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Abstract: This paper demonstrates the application of a modified Avrami equation in the analysis of
crystallisation curves obtained using differential scanning calorimetry (DSC). The model incorporates
a square root of time dependence of the secondary process into the conventional Avrami equation
and, although previously validated using laser flash analysis and infrared spectroscopy, is not
currently transferable to DSC. Application of the model to calorimetric data required long-duration
isotherms and a series of data treatments. Once implemented, the square root of time dependence
of the secondary process was once again observed. After separation of the secondary process
from the primary, a mechanistic n value of 3 was obtained for the primary process. Kinetic
parameters obtained from the analysis were used in the model to regenerate the fractional crystallinity
curves. Comparison of the model with experimental data generated R2 values in excess of 0.995.
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) was used as model polymer due to the prominent
secondary crystallisation behaviour that this polymer is known to display.

Keywords: DSC; Avrami; poly(3-hydroxybutyrate-co-3-hydroxyvalerate); secondary crystallisation; kinetics

1. Introduction

Poly(3-hydroxybutyrate) (PHB) and its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
(PHBV) have shown promise as sustainable and biodegradable alternatives to current oil-derived,
single-use plastics [1]. More recently, they have also been used as a property modifier in the 3D printing
of poly(lactic acid) to enhance the mechanical properties [2]. PHB copolymers are synthesised by a
range of bacteria as a means of energy storage when there is a limited supply of specific nutrients [3,4].
The polymer granules that are formed can be extracted from the cells and processed into pellets
or sheets. Bacterial synthesis results in stereospecific polymers and in this case, crystallinities of
50%–80% are generated, which can render the material brittle [5,6]. In addition, the low glass transition
temperature of PHB and PHBV (~4 ◦C) [5] allows the secondary crystallisation process to proceed at
room temperature, causing progressive embrittlement [7,8]. The properties of PHBV can be influenced
by the processing conditions. The mechanical properties can be improved by rapidly cooling the
polymer to yield microstructure that is composed of relatively small spherulites, but to enable this,
knowledge of the crystallisation kinetics is required [9]. The crystallisation kinetics of PHB and its
copolymers has been investigated previously [10–14]; however, these analyses have only focussed on
primary crystallisation and are therefore not entirely representative of the behaviour of the material,
especially as secondary crystallisation occurs so readily in this polymer.
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The crystallisation kinetics of a polymer are generally described by the following Avrami
equation [15]:

Xp,t = Xp,∞(1− e−Zptn
) (1)

where Xp,t is the fractional primary crystallinity; Xp,∞ is the final primary crystallinity; Zp is the Avrami
primary crystallisation rate constant; t is time and n an integer combining values attributed to both the
geometry and mechanism of nucleation.

Although this equation is widely used, it often generates non-integer n values. In addition, it
does not take into account the secondary crystallisation process, which has been proven to occur
during polymer crystallisation [16–19]. Numerous authors have proposed modifications to the Avrami
equation to account for these issues, with the most notable being Hillier [20,21], Velisaris [17] and
Hay [22].

The method developed by Hillier [20] assumes an initial constant radial growth of spherulites,
followed by a first-order increase in crystallinity at time θ. This leads to the standard Avrami equation
for the primary process (Equation (1)) and a modified version for the secondary process (Equation (2))
in which the n exponent is taken as 1:

Xs,t−θ = Xs,∞[1− e−Zs(t−θ)] (2)

where Xs,t−θ is the fractional crystallinity formed after time θ; Xs,∞ is the final fractional crystallinity;
and zs is the secondary rate constant. These two equations can then be combined to give an expression
for the total crystallinity at time t.

Xt = Xp,t +

∫ t

0

Xp,θ

Xp,∞

d
dθ

[Xs,t−θ]dθ (3)

By inserting Equations (1) and (2) into Equation (3), the complete expression becomes:

Xt = Xp,∞[1− e−Zptn
] + Xs,∞zs

∫ t

0
[1− e−zpθn

][e−zs(t−θ)]dθ (4)

Hillier demonstrated that this process is more effective at modelling the crystallisation of
poly(decamethylene terephthalate), poly(ethylene oxide) and poly(methylene) than the standard
Avrami equation but also implied that the first-order process for secondary crystallisation may be too
simplified [20]. Since the publication of this model, many authors have created adaptations [23–25],
including adding higher exponents (m) for the secondary process [23], which creates additional terms
in the complete expression (Equation (5)).

Xt = Xp,t[1− e−Zptn
] + Xs,∞zsm

∫ t

0
[1− e−zpθn

][(t− θ)m−1].[1− e−zs(t−θ)
m
]dθ (5)

Velisaris and Seferis [17] have also proposed a model to account for the secondary crystallisation
process. This model is based on two distinct regions, attributed to primary and secondary crystallisation,
being observed in a standard double-log Avrami plot. They postulated that these processes could
occur in either parallel (Equation (6)) or series (Equation (7)), giving rise to two different models.

Parallel:
Xt

X∞
= wp[1− e−zptn

] + ws[1− e−zstm
] (6)

where wp is the weight factor for the primary process and ws is the weight factor for the secondary
process and the sum of these two factors equal 1.

Series:
X∞
Xt

=
wp

1− e−zptn +
ws

1− e−zstm (7)
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This model was found to provide a good fit to the isothermal crystallisation of PEEK; however,
non-integer n and m values were obtained [17].

More recently, Hay et al. further evaluated the secondary crystallisation kinetics of poly(ethylene
terephthalate) (PET) [22] and poly(caprolactone) (PCL) [26] and derived a different approach to the
previous authors. Hay noted that the models discussed above indicated a dependence of log (Xs,t) on
time; however, the opposite is seen when plotting the data [26]. Through a series of experiments on
PET and PCL, Hay discovered a square root time dependence on the growth of lamella stem length
following primary crystallisation [19,27]. As this is representative of secondary crystallisation, further
studies on the annealing of PET following primary crystallisation were performed, which showed the
square root dependence was also applicable to fractional crystallinity [18]. These results are indicative
of a diffusion-controlled process. In addition, as the thickness of the lamellae is greater at the centre
of the spherulite, it was postulated that secondary crystallisation occurs as soon as the lamellae has
been formed and proceeds with and beyond the primary process [22]. These factors have led to the
formation of a new model for the crystallisation of polymers, which has been validated using infra-red
spectroscopy [22,26] and laser flash analysis [28].

As primary and secondary crystallisation occur concurrently, the fractional crystallinity developed
at time t is the sum of both processes:

Xt = Xp,t + Xs,t (8)

where Xt, Xp,t and Xs,t are the total, primary and secondary fractional crystallinities at time t. Further,
if the primary process follows an Avrami equation, limited by a final fractional crystallinity, Xp,∞, then:

Xp,t = Xp,∞(1− e−Zptn
) (9)

As discussed earlier, secondary crystallisation has been found to develop via thickening of the
lamellae with a dependence on the square root of time [18]. Secondary crystallisation also depends on
the extent of the primary process, as it cannot take place without some degree of primary crystallisation
occurring first. These factors lead to the following equation to describe the secondary crystallisation
process:

Xs,t = Xp,tkst1/2 (10)

where ks is the secondary crystallisation rate constant. Combining Equations (8)–(10) gives:

Xt = Xp,∞(1− e−Zptn
)(1 + kst1/2) (11)

Equation (11) has the correct form to explain the shape of the crystallisation time dependence in
that it increases asymptotically towards Xp,∞. On completion of the primary process, the crystallisation
rate will depend solely on the square root of time as the term e−Zptn

becomes negligibly small. This
leads to the following equation:

Xt = Xp,∞(1 + kst1/2) (12)

This model has been successfully applied to a range of polymers analysed using FTIR
spectroscopy [22,26,29]; however, it is not currently directly transferable to differential scanning
calorimetry (DSC) isotherms. In order to consider the universality of this new approach, it is essential
to extend the study to DSC analyses. To this end, the crystallisation of PHBV containing 3 wt.%
valerate was measured and analysed by adopting a new procedure inherent in the assumption that the
conversion incorporates both primary and secondary crystallisation. PHBV was chosen as it is well
known to display secondary crystallisation over time [7,8].

2. Materials and Methods

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) pellets containing 3 wt.% 3-hydroxyvalerate
(Tianan ENMAT Y1000P) were purchased from Helian Polymers (Venlo, The Netherlands).



Polymers 2020, 12, 19 4 of 13

Plaques of the copolymer were produced by compression moulding using a Moore E1127 hydraulic
hot press (George E. Moore & Sons Ltd., Birmingham, UK). Polymer pellets (8 g approx.) were placed
into a mould (152 × 158 × 0.266 mm) and inserted into the press preheated to 190 ◦C. The material was
left to melt for 5 min before a load of 10 tonnes was applied for a further 3 min. The plaques were slow
cooled in the press before discs (5 mm in diameter) were cut for DSC analysis.

A Mettler Toledo differential scanning calorimeter, DSC 1 (Mettler Toledo, Schwerzenbach,
Switzerland), calibrated from the melting characteristics of indium (Tm 156.6 ◦C, ∆Hf 28.45 Jg−1) and
zinc (Tm 419.5 ◦C, ∆hf 107.5 Jg−1), was used to determine the crystallisation kinetics of the copolymer.
All experiments were conducted under a nitrogen flow rate of 50 cm3 min−1 and a Huber TC100
immersion cooler (Huber Kaltemaschinenbau AG, Germany) was used to aid temperature control over
extended time periods up to 1000 min. The samples (9.24 mg standard deviation 1.1 mg) were weighed
into 40 µL aluminium DSC pans (Mettler Toledo), capped with aluminium lids (Mettler Toledo) and
sealed with a press. Samples were held at 210 ◦C for 2 min to melt the polymer before being cooled
to the crystallisation temperature (138 to 146 ◦C) at 30 ◦C min−1. This rate was chosen to prevent
crystallisation prior to the sample reaching the isothermal temperature, but also to minimise overshoot
of the isothermal temperature. The samples were held at this temperature for up to 1000 min to allow
the polymer to crystallise well beyond the end of the primary process. Three samples were analysed
for each temperature to assess repeatability. A heat of fusion (∆H0

f) of 146.0 Jg−1 has been reported for
PHB [30], and since no enthalpy of fusion has been published for the copolymer containing 3 wt.%
3-hydroxyvalerate, this value has been adopted by others in analysing copolymers of PHB with low
concentrations of HV [31–33].

3. Results and Discussion

In order to study the isothermal crystallisation kinetics of PHBV, heat flow was recorded as a
function of time at a constant temperature in the range 138 to 146 ◦C for time periods greater than four
times the half-life of the primary process (as estimated from the minima in the exotherm minus the
induction time). This time was chosen as modelling the primary crystallisation process (Equation (1)),
with an example half-life of 20 min, showing that the crystallisation rate will always fall to zero at
three times the half-life when n = 2 or at twice the half-life when n = 3 (Figure 1). In light of this, it
can be assumed that no further primary crystallisation will occur after this time and therefore, the
secondary crystallisation process can be observed in isolation.
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The variation of heat flow with log time, as measured by DSC, on crystallising PHBV at various
isothermal temperatures from 138 to 146 ◦C is shown in Figure 2. Following cooling, an initial period
was observed, during which heat flow was relatively constant as the sample attained the isothermal
temperature and before it decreased due to the onset of crystallisation. As shown in Figure 2, this
induction period varied from 30 to 1000 s, increasing with temperature. As a consequence, experimental
time was not set at the start of crystallisation, and therefore, a correction was made for this induction
period (ti). In the analysis, the induction period was used as an adjustable parameter limited by a
maximum value, i.e., the observable onset of crystallisation.
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Figure 2. Differential scanning calorimetry (DSC) heat flow response on cooling to crystallisation
temperature as a function of log experimental time.

Prior to analysing the data, a further correction was required. Unlike polymers that display
minimal secondary crystallisation, the heat flow does not return to the baseline following completion
of the primary process, and therefore, the standard method of normalising the isotherm to zero heat
flow via subtraction of the final heat flow (J∞) cannot be applied. Instead, the heat flow continues to
rise at the rate of secondary crystallisation, and a different approach to determine the value of the
calorimeter baseline is required.

The heat flow-time data were restricted to greater than four times the half-life of the primary
process, as estimated by the minima in the isotherm following removal of the induction time. This
ensured that any changes in the heat flow were due to the secondary process alone and therefore could
be calculated as:

Xt = Xp,∞(1 + ks(t− ti)
1/2) (13)

Differentiating this equation with respect to time gives:

dXt

dt
=

Xp,∞ks

2(t− ti)
1/2

(14)

As the crystallinity of a material can be given as:

Xt =
Jtt

∆H f w
(15)
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where Jt is the heat flow in a DSC trace and w is the mass of the sample, then the change in crystallinity
can be given as:

dXt = Xs,∞ −Xt =
(Js,∞ − Jt)(dt)

∆H f w
(16)

where Js,∞ is equivalent to the heat flow at the end of the secondary process. Rearranging the above
equation and inserting Equation (14) gives an expression for the heat flow at time t.

Jt = −

∆H f wXp,∞ks

2(t− ti)
1/2

+ Js,∞ (17)

This equation generates a linear plot of the heat flow (Jt) against (1/(t−ti)1/2) with an intercept
at (1/(t−ti)1/2) = 0 equivalent to the heat flow at infinite time (Js,∞) when secondary crystallisation
has ceased (Figure 3). This value was calculated for each isotherm and added to the data set before
inverting the curve and integrating with time to determine the fractional crystallinity (Xt). This process
is equivalent to the normalisation of the heat flow in a standard Avrami calculation.
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calculated using Equation (17).

3.1. Analysis of Secondary Crystallisation

The isothermal portion of the heat flow against time curve was used to analyse the crystallisation
of PHBV over a range of temperatures. Baseline corrections (Js,∞) were added to the heat flow data,
the induction time (ti) removed, and the fractional crystallinity (Xt) determined as a function of
experimental time (Figure 4). Each isothermal crystallisation had the characteristics of Equation (11) in
that there was an initial exponential increase in crystallinity followed by a greatly reduced dependence
on time.
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Figure 5. Development of fractional crystallinity with the square root of time.

However, as required by Equation (13), the analysis should be restricted to values of Xt > Xp,∞

(Figure 6). In every case, a linear dependence was observed in this range and Xp,∞ and ks calculated
from the intercept and gradient, respectively (Table 1).
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Table 1. Crystallisation rate parameters determined from Figure 6 and Equation (13). The results are
the average and standard deviation (SD) of three repeats for each temperature.

Crystallisation
Temperature/◦C

Primary Limit Xp,∞
Secondary Rate Constant

ks/s−1/2 × 103

Average SD Average SD

138 0.57 0.06 4.21 2.28
140 0.60 0.04 3.49 1.66
142 0.61 0.02 2.81 1.05
144 0.61 0.10 2.65 1.21
146 0.57 0.10 4.07 1.69

The crystallisation parameters are listed in Table 1 for both the primary and secondary processes.
The limit of the primary process, Xp.∞, remained consistent showing that a maximum primary
crystallinity is reached independent of the temperature. The secondary rate constant (ks) also remained
similar across each temperature.

3.2. Analysis of Primary Crystallisation

Rearranging Equation (11) gives the fractional crystallinity of the primary process alone, which
follows the Avrami equation:

Xt

Xp,∞(1 + kt1/2)
= 1− e−Zptn

(18)

This equation effectively removes the secondary crystallisation component from the
fractional crystallinity curve and enables the primary process to be analysed from plots of

log
[
− ln

[
1−

(
Xt

Xp,∞(1+kt1/2)

)]]
against log(t) with slope n and intercept at t = 1.00 of log(Zp). In every

case, non-integer n values were obtained; however, correcting the experimental time for an induction
period (ti) using ti as an adjustable parameter over the acceptable range (200–1000 s), a value of 3.00
was observed at each crystallisation temperature (Figure 7 and Table 2). The effect of changing ti on the
value of n was linear (Figure 8), which greatly reduced the number of iterations required in the analysis.
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The crystallisation rate parameters are listed in Table 2 for the primary processes where the
half-life was calculated via modification of Equation (18) to give Equation (19).

0.5 = 1− e−Zpt3
0.5 (19)

Unlike the secondary rate constant (ks) (Table 1), the primary rate constant (Zp) decreased as the
temperature increased, showing the process to be nucleation-controlled and therefore dependent on
the degree of supercooling.
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Table 2. Crystallisation parameters for the primary crystallisation process as determined from Figure 7,
Equations (18) and (19). The average and standard deviation of three repeats are reported.

Crystallisation
Temperature/◦C

Avrami n
Value

−log(Zp) Primary Half-Life/s
Average SD Average SD

138 3.00 8.80 0.12 761 70
140 3.00 9.19 0.06 1027 46
142 3.00 9.50 0.10 1300 98
144 3.00 9.94 0.03 1824 42
146 3.00 10.41 0.10 2613 210

3.3. Applicability of the Model

Equation (11) was modelled using the rate parameters listed in Tables 1 and 2. Comparison of
these results with the experimental data (Figure 9a) shows a good agreement. A standard Avrami
analysis (Equation (1)) was also performed on the data and compared with the experimental results
(Figure 9b). As the end of the crystallisation process is unclear, the same baseline value and induction
time were used as discussed above. Comparison of the two models shows a good agreement to a
fractional crystallinity of approximately 0.6; however, above this point, a clear deviation can be seen in
the Avrami model. This is because this model is not able to account for the secondary crystallisation
process. In addition, non-integer n values were obtained from the standard Avrami model, which have
no meaning.
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Figure 9. Comparison of the experimental data with (a) the fractional crystallinity (Xt) calculated using
Equation (11) and the parameters in Tables 1 and 2 and (b) the standard Avrami model (Equation (1)).

Non-linear regression analysis using IBM SPSS software was used to measure the coefficient
of determination (R2) fitting value for the models. This yielded results in excess of 0.995 for the
proposed model at each of the five considered temperatures and only 0.896 to 0.994 for the standard
Avrami model. The standard deviation was determined for the fitting of the proposed model with
the experimentally measured crystallisation data for each temperature condition considered. These
standard deviations values ranged from 0.00251 to 0.0074 for the best and worst fitting models,
respectively. These calculated standard deviation values can then be used to generate statistical
confidence intervals, with the 99% confidence interval for the 146 ◦C model versus the experiment
shown in Figure 10.
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Further statistical measures were applied to highlight the high level of precision that these models
were fitting the experimental data. The Kolmogorov–Smirnov (K–S) test [34] and Kuiper’s [35] test
goodness-of-fit methods were applied to compare the experimental data and the associated modelling
curve at each temperature considered. A nominally “perfect” fit would return a value of zero for
both these measures. For the data and models shown in Figure 9a, the goodness-of-fit measures were
as given in Table 3. The additional goodness-of-fit test statistics are shown to be reasonable. As the
quantity measured is fractional crystallinity with a theoretical maximum of 1.0, it becomes trivial to
convert the K–S and Kuiper’s test statistics into an overall percentage error by multiplying them by 100.

Table 3. Goodness-of-fit statistical parameters to assess how well the model predicts experimental data
(all quoted to 3 s.f.).

Test Statistic
Temperature/◦C

138 140 142 144 146

R2 0.999 0.999 0.999 1.000 0.999
Standard deviation (σ) 0.00591 0.00623 0.00604 0.00251 0.00740
Kolmogoro–Smirnov

(K–S) 0.0213 0.0214 0.0237 0.0101 0.0263

Kuiper’s 0.0331 0.0293 0.0263 0.0211 0.0410

4. Conclusions

In a series of recent papers [22,26,28], it has been shown that the Avrami model can be modified
to successfully account for a secondary crystallisation process. The modification is based on the idea
that the secondary process develops with the square root of time. In this work, the model has been
further developed to analyse DSC heat flow-time data generated from the isothermal crystallisation
of PHBV. The rationale for the selection of PHBV is due to the prominent secondary crystallisation
behaviour that this polymer is known to display. A series of DSC-specific treatments are required
to enable the application of the modified Avrami equation, but when implemented, the square root
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of time dependence of the secondary process was once again observed. After separation of the
secondary process, a mechanistic n value of 3 was obtained for the primary process. The kinetic
parameters that were obtained from the analysis were used in the model to regenerate the curves
showing fractional crystallinity with time, and good agreement was found. Comparison of the model
with the experimental data generated R2 values in excess of 0.995.
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