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Abstract:

Electromyography (EMG) is the conventional noninvasive method for the estimation of muscle activities. 
We developed a new image processing method for the recognition of individual finger movements based on 
EMG maps. The maps were formed from the EMG recordings via an array electrode with 24 contacts 

20 connected to a multichannel wireless miniature digital amplifier. The task was to detect and quantify the high 
activity regions in the EMG maps in persons with no known motor impairment. The results show the 
temporal and spatial patterns within the images during well-defined finger movements. The average 
accuracy of the automatic recognition compared with the recognition by an expert clinician in persons 
involved in the tests was 97.87±0.92%. The application of the technique is foreseen for control for an 

25 assistive system (hand prosthesis and exoskeleton) since the interface is wearable and the processing can be 
implemented on a microcomputer.

Key Words: 

Finger Movements Recognition, Array Electrodes, Image processing, EMG maps, Spatial and temporal 
model, delicate movements

30



3

Introduction

Movements in a healthy human are the consequence of muscle activities that follow a series of neural events 
in the central and peripheral nervous system. Electromyography (EMG) is a conventional method for 
assessing the level of muscle contractions. The EMG signals are strongly correlated with the contractile 

35 activity generated by the muscle analyzed [Bigland-Ritchie, 1981]. The EMG signals are an accessible 
interface for controlling artificial extremities because they directly reflect the intention of the user at the 
subconscious level to perform a motor function. (e.g., hand prosthesis [Cipriani et al., 2008; Castellini et al., 
2009]) exoskeletons [Kiguchi et al., 2004; Lenzi et al., 2012], and robotic manipulators [Fukuda O, 2003]. 
The EMG signal can also be used as the biofeedback for enabling the training of the motor skills [Giggins et 

40 al., 2013].

In many cases, the analysis of EMG is based on multichannel recordings of signals with respect a reference 
electrode, i.e., unipolar EMG [Kleine et al., 2000; Zwarts et al., 2003]. The other technique is a multichannel 
recording of voltages between two electrodes over a single muscle (bipolar EMG). Configuration and 
conventions for the bipolar recordings are described in detail in the SENIAM project [Stegeman et al., 2007]. 

45 Various signal processing techniques of the conventional EMG were presented in the literature, and some of 
those have been translated with relative success for control of artificial upper and lower limb prostheses. The 
major problems are: low level of reproducibility from day to day, relative shift of the positions of electrodes 
vs. the sources of the signal, and the temporal changes of the surface EMG signals recorded. Huang et al. 
[Huang et al., 1999] showed that the combination of Integrated EMG, Variance, Wilson Amplitude, Bias 

50 Zero-Crossing, Waveform Length, and 2nd order Autoregression provides a high hand gesture recognition 
(identification success 85%). The Short-Time Fourier Transform and Short-Time Autoregression were found 
not to be appropriate for gesture recognition. Results presented by Boostani et al. [Boostani et al., 2003] 
indicates that the energy of wavelet coefficients and cepstrum coefficients give better results compared with 
other 17 features. Since the EMG is a stochastic signal, the neural networks applied on raw or processed 

55 EMG signals received much attention (e.g., Artificial Neural Network [Liu et al., 1999], Multi-Layer 
Perceptron Neural Network [Soares et al., 2003]). However, none of the presented methods provided the 
satisfactory universal solution.

A solution suggested for reducing the variability of the output based on EMG are the multichannel 
recordings via electrode-arrays [Mesin et al., 2009]. The signals recorded via multi-contact array electrodes 

60 allow the analysis of the temporal and spatial distribution of muscles activities [Farina et al., 2008]. Previous 
studies show the two main directions of multichannel EMG analysis. The decomposition of EMG signals to 
analyze particular motor unit (MU) activations in muscles demonstrated advantages of using array electrodes 
vs. bipolar measurements [Gazzoni et al., 2004; Merletti et al., 2008; Kleine et al., 2007]. The high-density 
(HD) EMG map and analyzing the spatial distribution of electrical activity [Rojas-Martínez et al., 2012; 

65 Fang et al., 2015] was another substantial proof of the advantages of the mapping of EMG based on array-
electrode recordings. Rojas-Martínez et al. [Rojas-Martínez et al., 2013] presented that features extracted 
from EMG maps recorded on the surface of the forearm and upper arm are provided recognition of 
movement with accuracy above 95%. The study of Rojas-Martínez et al. analyzed only the isometric 
contractions for four different hand imaginary movements (wrist flexion, extension, supination, and 

70 pronation).

In a recent study, criteria for the EMG spatial and temporal analysis have been defined in detail [Afsharipour 
et al., 2018]: the inter-pad distance within the electrode array should be less than 10mm to provide the HD 
EMG map. 

The task of our research was to develop a robust method for analysis of EMG signals recorded with the 
75 electrodes that are easy to done and a wearable low-noise signal amplifier with wireless communication. We 

selected to analyze muscle synergies represented by the EMG envelopes. We showed, in our previous study, 
that the EMG signals recorded via a 24-pad array electrode with the inter-pad distance of about 15mm could 
be transferred into images that are detailed enough for global analysis of muscle synergies [Topalović et al., 
2016]. The applicability of the method was later confirmed for the selection of the points for functional 

80 electrical stimulation (FES) leading to functional movement of individual fingers and useful grasp/release 
functions [Popovic Maneski et al., 2016, and Popović Maneski and Topalović, 2018].
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We present here a new method for the recognition of individual finger movements based on the image 
analysis of the map constructed from the recordings via a surface 24-pad array and a wearable digital 
amplifier. The method is based on the hypothesis that the images of EMG activities are highly correlated to 

85 the finger movements.

Methods and Instrumentation

Electrodes. The skin was cleaned before the electrode placement. The rectangular custom-designed electrode 
array (12x6cm, 6x4=24 circular conductive pads, a diameter of the pad D=10mm, interpad distances: 14mm 
longitudinal and 20mm transversal) produced by Tecnalia Serbia, Belgrade, Serbia was used (Fig. 1b). The 

90 electrode array was placed on the volar side of the forearm to cover flexor digitalis profundus (FDP) and 
superficialis (FDS) with the longer side along the forearm. The distal end of the array was one-third of the 
distance between the wrist and elbow from the wrist. The central line of the electrode was in the middle 
between the ulna and radius bones. We applied AG702 conductive gel (Axelgaard, Manufacturing Co., Ltd., 
Denmark) over the circular conductive pads. We used pre-gelled Ag/AgCl electrodes (GS26, Bio-medical 

95 Instruments, MI, USA) for the reference electrode and the pre-gelled Pals oval electrode (Axelgaard, 
Manufacturing Co., Ltd., Denmark) as the ground electrode. The ground electrode was placed on the bony 
part of the elbow, and the reference electrode was placed between the array electrode and the wrist, 20mm 
along the transversal axis of the electrode array.

EMG acquisition system. We used the Smarting, small, wearable 24-channel digital amplifier with high 
100 impedance differential amplifier at the input (gain A=24) followed by the 24-bit A/D converter (Fig. 1c). 

The Smarting sends data to the host computer by a Bluetooth protocol. The proprietary software, available 
from the manufacturer, was used for visual inspection and storing of the data. The sampling rate was set to 
500 samples per second (Hz) because the Bluetooth communication channel does not allow a broader range. 
We validated that the described EMG system is appropriate for the task of this research by analyzing the 

105 correlation between the envelopes and the spectra of signals recorded with the system described and the 
professional analog EMG amplifier (Biovision, Wehrheim, Germany) and connected to the computer via 
A/D card with 16 bit resolution and sampled at 2 kHz [Topalović et al., 2015].

Movement assessment. We recorded kinematics data by a custom-designed data glove (Fig. 1a) with six Flex 
Sensors 4.5" (Spectral Symbol, Salt Lake City, UT, USA) connected to the 2nd host computed through a 

110 National Instruments NI USB-6009 A/D card [Malešević et al., 2012, Popović Maneski et al., 2013]. Four 
sensors were used to measure the flexions of the thumb, index, middle and ring fingers, and two sensors for 
measuring the wrist deviations. We omitted to measure the flexions of the pinky finger based on the 
assumption that they are highly correlated with the flexions of the ring finger. 

Data synchronization. The EMG recordings and kinematics data from two computers were synchronized by 
115 the Lab Streaming Layer (LSL) system (https://github.com/sccn/labstreaminglayer).

Subjects. Six subjects with no known sensory-motor impairment signed the Informed consent approved by 
the ethics committee of the Medical School of the University of Belgrade (age: 27.5±2.3 years, height: 
188±6cm, weight: 84±7kg, forearm length 32.5±2.5cm, forearm circumference 26.5±1cm) participated in the 
study. We recorded the EMG from the dominant right forearm in all six subjects. We present data from three 

120 subjects: two out of five who were well-coordinated, and one that was somewhat clumsy. 

Procedure. A subject was sitting in front of the table with the forearm and palm resting on the table. The first 
auditory signal was the command to the subject to raise the hand and forearm, keeping the wrist angle stable 
and the palm facing the table. The second auditory signal was the request that the subject sequentially flexes, 
keep it flexed for a short time (»0.5 s) and extends the finger back to neutral (finger by finger) as shown in 

125 Fig 2. The recording session was repeated ten times, with 5 second rests between the flexions. The maximum 
EMG that the subject can generate was recorded in a separate session: subjects were asked to flex finger as 
strong as they could (all four fingers).

Preprocessing and generation of the EMG maps. The signals were processed offline in Matlab (Mathworks, 
Natick, MA, USA). We applied 3rd order Butterworth high pass filter at 30Hz to minimize the shift of the 

130 baseline and reduce the impact of motion artifacts. We applied for 5th order Butterworth notch filter to 

https://github.com/sccn/labstreaminglayer
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reduce the noise at 50 Hz. We generated EMG envelopes of the absolute values of EMG signals by using 5th 
order Butterwort low pass filter with cutoff frequency at 2Hz. All envelopes were normalized relative to 40% 
of maximal voluntary contraction (MVC). We selected the value 40% after heuristic analysis of recordings, 
which suggested that the range of EMG is much below the EMG during MVC. 

135 EMG maps were obtained in 5 steps (Fig. 3):

1. on-line generation of the EMG envelopes for all channels (at each point of time 24 values of the 
EMG envelope);

2. testing if any of the envelopes crossed the threshold at 0.05 (2% of MVC). If the test was positive, 
the program moves to the next step, and if not, then step 1 is repeated. The low value 2% was 

140 selected because of the task to detect the onset of muscle activity as fast as possible and the fact that 
2% corresponds to the white noise. The 2% threshold was found to be applicable for all users based 
on the thorough heuristic analysis of two experts.

3. forming a 24-point map (nodes in the 6x4 matrix) matching the pattern of the pads on the electrode;

4. applying the bicubic (spline) resulting with the interpolation (31 points between every two points of 
145 the original matrix);

Extracting the Features. Extracted features are related to the intensity and spatial distribution of electrical 
activity of muscles. As original EMG maps were obtained of EMG envelopes which had been normalized 
relative to MVC, values in all EMG maps are represented in the absolute color scale (ASC), common for all 
EMG maps. Each ACS-EMG map was scaled based on max-min normalization relative to the current 

150 maximal and minimal value in the map forming the relative color scale (RCS) (Figure 4b). We applied 2D 
H-dome transform to detect the regions of high activities around local maximums in an RCS-EMG map in 
(Figure 4c). 2D H-dome transform is based on translating the surface of EMG map, represented in a 3D 
coordinate system (x and y coordinates represent the position of pixels, and z coordinate represents the 
intensity), down the z-axis for height "h." We decided to set parameter h to the value 0.1 (10% of the global 

155 maximum in each map) after heuristic analysis of the recordings in all subjects. Each local peak of the 
translated surface represents the level for the unique threshold for each elevation of the surface around the 
local maximum. The intersection of thresholds and RCS-EMG map forms a binary mask with detected areas 
of high intensities. We applied morphological opening to a binary mask to clear detected small objects (less 
than 20 pixels) which are not of interests. We used the binary mask to original EMG mask to extract regions 

160 of highest activities and their intensities (Figure 4d).

For each detected object, we calculated the position of local maximum, and its intensity, calculated as the 
volume of the object shown in Figure 4e. To calculate the volume, we used 2D trapezoidal numerical 
integration. Each object was described with three parameters: x and y coordinates of local maximum 
expressed in the number of pixels and volume expressed in arbitrary units. For further classification, we 

165 calculated volume ratios of the four most significant objects as:

𝑅𝑖 =
𝑉𝑖

∑4
𝑗 = 1𝑉𝑗

where the volume of the i-th object and is the relative contribution of the i-th object.

Classification. Each map was described by a set of the parameters of four most significant objects (4x3 
matrix, each row represents one object, and columns are x coordinate y coordinate and volume). Number 

170 four was selected after a detailed analysis for all six-subjects who participated in the study. The visual 
analysis of the EMG maps during the finger movements clearly indicated four regions with significant 
activity. This was the reason to decide that four is the number of targets for the classification. If an object 
was missing, then all the parameters for that object were set to 0. The orders of the objects in the matrix were 
based on the minimal Euclidean distance between the object and the upper left corner of an EMG map and 

175 the minimum Euclidian distance between the object from the new EMG map and mean position of 
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previously detected objects. We applied an additional condition that the gap between the new object and the 
previous object was less than 30 pixels.

We considered the intervals of EMG activity when only one-digit flexion/extension was determined from the 
data glove signals. These periods include 4000 samples each. For each subject, we formed data set of 4000 

180 samples (12x4000 matrix, 1st four for x coordinates of local maximums, 2nd four rows for y coordinates, and 
3rd four rows for the volume ratios). We separated the data into 70% for the training and 30% for the testing. 
We used the cross-validation for the performance evaluation. The second test was to use the sequences of 
1500 samples and apply cross-validation for each subject.

We tested different classification methods (K nearest neighbor - KNN, Support Vector Machine - SVM, 
185 various types of decision trees - DT). All of the classification methods have high performance. We selected 

to use the cubic K nearest neighbor (KNN) method because the highest accuracy for the set of data was 
obtained for the data we recorded in the tests. We used K=10 tested after trying several values (from 10 to 
100), and the overall accuracy changed for only 3%, while the computing time increased much. The use of 
KNN was effective since our data does not include extreme values, such as movements of two or more 

190 fingers. The use of KNN could be a limitation for the cases when two or more fingers are moving since it 
would be challenging to deal within the area of the feature map. The evaluation of these more complex 
movements was left for later studies.

Results

The top panel (blue) in Fig. 2 shows an example of 24 EMG signals recorded during sequential movements 
195 of the thumb, index, middle and ring finger, and the bottom panel (red) shows kinematic signals recorded 

synchronously.

Fig. 3 shows the process of creating the EMG maps from EMG envelopes recorded from the volar side of a 
forearm. The matrix formed of 24 envelope samples provides a sharp pixel-type image of electrical activity 
under the pads. The more detailed matrix (161x97) obtained after applying the bicubic (spline) interpolation 

200 offers the more accurate approximation of the electrical activities under the array electrode. The numerical 
values in the matrix are in the range [0,1] in the ACS scale due to the MVC normalization.

Fig. 4a shows an example of the EMG map, also shown in Fig. 3, represented in a 3D system, where the z-
axis represents the intensity of the EMG map, and x and y coordinates show the geometry. Features which 
adequately describe the regions in the EMG maps are coordinates of local maxima and quantification of the 

205 intensities of these areas.

The sizes and intensities of the regions depend on the recruitment levels and the distance between the muscle 
and electrode (skin). During a functional movement, the level of muscle contraction, its length and shape, 
and the position relative to the electrode varies; thereby, ultimately, the EMG map changes. The changes in 
EMG maps complicate even more the classification of movements; yet, the relatively large size of contact 

210 pads and the distances between those reduce the variability. Due to small variations in position and length of 
forearm muscles during a movement compared to dimensions of electrodes, these variations have a profound 
influence on the regions in the EMG maps. These variations can be metaphorically described as mountain 
rocks rising from the sea (Fig. 5, left panel). The position and intensity ratio of the regions (rock peaks) are 
similar during the same movement with some variations due to complex mechanism of MUs activation and 

215 movement of muscles relative to array during a finger flexion. To stabilize the EMG maps for shaping the 
objects in a digital image, we rescaled the EMG maps in RCS. Fig. 5 (right panel) shows the result of 
rescaling. This procedure simplifies the image processing, but the information about the variation of 
intensity in time is reduced.

Three EMG maps during the same movement at a different time (0.1s, 0.3s, and 0.5s from the beginning of 
220 the action) are shown in Fig.6. Local maxima, characteristic for the movement, are presented with different 

symbols (circle, star, diamond, and square). Right panels in Fig. 6 show the ratio of object volumes and its 
change along vs. time. The graphs on the right panel show discontinuities. These discontinuities happen 
when the centers of activities are relatively close and their intensities are high enough to overlap the areas 
above certain level that program perceives them as one big area (in the case presented the positions marked 
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225 with the star and circle at t  0.07 and at t  0.6 s). More precisely, when the difference between lower local 
maxima and height of area intersection between two centers is lower than parameter h, h-dome transform 
can’t separate these two areas. This problem can be overcome by using Watershed techniques, but these 
techniques can lead to over-segmentation [Rojas-Martínez et al., 2012]. However, immediately after the 
intensities get comparable or move apart the algorithm operates correctly. This potential problem was the 

230 reason to follow four maxima since the probability that this will be the case in all four areas is very low.

We tested the method in subsequent movements as well as when removing the electrode and repositioning it 
on a different place. We show the example of EMG maps (relative color scale - RCS) for the thumb, index, 
middle and ring finger recorded in Subject 3 in Fig.7. The panels in Fig. 7 show the expected differences in 
EMG maps from finger to finger and expected variations of EMG maps for different flexions of the same 

235 finger, since the flexions are not identical.

Fig. 8 comprises the confusion matrices showing the classification accuracy for each finger individually. 
One can observe that the recognition of the index finger is the best. One reason is the fact that the distance 
from the recoding site and the muscle responsible for the flexion is the shortest compared to other distances. 
The striking result is that the EMG recordings are correlated with the thumb flexion although the electrode 

240 was not covering the main thumb flexors. The only explanation we have is that the subjects implemented a 
motor control strategy where the thumb is a synergist with other finger flexors; hence, the algorithm is 
classifying the synergy not a simple finger flexion.  

We show examples of EMG maps for the same tested task in three subjects (Fig. 9). As expected, the maps 
are not identical. The differences are due to the anatomical differences and different muscular synergies from 

245 person to person. The said finding suggests that the analysis should be performed for each subject if the 
maps are planned to be used for the control of an assistive system. The mean accuracy for all six subjects 
was 97.7±1.1% for cross validation (training data) and 97.5±1.3% for the additional validation data. 

Discussion

We presented data for three subjects from the group of six healthy volunteers. We presented data for two 
250 subjects as representatives of the group of five subjects who performed with similar movement dexterity, and 

data for one subject who was clumsy compared to others during the recording session. We were not able to 
find the reason why this subject performed with below-average dexterity.

Although the subjects were specifically asked to repeat the finger movements with a similar strength, 
significant differences in the levels of electrical activities in all channels for different movements were 

255 recorded. The differences are the consequence of inherent synergies that subject implement at the 
subconscious level. Thereby, the EMG recordings differ greatly because of the amount of activation of deep 
and superficial finger flexors (Fig. 4 and ACS-EMG maps in Fig. 5). When the source of electrical activity 
(muscle or part of the muscle responsible for the movement) is closer to the surface of the skin, then the 
intensity of EMG signals would be higher [Roeleveld et al., 1997]. These variations in EMG signals 

260 measured at the skin make the classification of the muscle activities pattern very difficult, especially when 
the conventional two-electrode configuration is used. The same is even more expressed if one is to analyze 
movements involving several fingers in synchrony. 

The presented results follow our hypothesis that the spatial component coming from the use of an array 
electrode provides necessary information about the muscular synergies in the region covered by the array. 

265 The use of the array electrode directly lowers the impact of the non-optimal placement of two electrodes in 
the conventional EMG acquisition [Farina et al., 2001; Mesin et al., 2009]. Fig. 6 shows the differences 
between the locations of high muscle activities, which would be impossible to show from the bipolar 
recordings.

An essential feature of the use of the array electrode is that signals recorded provide rich information about 
270 the synergistic activities. Namely, although the electrodes are covering the forearm and not the region where 

primary thumb flexors (flexor pollicis brevis m, flexor pollicis longus m, thenar muscle group) are the thumb 
activity can be anticipated. The activity recorded during flexion of thumb shown in Figs. 4 and 5 originate 
from muscles synergists being activated to stabilize the wrist and other fingers. The estimated high 
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percentage of classification accuracy for the thumb flexion indicates that features obtained from recordings 
275 on synergists can be used t for indirect movement recognition. As said earlier, motor control strategies, i.e., 

how the individual activates their synergist muscles depends much on many internal and external factors.

The high percentage of classification accuracy for the thumb flexion indicates that recordings from 
synergists can be used for indirect movement recognition. This placement flexibility and indirect movement 
recognition are essential for potential implementation for transradial prostheses and exoskeletons. More 

280 precisely, the recordings from the preserved muscles in proximal forearm after the amputation could 
potentially provide control signals for the thumb. 

The high classification performances (accuracy > 95%) for different hand movements [Rojas-Martínez et al., 
2013] indicates that multichannel recordings, EMG mapping, and spatial-temporal analysis represent a 
plausible solution for movement recognition. The analysis of the complete synergy of different muscle 

285 groups on the forearm and upper arm, by detecting regions of the highest activities in HD EMG maps 
obtained by EMG recordings with a large number of channels and HD array electrodes provides rich 
information about movement and muscle activities. The classification performances shown in the confusion 
matrices (Fig. 8), and overall accuracy of 97.7±1.1% are significant and comparable with the results in 
[Rojas-Martínez et al., 2013]. We could conclude that the presented approach in EMG analysis, even when 

290 using one array with a reduced number of pads (24 pads) and a wireless wearable amplifier gives a solid 
basis for the practical applications. EMG maps obtained by using the 24-pad array electrodes and 
implementation of the interpolation have a sufficiently high resolution for detecting different regions of high 
electrical activity and discriminates these regions. 

It is impossible to directly compare the performances of some other techniques described in the literature 
295 since the setups are different. The starting difference is that the literature describes results based on the data 

acquisition system with high-density electrodes with many more recording channels. In addition, we studied 
different motor tasks compared with the motor tasks presented in the literature. The reasons that we selected 
to study the flexion of the fingers relates directly to the plausible use for the synthesis of maps for the 
selective electrical stimulation of the paralyzed hand opening and closing [Popović Maneski et al., 2016 and 

300 2018]  

In this presentation we describe only the use of KNN since we learned from earlier tests in our Lab that it has 
the highest accuracy when compared with SVM and DT, as already set in the Methods. The application of 
more complex and sophisticated techniques for classification would provide more features, but the results 
that we present will not change, meaning that it is possible to study muscle synergies with a relatively simple 

305 wearable system comprising 24-channel amplifier and 24-contact electrode with the spacing in range of cm.

Maps represented in the ACS contain the information about intensity variations in time. That is valuable 
information for estimation of movement force in potential implementations, but at the same time, makes the 
movement recognition more difficult by constant destabilization of objects in EMG maps (Figure 5). RCS-
EMG maps provide information about the current ratio of high-intensity regions producing the more stable 

310 objects than ACS - EMG maps and simplifying their detection and directly influences the movement 
recognition accuracy.

In this study, we presented that the classification based on the position of the regions of high activity and 
their intensity has excellent accuracy for the phases of movements characterized by the constant joint angle 
(period after finger stopped flexing and before is starts extending). In future research, attention should be 

315 paid to transition from one movement to another and from a relaxed state to the first part of the movement. 
The more complicated issue that needs attention in the future is the case when the movement involves 
several fingers and wrist in parallel.
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Figure 1: a) Experimental setup; b) Position of the array electrode; c) 24 pad array electrode (Tecnalia 
Serbia, Belgrade, Serbia) with AG702 conductive gel (Axelgaard, Manufacturing Co., Ltd., Denmark); d) 24 
channel Smarting wireless amplifier (mBrainTrain, Belgrade, Serbia)

Figure 2: a) Joint angles recorded by the Data Glove signals for three subjects. Subject 1 was not able to 
separately flex individual fingers, while the other two representing the other five subjects performed the task 
efficiently. b) Example of recorded signals (subject 3) during sequential movements with the thumb, index, 
middle, and ring finger. The top panel presents 24 EMG signals recorded on the volar side of the forearm. 
The bottom panel shows kinematic signals recorded by Data Glove. 

Figure 3: The five-step procedure of forming the EMG maps: 1) collecting the current values of the EMG 
envelopes from each channel (24 samples of EMG envelopes; one per channel); 2) checking if any envelope 
was above the threshold at 0.05 (2% of MVC). If the result was yes, then the program moves to the next step, 
and if not, then the program returns to step 1 to collect new samples; 3) organizing the collected samples into 
a 6x4 matrix to match the  layout of the recording array electrode; 4) applying bicubic (spline) interpolation 
by adding 31 points between each two points in the original matrix; 5) assigning the colors (standard "jet" 
colormap in Matlab) to the appropriate values in the matrix (0 – deep blue, 1- deep red). 

Figure 4: The procedure of features extraction of the EMG map: a) ACS-EMG map (right) and the same map 
in the 3D coordinate system (x and y-axis -number of pixels, z-axis – Intensity in ACS); b) scaled original 
map in RCS (right) and the same map in 3D coordinate system (x and y-axis -number of pixels, z-axis – 
Intensity in RCS); c) Result of the implementation of H-dome transform on RCS-EMG map and estimation 
of the high-intensity zones around the local maximums (red areas in left figure) and binary map with marked 
pixels of the zones (white pixels (logical 1) are representing the detected zones); d) the multiplication of 
binary map and original ACR-EMG map; e) the extracted features – coordinates of local maximum (x, y) 
and volume of the object (V). 

Figure 5: Comparison of ACS and RCS maps in time in 3D space. RCS-EMG maps (left panels) provide 
information about the current ratio of high-intensity regions producing the more stable objects compared 
with ACS - EMG maps (right panel); thus, simplifying the detection process.

Figure 6: Four characteristic local maxima detected during a single movement. Three left panels are EMG 
maps (RCS) at different times. The circle, star, diamond, and square show the mean positions of the local 
peaks. The intensities of the areas surrounding the local maxima are in right panels/ Red lines indicate the 
times for the maps presented in the left panel. The explanation of the discontinuities is presented in the text. 

Figure 7:  EMG maps recorded in the same subject (relative color scale - RCS) for the thumb, index, middle, 
and ring finger (top row) for five repetitions of the same task. The maps are not identical as expected, but the 
objects remain at the same positions.

Figure 8: The confusion matrices for three subjects showing the classification accuracy for each finger 
individually. 

Figure 9: EMG maps for three subjects described (relative color scale - RCS) for the thumb, index, middle, 
and ring finger (top row). The differences are expected since the anatomical features, and the movement 
strategies are different from subject to subject.
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