheme is as follows:  

• Masonry_A: brickwood (1,2-3); mixed (1,2-3,4-6, 7-9); other (1,2-3,4-6, 7-9) 

• Masonry_B: mixed (≥10); other (≥10) 

• RC_A: steel-RC (1,2-3,4-6, 7-9) 

• RC_B: steel-RC (≥10) 

In each reclassified building type, the same fragility curve is to be used in analytical loss estimation. To 

derive the analytical vulnerability curve to be used in analytical loss modelling method, the fragility curves 

of the four reclassified building types need to be further combined with the consequence model (relation 

between damage state and loss ratio, as used in Silva et al, 2015). The consequence model used in this 

study is from Sun and Chen (2009), as listed in Table 5-4. The derived analytical vulnerability curves (rela-

tion between PGA and MDR/loss ratio) for Masonry_A, Masonry_B, RC_A and RC_B are plotted in Figure 

5-12. 

Table 5-4: The consequence model (relation between damage state and mean loss ratio) developed by Sun and Chen 
(2009). 

Structure type 
Damage state 

Basically intact Slight damage Moderate damage Serious damage collapse 
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steel/RC 2-10 11-25 26-60 61-90 91-100 

masonry 0-5 6-19 20-47 48-85 86-100 

  Note: the numbers in Table 5-4 are in percentage (%). 

 

 

Figure 5-12: Vulnerability curves developed for building classes to estimate loss in analytical method. 

5.2.3.2 Deterministic loss estimated using analytical method 

After getting the hazard input, exposure model and analytical vulnerability curve ready, the loss calcula-

tion can be performed based on the open source platform CAPRA-GIS (Marulanda et al., 2013). It should 

be noted that, in analytical loss modelling method, the loss of each building type is calculated separately 

by multiplying the vulnerability curve of each building type with exposed building stock replacement value. 

In contrast, in empirical loss modelling method, only the replacement value of all exposed buildings is 

needed and the same empirical loss function is applied. 

The deterministic (or single scenario based) loss estimated using the analytical method is shown in Table 

5-5. The empirically modelled median loss in Table 5-2 by using the Intensity-PGA conversion relation in 

Xin et al. (2019, developed in Chapter 3) is listed in Table 5-5 for comparison. As can be observed, with 

the increase of magnitude, the empirically estimated median loss is increasingly larger than loss estimated 
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by using the analytical method, but still within the two times’ difference (i.e. the empirical loss is lower 

than two times of the analytical loss). The change of difference in estimated loss might be ascribed to the 

increasing difference in vulnerability of different building types with magnitude increase,  since the em-

pirical method applies the same loss ratio to all building types, while the analytical method considers the 

difference in vulnerability of different building types. 

Table 5-5: Comparison of loss estimated by analytical method with empirically estimated median loss listed in Table 
5-2 (using the intensity-PGA conversion relation from Xin et al., 2019, as developed in Chapter 3) for the four synthetic 
earthquake scenarios in Figure 5-8. 

Mag median empirical 
loss (Xin et al, 2019) 

analytical 
loss 

empirical_loss/engi-
neering_loss 

6.3 3.56E+09 3.28E+09 1.09 

7.5 2.98E+10 2.05E+10 1.45 

8.2 2.71E+11 1.99E+11 1.36 

9.8 5.9E+11 3.78E+11 1.56 

 

It should be noted that when other intensity-PGA conversion relations are used in calculating empirical 

loss, the median empirical loss value will change accordingly (as shown in Table 5-2). And for the same 

magnitude, loss estimated by empirical method will not always higher than loss estimated by analytical 

method. 

5.3 Multi-scenario based probabilistic loss estimation – a case 

study in Shanxi Rift System 

To ensure a long-term security culture and economic prosperity especially in seismic active areas, the 

assessment of probabilistic loss is necessary. This allows the consideration of budget allocation and the 

implementation of an effective financial protection strategy, which in turn can protect government/pri-

vate resources and safeguard socioeconomic development (Marulanda et al., 2013). The possibility of the 

occurrence of future highly destructive events in many areas of the world creates the need to focus risk 

estimation on probabilistic models, which can make full use of the limited available information of the 

historical data, given the low frequency of catastrophic seismic events. This fact also leads to the large 

uncertainties related to the severity and frequency characteristics of the events that must be considered 

in a probabilistic risk model. The development of earthquake prediction models uses seismological and 

engineering bases, which allows the assessment of the risk of loss for catastrophic events.  

The probabilistic risk model quantifies potential losses arising from all the potential earthquake events to 

be occurred with the seismic source area and is built upon a sequence of modules (hazard, exposure, 

vulnerability, loss/risk). The hazard module in multi-scenario based probabilistic loss estimation defines 

the frequency and severity of earthquake to occur at different locations within the seismic sources and 

the ground shaking distribution of each event. For each earthquake, the annual probability of having a 

ground motion greater than some specified value is equal to the recurrence rate of the earthquake times 

the probability that the ground motion will be exceeded if that earthquake occurs (this probability is de-

fined in the ground motion prediction equation, namely GMPE).  

The seismic source parameters (e.g. the division of each area/fault source, the derivation of Gutenberg-

Richter relation, the determination of maximum earthquake that can occur in each area/fault source)  of 
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the hazard module are derived based the tectonic background, the historical earthquakes occurred and 

other geological information in scientific studies that performed in the region of interest. For Shanxi Rift 

System, these seismic hazard parameters are provided by Li (2015), with more details introduced in Chap-

ter 2. Once these seismic source parameters are established, a series of synthetic events can be generated 

using open source software CRISIS (Aguilar-Meléndez et al., 2017). These sets of synthetic events repre-

sent all the possible hypocenters and the whole range of possible magnitudes associated with a specific 

hypocentral location. Each of these events or scenarios is associated with a specific frequency of occur-

rence. Naturally, the scenarios associated with low-magnitude earthquakes will have a higher probability 

of occurrence than those scenarios associated with high-magnitude earthquakes, which will have a rela-

tively low probability of occurrence. 

Based on the synthetic scenarios generated from the seismic source parameters to construct the seismic 

hazard map in Shanxi Rift System in Chapter 2, the grid-level residential building stock model developed 

in Chapter 4, and the empirical loss function and analytical vulnerability curve derived in previous sections 

of this chapter, the estimation of multi-scenario based probabilistic loss can be performed on the open 

source platform CAPRA (Comprehensive Approach to Probabilistic Risk Assessment). CAPRA is developed 

by ERN-AL Consortium (ERN-AL, 2010) with the support of the World Bank, the Inter-American Develop-

ment Bank and the UN-ISDR. CAPRA is conceived as an open source model for the analysis and visualiza-

tion of natural hazards, exposition and risks. Different activities of disaster risk management and not only 

for risk financing (Cardona et al., 2010) are integrated in this initiative. It also comprehends a training 

process that creates and enables an environment for the mainstreaming of disaster risk reduction.   

5.3.1 Metrics to compare probabilistic loss 

For proper comparison of estimated multi-scenario probabilistic loss by using empirical method and ana-

lytical method, the main metrics typically used are the loss exceedance curve (LEC) and the average annual 

loss (AAL), which provide loss comparison from a probabilistic view and from a deterministic view, respec-

tively. The definitions of LEC and AAL in Marulanda et al. (2013) are modified and given as follows. 

Loss exceedance curve (LEC): represents the annual frequency (or return period) of exceedance of a series 

of loss value. This is the most important catastrophe risk metric for risk managers, since it estimates the 

amount of funds required to meet risk management objectives. The LEC is calculated by considering the 

whole set of synthetic events generated in the hazard module, which comprises all the possible hypocen-

ters and the whole range of possible magnitudes associated with a specific hypocentral location within 

the study region. Once the LEC is derived, it is possible to obtain other related metrics for the financial 

analysis of seismic loss such as the average annual loss of a region, the probable maximum loss at fixed 

return period.  

Average annual loss (AAL): is the expected loss per year. Computationally, AAL is the sum of the product 

of the expected losses in a specific event and the annual occurrence frequency of that event, with all 

synthetic events generated in the hazard module being considered. The expected loss of one synthetic 

event includes losses from all buildings exposed to the hazard extent of the event, supposing that the 

process of occurrence of this synthetic event is stationary and that damaged buildings have their re-

sistance immediately restored after an event.  
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5.3.2 Derivation of AAL and LEC in multi-scenario based probabilistic loss 

estimation 

For building type 𝑘 at grid 𝑖, the annual expected loss generated by earthquake 𝑗, marked as 𝐿𝑜𝑠𝑠𝑖,𝑗,𝑘, can 

be formulated as follows: 

𝐿𝑜𝑠𝑠𝑖,𝑗,𝑘 = 𝑉𝑢𝑙(𝑃𝐺𝐴𝑖,𝑗) ∗ 𝐴𝑠𝑠𝑒𝑡𝑖,𝑘 ∗ 𝐹𝑟𝑒𝑞𝑗   (5.1) 

In which, 𝑉𝑢𝑙(𝑃𝐺𝐴𝑖,𝑗) represents the mean loss ratio given the median ground motion generated by 

earthquake 𝑗 at grid 𝑖 (defined by the GMPE equation used), which can be derived from the empirical/an-

alytical vulnerability curve; 𝐴𝑠𝑠𝑒𝑡𝑖,𝑘  is the asset value of building type 𝑘 at grid 𝑖; 𝐹𝑟𝑒𝑞𝑗  is the annual oc-

currence frequency of synthetic event 𝑗, which is defined in the hazard module. By aggregating the loss 

generated by all synthetic events at all grids for all building types in the portfolio, the annual average loss 

can be derived. 

For loss exceedance curve derivation, when uncertainties from the GMPE relation and from the vulnera-

bility curve derivation process are considered, the annual frequency to exceed a loss ratio threshold 𝑙 of 

building type 𝑘 at grid 𝑖 due to ground motions generated by earthquake 𝑗 can be formulated as: 

𝐹𝑟𝑒𝑞(𝐿 > 𝑙|𝑀𝑗 , 𝑅𝑖,𝑗) = 𝐹𝑟𝑒𝑞𝑗 ∗ ∫ Pr(𝐿 > 𝑙|𝑆𝑎)Pr(𝑆𝑎|𝑀𝑗 , 𝑅𝑖,𝑗)𝑑𝑆𝑎
∞

0
  (5.2) 

Where 𝑀𝑗  is the magnitude of earthake 𝑗, 𝑅𝑖,𝑗  is the distance from earthquake 𝑗 to grid 𝑖; Pr(𝑆𝑎|𝑀𝑗 , 𝑅𝑖,𝑗) 

refers the probability to generate different ground motion level 𝑆𝑎  by earthquake 𝑗 at grid 𝑖, which is as-

sumed to follow the lognormal distribution; Pr(𝐿 > 𝑙|𝑆𝑎) refers to the probability of exceeding loss ratio 

threshold 𝑙 given the ground motion level 𝑆𝑎, which is generally assumed to follow the beta distribution 

(Marulanda et al., 2013).  

At different loss ratio thresholds, the corresponding loss generated by all synthetic events at all grids for 

all building types can be instantlys derived by multiplying the grid-level building stock model developed 

in Chapter 4. With the frequency to exceed such loss known from Eq. (5.2), the corresponding loss ex-

ceedance curve can be further developed. It is worth to note that, since the exposed residential building 

stock value is calculated using the replacement price, the loss estimated is the gross loss (different from 

net loss, in which the depreciation of the exposed stock value is considered). 

5.3.3 Comparison of probabilistic loss estimated from empirical method and 

analytical method 

The total number of synthetic earthquake events used in the hazard module of CAPRA is 10614. These 

events are generated by CRISIS, based on the seismic source parameters in constructing the seismic haz-

ard map of Shanxi Rift System in Chapter 2. In CRISIS, the earthquakes to occur in each seismic source are 

assumed to follow a Poisson process and the epicenter of each synthetic event is assumed to be a point 

source. This means that the epicenter of the earthquake can not only occur in the center of the seismic 

source, but can also occur in any point inside the corresponding seismic source volume with equal prob-

ability. Thus, for the generation of synthetic events, sub-sources are defined by subdividing the seismic 

source, depending on hypocentral distance in diverse geometric shapes. For each subdivision, the seis-

micity of the sub-source is considered to be concentrated in its center of gravity (Cardona et al., 2008). 
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Fianlly, the whole set of 10164 synthetic events are generated, representing all the possible hypocenters 

and the whole range of possible magnitudes associated with a specific hypocentral location within Shanxi 

Rift System. Each of these events or scenarios is associated with a specific frequency of occurrence.  

Then, to perform probabilistic loss estimation by using empirical method and analytical method, the 

ground shaking maps of these 10614 synthetic earthquake events (which are also generated by CRISIS in 

terms of PGA) will be used as the hazard input in CAPRA. The grid-level (1km×1km resolution) building 

stock model developed in Chapter 4 for Shanxi Province is to be used as the exposure input, in which the 

overall replacement value of the residential buildings in Shanxi Province reaches 1603.5 billion RMB (in 

2015 current price). 

For probabilistic loss estimation using empirical method, the PGA values in the synthetic ground shaking 

maps need to be converted into intensity values first, according to the Intensity-PGA conversion relation 

developed in Chapter 3. Then the empirical loss function developed in Daniell (2014) is used to calculate 

the empirical loss following the process described in Section 5.3.2. All the probabilistic  loss  calculations 

are performed on the CAPRA platform. The estimated AAL value using empirical method reaches 2.57 

billion RMB, which is around 1.61‰ of the whole exposed building stock value. The empirical loss ex-

ceedance curve derived by considering all the 10614 synthetic events is shown in Figure 5-13.  

 

Figure 5-13: Loss exceedance curve derived using empirical loss estimation method. 

For probabilistic loss estimation using analytical method, the same synthetic event sets and exposure 

model are to be used. The main difference in analytical loss estimation method, compared with empirical 

loss estimation method, is the derivation process of vulnerability curve. The analytical vulnerability curve 

in analytical loss estimation is derived from analytical fragility curve (developed in Chapter 3) combined 

with the consequence model (relation between damage state and loss ratio), following the method similar 

to Silva et al. (2015) in deriving the vulnerability curve for buildings in Portugal. The estimated AAL loss 

value using analytical method reaches 1.02 billion RMB, which is 0.64‰ of the overall exposed building 

stock value and is 1/2.5 of the empirical  AAL value. The analytical loss exceedance curve derived by con-

sidering all of the 10614 earthquake scenarios is shown in Figure 5-14. 
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Figure 5-14: Loss exceedance curve derived from analytical loss estimation method. 

For comparison from a deterministic view, the empirical AAL value is around 2.5 multiples of the engi-

neering AAL value, which indicates a relatively good consistency compared with the usually large discrep-

ancy (up to 10 times and even higher) among modelled losses from different sources (Chan et al., 1998; 

Spence et al., 2003). And for comparision from a probabilistic view based on the LEC curve in Figure 5-13 

and Figure 5-14, it can be seen that for the same return period, the corresponding loss estimated from 

empirical method is also around two times of that estimated from analytical method.  

5.3.4 Sensitivity test 

It has been said that without a sensitivity analysis, a numerical model is not worth the computer it is 

written on. Any complex model, in which there are a large number of variables, warrants an exploration 

of the sensitivity of the output to variations in the various input parameters (Spence et al., 2003). The 

uncertainty in an earthquake loss model is obviously much greater than that in a seismic hazard model 

since it is compounded by the uncertainties associated with classification of the exposed building stock 

and the characteristic vulnerability of each class of building. Losses expressed in financial units are also 

subject to the uncertainty in assigning costs to physical damage. Therefore, in this section, several sensi-

tivity tests are to be conducted by changing the inputs in hazard, exposure and vulnerability module. This 

is done for two purposes. The first purpose is to obtain an estimate of the confidence that can be associ-

ated with the loss modelling results. The second purpose is to identify which of the parameters should be 

prioritized if further investigative work is to be carried out to define their values with greater certainty. 

5.3.4.1 Changing GMPE relation in generation of the ground shaking map 

The uncertainty in the ground-shaking hazard arises from three main sources: the uncertainty in the 

model for earthquake occurrence, the scatter in the GMPE relation, and the uncertainty associated with 

the local site response. Among the earthquake scenarios used in this chapter, the local site response is 

set as the same as rock site for all sites. The uncertainty in the earthquake occurrence model is neglected, 

since such information was not provided in Li (2015) and detailed parameters in other alternative models 

(e.g. Li et al., 2018) are not shared. Therefore, the same set of seismic source parameters are applied in 

generating all the earthquake scenarios. In the probabilistic loss estimation process in Section 5.3.3, the 

GMPE relation used to depict ground motion attenuation is from Yu et al. (2013). Since variation in ground 

shaking map generated by using different GMPE relations will also affect the final estimated loss, here a 

different GMPE relation from Lu et al. (2009) is used to illustrate such effect. The comparison of PGA value 

generated by GMPE function in Lu et al. (2009)  and in Yu et al. (2013) at magnitude 7.0 is shown in the 
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left panel of Figure 5-15. The median PGA value generated by these two GMPE relations are highly ap-

proximate. The main difference is that the sigma of the GMPE relation in Lu et al. (2009) is lower than the 

sigma of the GMPE relation in Yu et al. (2013). Following the same loss estimation process described in 

Section 5.3.2, the empirical AAL value, by changing GMPE from Yu et al. (2013) to Lu et al. (2009) in hazard 

map generation for all the 10614 synthetic earthquake scenarios, turns from 2.57 billion RMB to 2.0 bil-

lion RMB. The empirical  loss exceedance curve of using GMPE relation in Lu et al. (2009) is shown in the 

right panel of Figure 5-15. Compared the loss exceedance curve in Figure 5-13, it can be concluded that 

the decrease in the estimated AAL value from 2.57 billion RMB to 2.0 billion RMB and the decrease in loss 

of the LEC curve for fixed return period in Figure 5-15 are mainly due to the higher sigma of the GMPE 

relation in Yu et al. (2013) than that in Lu et al. (2009), since the other input parameters for these two 

empirical loss estimations are the same. 

 

Figure 5-15: (left): Comparison of PGA generated by GMPE equations at magnitude 7 earthquake. (right): Empiri-
cal loss exceedance curve derived by changing the GMPE function from Yu et al. (2013) to Lu et al. (2009) in ground 
shaking map generation for the 10614 synthetic earthquake events. The decrease in estimated loss for fixed return 
period is obvious compared with the LEC in Figure 5-13. 

5.3.4.2 Changing the Intensity-PGA conversion relation in empirical loss estimation 

Another sensitivity test in empirical  loss estimation is conducted by changing the Intensity-PGA conver-

sion relation from Xin et al. (2019, Chapter 3) to that developed in Ding et al. (2017) for mainland China 

(both are shown in Figure 5-9). The corresponding AAL value turns from 2.57 billion RMB to 2.71 billion 

RMB. And the modified loss exceedance curve is shown in Figure 5-16. 
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Figure 5-16: Empirical loss exceedance curve derived by using the changing the Intensity-PGA conversion relation 
from Xin et al. (2009, Chapter 3) to that in Ding et al. (2017) for mainland China. 

The slight increase in the estimated loss by using the intensity-PGA conversion in Ding et al. (2017) can be 

explained based on Figure 5-9. When PGA level is lower than 0.17 g (as can be seen from Figure 5-17, 

which is the ampflified version of Figure 5-9), the corresponding intensity converted from the relation in 

Ding et al. (2017) is higher than that in Xin et al. (2019, developed in Chpater 3); when PGA level is higher 

than 0.17g, the converted intensity by Xin et al. (2019) is higher than by Ding et al. (2017). Thus, the final 

estimated loss by Ding et al. (2017) in Figure 5-16 is only slightly higher than by Xin et al. (2019) in Figure 

5-13. Similar sentivity tests by using other intensity-PGA relations in Figure 5-9 can also be conducted and 

will not be presented in detail here. 

 

Figure 5-17: The amplified version of Figure 5-9. 

5.3.4.3 Changing the empirical loss function 

Currently the empirical loss function used in estimating single scenario and multi-scenario loss is from 

Daniell (2014), which is derived based on the extensive collection of historical damage information related 

to earthquakes occurred in mainland China. Besides the empirical loss function developed in Daniell 

(2014), there are also other available empirical loss functions (as summarized in Figure 5-18),  which can 

be used to test the sensitivity of final estimated loss to variations in empirical loss function. It can be 

predicted from Figure 5-18 that, since the current empirical loss function (tagged as “China standard” in 

Figure 5-18) is the most “fragile” compared with others (for fixed intensity scale, the loss ratio is the high-

est), thus the empirically estimated loss will decrease if other empirical loss functions are used. 
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Figure 5-18: A collection of empirical loss functions (Daniell, 2014). 

5.3.4.4 Changing the analytical vulnerability function in analytical loss estimation method 

In this study, the derivation of analytical vulnerability function is based on the analytical fragility function 

combined with the relation between empirical loss ratio and damage state for each building type. There 

are also different approaches to derive the analytical vulnerability curves, as elaborated in e.g. Ordaz et 

al. (1998) and Marulanda et al. (2013).  Since difference in fragility functions and empirical loss ratios can 

lead to direct increase or decrease in vulnerability curves, sensitivity tests by using different approaches 

in deriving analytical fragility functions and empirical loss ratios are thus necessary and will be conducted 

in the future.  

5.3.4.5 Changing the unit replacement price of building types in exposure model development 

It is straightforward that by using different unit construction price of the same building type, the modelled 

stock value will be different, so will the final estimation of loss. In the residential building stock model 

developed in Chapter 4 for mainland China, the same replacement price for the same building type is 

applied, without differentiation on the location difference of these buildings, which should be adjusted 

accordingly in the future. 

5.4 Conclusion 

This chapter presents in detail the deterministic (single scenario based) and probabilistic (multi-scenario 

based) loss estimation by using analytical method and empirical method, based on the hazard module 

constructed in Chapter 2, building fragility curve derived in Chapter 3 and the building stock model devel-

oped in Chapter 4.  

For deterministric loss estimation using empirical method, when the actual macro-seismic intensity map 

of an earthquake is available, the robustness of the empirical loss function is evaluated through compar-

ison with loss derived from post-earthquake damage reports. When intensity map needs to be converted 

from actual instrumental records (e.g. PGA, SA), sensitivity tests are conducted by using four synthetic 

earthquake scenarios to figure out the changes on estimated loss by using different Intensity-PGA con-

version relations. It turns out the integration of the sigma of each Intensity-PGA conversion relation will  

increase the estimated empirical loss, especially for low magnitude events.  
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For deterministic loss estimation using analytical method, the analytical vulnerability curve is derived from 

the analytical fragility curve in Chapter 3 combined with the consequence model (relation between dam-

age state and loss ratio). Losses estimated using analytical method are also given for those four synthetic 

earthquake scenarios, which are generally lower than losses estimated by using empirical method (as 

shown in Table 5-5), but still within the two times’ difference (i.e. the empirical loss is lower than two 

times of the analytical loss). This difference might be ascribed  to the difference in building vulnerability, 

since the empirical method applies the same loss ratio to all building types, while the analytical method 

considers the difference in building vulnerability by applying different fragility curves to derive different 

analytical vulnerability curves for specific building classifications. 

For multi-scenario based probabilistic loss estimation, comparison between losses estimated from empir-

ical and analytical method is conducted based on two metrics: the average annual loss (AAL) and the loss 

exceedance curve (LEC). Probabilistic loss estimated from empirical method is around 2.5 multiples of that 

estimated from analytical method. For fixed return period, the corresponding loss from the empirical LEC 

is generally two times of that in analytical method generated LEC, in which the uncertainties from GMPE 

and from vulnerability curve derivation process have been integrated into the loss calculation. Compared 

with the usually large discrepancy between modelled losses using different methods, which can reach a 

factor of 10 (Chan et al., 1998; Spence et al., 2003), the less than three times’ difference between the 

probabilistic loss estimated by using empirical method and analytical method reveals indeed a relatively 

good consistency between these two methods, although quite different vulnerability functions are used 

and each method has its unique source of uncertainty.  

Sensitivity tests to figure out the impact on the final estimated probabilistic loss are conducted, by chang-

ing the input parameters e.g. the GMPE function, the Intensity-PGA conversion relation etc. It turns out 

the usage of different inputs in the hazard, vulnerability and exposure module will change the final esti-

mated loss accordingly. The study performed in this chapter is a new exploration in trying to fully make 

use of the historical damage information to calibrate the modelled loss from both deterministic and prob-

abilistic view, with the purpose to develop a well-organized and robust rapid loss estimation method to 

better serve the needs in seismic risk assessment and post-earthquake mitigation. 
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6 Summary  

In this thesis, a series of studies have been conducted to fully make use of the historical earthquake and 

damage information in a statistical way, and to check whether they can effectively constrain the predicted 

hazard and loss results by various models. 

In Chapter 2, an area-based test of seismic hazard map is conducted to trade time with space by using a 

long historical earthquake catalogue, from which a database of peak ground acceleration (PGA) values is 

generated. Problems in current hazard map performance evaluation studies are summarized and dis-

cussed in detail. Different performance evaluation metrics and criteria are applied.  

In Chapter 3, a literature review of the currently available building fragility analysis for major building 

types in China is conducted by collecting information from 87 papers, thesis, book, reports, conference 

proceedings etc. From these many studies the median fragility functions (dependent on intensity and PGA) 

were derived for four damage limit states of two most widely distributed building types: masonry and 

reinforced concrete. A solid fragility database based on both intensity and PGA is thus established for 

seismic prone areas in mainland China. A comprehensive view of the problems posed by the evaluation 

of fragility for different building types is given. Necessary comparisons with international projects with 

similar focus are conducted.  Based on the newly collected fragility database, a new approach in deriving 

intensity-PGA relation is proposed by using fragility as the bridge and reasonable intensity-PGA relations 

are developed. This novel approach may shed light on new thought in decreasing the scatter in traditional 

intensity-PGA relation development, i.e., by further classifying observed macro-seismic intensities and 

instrumental ground motions based on difference in building seismic resistance capability. 

In Chapter 4, a grid-level residential building stock model (in terms of floor area and replacement value) 

targeted for seismic risk analysis for mainland China is developed, by using 2015 Global Human Settlement 

population density profile as the proxy and disaggregating the administrative level 2010census data into 

1km×1km scale. To evaluate the model performance, the residential building stock value is compared with 

the net capital stock value in Wu et al. (2014) using perpetual inventory method at provincial level. The 

modelled stocked value in these two studies are indeed quite consistent for all the 31 provinces in main-

land China. Furthermore, district level comparison of the residential floor area developed in this study 

with records from statistical yearbook of Shanghai is also conducted. It turns out that the floor area de-

veloped in this study is highly compatible with floor area recorded in the yearbook of Shanghai. To further 

validate the applicability of the modelled results in seismic risk assessment, an estimation of the loss to 

residential buildings modelled in this study is performed, by assuming the recurrence of 2008 Wenchuan 

M8.0 scenario earthquake. The overall estimated loss is quite approximate to the loss value derived from 

damage reports based on field investigation. These congruences indicate the reliability of the residential 

building stock model developed in this study. The geo-coded grid-level residential building stock model 

developed here is flexible to update when more detailed census or statistics data are available. And it can 

also be conveniently combined with hazard data and vulnerability information for risk assessment to spe-

cific research area. 

Chapter 5 performed the assessment of seismic loss by employing the hazard scenarios in Chapter 2, vul-

nerability curves in Chapter 3 and the residential building stock model developed in Chapter 4. The loss is 

estimated both for single scenario earthquake (from the deterministic view) and for multi-scenario 
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earthquakes (from the probabilistic view) by using both empirical method and analytical method. Empir-

ically estimated losses are generally higher than losses estimated using analytical method and this esti-

mated loss difference increases with magnitude, which may be ascribed to the assignment of the same 

loss ratio to all building types in the empirical method, thus the empirical loss is increasingly higher with 

magnitude increase. Sensitivity tests to quantify the sensitivity of estimated loss to parameters in haz-

ard/vulnerability/exposure module are performed. The use of different GMPE relations in constructing 

the ground shaking of earthquake scenarios indicate that if the sigma of the GMPE is higher, the empiri-

cally estimated probabilistic loss will be also higher. For single scenario earthquake, when the sigma from 

the Intensity-PGA relation is considered in generating the macro-seismic intensity map from a PGA map, 

the higher the sigma in Intensity-PGA relation, the higher the deterministic loss. Finally, optimization di-

rections for future loss assessment and sensitivity studies are briefly outlined. 
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7 Limitations and Outlook 

With the target of this thesis being to fully make use of the historical earthquake and damage information 

to check whether they can effectively constrain the predicted hazard and loss results by various models, 

studies have been conducted focusing on the construction and validation of PSHA map, the review of 

empirical and analytical fragility database for major building types in China, the development and perfor-

mance evaluation of the grid-level residential building stock model for mainland China, and the evaluation 

of estimated loss from deterministic and probabilistic view. In spite of the achievements have been made, 

the limitations of this thesis in its hazard and loss modelling process are also obvious. 

One is the neglection of the dependence or spatial correlation of ground motion generated at multiple 

sites from one single earthquake in loss estimation. The open source software CRISIS and CAPRA used in 

constructing the hazard map and in calculation of loss provide no access to integrate such spatial correla-

tion. In the future, when actual seismic assessment and loss estimation are to be performed, the Open-

Quake engine (Pagani et al., 2014) developed by the Global Earthquake Model foundation (GEM) can be 

used to rectify the spatial correlation. As revealed in previous studies (e.g. Sokolov and Wenzel, 2003; 

Park et al., 2007), the higher the spatial correlation, the larger the variation in losses to a portfolio and 

the higher the probability of extreme loss values. For the case of a single scenario earthquake, intra-earth-

quake variability increases the possibility of obtaining extreme motion at one of the multiple locations 

compared with the single-site probability. 

From a broad point of view, limitations of the framework of Probabilistic Seismic Hazard Analysis (PSHA) 

also entail more deep-going studies. Notwithstanding the current extensive acceptance and use of PSHA, 

there remain many challenges in the modelling process owing to the complexity of the underlying natural 

phenomena, the paucity of the information so far collected and the overall lack of standardization and 

consensus on techniques to be used in the construction of hazard models. Chapter 2 of this thesis has 

performed a systematic scheme in evaluating seismic hazard map performance with regard to the source 

model. The acceleration database was generated by historical earthquake plus an empirical ground mo-

tion attenuation relation, but not by real instrumental records. Thus, ground motion related effects have 

to be analysed separately.  

The third limitation is related to the ground motion indicators (peak ground acceleration, macro-seismic 

intensity) used in this study for loss estimation. As summarized in Bommer et al. (2002), one shortcoming 

in loss modelling on the basis of intensity is the requirement of using attenuation equations that predict 

arithmetical values of intensity as if it were a continuous variable, whereas intensity values are discrete 

indices with non-uniform intervals. Another major shortcoming is that the use of intensity ignores entirely 

the relationship between the frequency content of the ground motion and the dominant period of build-

ings. PGA shares this second shortcoming with intensity but more importantly it has almost no correction 

with the damage potential of the ground motion. In recent years, the use of spectral displacement in 

determining damage levels due to earthquake shaking has increasingly populated, which is considered to 

be able to reflect the frequency difference and integrate the total energy in the ground motion.  Therefore, 

in future actual loss estimation practices, the development of spectral displacement based ground motion 

indicator is preferred. 
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The fourth limitation is related to the grid-level exposure model developed in this study. Currently the 

modelling focus is only on residential building stock, given the availability of detailed census data to de-

velop the model. While, when disastrous earthquakes occur, although the damage to and the collapse of 

buildings is the main cause of fatality and economic loss, damages to those non-residential buildings (of-

fice, school, hospital, hotel, warehouse, factory, shop, cinema etc.) as well as life-line projects, infrastruc-

tures and the consecutive losses are not negligible. Therefore, in further work, more efforts should be 

devoted to estimate the stock value of non-residential buildings and infrastructures at risk. Additionally, 

the replacement value developed in this study did not integrate the depreciation of the exposed buildings, 

which should be adjusted accordingly in further exposure modelling work.  

Furthermore, although the loss assessment using the vulnerability curve and exposure model developed 

in this work can provide a reasonable loss estimation compared with reported loss based on field investi-

gation for deterministic scenario, and consistency between probabilistic loss estimated by using empirical 

and analytical method is achieved, more deep-going sensitivity studies are still needed to have a thorough 

examination of the sensitivity of modelled loss to the changes in each parameter of the whole loss mod-

elling chain. 

Finally, the common aim of the various validation and optimization of seismic loss estimation model is to 

better serve the mitigation of future seismic risk and management of post-earthquake response. There-

fore, in the future, another key issue should be kept in mind is related to the effective application of the 

loss modelling methodology and products. Global reinsurance companies reduce their risk by spreading 

it among policies in many countries, and by transferring some risk to the much larger capital markets by 

issuing insurance-linked securities, known as catastrophe bonds. These bonds pay a high rate of quarterly 

interest unless the specified catastrophe occurs, in which case the investor could lose his or her principal. 

An earthquake catastrophe bond could be 'triggered" by, among other things, an earthquake of a given 

magnitude falling into a specified location, or by exceeding a specified shaking threshold. Another option 

is to trigger by the exceedance of a specific loss value. Such bonds typically have maturities of less than a 

decade, and the investor must be able to assess the benefit of the high interest rate against the risk of 

losing the principal. With the optimization of seismic hazard and loss modelling for developing countries, 

such practice e.g. issuing of catastrophe bonds can be further studied and enhanced in those seismic ac-

tive regions to mitigate government’s pressure in post-earthquake recovery and to better make use of 

the leverage effect of the capital market. 
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Appendix 

A: Chinese Official Seismic Intensity Scale: GB17742-2008. 

Macro 
Inten-
sity 

Senses by people 
on the ground 

Degree of building damage Other damages Horizontal motion on 
the ground 

Build
ing 
type 

Damages Average 
damage 
index 

Peak ground 
acceleration 
(m/s2) 

Peak 
speed 
(m/s) 

I Insensible       

II Sensible by very 
few still indoor 
people 

      

III Sensible by a few 
still indoor people 

 Slight rattle of doors 
and windows 

 Slight swing of sus-
pended objects 

  

IV Sensible by most 
people indoors, a 
few people out-
doors; a few wake 
up from sleep 

 Rattle of doors and 
windows 

 Obvious swing of 
suspended objects; 
vessels rattle 

  

V Commonly sensible 
by people indoors, 
sensible by most 
people outdoors; 
most wake up from 
sleep 

 Noise from vibration 
of doors, windows, 
and building frames; 
falling of dusts, small 
cracks in plasters, fall-
ing of some roof tiles, 
bricks falling from a 
few roof-top chim-
neys 

 Rocking or flipping of 
unstable objects 

0.31 (0.22-
0.44) 

0.03 
(0.02-
0.04) 

VI Most unable to 
stand stably, a few 
scared to running 
outdoors 

A A few have D3 dam-
age 

0-0.11 Cracks in riverbanks 
and soft soil; occa-
sional burst of sand 
and water from satu-
rated sand layers; 
cracks on some 
standalone chimneys 

0.63 (0.45-
0.89) 

0.06 
(0.05-
0.09) 

B Very few have D3 
damage, a few have 
D2 damage, most are 
intact 

C Very few have D2 
damage, the majority 
are intact 

0-0.08 

VII Majority scared to 
running outdoors, 
sensible by bicycle 
riders and people in 
moving motor vehi-
cles 

A A few have D4 and/or 
D5 damage, most 
have D3 and/or D2 
damage 

0.09-
0.31 

Collapse of 
riverbanks; frequent 
burst of sand and 
water from satu-
rated sand layers; 
many cracks in soft 
soils; moderate de-
struction of most 
standalone chimneys 

1.25 (0.90-
1.77) 

0.13 
(0.10-
0.18) 

B A few have D3 dam-
age, most have D2 
and/or D1 damage 

C A few have D3 and/or 
D2, most are intact 

0.07-
0.22 

VIII Most swing about, 
difficult to walk 

A A few have D5 dam-
age, most have D4 
and/or D3 damage 

0.29- 
0.51 

Cracks appear in 
hard dry soils; severe 
destruction of most 
standalone chim-
neys; treetops break; 
death of people and 
cattle caused by 
building destruction 

2.50 (1.78-
3.53) 

0.25 
(0.19-
0.35) 

B Very few have D5 
damage, most have 
D3 and/or D2 damage 

C A few have D4 and/or 
D3 damage, most 
have D2 damage 

0.2-0.4 

https://en.wikipedia.org/wiki/Peak_ground_acceleration
https://en.wikipedia.org/wiki/Peak_ground_acceleration
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IX Moving people fall A Most have D4 and/or 
D5 damage 

0.49-
0.71 

Many cracks in hard 
dry soils; possible 
cracks and disloca-
tions in bedrock; fre-
quent landslides and 
collapses; collapse of 
many standalone 
chimneys 

5.00 (3.54-
7.07) 

0.50 
(0.36-
0.71) B A few have D5 dam-

age, most have D4 
and/or D3 damage 

C A few have D5 and/or 
D4 damage, most 
have D3 and/or D2 
damage 

0.38-0.6 

X Bicycle riders may 
fall; people in un-
stable state may 
fall away; sense of 
being thrown up 

A Commonly have D5 
damage 

0.69-
0.91 

Cracks in bedrock 
and earthquake frac-
tures; destruction of 
bridge arches 
founded in bedrock; 
foundation damage 
or collapse of most 
standalone chimneys 

10.00 (7.08-
14.14) 

1.00 
(0.72-
1.41) B The majority have D5 

damage 

C Most have D5 and/or 
D4 damage 

0.58-0.8 

XI  A Commonly have D5 
damage 

0.89–1.0 Earthquake fractures 
extend a long way; 
many bedrock cracks 
and landslides 

  

B 

C 0.78-1.0 

XII  A Almost all have D5 
damage 

1.0 Drastic change in 
landscape, moun-
tains, and rivers 

  

B 

C 
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B: Statistics of fragility database for each damage limit state and each building type. 

build_ty
pe 

Int. 
or 
PGA 
(g) 

Orig. 
Data 
No. 

fragility number after remov-
ing outliers 

median value of each fragility 
dataset with truncated exceed. 
prob. ≥ 1% 

standard deviation of each fra-
gility dataset with truncated 
median exceed. prob. ≥ 1% 

LS1 LS2 LS3 LS4 LS1 LS2 LS3 LS4 LS1 LS2 LS3 LS4 

Ma-
sonry_A 

6 29 28 28 28 28 0.30 0.06 0.01  0.13 0.04 0.01  

7 29 29 26 26 27 0.47 0.14 0.04  0.21 0.08 0.04  

8 29 29 29 25 26 0.78 0.40 0.11 0.03 0.20 0.27 0.07 0.02 

9 28 28 28 28 25 0.91 0.64 0.36 0.11 0.14 0.27 0.27 0.06 

10 28 27 26 28 28 0.99 0.90 0.69 0.33 0.05 0.15 0.26 0.22 

Ma-
sonry_B 

6 21 21 21 21 21 0.15 0.02   0.09 0.02   

7 21 21 20 18 18 0.26 0.08 0.02  0.21 0.10 0.03  

8 21 21 21 21 18 0.66 0.17 0.07 0.01 0.30 0.24 0.16 0.01 

9 20 20 20 20 17 0.79 0.37 0.15 0.05 0.29 0.30 0.25 0.03 

10 20 20 20 20 20 0.96 0.74 0.39 0.15 0.24 0.31 0.30 0.22 

RC_A 6 24 23 22 19 24 0.12    0.07    

7 24 23 23 22 24 0.25 0.02   0.14 0.05   

8 26 26 24 24 23 0.57 0.12 0.02  0.19 0.12 0.06  

9 20 20 20 19 18 0.82 0.48 0.17 0.02 0.14 0.17 0.08 0.02 

10 16 16 16 16 14 0.98 0.84 0.55 0.16 0.10 0.16 0.26 0.10 

RC_B 6 6 6 5 6 6 0.05    0.05    

7 6 5 5 6 6 0.15 0.02   0.06 0.01   

8 6 6 5 5 6 0.48 0.06   0.19 0.02   

9 5 5 5 5 5 0.75 0.33 0.04 
 

0.20 0.18 0.11  

10 5 5 5 5 5 0.95 0.67 0.27 0.05 0.15 0.25 0.29 0.11 

Ma-
sonry_A 

0.1 6 6 6 5 6 0.22 0.06 0.02  0.14 0.06 0.01  

0.2 6 6 6 6 6 0.60 0.25 0.08 0.02 0.15 0.13 0.06 0.01 

0.3 6 6 6 6 6 0.77 0.47 0.18 0.05 0.10 0.14 0.10 0.03 

0.4 6 6 6 6 6 0.86 0.60 0.29 0.09 0.07 0.14 0.14 0.07 

0.5 6 6 6 6 6 0.92 0.70 0.39 0.14 0.05 0.12 0.16 0.10 

0.6 6 6 6 6 6 0.95 0.77 0.50 0.20 0.04 0.10 0.16 0.13 

0.7 6 6 6 6 6 0.97 0.84 0.59 0.27 0.03 0.08 0.15 0.15 

0.8 6 6 6 6 6 0.98 0.88 0.66 0.34 0.02 0.07 0.15 0.17 

0.9 6 6 6 6 6 0.99 0.91 0.73 0.41 0.02 0.06 0.15 0.18 

1 6 6 6 6 6 0.99 0.94 0.78 0.47 0.02 0.05 0.14 0.19 

1.1 2 2 2 2 2 1.00 0.97 0.91 0.70 0.00 0.03 0.08 0.18 

1.2 2 2 2 2 2 1.00 0.98 0.93 0.74 0.00 0.03 0.05 0.16 

Ma-
sonry_B 

0.1 6 6 6 6 6 0.04 0.02   0.05 0.01   

0.2 6 6 6 6 5 0.21 0.05 0.01  0.14 0.05 0.01  

0.3 6 6 6 6 5 0.43 0.14 0.04  0.19 0.09 0.02  

0.4 6 6 6 6 6 0.59 0.25 0.08 0.01 0.21 0.14 0.05 0.01 

0.5 6 6 6 6 6 0.69 0.37 0.13 0.03 0.20 0.17 0.07 0.02 

0.6 6 6 6 6 6 0.76 0.45 0.18 0.05 0.17 0.18 0.09 0.03 

0.7 6 6 6 6 6 0.81 0.53 0.22 0.07 0.14 0.18 0.11 0.04 

0.8 6 5 6 6 6 0.86 0.59 0.28 0.09 0.06 0.17 0.13 0.06 

0.9 6 5 6 6 6 0.89 0.65 0.33 0.11 0.05 0.16 0.14 0.08 

1 6 5 6 6 6 0.91 0.70 0.39 0.13 0.04 0.15 0.15 0.10 

1.1 3 3 3 3 3 0.93 0.70 0.42 0.15 0.09 0.20 0.23 0.17 

1.2 3 3 3 3 3 0.95 0.75 0.48 0.19 0.08 0.19 0.24 0.19 

RC_A 0.1 20 18 18 20 17 0.07    0.07    

0.2 20 20 18 19 20 0.42 0.13 0.01  0.32 0.12 0.03  

0.3 22 22 22 21 20 0.72 0.45 0.05  0.29 0.35 0.09  

0.4 20 20 20 20 18 0.78 0.48 0.10 0.02 0.26 0.36 0.21 0.02 

0.5 13 12 13 13 11 0.96 0.89 0.34 0.03 0.09 0.25 0.26 0.04 

0.6 22 22 22 22 19 0.93 0.82 0.33 0.05 0.30 0.41 0.32 0.05 
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Note: “origin fragility number” refers to the number of original fragilities collected for each damage limit state of each 
building type from previous studies; “fragility number after removing outliers” refers to the remaining fragilities after 
removing outliers using box-plot check method. Only intensity and PGA values with truncated exceedance probability 
≥1% for each damage limit state of each building type are given, since higher damage states can appear only for higher 
intensities or PGA values (see Sect. 5.2 for more details). 

 

 

  

0.7 11 11 11 11 10 0.99 0.96 0.77 0.06 0.08 0.22 0.33 0.06 

0.8 17 17 17 17 15 0.88 0.64 0.37 0.15 0.38 0.36 0.37 0.08 

0.9 12 11 12 12 11 1.00 0.99 0.92 0.14 0.03 0.16 0.30 0.11 

1 16 16 16 16 15 0.91 0.70 0.41 0.25 0.49 0.38 0.34 0.13 

1.1 5 5 5 5 5 1.00 0.99 0.99 0.29 0.00 0.01 0.03 0.31 

1.2 14 14 14 14 14 0.61 0.68 0.67 0.39 0.47 0.43 0.34 0.27 

RC_B 0.1 9 8 9 9 9 0.02    0.02    

0.2 9 8 7 9 9 0.18 0.04   0.28 0.02   

0.3 11 11 11 10 11 0.50 0.22   0.35 0.32   

0.4 9 9 9 8 9 0.65 0.37 0.04  0.25 0.33 0.04  

0.5 9 9 9 8 8 0.79 0.57 0.08  0.21 0.31 0.08  

0.6 11 11 11 10 10 0.93 0.75 0.20 0.02 0.18 0.30 0.10 0.01 

0.7 9 9 9 9 8 0.93 0.81 0.37 0.03 0.15 0.29 0.22 0.02 

0.8 8 8 8 8 7 0.91 0.79 0.45 0.03 0.12 0.26 0.29 0.02 

0.9 10 10 10 10 9 0.99 0.93 0.68 0.03 0.12 0.25 0.33 0.03 

1 7 7 7 7 7 0.94 0.83 0.52 0.05 0.09 0.22 0.33 0.04 

1.1 4 4 4 4 4 1.00 0.97 0.89 0.08 0.02 0.05 0.19 0.07 

1.2 6 5 5 5 6 1.00 0.99 0.98 0.23 0.00 0.01 0.06 0.12 
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C: Supplementary figures in Chapter 3. 

 

Figure C1: The error-bar of empirical fragility, namely the exceedance probability of each damage limit state (LS1, 
LS2, LS3, LS4) derived from empirical fragility datasets for each building type (Masonry_A, Masonry_B, RC_A, RC_B). 
Detailed values are given in Table B1. The circle within each bar represents the median exceedance probability of 
each damage limit state; the length of each bar indicates the value of the corresponding standard deviation. Only 
intensity and PGA values with truncated exceedance probability ≥1% for each damage limit state of each building 
type are plotted, since higher damage states can appear only for higher intensities or PGA values (see Sect. 5.2 for 
more details). 
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Figure C2: The error-bar of analytical fragility, namely the exceedance probability of each damage limit state (LS1, 
LS2, LS3, LS4) derived from analytical fragility datasets for each building type (Masonry_A, Masonry_B, RC_A, RC_B). 
Detailed values are given in Table B1. The circle within each bar represents the median exceedance probability of 
each damage limit state; the length of each bar indicates the value of the corresponding standard deviation. Only 
intensity and PGA values with truncated exceedance probability ≥1% for each damage limit state of each building 
type are plotted, since higher damage states can appear only for higher intensities or PGA values (see Sect. 5.2 for 
more details). 
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Figure C3: Standard deviation of empirical fragility, namely the exceedance probability of each damage limit state 
(LS1, LS2, LS3, LS4) derived based on empirical fragility datasets for each building type (Masonry_A, Masonry_B, RC_A, 
RC_B; detailed values are given in Table B1). Only intensity and PGA values with truncated exceedance probability ≥1% 
for each damage limit state of each building type are plotted, since higher damage states can appear only for higher 
intensities or PGA values (see Sect. 5.2 for more details). 
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Figure C4: Standard deviation of analytical fragility, namely the exceedance probability of each damage limit state 
(LS1, LS2, LS3, LS4) derived based on analytical fragility datasets for each building type (Masonry_A, Masonry_B, RC_A, 
RC_B; detailed values are given in Table B1). Only intensity and PGA values with truncated exceedance probability ≥1% 
for each damage limit state of each building type are plotted, since higher damage states can appear only for higher 
intensities or PGA values (see Sect. 5.2 for more details). 
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Figure C5: Fragility curve comparison between SYNER-G project mean outputs and our median results for masonry 
building type. In SYNER-G project, “Masonry_A”, “Masonry_B” refer to the low-rise, mid-rise masonry building types, 
respectively; LS2 and LS4 refer to yielding state and collapse state (see Sect. 4.2.2 for more detailed discussion on 
sources of discrepancy). 
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Figure C6: Median fragility curve comparison between HAZUS “RM1M” building type and our work for “Masonry_A”. 
In HAZUS project, “RM1M” refers to “Mid-rise Reinforced Masonry Bearing Walls with Wood or Metal Deck 
Diaphragms” (see Sect. 4.2.4 for more details). 
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Figure C7: Median fragility curve comparison between HAZUS “RM2H” building and our work for “Masonry_A”. In 
HAZUS project, “RM2H” refers to “High-rise Reinforced Masonry Bearing Walls with Precast Concrete Diaphragms” 
(see Sect. 4.2.4 for more details). 
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D: Methodology in Section 3.5.4 in characterization of uncertainty transmission from empirical/analytical fragility 
database to intensity-PGA relation 

The estimation of the uncertainty of the intensity-PGA relation (Eq. (3-5)) is not a standard procedure like 

regression analysis. We have fragility as function of intensity with an error on the fragility so that fragility 

is a random variable. It is also a random variable when derived as function of y = ln(PGA). We express this 

as  

𝑓(𝑦) = 𝑔(𝑦) + 𝜀𝑔 (D1)  

𝑓(𝑖) = ℎ(𝑖) + 𝜀ℎ  (D2) 

With i: intensity, y: ln(PGA),  f: fragility.  

𝜀𝑔 is a normally distributed random variable with zero mean, standard deviation 𝜎𝑔. 

𝜀ℎ is a normally distributed random variable with zero mean, standard deviation 𝜎ℎ. 

𝑔(𝑦)  and ℎ(𝑖)  are non-linear functions that can be modelled as cumulative normal distributions in 

intensity and ln(PGA) as fragility ranges between 0 and 1. Under this condition equating the expectation 

values of the fragilities 

𝐸[𝑓(𝑦)] = 𝐸[𝑓(𝑖)], 𝑔(𝑦) = ℎ(𝑖) (D3) 

Leads to a linear relation between ln(PGA) and intensity. Including uncertainties in this relation leads to 

the hypothesis 

ln(𝑃𝐺𝐴) = 𝑦 = 𝛼 + 𝛽 ∙ 𝑖 + 𝜀𝑦 (D4) 

𝜀𝑦  is a normally distributed random variable with zero mean, standard deviation 𝜎𝑦  and this is the 

quantity we want to determine. Note that with this relation y became a random variable. Its expectation 

value is related to intensity via 

𝐸[𝑦] = �̅� = 𝛼 + 𝛽 ∙ 𝑖 (D5) 

We ask the question: If the above relation holds and intensity is fixed what range of values for y is possible 

so that  

𝑓(𝑦(𝑖)) = 𝑓(𝑖) (D6) 

holds. Inserting above expressions provides 

𝑔(𝛼 + 𝛽 ∙ 𝑖 + 𝜀𝑦) + 𝜀𝑔 = ℎ(𝑖) + 𝜀ℎ (D7) 

If we assume that the error term is small, we can write:  

𝑔(𝛼 + 𝛽 ∙ 𝑖 + 𝜀𝑦) ≈ 𝑔(𝛼 + 𝛽 ∙ 𝑖) + 𝑔′(𝛼 + 𝛽 ∙ 𝑖) ∙ 𝜀𝑦 (D8) 

𝑔′(𝛼 + 𝛽 ∙ 𝑖) is the slope of the g(y) curve and has the unit 1/ln(PGA). The value changes along the curve 

so that we replace it by an average value �̅�′. Then, 
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𝜀𝑦 =
1

�̅�′
(𝜀ℎ − 𝜀𝑔) (D9) 

and under the assumption of independence of the two random terms we get 

𝜎𝑦 =
1

�̅�′
√𝜎ℎ

2 + 𝜎𝑔
2 (D10) 

In order to utilize this estimation scheme for our data we approximate �̅�′ by its value at the 0.5 value of 

the fragility function:  𝑔(𝑦𝑚) = 0.5, so that �̅�′ = 𝑔′(𝑦𝑚).When we do the estimates for each damage 

class and each building type we find the standard deviations for ln(PGA) according to the following table. 

The values do vary. A representative/average value appears to be 0.3.  

Table D1: The standard deviation in intensity-PGA relation for each damage limit state of each building type. 

Build_Type LS1 LS2 LS3 LS4 

Masonry_A 0.29 0.34 0.27 0.20 

Masonry_B 0.48 0.49 0.44 0.25 

RC_A 0.44 0.59 0.42 0.16 

RC_B 0.27 0.32 0.24 0.05 
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E: Digitalized historical isoseismal maps in mainland China 

 

Figure E1: Distribution of digitalalized isoseismal maps. 
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F: Digitalized China 5th National Peak Ground Acceleration Zonation Map 

 

Figure F1: Digitalized China fifth National Peak Ground Acceleration Zonation Map. 
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G: The population threshold used in 31 provinces/municipalities in mainland China to assign urban/township/rural urbanity attribute in Chapter 4 

 Province Province ID Population of each urbanity level in 2010-census Population share (%) Population threshold 

urban township rural sum urban township rural Pop1 (urban/township) Pop2 ( township/rural) 

Anhui 1 12182587 13394530 33923351 59500468 20.47% 22.51% 57.01% 13991 6908 

Beijing 2 15563215 1295477 2753676 19612368 79.35% 6.61% 14.04% 2709 1784 

Chongqing 3 8681611 6614192 13550367 28846170 30.10% 22.93% 46.97% 11194 5415 

Fujian 4 12548384 8513556 15832277 36894217 34.01% 23.08% 42.91% 6177 2621 

Gansu 5 5258935 3932250 16384078 25575263 20.56% 15.38% 64.06% 15175 9350 

Guangdong 6 52388382 16641873 35290204 104320459 50.22% 15.95% 33.83% 4427 2521 

Guangxi 7 8352777 10065066 27605918 46023761 18.15% 21.87% 59.98% 11711 5087 

Guizhou 8 5537562 6199971 23011023 34748556 15.94% 17.84% 66.22% 18126 10384 

Hainan 9 2324288 1984228 4362969 8671485 26.80% 22.88% 50.31% 8098 3658 

Hebei 10 14388021 17187307 40278882 71854210 20.02% 23.92% 56.06% 5670 2402 

Heilongjiang 11 14122516 7201199 16990276 38313991 36.86% 18.80% 44.34% 3845 1483 

Henan 12 18331493 17888274 57810172 94029939 19.50% 19.02% 61.48% 15203 8451 

Hubei 13 17928160 10516925 28792642 57237727 31.32% 18.37% 50.30% 11667 6345 

Hunan 14 12738442 15714621 37247699 65700762 19.39% 23.92% 56.69% 13563 5881 

Jiangsu 15 30166466 17205022 31289453 78660941 38.35% 21.87% 39.78% 6554 3341 

Jiangxi 16 7504291 11995669 25067837 44567797 16.84% 26.92% 56.25% 11309 3403 

Jilin 17 10196745 4451454 12804616 27452815 37.14% 16.21% 46.64% 6150 2849 

Liaoning 18 22021184 5166779 16558360 43746323 50.34% 11.81% 37.85% 3486 1874 

Inner Mongolia 19 8011564 5708610 10986117 24706291 32.43% 23.11% 44.47% 11152 5041 

Ningxia 20 2059295 962727 3279328 6301350 32.68% 15.28% 52.04% 11659 7624 

Qinghai 21 1368033 1148221 3110469 5626723 24.31% 20.41% 55.28% 11850 5088 

Shaanxi 22 8837175 8222162 20268042 37327379 23.67% 22.03% 54.30% 13716 6862 

Shandong 23 28364984 19255743 48171992 95792719 29.61% 20.10% 50.29% 6587 3373 

Shanghai 24 17640842 2914256 2464098 23019196 76.64% 12.66% 10.70% 4938 2751 

Shanxi 25 9414053 7746486 18551562 35712101 26.36% 21.69% 51.95% 8763 3873 

Sichuan 26 15915660 16428768 48073100 80417528 19.79% 20.43% 59.78% 14668 8133 

Tianjin 27 8858126 1419767 2660800 12938693 68.46% 10.97% 20.56% 3141 1868 

Xinjiang 28 6071803 3263949 12480063 21815815 27.83% 14.96% 57.21% 10473 3618 

Tibet 29 272322 408267 2321576 3002165 9.07% 13.60% 77.33% 9751 4483 

Yunnan 30 6324830 9634242 30007694 45966766 13.76% 20.96% 65.28% 18128 8118 

Zhejiang 31 20386294 13163915 20876682 54426891 37.46% 24.19% 38.36% 5594 2504 

 Note: For each province, Pop1 and Pop2 are two population thresholds used to assign the grids in 2015 GHS population density profile with urban, township and rural attributes, 

according to the population density λ in each grid with 1km×1km resolution . The detailed criteria are that: if 𝜆≥Pop1, the grid is assigned as urban; if Pop1>𝜆≥Pop2, township; if 

𝜆<Pop2, rural. 
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