EPJ Web of Conferences 214, 08009 (2019) https://doi.org/10.1051/epjconf/201921408009
CHEP 2018

Dynamic Integration and Management of Opportunistic Re-
sources for HEP

Matthias J. Schnepf'*, R. Florian von Cube®**, Max Fischer'***, Manuel Giffels'***,
Christoph Heidecker!", Andreas Heiss!¥, Eileen Kuehn'}, Andreas Petzold"1, Guenter
Quast"!, and Martin Sauter'**

IKIT - Karlsruhe Institute of Technology
23rd Institute of Physics A, Rheinisch-Westfilische Technische Hochschule Aachen

Abstract. Demand for computing resources in high energy physics (HEP)
shows a highly dynamic behavior, while the provided resources by the World-
wide LHC Computing Grid (WLCG) remains static. It has become evident that
opportunistic resources such as High Performance Computing (HPC) centers
and commercial clouds are well suited to cover peak loads. However, the uti-
lization of these resources gives rise to new levels of complexity, e.g. resources
need to be managed highly dynamically and HEP applications require a very
specific software environment usually not provided at opportunistic resources.
Furthermore, aspects to consider are limitations in network bandwidth causing
I/O-intensive workflows to run inefficiently.

The key component to dynamically run HEP applications on opportunistic re-
sources is the utilization of modern container and virtualization technologies.
Based on these technologies, the Karlsruhe Institute of Technology (KIT) has
developed ROCED, a resource manager to dynamically integrate and manage
a variety of opportunistic resources. In combination with ROCED, HTCondor
batch system acts as a powerful single entry point to all available computing
resources, leading to a seamless and transparent integration of opportunistic re-
sources into HEP computing.

KIT is currently improving the resource management and job scheduling by
focusing on I/O requirements of individual workflows, available network band-
width as well as scalability. For these reasons, we are currently developing a
new resource manager, called TARDIS. In this paper, we give an overview of the
utilized technologies, the dynamic management, and integration of resources as
well as the status of the I/O-based resource and job scheduling.

*e-mail: matthias.schnepf@Xkit.edu
**e-mail: florian.von.cube @rwth-aachen.de
***e-mail: max.fischer@kit.edu
¥ e-mail: manuel.giffels @kit.edu
Te-mail: christoph.heidecker @kit.edu
fe-mail: andreas.heiss@kit.edu
Se-mail: eileen.kuchn@kit.edu
e-mail: andreas.petzold @kit.edu
le-mail: guenter.quast@kit.edu
**e-mail: martin.sauter @student kit.edu

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).



EPJ Web of Conferences 214, 08009 (2019) https://doi.org/10.1051/epjconf/201921408009
CHEP 2018

1 Current Situation

Most of the institutes involved in HEP computing have a static amount of dedicated worker
nodes combined to an institute cluster and managed by a batch system. The institute clus-
ters are usually designed to be constantly utilized. In contrast, the demand for resources at
institutes shows peak loads due to working hours, conference deadlines, and machine sched-
ules. This may result in a long waiting time for jobs. Certainly, there are various providers
of computing resources such as Grid sites, HPC centers, cloud providers. So it is possible to
expand the resources of an institute with additional resources from these resource providers
for a given time.

To provide the users simple access to these resources, the idea is to transparently and
dynamically integrate resources in an overlay batch system (OBS) as a single point of en-
try, which leads to new challenges. One challenge is the interaction with different resource
providers, that requires customization to request and manages resources to different APIs and
policies. Another challenge is the heterogeneity of resources. Often the provided resources
do not fit optimal for the jobs which can result in underutilized resources. Furthermore, re-
sources from external resource providers such as Grid sites, HPC centers, and cloud provider
take some time to get available. Especially for HPC centers and Grid sites, this time is fluctu-
ating and difficult to predict. All these challenges have to be handled by a resource manager.

An additional challenge is the provisioning of the dedicated software environment on re-
sources which are not designed for HEP, so-called opportunistic resources. To provide the
software environment on these opportunistic resources virtualization and container technolo-
gies can help. A dedicated software environment allows users to run their jobs on all available
resources without customization.

In the following, we describe our concept to integrate opportunistic resources and our
experiences with our current resource manager and give an overview of further developments.

2 Resource Allocation and Integration

There are a lot of resource providers which allow allocation of resources for a given time,
such as HPC centers, clouds, and Grid sites. In order to transparently make the resources of
the different providers available to users, we integrate the resources into an OBS. An OBS
can be for example the batch system of an experiment or an institute.

Each of the big HEP collaborations has an OBS instance which is part of a workload
management system such as glideinWMS [3] or PanDA [4]. However, the resources for
these collaborations are mainly provided by Grid sites of the Worldwide LHC Computing
Grid (WLCG) [2]. In order to make the resources of the Grid sites available to their OBSs,
the resource manager connected to the OBS requests resources at Grid sites via a so-called
pilot job. When this pilot job starts, it allocates resources for the OBS on the Grid site.
Furthermore, the pilot job itself starts a worker node process of the OBS whereby jobs of the
OBS run on the allocated resources.

However, the pilot concept is not sufficient for opportunistic resources where the re-
sources are provided in different types and do not provide the dedicated software environ-
ment for jobs. For this purpose, we designed the bRONE concept which is a more generalized
approach to allocate and integrate resources.

2.1 Drone Concept

A DRONE is a process that allocates a certain resource and integrates it into an OBS. This
process can either run natively, encapsulated in a container or as a virtual machine. Thereby,
it is possible to allocate resources from various providers.

2



EPJ Web of Conferences 214, 08009 (2019) https://doi.org/10.1051/epjconf/201921408009
CHEP 2018

Table 1. pronE species is defined by two attributes: type of resource allocation and how the software
environment is provided. Possible bRONE species and on which resource provider it is used.

provider kind of prONE process  provisioning of software env.
WLCG Pilot natively natively

NEMO VM (2016-2017) VM natively

NEMO VM (2017-2019) VM container

ForHLR II & NEMO container natively container
OpenTelekomCloud VM container

The prONE starts a worker node process. This worker node process starts jobs which use
the allocated resources of the prRONE similar to a pilot job. However, some allocated resources,
especially opportunistic resources, do often not provide the dedicated software environment.
Therefore, it is necessary for the worker node process to start the jobs natively, in a container
or in a virtual machine inside the proNE. However, how the software environment is provided
depends on the possibilities offered by the resource provider, e.g. using container technology
on a HPC cluster. Therefore, a bRONE is described via two attributes: type of resource alloca-
tion and how the software environment is provided. These two attributes define the species
of a proNE. However, not all combinations are useful. Table 1 shows which species of bRONES
we are currently using at KIT and the WLCG pilots which are also described by the prRONE
concept.

The common WLCG pilot is a batch job which runs natively on a worker node of a WLCG
site. In this case, the OBS worker node process and the jobs run natively on a worker node
and the software environment is provided by the Grid site. However, HPC clusters such as
ForHLR 1I [5] do not directly provide the HEP software environment. On these resources,
container technology is used to provide a software environment for each job. A special case
is the NEMO a HPC cluster in Freiburg [6] which provides the infrastructure to start virtual
machines on the NEMO HPC cluster. Commercial clouds provide their resources as virtual
machines. In our case, we were allowed to allocate resources at OpenTelekomCloud [7] via
Helix Nebula Science Cloud project [8]. As it turned out over the time, one can profit from
running containers inside the provisioned virtual machine, in order to provide an isolated
environment for each job and allow a job-specific monitoring, e.g., network 1/O.

In addition to the operating system provided natively, by container or virtual machines, the
HEP community provides fast evolving experiment software via the CERN virtual machine
file system (CVMES ) [9]. CVMFS enables to use most recent software without reprovision-
ing of VM or container images.

3 Resource Management

All the opportunistic resources have to be requested and managed by a resource manager.
Depending on the OBS and resource provider, the resource manager has to handle several
tasks such as requesting, integrating and releasing resources.

3.1 Resource Manager ROCED

Due to these tasks of a resource manager and the high quantity of APIs to interact with
different resource providers, we have started developing a resource manager, which is called
ROCED [10] in 2015. ROCED is based on a modular design where adapters enable the
interaction between different resource providers and OBSs. This gives high maintainability
and easy extensibility. The interaction between ROCED and an OBS is shown in Figure 1.



EPJ Web of Conferences 214, 08009 (2019) https://doi.org/10.1051/epjconf/201921408009
CHEP 2018

Local Site Remote Site

o | i Y g

L I R P e e
\ m )
@'ﬁ] @] Job Flow 3 m >

Job " Resource Pool
submission — =
@ ob queue
J aqnd Schedule
resource list VM
R
4RoCED -E:; re::;:;;es Resource Provider

Figure 1. The users interact only with the OBS. ROCED pulls periodically the total amount of CPU
cores needed by the jobs which fulfill certain requirements of the external resources such as in terms
of number of CPU, memory and disk space. It also pulls periodically the list and status of resources
integrated into the OBS. If there are more CPU cores needed than provided, ROCED requests additional
resources. Once the resource is available and a DRONE has been started, it connects back to the OBS

in order to get workload.

ROCED enabled us to integrate up to 8000 CPU cores of the NEMO HPC cluster dynam-
ically and on-demand into our OBS (HTCondor [11]) at KIT. Figure 2 shows the number of
allocated and used resources as well as the demand for resources for a week.

Resource allocation over time

(%]

T‘i 20000 1 —— HTCondor: nodes available HTCondor: jobs waiting
a ——— ROCED: WNs requested B HTCondor: jobs running
< 15000 -

%]

o

o

510000 -

]

o

g 5000

p4

0 1 2 3 4 5 6
Time [day]

Figure 2. The orange area shows the demand of resources of the OBS at KIT. The amount of re-
sources requested by ROCED is shown by the orange line. The blue area show the number of used
resources and the blue line show the number of allocated resources provided by the NEMO HPC cluster

in Freiburg. [12]

ROCED monitors the queue for demand and allocates additional resources according
to its brokerage feature. This works fine for one type of DRONE or a set of homogeneous
resources. However, it becomes more complex for heterogeneous resources. This usually



EPJ Web of Conferences 214, 08009 (2019) https://doi.org/10.1051/epjcont/201921408009
CHEP 2018

results in a lot of unused memory and CPUs when we added different kinds of resources
which have another ratio of CPU, memory and disk space. One idea to reduce the number
of unused resources is to predict the decision of the OBS job scheduler. Depending on that
prediction the resource manager should request the corresponding type of proNes. However,
the availability of opportunistic resources is hard to predict precisely, since it depends for
example on the utilization of external sites.

3.2 Resource Scheduling via Feedback Loop

Instead of predicting the decision of the OBS job scheduler to find the demand for each kind
of DRONE we want to react on the OBS job scheduler via a feedback loop. For that, we define
two metrics to describe the status of resources. The first one is the allocation of resources
which describes the fraction of the provided resources which are assigned for usage. The
allocation is also an indicator of the demand because not all provided resources are used.

The second metric to describe the status of resources is utilization. The utilization is the
fraction of the provided resources which are actively used. The difference between allocation
and utilization indicates how well the provided resources fit the demand. Based on allocation
and utilization a decision software, so-called controller, decides to adjust the number of that
type. This decision making is complemented by two other metrics: demand and supply,
where demand represents the volume of resources should be requested and supply represents
the volume of resources currently presented to the OBS.

In case of a prONE, the allocation is the biggest fraction of assigned and available resource
of the DRONE: e.g.

allocation = max

ey

CPUassigned memor}’assigned disk Spacea‘vsigned)

b 2 .
CPUtutal memory, ., disk SPACC, 1

When the allocation is low due to a lot of unused resources inside a proNE the demand for
further prRONES goes to zero. If jobs completely allocate at least one resource type such as
CPU cores, the demand for this resource type is high and so is the demand for additional
DRONES. Thus more bDRONES have to be requested to meet the demand. The utilization in case
of a DRONE is the smallest fraction of assigned and available resource for the bRONE €.g.:

@

e . . CPUaxsigned memor}’assigned disk Spaceamiqned
utilization = min

9 9 .
CPU,pra1 memory,,,,; disk space,

The difference between the allocation and utilization of a proNE indicates how much re-
sources are unused. For example, a prRoNE has 8 CPU cores and 32 GB RAM which is a ratio
of 4 GB per CPU core. The jobs which run on the pronE are single core jobs with 3 GB RAM.
This results in an allocation of one because all CPU cores are allocated. However, the uti-
lization is 0.75, because three-quarter of the RAM is allocated. Thus the difference between
the allocation and utilization describes how well the proNE gets filled with jobs by the OBS
and the type of DRONEs fits the currently available jobs.

Based on these ideas we developed the COBalLD (COBalD - the Opportunistic Balancing
Daemon) framework [13]. COBaLD is successfully used at GridKa, a WLCG Tier-1 cen-
ter in Karlsruhe, Germany. At GridKa computing resources are shared among the different
collaborations. However, the share among collaborations does not correspond with the fluc-
tuating ratio of single core jobs and multicore jobs. This results in unused resources due to
drained resources. To avoid the draining, a limit on the number of single core jobs is set. This
limit will be adjusted in real time by COBaLD based on the current situation in the GridKa



EPJ Web of Conferences 214, 08009 (2019) https://doi.org/10.1051/epjconf/201921408009
CHEP 2018

batch system. Thereby is draining of resources not necessary which results in less unused
resources [14].

In the case of the proNE concept, COBaLD is utilized to adjust the number of proNEs de-
pending on the current situation in the OBS. In order to efficiently manage different resources,
the proONES are organized in pools where each pool is managed by one controller. The con-
troller regulates the number of prRoNEs by adjusting the demand of the pool, depending on its
current allocation and utilization. A simple controller is the LinearController which increases
the demand when the allocation is above and decreases the demand when the utilization is
below a configured value. In other words, the controller increases the demand as long as the
resources are efficiently used and decreases the demand otherwise.

While COBaLD is taking care of the resource balancing, an interface to request, integrate
and manage DRONES at various resource providers is necessary for addition. For this purpose
we are currently developing TARDIS (Transparent Adaptive Resource Dynamic Integration
System) [15]. TARDIS uses the COBaLD framework to decide the number of DRONES per
resource provider as a multi-controller system. This results in high scalability. Additionally,
we use the knowledge from the development of ROCED. Thereby, adapters translate infor-
mation and commands between TARDIS and the OBS as well as the resource provider. This
design enables high maintainability and a simple expansion by adding adapters for additional
resource providers and OBSs. TARDIS will replace ROCED as our resource manager.

4 Current Status and Further Plans

The prONE concept allows providing a huge variety and amount of resources to our users in a
transparent and dynamic way. However, this also brings new challenges.

All these resources, which we integrate, have no permanent HEP storage. Due to this fact,
the jobs have to read their necessary files from remote Grid sites. The network bandwidth
between the external computing resources and the HEP storage is often limited and shared.
This limited network bandwidth results in a reduced CPU efficiency of jobs, which need data
from Grid sites as shown in Figure 3. In some HEP analyses, different jobs or workflows read
the same file several times. This avoids the limitation of the network bandwidth between the
computing resources and the HEP storage.

Jobs and workflows which recurrently read the same files several times can profit from
caching. However, the use of caching in a distributed system brings new complexity [16].
Another method to reduce the inefficient CPU usage is to limit the number of DRONES per
provider according to available bandwidth. We are investigating the correlation between the
average incoming network throughput and the CPU efficiencies of the jobs. We hope to use
this correlation to identify network limitations via CPU efficiency. This information can be
evaluated and the allocation of further resources are stopped, in case I/O-intense jobs run
inefficiently.

5 Conclusion

The number of resource providers has been increased over the last few years. However,
the variety of resources to integrate leads to further challenges. Our brRONE concept enables
a dynamic and transparent way to provide dedicated and opportunistic resources to users.
Thereby, resources from different providers are integrated into one overlay batch system.
This gives users access to a huge number of resources at a single point of entry. Furthermore,
the prONE concept includes container and virtualization technologies to provide a dedicated
software environment on all integrated resources. This allows users to run their jobs on all
integrated resources without software customizations.

6



EPJ Web of Conferences 214, 08009 (2019) https://doi.org/10.1051/epjcont/201921408009
CHEP 2018

Jobs per User

N w D wu ()] ~

Average Network Throughput (MB/s)
—

o

T T T T T T
30 40 50 60 70 80 90 100
CPU Efficiency (%)

Figure 3. Monitoring data of finished jobs in our OBS which shows the CPU efficiency and the average
incoming network throughput per job. Each color represents another user, which typically has one or
two workflows. The distribution of the jobs is corresponding to their workflows.

Furthermore, we faced the challenge to manage a heterogeneous set of resource providers
and resources in a dynamic way. We described our new approach via a feedback loop which
should better react to the current demand and resource situations. This results in more ef-
ficient usage of the integrated resources. For this approach, we are currently developing
the corresponding software. Furthermore, we are studying the correlation between CPU ef-
ficiency and network throughput per job to detect network limitations to further improve
resource scheduling.

6 Acknowledgement

The authors acknowledge support by the state of Baden-Wiirttemberg through bwHPC and
the German Research Foundation (DFG) through grant no INST 39/963-1 FUGG as well
as the support by the DFG-funded Doctoral School ,,Karlsruhe School of Elementary and
Astroparticle Physics: Science and Technology*

References

[1] Sfiligoi 1. et al. The Pilot Way to Grid Resources Using glideinWMS, WRI
World Congress on Computer Science and Information Engineering (2009)
DOI:10.1109/CSIE.2009.950

[2] Eck Cetal., LHC computing Grid : Technical Design Report , Technical Design Report
LCG, https://cds.cern.ch/record/840543 (2005)

[3] glideinWMS project, [software], http://doi.org/10.5281/zenodo.1309679

[4] Nilsson P et al. The PanDA System in the ATLAS Experiment, Proceedings of XII Ad-
vanced Computing and Analysis Techniques in Physics Research (2008)



EPJ Web of Conferences 214, 08009 (2019) https://doi.org/10.1051/epjconf/201921408009
CHEP 2018

[5] Barthel R. and Raffeiner S. ForHLR: a New Tier-2 High-Performance Computing System
for Research, Proceedings of the 3rd bwHPC-Symposium, Universititsbibliothek Heidel-
berg, Heidelberg, 2017, 73-75

[6] Meier K et al. Dynamic provisioning of a HEP computing infrastructure on a shared
hybrid HPC system, Journal of Physics: Conference Series Volume 762 012012 (2016)

[7] OpenTelekomCloud, https://cloud.telekom.de/de/infrastruktur/open-telekom-cloud [ac-
cessed 2018-10-02]

[8] Helix Nebula Science Cloud, http://www.hnscicloud.eu/ [accessed 2018-10-02]

[9] Buncic P et al. "CVMFS" [software], version 2.X.Y, http://iopscience.iop.org/1742-
6596/219/4/042003

[10] ROCED project, "ROCED" [software],(2018. December 3). Currently used Version at
KIT (Version 1.1.0). Zenodo. http://doi.org/10.5281/zenodo.1888310

[11] HTCondor  project, "HTCondor" [software],(Version  8.6.12).  Zenodo.
http://doi.org/10.5281/zenodo.1324566

[12] Heidecker C et al. Dynamic Resource Extension for Data Intensive Computing with
Specialized Software Environments on HPC systems, Proceedings of the 5rd bwHPC-
Symposium, Albert-Ludwigs-Universitit Freiburg, Freiburg, to be published

[13] Fischer M, Kuehn E, Giffels M. (2018, December 3). MaineKuehn/cobald:
Working version for HNSC and ConcurrencyLimits (Version v0.9.1). Zenodo.
http://doi.org/10.5281/zenodo.1887873

[14] Fischer M et al. Adoption of ARC-CE and HTCondor at GridKa Tier 1, EPJ Web of
Conferences CHEP 2018 proceedings (to be published)

[15] Giffels M et al. [software], in development, 2018, Available on
https://github.com/giffels/tardis [accessed 2018-10-02]

[16] Heidecker C et al. Advancing throughput of HEP analysis work-flows using caching
concepts, EPJ Web of Conferences CHEP 2018 proceedings (to be published)



