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PREFACE  
 
 

 In this book authors for the first time introduce in a 

systematic way the notion of complex valued graphs, strong 

complex valued graphs and complex neutrosophic valued 

graphs. Several interesting properties are defined, described and 

developed. Most of the conjectures which are open in case of 

usual graphs continue to be open problems in case of both 

complex valued graphs and strong complex valued graphs.   

 

We also give some applications of them in soft computing 

and social networks. At this juncture it is pertinent to keep on 

record that Dr. Tohru Nitta was the pioneer to use complex 

valued graphs in neural networks in particular and soft 

computing in general. However in this book authors define and 

develop mathematical models using the complex valued 

directed graphs akin to Fuzzy Cognitive Maps model and Fuzzy 

Relational Maps models. 
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Further it is pertinent to record in real world problems the 

values or impulse or synaptic relations can be imaginary or 

indeterminate or both. These situations can be studied using 

complex valued graphs or strong complex valued graphs or 

neutrosophic complex valued graphs.  

 

Thus using complex valued graphs one can construct the 

Fuzzy Complex Cognitive Maps model and using complex 

valued bigraphs we can construct Fuzzy Complex Relational 

Maps model analogous to FCMs model and FRMs model 

respectively.  Likewise for other complex neutrosophic valued 

graphs. Authors feel this book will be a boon to researchers in 

computer science and social sciences. 

 

 We wish to acknowledge Dr. K Kandasamy for his 

sustained support and encouragement in the writing of this 

book.  

 
W.B.VASANTHA KANDASAMY 

ILANTHENRAL K 
FLORENTIN SMARANDACHE 

 



 

Chapter One 

 

 

INTRODUCTION 

 

 In this book authors for the first time introduce the notion 
of complex valued graphs. When we say complex valued graphs 
we simply mean that at least one of the edge weights must be a 
complex value.  Study in this direction is innovative and 
interesting. Several properties of complex valued graphs are 
derived and developed. 

 Further if G is a complex valued graph and if some of its 
vertices are also complex then we define the graph to be strong 
complex valued graph. 

 The following facts are very important. 

 In the first place we know the only closed algebraic field 
is the field of complex numbers C. So even if our equations are 
to solved we need basically C = {a + bi / a, b  R, i2 = –1}.   

 It is pertinent to record that researchers have presented a 
novel approach for the simultaneous modeling and forecasting 
of wind where by the wind field is considered as a vector of its 
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speed and direction components in the field of complex 
numbers. They have recently introduced framework of 
augmented complex statistics. Augmented Complex Least Mean 
Squares (ACLMS) algorithm is introduced and its usefulness in 
wind forecasting is analyzed in 2017 [6]. 

 Further augmented CRTRL for complex-valued recurrent 
neural networks was introduced in 2007 [5]. However to ones 
surprise we are not in a position to find a systematic 
development of complex valued graphs. 

 Still it is interesting to note the notion of complex valued 
neural networks which is defined as an extension of real valued 
neural networks have already been introduced in [2]. They have 
developed in [2] the singularity and its effect on learning 
dynamics in the complex valued neural networks. They have 
obtained simulation results on learning dynamics of the three 
layered real valued and complex valued neural networks in the 
neighbourhood of singularities which supports the analytical 
results.  

 A modified error back propagation algorithm for complex 
valued neural networks introduced in [10] is one of the early 
papers published work on this topic.  

 They have listed the inherent properties of complex 
valued neural networks. 

1. Ability to learn 2-dimensional affine transformations. 

 The complex-valued neural network can transform 
geometric figures, for instance rotation, similarity 
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transformation and parallel displacement of straight lines, 
circles etc. 

 Examples of the applications of the ability to learn 2-
dimensional affine transformations 

a) Application to the estimation of optical flows in the 
computer vision. Please refer [4]. 

b) Application of the generation of fractal images. [4] 

2. Orthogonality of decision boundaries. A decision 
boundaries of a complex valued neural network basically 
consists of two hyper surfaces that intersect orthogonally and 
divides a decision region into four equal sections. Several 
problems that cannot be solved with a single real-valued neuron 
can be solved with a single complex-valued neuron using the 
orthogonal property. 

3. Structure of critical points. The critical points (satisfying 
a certain condition) of the complex - valued neural network with 
one output neuron caused by the hierarchical structure are all 
saddle points not local minima, unlike the real valued case 
where a critical point is a point at which the derivative of the 
loss function equal to zero. [7] 

 Though there is some sort of soft computing done with 
complex valued neural networks still one is surprised to see any 
form of systematic development about complex valued graphs is 
absent in literature. 

 Here we define and develop complex valued graphs in a 
very systematic way.  
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 Further we realize in the working of the human brain in 
the neuron anatomy and comparing with the Artificial Neural 
Network here the term synapse is only a signal it can be at the 
inactive state, active state where some real signal passes and 
action takes place or it can be an imaginary signal where some 
imaginary information is processed. It is unfortunate that till 
date such imaginary signal and its processing is not described in 
artificial neural networks. However with the exception of Dr. 
Tohru Nitta [9-11] who has analyzed such models though he has 
not represented them explicitly.  

 End of the day when we say the synapse is imaginary it 
does not mean the signal between two neurons is imaginary it 
only means the information passed from two or more neurons 
are imaginary; we do not say the connecting synapse to be 
imaginary. 

 Since to some extent there are use of complex values in 
ANN like Back propagation and so on we do not intended to 
give applications of complex valued graphs to soft computing in 
that direction. However as no development of complex valued 
graphs are mentioned in the systematic way in this book 
complex valued directed graphs and complex valued bigraphs 
are defined in Chapter II and they are used in the construction of 
new Fuzzy Imaginary Cognitive Maps Models and Fuzzy 
Imaginary Relational Maps Models. This is explained in 
Chapter III of this book. 

 Thus the notion of complex valued graphs can play a vital 
role in soft computing of the unsupervised data provided the 
problem under investigation involves an amount of imaginary 
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concepts or relations we can use these complex valued graphs 
and obtain these models. 

 So these complex valued graphs can play a vital role in 
soft computing under the condition the problem involves some 
imaginary concepts and relations like the medical diagnostics of 
a hypochondria patient or the finding symptoms and decease 
model of a hypochondria patient. 

 Finally in the last chapter of this book we have introduced 
the notion of complex neutrosophic valued directed graph and 
complex neutrosophic valued bigraphs. It is further proved if 
any problem in hand has some indeterminate as well as complex 
values (that is imaginary) then we can using these graphs 
analogously define some new models. 

 Thus we have defined Fuzzy Complex Neutrosophic 
Cognitive Maps (FCNCMs) model or Fuzzy Imaginary 
Neutrosophic Cognitive Maps (FINCMs) model so we can 
replace imaginary by complex and vice versa. 

 Similarly we have defined using the fuzzy complex 
neutrosophic valued bigraph the new model viz. Fuzzy 
Complex Neutrosophic Relational Maps model (FCNRMs 
model). This model will be appropriate when the nodes / 
concepts associated with the problem can be separated into two 
distinct classes and the concepts and relations involve both 
imaginary and indeterminate notions. 

 Study in this direction is carried out in the last chapter. 
Finally for these new models we have defined the notion of 
combined disjoint Fuzzy Complex (Imaginary) Cognitive maps 
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model and Combined Disjoint Fuzzy Complex Neutrosophic 
Cognitive Maps model. 

 Further Combined Overlap Fuzzy ICMs model and 
Combined Overlap Fuzzy Complex Neutrosophic Relational 
Maps model are defined and described. 

 Thus for the notions of Fuzzy Cognitive Maps, Fuzzy 
Relational Maps and their neutrosophic analogue please refer 
[15]. For neutrosophic logic refer [12, 13]. For combined 
disjoint FCMs and combined overlap FCMs refer [18]. 

 



 

Chapter Two 

 

 

COMPLEX VALUED GRAPHS AND THEIR 

PROPERTIES 

 

 In this chapter for the first time authors introduce the new 
notion of complex valued graphs in a systematic way and give 
their applications. Throughout this chapter C denotes the 
complex numbers, that is  

 C = {a + bi / a, b  Z or Q or R with i2 = –1}.  

It is important to note only the edge weights of these graphs are 
complex values. 

 Further these structures will find applications in ANN, 
Fuzzy Cognitive Maps models and Fuzzy Relational Maps 
models. 

 First we give examples of them. 

Example 2.1. Let G = {V, E} be the graph with edge weights 
from C given by the following figure; 
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  6i 

 

Figure 2.1 

In view of this we make the following definition of a complex 
valued graph. 

Definition 2.1.  Let G ={V, E} be a graph whose edge values E 
are from C = {a + bi / a, b  R or Q or Z with i2 = –1} be 
defined as the complex valued graph provided there is atleast 
one edge which is a complex number. 

 The following facts are important. In reality  certain 
edges in neural network or be a relational map or any cognitive 
maps we can have the existence of some edges to be imaginary. 
This can be represented by complex values. So at the first step 
we are very much justified in giving edge weights to be 
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 complex numbers in graphs. We have already provided some 
examples, now we will develop this new and innovative notion 
in a systematic way. 

 First of all the graphs given in Figure 2.1 are mixed 
imaginary for the edge weights are a + bi  C or real (a  0 and 
b = 0).   

 Now we can have graphs which have edge weights to be 
purely imaginary and some real. 

 We obtain first results about some complex valued 
graphs. 

Example 2.2. Let G = (V, E) be a graph with two vertices and 
one edge given by the following figure; 

 

                   G  =   
 

Figure 2.2 

 Clearly G is a imaginary valued graph. 

Example 2.3. Let K = (V, E) be a graph with three vertices and 
three edges given by the following figure; 

 

 

 
Figure 2.3 

v1 v2 

v2 v3 

v1 

3 +2i 4 

5 + i 

K =  

3i+2 
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 We now see K – v1 gives the graph. 

 

 

Figure 2.4 

 So the complex valued graph K becomes a purely 
imaginary graph by the removal of one vertex v1. 

 We now find K – v3; K – v3 is given by the figure 2.5. 

 

 

 

Figure 2.5 

 Clearly the removal of the vertex v3 makes the complex 
valued graph to be real graph. 

 Now we find the graph obtained by removal of the vertex 
v2. 

 

 

 

Figure 2.6 

 Clearly the removal of the vertex v2 from the complex 
valued graph K makes K – v2 a purely imaginary graph. 

5+i 
v2 v3 

= K – v1 

4 

v2 

v1 

= K – v3 

3 + 2i 

v3 

v1 

K – v2 = 
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  So it is pertinent to record the following: 

i) In general a complex valued graph by a removal 
of one or two vertices may become a real graph. 
 

ii) In general we cannot say two complex valued 
graphs with same number of edges and same 
number of vertices to be isomorphic. 

 The following example proves these facts. 

Example 2.4. Let us consider all complex valued graphs with 3 
edges and 3 vertices given by the following figures. 

  

v3 

v1 

v3 v2 
2+i 

3 4 

v1 

v2 4 

2+2i 3+i 

(a) (b) 

v1 

v3 v2 
20 

12 7+i 

(c) 
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Figure 2.7 

 We see none of these complex, valued graphs given in 
Figure 2.7 are isomorphic. 

 For if v1 is removed in a, b, c, d, f and e; 

we see in case of a, d, and e the removed of vertex v1 results in 
an pure imaginary graph whereas in case of f, b and c the graphs 
after removal of vertex v1 is real. 

 Now for the complex graphs a, b, c, d and c remove 
vertex v2.  The complex valued graphs f, a and d are real and the 
complex valued graphs b, c and e are pure complex graphs. 

 Now the removal of the vertex v3 from the complex 
valued graphs a,  b, c, d, e and f we see a, c and e are real and 
the complex valued graphs f, b and d are pure complex.  

We first tabulate the results for comparison. 

v1 

v3 v2 
3+i 

4i 3 

v1 

v2 
2+5i 

7 7i 

(d) (e) 

v1 

v3 v2 8 

3i+2 

(f) 

d 

7 

v3 
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 Graphs Removal of 

vertex v1 
Removal of 

vertex v2 
Removal of 

vertex v3 

a Pure imaginary Real Real 

b Real Pure imaginary Pure imaginary 

c Real Pure imaginary Real  

d Pure imaginary Real Pure imaginary 

e Pure imaginary Pure imaginary Real 

f Real Real Pure imaginary 
 

We observe each of the rows. 

 All the six rows are distinct which clearly proves all the 
six graphs are distinct. 

 Further we see a and b behave in the opposite way so we 
define a to be the quasi dual of b and vice versa. c and d behave 
in the opposite way so c is the quasi dual of d and d is a quasi 
dual of c. 

 e and f behave as a quasi dual pair. 

 Thus we cannot say the complex valued graphs with same 
number of edges and vertices are isomorphic. 

Example 2.5. Let G1, G2, G3, G4 and G5 be 5 complex valued 
graphs having same number of vertices and same number of 
edges which is given in the following figure 2.8. 
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Figure 2.8 

 We see how many subgraphs of G1 are real and how 
many are pure imaginary how many are complex valued 
subgraphs. 
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v2 
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6 
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v2 
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v1 

3 
4+2i 

G2 
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9

v3 

6+3i 

8 + 6i v4 

3 

2+5i v5 
v2 

2i+4 
v1 
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  Consider the following subgraphs of G1 

 

 

 

 

 

 

 
 

Figure 2.9 

 We give these seven subgraphs in figure 2.9 with two 
vertices and one edge (it pertinent to mention here that we don’t 
accept vertex set without edges for all vertex sets will trivially 
fall under the real graphs). 

 We see there are 4 subgraphs which are pure imaginary 
and only three subgraphs which are real.  

 No questions of complex valued graphs arises in this case 
as there is only one edge connecting the two vertices which can 
either be real or complex. Hence the claim. 

 The subgraphs with three vertices and two edges or three 
edges of G1 is as follows. 

 

4+i

v5 v2 

2 v2 v3 

8+5i 
v4 v2 

6i 
v2 v1 

9i 
v3 v4 

7 
v3 v5 

3 v5 v4 
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Figure 2.10 

 There are 7 subgraphs of G, with three vertices with 2 
edges or 3 edges. 

 

v4 

v1 

6i 

2 

v3 

v2 
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v1 
4+i 6i 

v2 

v1 
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v2 

2 8+5i 
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v3 
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v3 
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v5 

8+5i 
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  Only out of these 7 subgraphs two are pure imaginary and 
5 others are complex valued subgraphs there is no subgraph 
with real edges so there is no subgraph with 3 or two edges and 
3 vertices which is a real graph. 

 Subgraphs with four vertices and six edges or four edges 
or five edges are given below. 

 

 

 

 

 

 

 

 

Figure 2.11 

 We see all the four subgraphs of G1 are complex valued 
subgraphs so it is pertinent to put forth a simple problem for the 
reader, will all four vertices subgraphs of G1  be only a complex 
valued subgraph? 

 Interested reader can work with the complex valued 
graphs G2, G3 and G4 and find their respective subgraphs. 

 
v2 

v3 v4 

v5 
4 + i 

8 + 5i 
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8+5i 
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v4 
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v5 

3 
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4+i 
v1 

6i 

v2 
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v5 
4 + i 

2 

 

v2 

v3 

7 

9i 

7 
2 3 

v1 6i 
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  Further can there be quasi dual subgraphs of G1, G2, G3 
etc? If so find them and compare them. 

 Now for the graph G1 we remove one of the vertices and 
see how they behave. If we remove v1 from G1 we see G1 \ v1 is 
as follows; 

 

 

 

 

Figure 2.12 

 Clearly G1 \ v1 is again a complex valued subgraph of G1. 

 Next we remove the vertex v2 from G1. We find  G1 \ v2 

and the related figure which is given in the following; 

 

 

 

 

Figure 2.13 

This subgraph is also a complex valued subgraph of G1. Further 
this also removes vertex v1 from G1. 
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8+5i 
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9i 
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Complex Valued Graphs and their Properties  25 
 

 
  We now remove the vertex v3 from G1, G1 \ v3 is as 
follows; 

 

 

 

Figure 2.14 

 

 This is also a complex valued subgraph of G1. 

 We now find G1 \ v4 which is as follows. 

 

 

 

 

 

 

Figure 2.15 

 We see G1 \ v4 is again a complex valued subgraph of G1. 

 Next we find the subgraph of G1 by removing the vertex 
v5. 

  

v4 

v2 
v5 

3 
8+5i 

4+i 
v1 

6i 

2 7 

v5 

v3 

v2 
6i 

v1 
4+i 
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Figure 2.16 

The related subgaph of G1 \ v5 is again a complex valued 
subgraph of G1. 

 We now remove two of the vertices of G1 and study the 
resulting structure G1 \ {v1, v2} is given by the following figure. 

 

 

 

 

Figure 2.17 

 

Clearly G1 \ {v1, v2} is again a complex valued 
subgraph of G1. 

We now find G1 \ {v1, v3} the subgraph is given in      
figure 2.18. 

9i v4 v3 

2 
8+5i 

G1 \ v5  = 

v2 

v1 

6i 

G1 \ {v1, v2} = 

9i v4 v3 

7 3 

v5 
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Figure 2.18 

Thus G1 \ {v1, v3} is again a complex valued subgraph 
of  G1.  

We now find the graph G1 \ {v1, v4} which is as follows. 

 

 

 

Figure 2.19 

We now find G1 \ {v1, v5}. The related graph is given in 
Figure 2.20. 

  

 

 

Figure 2.20 
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v2 
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9i 
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 This is also a complex valued subgraph G1.  

Next we find the subgraph G1 \ {v2, v3} 

 

 

 

 

Figure 2.21 

Clearly removal of two vertices dismantles v1 from G1 
and however the resulting subgraph of G1 is a real subgraph. 

We find G1 \ {v2, v4} in the following Figure 2.22. 

 

 

 

 

Figure 2.22 

This also removes the vertex v1 and the resultant 
subgraph is a real subgraph of G1.   

v5 

G1 \ {v2, v3} = 

v4 

3 

v5 

G1 \ {v2, v4} = 

v3 

7 
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 In the following figure we give the subgraph given by 
G1 \ {v3, v4}. 

 

 

Figure 2.23 

Clearly G1 \ {v3, v4} is a pure imaginary subgraph of 
G1. 

Now we find G1 \ {v3, v5} and describe it in the 
following Figure 2.24. 

 

   

 

Figure 2.24 

 Clearly this subgraph is pure imaginary. 

Now we find G1 \ {v4, v5}; 
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Figure 2.25 

 Clearly the subgraph G1 \ {v4, v5} is a complex valued 
subgraph of G1. 

Now we find the subgraphs obtained by G1 \ {v1, v2, v3} 
which is given by the following Figure 2.26. 

 

 

Figure 2.26 

We see G1 \ {v1, v2, v3} is a real subgraph which is the 
same as G1 \ {v2, v3} given in Figure 2.21. 

Now we find G1 \ {v1, v3, v4} and that is described by 
the following Figure 2.27. 
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6i v1 

2 

v4

G1 \ {v2, v1, v3} = 

v5 

3 



Complex Valued Graphs and their Properties  31 
 

 
  

 

 

Figure 2.27 

Clearly G1 \ {v1, v3, v4} is a pure imaginary subgraph of 
G1. 

Next we find G1 \ {v1,v2, v4} which is given by the 
following Figure 2.28. 

 

Figure 2.28 

Clearly G1 \ {v1, v2, v4} is a real subgraph of G1.  

Consider G1 \ {v1, v2, v5}, which is given by the 
following graph. 

 

 

 

Figure 2.29 
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 Clearly  G1 \ {v1, v2, v5} is a pure imaginary subgraph 
of G1.  

 Consider G1 \ {v1, v3, v5} 

 

 

Figure 2.30 

We see G1 \ {v1, v3, v5} is a pure imaginary subgraph of 
G1. 

Now we give the figure of the subgraph G1 \ {v1, v4, v5}. 

 

 

 

Figure 2.31 

We see G1 \ {v1,v4, v5} is a real subgraph of G1. 

We find the subgraph G1 \ {v2, v3, v4} which is given by 
the following figure 2.32. 

  

v2
G1 \ {v1, v3, v5} = 

8+5i 
v4 

G1 \ {v1, v4, v5} = 2 

v3 

v2
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Figure 2.32 

We see the subgraph is just vertex subgraph v1,v5. 

Now we find out G1 \ {v2, v3, v5} which is given by the 
following Figure 2.33. 

 

Figure 2.33 

This subgraph is also just the vertex v1, v4 subgraph of 
G. 

Finally we find out G1 \ {v2, v4, v5} which is given by 
the following Figure 2.34. 

 

 

Figure 2.34 

This subgraph is also a double vertex.   

G1 \ {v2, v3, v5} = 

v4 

v1

G1 \ {v2, v4, v5} = 

v3 

v1

G1 \ {v2, v5, v4} = 

v5 

v1
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 Usually we ignore the single vertices presence 
throughout our discussion we do not consider one vertex alone 
as subgraph. 

Now G1 \ {v3, v4, v5} is given by the following Figure 
2.35. 

 

 

Figure 2.35 

Finally G1 \ {v3, v4, v5} is a pure imaginary complex 
subgraph of G1. 

Now we wish to state if from G1 a set of four vertices is 
removed the resultant here is just a single point subgraph of G1. 

Having seen subgraphs got by removal of a vertex we 
now study yet other properties of these complex valued graphs.  

One of the natural and interesting question is how many 
complex valued graphs with four vertices and six edges with no 
loops can be obtained is analysed in the following Figure 2.35 
before we proceed to describe them we will just describe the 
notations a will denote a complex number of the form x + iy 
where y  0;   a, b c or d etc.; denotes a real number. 

 

= G1 \ {v3, v4, v5} 
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Figure 2.36 

We see (1) and (2) the complex valued graphs which 
are complex complements of each other. 

Likewise (3) and (4) complex valued graphs which are 
complex complements of each other. 
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   (5) and (6) are complex valued graphs that are 
complements of each other. 

We can have this concept in the case of complex valued 
graphs only. 

Next we give first some examples of conjugates of 
complex valued graphs before we proceed to define them in a 
systematic way. 

Example 2.6.  Let G be the complex valued graph given by the 
following Figure 2.37. 

 

 

 

 

Figure 2.37 

We define the complex valued graph B to be the 
conjugate of the complex valued graph A and vice versa.  

We further wish to record that we call a usual weighted 
graph to be a complex valued graph if atleast one of its edge 
weights is a complex number from C = {a + bi / a, b  R,         
i2 = –1}. 
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 Throughout this book we study only complex valued 
graphs which are finite. That is those graphs which has atleast 
one of the edge weights to be a complex number that is they are 
complex valued graphs. 

For in many problems we give weights for instance 
ANN, FCMs, FRMs and so on.  Here it is pertinent to record 
that the two nodes which are connected by given weight in 
reality may be a imaginary connection.  

This sort of occurrence are most common in medical 
diagnostics, personality evaluation and in study of social 
problems or social networking. 

In these places complex valued graphs will play vital 
role. Secondly in case of unsupervised data one expert who 
assigns a value for edge weight between nodes may give a 
imaginary value for the other expert may feel no such 
connection to be possible. So in our opinion these graphs will be 
a boon to a researcher. 

However the authors felt when they wanted to study 
ANN in which they encountered with possible imaginary 
relation between networks they could not proceed as the concept 
of complex valued graphs or graphs with complex edges 
weights, was not in practice and did not exist so authors felt it 
mandatory, first to develop such graphs and then go for the 
study.  

Further it is pertinent to record at this conjucture that in 
some cases one may have the very nodes (some of them) to be 
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 also imaginary.  So in all these cases the complex valued graphs 
will serve the better purpose. 

We now define systematically a complex valued 
subgraph. 

Definition 2.2.  Let G be a complex valued graph. A subgraph 
H of G is defined as a complex valued subgraph of G if H itself 
is a complex valued graph. 

It is interesting note the following. 

In general all subgraphs of a complex valued graph G 
need not in general be a complex valued graph it can be pure 
imaginary subgraph or a real subgraph. 

However if G is a pure imaginary graph then every 
subgraph of G is also a pure imaginary subgraph. 

We will prove an example where a complex valued 
graph G has subgraphs which are real subgraphs which are pure 
imaginary subgraphs that are complex valued. 

Example 2.7.  Let G be the complex valued graph given by the 
following figure; 
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Figure 2.38 

Consider the subgraph H1, given by the following Figure. 

 

 
 

Figure 2.39 

Clearly H1 is a complex valued subgraph of G. 

 Let H2 be the subgraph of G given by the following 
Figure; 

 

 

 

Figure 2.40 
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  Both (a) and (b) are subgraphs of G which are real 
subgraphs. Consider H3 the subgraph of G given by the 
following Figure 2.41. 

 

 

 

Figure 2.41 

 Clearly H3 is a pure imaginary subgraph of G. 

 Hence the claim. 

 A walk of a complex valued graph G is an alternating 
sequence of points and lines or complex valued lines v0, v1, 
v2,…, vn–1, xn, vn, beginning and ending with points in which 
each line is incident with the two points immediately preceding 
and following it. 

 So in case of complex valued graphs the walk is 
imaginary only in parts it will be real. 

 Here when we define degree of a vertex or point v1 of a 
complex valued graph G we call it instead as real degree of vi of 
G and complex number degree of vi of G as the number of real 
lines (edges) incident with it as real degree of vi and complex 
value degree of vi of G is the number of complex valued edges 
or lines incident with it. 
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  We will first illustrate this situation by an example or 
two.  

Example 2.8.  Let G be the complex valued graph given by the 
following figure; 

 

 

 

 

Figure 2.42 

Here 1e  denotes the edge is a complex valued one 

where as ej denotes the edge is a real valued one. 

Now the real degree of v1 is 5 the complex valued 
degree of v1 is 2. 

The real degree of v2 is 4. 

The complex degree of v2 is 3. 

The real degree of v3 is 5. 

The complex degree of v3 is 2 

The real degree of v4 is 4. 

The complex degree of v4 is 3. 

The real degree of v5 is 5 

v2 

v3 

v4 

v5 v6 e4 
5e

 

v7 

e2 

v8 

 1e  
e8 v1 

3e
a 

e6 

e9  10e  e11 e17 
 18e  

 e13 

 16e  

e5 e12 
 7e  



42 Complex Valued Graphs for Soft Computing 
 
 
 The complex degree of v5 is 2. 

The real degree of v6 is 3. 

The complex degree of v6 is 4. 

The real degree of v7 is 5. 

The complex degree of v7 is 2. 

The real degree of v8 is 5. 

The complex degree of v8 is 5. 

We see on the whole the complex valued graph G has 
17 real edges and 11 imaginary edges. 

Example 2.9. 

 

 

 

 

Figure 2.43 

The real degree of v1 is 3 and the complex degree of v1 is 3. 

The real degree of v2 is 1 and the complex degree of v2 is 0. 

 The real degree of v3 is 2.  

 The complex degree of v3 is 1. 

 The real degree of v4 is 2.  

 The complex degree of v4 is 1. 
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  The real degree of v5 is 1. 

 The complex degree of v5 is 1. 

 The real degree of v6 is 1. 

 The complex degree of v6 is 1. 

 The real degree of v7 is 1. 

 The complex degree of v7 is 0. 

 The real degree of v8 is 1. 

 The complex degree of v8 is 1. 

 Thus we see in case of graph given in example 2.8 some 
of the degrees of real and complex of each vertex vi is 7. 

 However in the example 2.9 given in figure 2.43 we see 
the sum of the degrees of each vertex vi is different. 

 For instance sum of the degrees of vertex v1 is 6. 

 The sum of the degrees of vertex v2 is 1. 

 The sum of the degrees of vertex v3 is 3. 

 The sum of the degrees of vertex v4 is 3. 

 The sum of the degrees of vertex v5 is 2. 

 The sum of degrees of vertex v7 is 1. 

 The sum of the degrees of vertex v6 is 2. 

 The sum of the degrees of vertex v8 is two. 

 Thus we see in case of Kn complex value of graphs the 
sum of the real degree and complex degree adds upto n – 1. 
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  In case of the other graph all the vertices may not have 
the same degree for every vertex. 

 However in case of complex valued graphs, the Ulms 
conjecture is stated as, if G is a complex dual graph with some r 
vertices and H is another complex valued graph with r vertices 
with r  3. 

 If for each vertex vi the subgraphs of Gi = G – vi and Hi = 
H – vi are isomorphic then the complex valued graphs G and H 
are isomorphic remain open for complex valued graphs also. 

 All theorems in general are true in case of complex value 
graphs regarding degrees of the vertices of a graph.  

 However path and walk will have imaginary lines. 

 We claim if G is a complex valued graph and H is a real 
graph then the product of two graphs G and H.  

 G  H is only a complex valued graph with H as a real 
subgraph. 

 We will first illustrate this situation by some examples. 

Example 2.10. Let  
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 G =   

 

 

and                 H =  

Figure 2.44 

Be the complex valued graph and real graph respectively. 

 

 

            G  H



Figure 2.45 

 Clearly G  H is a complex valued graph. 

 We find composition of graphs G[H] and H[G] in the 
following. 

 A natural question is will G[H] be the same as H[G]. 
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           G[H] = 

 

 

Figure 2.46 

H[G] is given by the following 

 

 

Figure 2.47 

 Clearly in general G(H)  H(G) evident from the figures 
2.46 and 2.47. 

 It is difficult to derive the notion of regular graphs in case 
of complex valued graphs as it is very different to define degree 
of a vertex = sum of (complex degree + real degree) so only in 
few cases regularity will be got and further most results 
dependent on regularity are not true in case of complex valued 
graphs. 

 Hence we make two types of definitions. 

(v1w2) 
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  We say a complex valued graph G is complex regular if  

 i)  every vertex has same degree. 

 ii) The complex degree of each vertex are equal. 

iii) The real degree of each vertex are equal. 

 We will first illustrate this situation by an example. 

 In case of point graph that is no lines we do not have the 
notion of complex valued graphs so we do not have the 
definition of  0-regular graphs. 

 In case of 1-regular complex valued graphs we see they 
are only pure imaginary graphs and so on. 

 

Figure 2.48 

 

 Once again we recall if we put e  for the edge it  means e  
= a + bi where b  0   a can be zero or non zero. 

Theorem 2.1. If G is a one regular complex valued graph then 
G is a pure imaginary graph. 

Proof.  The one regular complex valued graphs are of the form 

 

v2 
e  

v1 w2 
e  

w1
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Figure 2.49 

so it can only be a pure imaginary graph. 

 Now we first provide an example or two of regular 
complex valued graphs. 

Example 2.11 . Consider the following complex valued graphs. 

 

                               

 

                        (a)                          (b) 

 

 

(c) 
Figure 2.50 

 We see we can have only three complex valued graphs 
with three vertices which has same degree at each of vertices. 

v2 
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v1 w2 
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1e   e3    = G1 

v1 

v2 v3 3e
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v2 v3 e3

 e2 = G3 1e
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  We see from the three graphs only one of them is regular 
namely (b), but (b) is a pure imaginary graph.  

 We see in case of (a) a deg (v1) = one complex degree + 
one real degree 

 deg (v2) = two complex degree 

 deg (v3) = one complex degree + one real degree. 

 So the complex valued graph (a) is not regular according 
to the definition given. 

 Consider the complex valued graph (b). Clearly degree of 
each vertex is equal to two in which complex degree is two and 
real degree is zero. 

In case of the complex valued graph (c) the task of proving G3 is 
not regular is given to the reader. 

 Consider the following graph K given below. 

 

 

 

Figure 2.51 

 Clearly it is verified K is complex 2-regular and 2-
regular. Consider J given by the following figure; 

 
1e

  
    K =  e4 

v4 v3 

v2 v1 
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Figure 2.52 

 It is easily verified J is also complex 3-regular. 

 Let W be the complex valued graph given by the 
following figure; 

 

 

Figure 2.53 

It is easily verified W is also 3 complex regular.  

However it is clear through both W and J are 3 complex 
regular yet they are not the same or isomorphic we call these 
two graphs as dual regular graphs or to be more specific J is the 
dual regular graph of W and vice versa. 

Consider the complex valued graph H given by the 
following figure. 
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Figure 2.54 

 We see the complex valued graph H is not complex 
regular it is only regular in a different way.   

We call such complex valued graphs as quasi 3-regular 
graphs. So (a) and (c) in figure 2.50 are defined as quasi 2-
regular graphs. 

Theorem 2.2. Let G and G1 be two complex valued graphs with 
same number of vertices and same number of edges, which are 
complex n-regular.  They are in general not isomorphic. 

Proof. The proof is only by contradiction. Consider the 
complex 3-regular graphs J and W given in figures 2.52 and 
2.53 respectively. They have all conditions of the theorem to be 
true yet they are not isomorphic. 

 We now give examples of quasi complex (4, 1)-regular 
graphs. Consider the complex valued graph B given by the 
following figure; 

 

 

 

e1  

   H = 3e  

v4 v5 

v2 v1 

2e

e4 

5e
e  e6 



52 Complex Valued Graphs for Soft Computing 
 
 
  

 

 

 

Figure 2.55 

 We see B is a quasi complex (4, 1) regular graph. The 
complex degree of each of the vertices is four with degree of 
real edges = 2 and degree of complex edges also is 2. 

 We observe the following two facts. 

i) Degree (complex) of each vertex is even. 

ii) The complex degree of vi = the real degree of vi 
= 2, i = 1, 2, 3, 4. 

iii) Four other vertices have degree 1. 

We observe this situation can occur only in case of even 
complex degree graph. However it is pertinent to keep on record 
that in general for all appropriate complex even degree graph 
such facts may be satisfied. 

We call such complex regular graphs as quasi complex 
equally regular graphs. 
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 We will show we may have complex quasi (4, 1) 
regular graphs which may not be quasi complex (4, 1) equally 
regular graphs by the following example. Consider the complex 
valued graph D given by the following figure. 

 

 

 

 

Figure 2.56 

  

Consider the complex valued graph given  by the following 
figure. 

 Clearly D is a quasi complex (4,1) regular graph. 

 Degree of each vi = 4 = sum of (real degree + complex 
degree), 1  i  4. 

 Thus D is not a quasi complex (4, 1) equally regular 
graph as real degree of vertex vi  complex degree of vertex vi, 
1  i  4. 

 Consider M the complex value graph given by the 
following figure; 
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Figure 2.57 

 We see clearly M is a quasi complex (4, 1) regular graph 
degree of each vi = sum of (real degree 1 + complex degree 3) 
for i = 1, 2, 3, 4. 

 However still this M is not isomorphic with D given in 
figure 2.56. 

 Consider the complex valued graph N given by the 
following figure; 

 

 

 

Figure 2.58 

 Clearly N is also a quasi complex (4, 1) regular graph for 
four of the vertices are complex (4, 1) regular and other four 
vertices 1 - regular. 
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  In view of this we make the following definition. 

Definition 2.3. Let V be a any complex valued graph with even 
number of vertices say 2 n vertices. We say V is a quasi complex 
(s, 1) regular graph if n vertices are complex s-regular and 
remaining n-vertices 1 regular.  

 We have given examples of quasi (4, 1) regular complex 
graphs with 8 vertices. 

 We see 

 

 

 

 

 

Figure 2.59 

a complex valued graph. This is not complex regular for the 
number of degrees at each vertices are not the same. Further 
these cannot be classified under quasi (s, 1) regular complex 
graphs though we have even number of vertices. 
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  For in the first place 8 vertices and of degree 1 and four 
vertices are degree four. 

 So we cannot say all complex valued graphs with even 2n 
number of vertices with one set with equal degrees and another 
set with equal degrees but the cardinality of the sets different 
from n are quasi (s, 1) complex regular. 

 Next we provide some examples of complex 4-regular 
graphs. 

 

 

 

 

Figure 2.60 

 We see P is a complex 4 regular graph.  Infact complex 4-
equally regular graph.  

 We see degree vi = sum of (real degree of vi + complex 
degree of vi) = 2 + 2 = 4.  For i = 1, 2, 3, 4, 5. 

 We see real degree vi = complex degree vi = 2, 1  i  5. 

 Consider the complex valued graph Q given by the 
following Figure; 
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Figure 2.61 

 Clearly Q is a complex valued graph with five vertices 
and the complex degree of vi is 2 = real degree of vi which is 2, 
for i = 1, 2, 3, 4, 5. 

 We see however Q and P are not isomorphic, but both 
of them are complex 4 equally regular graphs. 

 Next to we give yet another example. 

 

                   R = 

 

Figure 2.62 

 We see R is again a complex valued graph with 5 
vertices however there are only 5 imaginary edges and five real 
edges but R is not complex regular graph.  
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 For we see degree of vertex v1 = sum of (real degree 3 + 
imaginary degree 1) = 4. 

degree of vertex v2 = sum of (real degree 2  + imaginary 
degree 2) = 4.  

degree of vertex v3 = sum of (real degree 2 + imaginary 
degree 2) = 4. 

degree of vertex v4 = sum of (real degree 2 + complex 
degree 2) = 4 

degree of vertex v5 = sum of (real degree 1 + sum of 
complex degree 3) = 4. 

We see vertex v1 and vertex v5 behave exactly in an 
opposite way for real degree of v1 is three and that of complex 
degree of v1 is three whereas real degree of v5 is one and that of 
the complex degree is 3. 

Further for the vertices v2, v3 and v4 we see that their 
real degree is 2 and that of the complex degree is 2. 

Hence R is not a complex 4-regular graph though the 
degree of each vertex is of degree 4. 

Now we give yet another example of a complex valued 
graph with five vertices and the degree of each vertices being 
only 4 given in the following. 
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 Let T be a complex valued graph given in the figure 2.63. 

 

 

 

 

Figure 2.63 

We see though the degree of each vertex is four the vertex 
v1 has all real edges and none of the edges is imaginary. 

The remaining four vertices are such that three edges are 
real and only one edge is imaginary so T is not a complex 
valued 4-regular graph. 

 We now give an example of complex 5-regular graphs. 
Let M be the complex valued graph. 

 

 

 

 

Figure 2.64 
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  Clearly M is a complex 5-valued regular graph as every 
vertex vi is such that complex degree vi = sum of (real degree vi 
= 2 + complex degree v1 is 3) = 5, for i = 1, 2, 3, 4, 5, 6. Hence 
the claim.  

Now consider the complex valued graph A given by the 
following figure. 

 

 

 

 

 

Figure 2.65 

Complex degree vi = sum of (real degree vi which is 5 + 
complex degree 2) = 7.  This is true for i = 1, 2, 3, …, 8. 

 Thus A is a complex degree 7-regular graph. 

 Consider the complex valued graph B given by the 
following figure; 
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Figure 2.66 

Consider the complex valued graph M of figure 2.64 and 
compare it with the complex valued graph B of figure 2.65. 

 We see the outer edges of M are all real and the inner 
edges are all complex. 

 On the contrary in the complex valued graph given in 
Figure 2.66. We see all the outer edges of B are complex valued 
whereas all the edges inside the graph are real.  

 However both M and B are complex 5-regular with 
general degree at each vertex being 5. 

 Further the complex valued graphs M and B are not 
isomorophic but they are quasi dual complex valued graphs 
pair. That is the complex valued graph B is the quasi dual of the 
complex valued graph M and vice versa.  

 Thus we see in case of complex valued graphs K8 there 
are atleast two complex (n – 1) regular graphs which are dual of 
each other. 
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  Now consider the complex valued graph E given by the 
following figure; 

 

 

E= 

 

 

Figure 2.67 

 We see E has 8 vertices the number edges incident at each 
vertex vi is seven for i =1, 2, …, 8. 
 Further complex degree of vi = sum of (real degree vi + 
complex degree of vi) = sum of (2 + 5) = 7 for i = 1, 2, 3, …, 8. 
 Thus E is a complex 7-regular graph. 
 In view of all these examples we have the following 
theorem. 

Theorem 2.3. Let {Kn} be any complex valued graphs (n  4). 
There are atleast two complex valued graphs P and Q which 
are complex (n – 1) regular graphs such that P is the quasi dual 
of Q and vice versa. 
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 Proof. Given P and Q are two Kn complex valued graphs. P is a 
complex valued graph such that each of the outer edge is 
complex valued and all the inner valued edges are real. 

 That is P is described by the following figure; 

 

 

 

 

 

 

Figure 2.68 

 Clearly the number of edges adjacent to each vertex vi is n 
– 1 of which two are imaginary and n – 3 are real.  This is true 
for i = 1, 2, …, n. 

 Thus P is a complex (n – 1) regular graph. Consider Q a 
Kn complex valued graph from the {Kn}.  

 Consider the outer edges to be real and all the inner edges 
to be complex valued given by the following figure; 
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Figure 2.69 

Clearly all the outer edges the complex valued graph Q 
are real whereas all the inner edges of Q are imaginary.  

The complex degree of each vertex vi = sum of (real 
degree of vi = 2 and imaginary degree of vi = n – 3) = n – 1 true 
for all i = 1, 2, …, n. 

Thus Q is a complex n – 1 regular graph. 

Infact Q is the quasi dual of P and vice versa. Hence the 
claim. 

Now a natural question would be can we have other 
quasi dual pairs of Kn.  

We will excavate this by some examples. 
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 Consider the following two complex valued graph given 
by the Figure 2.70. 

 

 

 

 

Figure 2.70 

 We see both the complex valued graph given by the 
figures 2.70 (a) and 2.70 (b) are both complex 3-regular graphs 
which are quasi dual of each other. They are different from the 
complex valued graphs described in the theorem. 

 The analogous of the complex valued 3-regular graphs 
given in that theorem is described in the following figure. 

 

 

 

 

Figure 2.71 
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 Clearly complex valued graphs (a) and (b) given in Figure 2.69 
are dual of each other described in theorem 2. 

 Consider the following figures which represents the 
complex valued graphs. 

 

 

 

 

(a)                                               (b) 
Figure 2.72 

We see the complex valued graphs (a) and (b) are 
complex 5 regular but they are quasi dual of each other and they 
are not the one’s mentioned in the theorem. 

Consider 

 

 

 

(a)                                               (b) 
Figure 2.73 
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  Clearly the complex valued graphs (a) and (b) given in 
figure 2.73 are dual of each other described in theorem. 

 Now we just give the complex valued graphs. 

 

                                          = K 

 

Figure 2.74 

 We see K is not a complex valued 4 regular graph. 

We make the following observation if the complex 
valued graph Kn in which n is odd then we find it difficult to get 
quasi dual graphs.  

Only when n is even we have quasi dual graphs other 
than the ones described in the theorem. 

Now we give examples of complex valued 4 regular 
graphs other than the K5 complex valued graphs. 
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Figure 2.75 

S is a complex valued 3-regular graph. 

 We see each vertex has three edges incident to it of 
which two of them are real and one is imaginary.  

Thus S is a complex valued 3-regular graph. 

Consider the complex valued graph F given by the 
following figure. 

 

                      F = 

 

Figure 2.76 
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  We see the complex valued graph in the figure is 
complex 3-regular for four of the vertices and one vertex does 
not satisfy it. We define such complex valued graphs as 
complex nearly 3-regular graph if degree of (n – 1) vertices are 
the same and only one vertex is different. 

 We describe the relevant definition in the following. 

Definition 2.4. G be a any complex valued graph with n vertices 
if the complex degree + real degree of all (n – 1) vertices are 
equal and the sum is r and only one of the vertex has different 
degree then we define G to be a complex valued nearly              
r-regular complex valued graph. 

 The complex-valued graph F given in figure 2.76 is a 
nearly complex valued n-regular graph here r = 3.  

We will provide more examples of the situation. 

 Let G be the complex valued graph given by the 
following figure; 
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Figure 2.77 

We see G is a complex valued graph with seven 
vertices. Except vertex v3 all the other vertices have the same 
number of complex edges and same number of real edges 
adjacent to it. 

We will now give the exact number  of the complex 
degree vertices. 

The real edges incident to each of v1, v2, v4,  v5, v6 and 
v7 are two. 

The complex edges incident to each of v1, v2, v4, v5, v6 
and v7 are three.  

Thus the complex degree of each of the vertices = sum 
of (real degree + complex degree = 2 + 3 = 5. 

Thus G is a near complex 5-regular graph. 
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 Consider the following complex valued graph K given 
by the following figure; 

 

K = 

 

 

 

 

Figure 2.78 

 We see these are vertices for this complex valued graph 
K. 

 Further the complex edges incident to each of the 
vertices v1, v2, v3, v4, v5, v7, v8 and v9 are 5. 

The real edges incident to each of the vertices v1, v2, v3, 
v4, v5, v7, v8, and v9 are 2. 

Hence the complex degree of each of the vertices v1, v2, 
v3, v4, v5, v7, v and v9 are 7. 

Thus K is a complex nearly 7-regular graph. 
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 In view of all these we can have the following theorem. 

Theorem 2.4. Let H be complex valued graph with (2n + 1) 
vertices forming (2n + 1) polygon or (2n+1)-gon. 

 There is a complex valued nearly 2n – 1 regular graph 
which can be built using the (2n +1) - gon in a very special 
way. 

Proof. Let H complex valued graph whose vertices form a (2n 
+1) - gon. Make the outer edges of H to take real values. 

 Make 2n – 3 complex edges incident to 2n of the 
vertices so that only one vertex has 2n – 4 complex edges. Let 
the vertex which as only 2n – 4 complex edges be labeled as vi. 

 Then the resultant graph has for each of its vertices vi (i 
 t) two real edges incident to it and 2n – 3 complex edges 
incident with it there by the 2n vertices of the complex valued 
graph has 2n – 1 edges adjacent to it (two real edges + 2n – 3 
complex edges) only vertex vt does not enjoy this property. 

 Thus H is a complex 2n – 1 nearly regular graph. 
 Hence the claim. 
 We have illustrated this situation with five vertices 
complex valued graph which forms a 5-polygon, 7-polygon and 
9 polygon. 

 Thus the class of complex nearly regular graphs is non 
empty. 
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  Next we provide some more examples of this situation. 

Consider a complex valued graph S given by the 
following figure; 

 

 

  S  = 

 

 

Figure 2.79 

Clearly S is a complex 3-regular graph where real 
degree is 2 and complex degree is one. 

Consider the complex valued graph R given by the 
following figure; 
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Figure 2.80 

 Clearly the complex valued graph is a quasi complex (5, 
1) equally regular graph. 

 Now we proceed onto describe we define a complex 
valued wheel of either K1 or Cn–1 is a pure imaginary graph ‘or’ 
is used in the mutually exclusive sense. 

 We will give examples of complex  wheels. 

 

 

 

 

Figure 2.81 
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Figure 2.82 

Both complex graphs given in Figures 2.81 and 2.82 are 
complex valued wheels they are dual of each other. 

 

 

 

              (a)                                       (b) 

Figure 2.83 

W5 = K1 + C4 given in figure 2.83 are complex valued wheels 

 

 

 

 

Figure 2.84 
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 C6 + K1 = W7 and 

 

 

 

 

Figure 2.85 

There are two distinct complex wheels Cn-1 + K1 = Wn where 
one is the quasi dual of the other. 

Consider. 

 

 

 

 

 

Figure 2.86 

 Clearly the complex valued graph  G is not a complex 
valued wheel it is just a complex valued graph. 
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  However we see a complex valued wheel occur as quasi 
dual pairs. 

 The following result is very interesting and is different 
from the classical property of wheel Wn = K1 + Cn – 1;  n  4. 

Theorem 2.5.  Let Wn = K1 + Cn – 1 be a complex valued wheel 
then there is for every Wn a quasi dual wheel which is also a 
complex valued wheel. 

Proof. We know a complex valued wheel Wn = Cn – 1 + K1 given 
by 
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Figure 2.87 
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and Cn-1 + K1 
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Figure 2.88 

So we have two complex valued wheels by the very definition 
of complex valued wheels. 

 We see they are quasi dual pairs. Hence the claim. 

 This is the major distinction between real wheels and 
complex wheels. 
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  Now we proceed onto give examples of complex valued 
trees. 

Example 2.12. Here we give all the trees which are complex 
valued trees with five points by the following figure. 
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and so on. 

Figure 2.89 

 Infact it is left as an exercise for the reader to determine 
all complex valued trees with five vertices. 

 Further we see if positioning of the vertices are also 
taken into account for a give set of vertices we certainly have 
more number of complex valued trees than the general or 
classical trees for the same number of points. 
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  However the definition of a tree is the same with a 
simple modification that in case of complex valued trees we 
must have atleast one path to be imaginary. 

 While discussing about complex valued graphs in 
general or trees in particular it is defined as either connected 
imaginarily  or connected in the real sense. 

 It is important to record at this juncture that the path 
remaining imaginary is not artificial for the graphs find their 
applications in artificial neural networks and these networks 
behave more like neurons of the brain. 

 Certainly neurons in the brain have several synapse 
which imagine things it is not only the synapse has imaginary 
functioning also the neurons induce such imaginary functioning. 

For the neural network of the brains of a child or that of 
a poet, a writer, a painter have lots of imagined concepts these 
imagined ones if is to depicted in reality common man may 
think it as madness but of course in general the imaginary world 
functions in several cases more  perfectly than the real world. 

For before a scientist put forth a postulates he mimics or 
imagines take the simple case of human trying to fly. 

The imagined wings of large size etc. so when we put a 
imaginary edge it mainly depicts at that particular time the path 
connecting those two nodes are imaginary after a time period it 
may become real or it may continue to remain imaginary. 
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 We have functions in the complex plane. The related 
graphs of these imaginary functions are described in the 
complex plane. 

So it has become mandatory to define and develop the 
concept of complex valued graphs in a systematic way for they 
will play a vital role in almost all mathematical models. 

Secondly it is pertinent to a record at this juncture when 
we find roots of the equations we get the value of roots to be 
imaginary and it is proved algebraically the complex roots occur 
in conjugate pair.  

Further it is basics that the complex field is 
algebraically closed. That is all roots of all equations find their 
values in  the field of complex numbers when this is the case 
with algebra and analysis where they have imaginary values 
why cannot we have graphs with imaginary paths. Such study 
can find place in ANN and medical diagonistics. 

No one ever said the graphs are real so it is a paradigm 
of shift which necessities researchers to use complex valued 
graphs to cater to more sensitive and real or true situation of the 
problem in hand. 

Further calculus has been developed in case of complex 
functions. We have derivation and integration of all complex 
valued functions. We study occurrences, of events in the 
complex plane assume the solutions for them. More so we have 
partial differentials also associated with complex functions. 
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 Hence the study, to develop and describe these complex 
valued graphs has become mandatory. Once we have such 
systematic development of such graphs we will be in a position 
to build fuzzy complex models and there will be a paradigm of 
shift in the very field of soft computing. 

Be it fuzzy cognitive models or fuzzy relational maps 
model or artificial neural networks or perceptron or auto 
associative memories any other soft computing basically 
exploits the very notion of directed graphs or graphs only real 
weights are given so far no trial with imaginary weights are ever 
made so if we need to accept imaginary weights we ought to 
have imaginary value for edges which means our graphs 
basically must be a complex valued graphs. 

However we have not made the vertices imaginary but, 
that sort of study will be carried out in the later part of this 
chapter.  

Here we only concentrate on the edge weights to be 
imaginary and we develop the related structures in asystematic 
way for this type of study is new and to the best of our 
knowledge is not present in the literature. 

So now we proceed onto describe the weighted matrices 
of these complex valued graphs before we proceed to describe 
or develop the notion of bipartite graphs or bigraphs. 

Example 2.13. Let G be the complex valued graph given by the 
following figure; 
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Figure 2.90 

The weight matrix M associated with this graph G is as follows. 

M = 

1 2 3 4 5 6

1

2

3

4

5

6

v v v v v v
v 0 3 0 2 1 1 i
v 3 0 8 i 0 0 0
v 0 8 i 0 4i 0 0
v 2 0 4i 0 0 0
v 1 0 0 0 0 7
v 1 i 0 0 0 7 0






  

.

 

 

Clearly the following observations are important. 

i) The complex valued graph G given by figure 
2.90 is not a directed one. 

ii) Since G has 6 vertices we see the weight matrix 
or the weight complex matrix M associated 
with G is 6  6 matrix. Clearly M has both real 
and complex entries. 

iii) Since the complex valued graph has no loops 
we see the diagonal entries of the 6  6 square 
matrix is zero. 
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 iv) Further as the complex valued graph is not a 

directed graph the related weight matrix M is 
symmetric about the main diagonal. 

We can perform operations on M by multiplying M 
with a 1  6 row vector and so on.  

Such sort of operations will be described in the next 
chapter of this book. 

Now in the following example we describe a complex 
valued directed graph. 

Example 2.14. Let H be the directed complex valued graph 
given by the following figure; 

 

 

 

 

 

Figure 2.91 

The weight matrix N associated with the complex valued graph 
H is as follows. 
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N = 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

v v v v v v v
v 0 3 0 0 0 0 0
v 0 0 0 0 0 0 0
v 0 8i 0 4 7i 4 0 0
v 7 1 i 0 0 0 0 0
v 0 0 0 0 0 0 0
v 0 0 0 0 1 8i 0 1 i
v 4i 2 0 0 9 i 0 9 0




 
    

. 

Clearly the following observations are important  

i) N is not a symmetric complex matrix. 
ii) The diagonal entries are zero as the complex 

valued graphs has no loops. 
iii) However the main diagonal entries are zero and 

N is a 7  7 square complex matrix. 

Operations performed on the weight matrix and the 
purpose of defining them will be discussed in the last chapter of 
this book. 

Now we have seen the weight matrix of a complex 
valued graph which is directed as well not directed has been 
described. 

It is important to mention at this juncture that the 
adjacency matrix  will be the same for this complex valued 
matrix.  
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 This is considered as a matrix of routine and left as an 
exercise to the reader. 

Next we proceed onto briefly describe complex valued 
roots trees. 

We first describe routed trees with six vertices in the 
following. 
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Figure 2.92 

 We can have many more such complex valued rooted 
trees some of whose graphs are described. 
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  Consider the complex valued graphs (complex valued 
rooted trees given in Figure 2.92, 2, graphs6, 8, 9, 10 and 13. 
We see the roots are imaginary.  We call such complex valued 
rooted trees as complex valued imaginary rooted trees. 

 In case of Figure 2.92 of (9) we see both the edges 
connecting the roots are imaginary which is different from 
others. 

 Further we see Figure 2.92 are not complex valued 
imaginary rooted trees for some edges are real and some are 
imaginary which connects the root. 

 We call such complex valued rooted trees as complex 
valued partially imaginary rooted trees. 

 Figures 4, 5 and 17 of 2.92 are examples of complex 
valued partially rooted trees. 

 Next we speak about a leaf (or buds) or children of the 
complex valued rooted trees. 

 We in this book call them only as leaf nodes if the edge 
connecting the parent node to the leaf node is imaginary we call 
those trees as complex valued trees with imaginary leaf nodes. 

 Figures 1, 7, 8, 12, 13, 15 and 18 of 2.90 are complex 
valued rooted trees with imaginary leaf nodes.  

We can also using the conventions of computer 
scientists give the complex valued trees in the following way. 
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  Rooted complex valued tree 

 

 

 

 

 

 

 

Figure 2.93 

 Clearly this complex rooted tree has six layers, first two 
layers are real. 

 Third layer is partially real and partially complex. 
Fourth layer is real. Fifth layer is complex and six layer is real. 

 So we can analyse each of the layers. 

 If the last layer is fully complex then we call the rooted 
complex value tree to be a tree with imaginary leaves. 

 If the first layer is complex we call the complex valued 
tree with imaginary root. 
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  We can also study all types of rooted complex valued 
trees. 

 We will not describe the complex valued rooted trees 
and its constituent complex valued rooted trees. 

 It is interesting to record here that for a given 
constituent rooted trees of a complex valued rooted tree need 
not in be general complex valued.  

 

 

 

 

 

 

Figure 2.94 

The complex valued rooted tree.  

 We give below the constituent rooted trees. 
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Figure 2.95 

 Clearly (a) and (b) are two of the four constituent rooted 
trees of T. 

 However (a) is a complex valued rooted tree whereas 
(b) is only a constituent rooted tree not a complex valued one. 

 

 

 

 

 

Figure 2.96 
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 Clearly the constituent rooted trees (c) and (d) of T are complex 
valued rooted tree. 

 A given complex valued rooted tree T may not be 
imaginary rooted tree  but however some of the constituent 
rooted trees of T can be a complex valued rooted tree which is 
imaginary rooted.  For a constituent  rooted tree to be a 
imaginary rooted tree it is mandatory the constituent rooted tree 
must be a complex valued constituent rooted tree. Only the 
complex valued constituent rooted tree (a) alone is a imaginary 
rooted tree of the complex valued rooted tree given in Figure 
2.94. 

 We can also for a given tree find the complex valued 
rooted tree and its quasi dual complex valued rooted tree. It is 
pertinent to record that for a given complex valued rooted tree 
we can always find the quasi dual complex valued rooted tree. 

 

 

 

 

 
Figure 2.97 
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  Let  T  be the complex valued rooted tree given in 
Figure 2.97.  

We will now give the quasi dual S of T given in the 
Figure 2.97. 

 

 

 

 

 

 

Figure 2.98 

Clearly S is the dual of the complex valued rooted tree 
T and vice versa. 

Interested reader can find the constituted complex 
valued trees of S and T. 

Now we illustrate by examples strong complex valued 
rooted trees and vertex complex valued rooted trees. 
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 Example 2.15. Let M be a complex valued rooted free. 

 

 
 

 

                                   = M 

 

 

Figure 2.99 

Clearly M is a strong complex valued rooted tree given 
in Figure 2.99. 

We now give the vertex complex valued tree.  Here a 
caution is to be made if vi is connected to vj then only one of vi 
or vj can be complex vertex both cannot be a complex vertex. 
Unless this is followed the resultant rooted tree cannot be a 
vertex complex valued rooted tree. 

 We will illustrate this situation by an example. 

Example 2.16.  Let W be a vertex complex valued rooted tree 
given by the following figure 2.100. 
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Figure 2.100 

Clearly W is only a vertex complex valued rooted tree 
as all the edge values in this case are given to be only real 
values. 

We cannot define in general quasi dual of a vertex 
complex valued rooted tree graph for in many cases it may 
cease to be a vertex complex valued rooted tree graph.  So they 
cannot be called a tree or say complex valued graph itself as the 
edges connecting two of the imaginary vertices may be real. 

So we do not give or define the concept quasi dual of 
vertex complex rooted trees. 

With these limitations we next proceed to define and 
develop the new notion of complex valued bipartite or bigraph 
and the related weighted matrix of them. 
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 We also show in the last chapter of this book the 
probable applications of these concepts. 

Next we proceed on the describe bigraph or bipartite 
graph. We in practical situations may not use a complete 
bigraph for in models that is not always mandatory. 

First we provide some examples of them and then make 
the routine definition. 

Example 2.17.  Let H be the complex valued graph given by the 
following figure. This h as two sets of vertices which form a 
disjoint classes 

 

 

 

 

 

 

 

 

Figure 2.101 
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 The bigraph given in Figure 2.101 is defined as the complex 
valued bigraph or bipartite graph. 

 This is not directed we are these types of graphs in 
fuzzy relation maps,  fuzzy relational equations and artificial 
neural networks.  

If we have only feed forward neural networks then we 
will use the directed graphs only in one direction if they are 
both ways then there is no meaning in calling them as directed 
graph. 

 However it is pertinent to keep on record that the 
complex valued bipartite graph or bigraph have not been 
described or defined in literature. 

The main purpose of describing such complex valued 
bigraphs are for we have given enough representation to the 
concept of indeterminancy but however we have totally failed to 
study the concept imaginary in real valued problems. 

For take the simple case of personality text and the 
related results. 

The person who is taking the personality test may aspire 
to live in a utopian set of personality but in reality he may be a 
lazy, poorly performed and not with  good degrees or anything 
as a positive credit. 
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 But he may be a criminal or culprit so in order to get the 
job becomes a imaginary character of personification and 
answers the test as an ideal person.  

So each and every question he has answered is an 
imaginary one here we cannot call it as an indeterminate one as 
he has lived or mocked a perfect personality to get the job and 
has answered the personality test. 

So here the concept of imaginary or complex valued 
graph will play a role. 

For the first question they will put forth is whether the 
answers imaginary or real.  

They have to text him differently to map his real 
personality from the imaginary personality. 

In another place where the complex valued graphs can 
play a vital role in in relationships. 

A couple may have imaginary grievances or in a love 
relationship they may have imaginary feelings which may not 
have been at any time construed in that way. 

In such study also complex valued graphs may play a 
vital role. 

It is important to note that while studying fuzzy model a 
study of indeterminate was included and studied but however in 
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 no place the imaginary concept was discussed or used in these 
models. 

Someone may like to study a literary work using 
mathematical models. Then the notion of imaginary concept 
becomes mandatory. 

Now we give the complex valued directed bigraphs by 
some examples. 

Example 2.17. Let B denote the complex valued directed graph 
given by the following figure; 

 

 

 

 

 

 

Figure 2.102 

Now we give the method of finding the weight matrix 
of the complex valued bigraph by an example. 

e1 

e2 
3e  

7ee4 

e6 
5e

v1 

v2 

v3 

v4 

u2 

u3 

u4 

u5 

u6 



102 Complex Valued Graphs for Soft Computing 
 
 
 Example 2.18. Let B the complex valued bigraph given by the 
following Figure. 

 

 

 

 

 

 

Figure 2.103 

 Let M be the 7  5 matrix associated with the complex 
valued graph. 

M  =   

1 2 3 4 5

1

2

3

4

5

6

7

u u u u u
v 3 4i 0 0 0 0
v 0 4 0 0 0
v 5 2i 0 3i 0 0
v 0 4i 3 0 0 0
v 0 0 0 2 1 i
v 0 0 0 0 8 i
v 0 0 7 0 0








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 Thus the related matrix M of a complex valued bigraph 
is a matrix with complex entries.  

Appropriate operations can be done in these connected 
or weight matrices which will be discussed and described in the 
last chapter of this book. 

Now we study by an example how a directed bigraph is  
constructed and different type of matrix is needed and if  both 
are the same. 

This is just to show the real situation of directed 
bigraphs has no meaning for we only have to describe them. 
This will have meaning when both input nodes (vertices) and 
output vertices are the same. 

Now having seen complex valued graphs, complex 
valued trees and complex valued bigraphs we proceed onto 
study a situation where both vertices and edges can be 
imaginary. 

It is mandatory that if the vertices are imaginary then 
we cannot have the edges to be real they will also be imaginary. 
First we provide an example or two of this situation before we 
proceed onto describe them abstractly. 

It is important to note the following notation.  
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 We have so far used ie  to denote the edge ie  is 

imaginary. So always vi denotes the real vertex then jv  will 

denote the imaginary vertex. 

Example 2.19. Let G be a complex valued graph which has 
some of its vertices to be imaginary also. 

 

 

 

 

Figure 2.104 

The following observations are mandatory iv  to 

another imaginary vertex  jv  is always imaginary.  

However we can have real edges from a imaginary 
vertex to a real vertex and vice versa. This is the simple 
condition which we have to follow. 

Example 2.20. Let G be the complex valued graph given by the 
following Figure. 
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  Now we make the following definition. 

Definition 2.5. Let G be a graph which has some of vertices iv  

to be imaginary and vj to be some real vertices. Some edges are 
imaginary and some of them real. 

 Then we define G to be a strong complex valued graph. 
We also call it asvertex complex graph. 

 We call it vertex complex graph if only some vertices 
are imaginary and all the edges are real. 

 We will first illustrate this situation by some examples. 

Example 2.21. G be the graph given by the following figure. 

 

 

 

 

Figure 2.106 

 We see the imaginary vertices in this graph are 1v , 2v

and 6v  and they are not connected with each other so we see all 

the remaining edges are only given to be real. 
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  In this situation we define G to be a vertex complex 
graph. Clearly G is not a complex valued graph. 

 In view of all these we have the following results. 

Theorem 2.6. Let G be a strong complex valued graph then G 
is a complex valued graph. 

 Proof is direct and hence left as an exercise to the 
reader. 

 However if G is a graph with only complex vertices and 
none of the edges are complex valued then we define G to be 
just a complex vertex graph and it is not a strong complex 
valued graph. 

 Converse of theorem is not true for a complex valued 
graph h as no complex vertices. 

 Now we can also have the notion of strong complex 
valued bigraphs which we will illustrate by some examples.  

Further we have complex vertex bigraphs also which is 
neither complex valued nor a strong complex valued graph. 

Example 2.22. Let G be a strong complex valued graph given 
by the following figure; 
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Figure 2.107 

 Clearly G is a strong complex valued bigraph as G has 
both complex vertices as well as complex valued edges. 

Example 2.23. Consider  the following example given in Figure 
2.108. A graph H which is a bigraph. 
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Figure 2.108 
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  Clearly H is not a complex valued bigraph as none of 
the edges is imaginary.  So H is not a strong complex valued 
bigraph. Further some of the vertices are imaginary so H is a 
complex vertex bigraph. Hence the claim. 

 Now we can in case of strong complex valued  bigraphs 
give the adjacency matrix associated with it.  

Further the weight matrix in case of them will also be 
provided. We  give examples of weight matrix first in case of a 
strong complex valued graph and strong complex valued 
directed graph in the following. 

Example 2.24 Let G be a strong complex valued directed graph 
given by the following figure 2.109; 

 

 

 

 

 

 

Figure 2.109 
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  Let M be the weight matrix associated with the strong 
complex valued directed graph G which is as follows. 

M = 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

v v v v v v v
v 0 2 i 9 0 0 0 0
v 0 0 0 0 0 0 0
v 0 7 0 0 7i 1 4 i 0
v 3i 0 0 0 0 0 0
v 0 8 i 0 0 0 0 0
v 0 0 0 0 0 0 0
v 0 0 0 4 5i 8i 3 i 0







 

. 

The following observations are mandatory. 

i) As there are no loops we see the main diagonal 
entries of M are zero. Further M is a square 
matrix. 

ii) The matrix M is not symmetric about the main 
diagonal as the strong complex valued graph G 
is only a directed graph. 

Next we proceed onto give example of strong complex 
valued graph H which is not a directed graph. 

Example 2.25.  Let H be the strong complex valued graph given 
by the following figure 2.111. 

 

 



110 Complex Valued Graphs for Soft Computing 
 
 
  

 

 

 

 

 

Figure 2.110 

 Clearly H has 8 vertices of which four are complex and 
the rest are real. The weight matrix P associated with the strong 
complex valued graph H is as follows. 

P = 

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

v v v v v v v v
v 0 0 2 0 8 0 0 0
v 0 0 0 3i 1 0 4 5i 0 0
v 2 0 0 0 0 3i 1 8 9i 0
v 0 3i 1 0 0 0 0 8 9i 1
v 8 0 0 0 0 2 7 4i
v 0 4 5i 3i 1 0 2 0 0 0
v 0 0 8 9i 8 7 0 0 0
v 0 0 0 9i 1 4i 0 0 0

 
 

 

 




. 

We make the following observations. 
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 i) P is a square matrix 

ii) As there are no loops P has its diagonal entries 
to be zero. 

iii) P is symmetric about the main diagonal 

We can easily observe the difference between strong 
complex directed graph and the strong complex valued graph. 

Now we proceed onto describe complex vertex valued 
graph and the weighted matrix associated with them. 

Example 2.26. Let K be the complex vertex valued graph given 
by the following Figure 2.110. 

 

 

 

 

 

Figure 2.111 

 Let B be the weight matrix associated with the complex 
vertex valued graph K. 

v1 

3 

3v
3 

9 

3 

6v
3 v7 

1 
10 

v5 

12 

v4 

5 

v8 

v2 2 

4 



112 Complex Valued Graphs for Soft Computing 
 
 
 

B = 

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

v v v v v v v v
v 0 2 3 0 0 0 0 0
v 2 0 4 7 0 0 0 0
v 3 4 0 0 9 0 0 0
v 0 7 0 0 12 0 0 0
v 0 0 9 12 0 3 10 0
v 0 0 0 0 3 0 1 0
v 0 0 0 0 10 1 0 0
v 0 0 0 5 0 0 0 0

. 

i) Clearly B is a square real matrix with diagonal entries 
to be zero as these are no loops in the graph K. 

ii) B is symmetric about the origin as K is not a complex 
vertex valued directed graph. 

iii) Clearly B is only a real matrix as K is not a strong 
complex valued graph. 

 Next we proceed onto describe the weight matrix of a 
strong complex valued bigraph and complex vertex valued 
bigraph in the following. 

 Let G be the strong complex valued bigraph given bythe 
following Figure 2.112. 
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Figure 2.112 

 Let W be the weight matrix associated with the strong 
complex valued bigraph. 

 W = 

1 2 3 4 5

1

2

3

4

5

6

7

u u u u u
v 2i 1 0 0 0 0
v 6 9i 0 0 0
v 0 6i 1 0 0 0
v 0 0 3 0 0
v 0 0 0 2 i 0
v 0 0 3 i 0 9
v 0 0 0 0 8i








  . 

 Clearly W is a complex valued matrix which is a 7  5 
matrix. 

Example 2.27.  Let H be a complex vertex value at bigraph 
given by the following Figure 2.113. 
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Figure 2.113 

 Let R be the weight matrix associated with the complex 
vertex valued bigraph H. 

R = 

1 2 3 4 5 6 7 8

1

2

3

4

5

v v v v v v v v
u 8 0 9 0 0 0 0 0
u 0 7 0 8 0 0 0 0
u 0 0 0 0 1 0 2 0
u 0 0 0 0 0 5 0 9
u 0 0 0 0 0 5 10 0

   . 

 Clearly the weight matrix is a 5  8 matrix with only real 
entries so all the edge weights are real. 
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  Let W be a complex valued graph and V be the quasi dual 
of W given by the following Figures. 

 

 

 

 

 

 
Figure 2.114 

 Let V be the quasi dual of the complex valued graph W 
given by the following figure 2.115. 
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Figure 2.115 

 We now give the matrices P and Q of W and V 
respectively in the following  

P = 

1 2 3 4 5

1

2

3

4

5

6

7

8

9

u u u u u
u 0 0 0 7 4i 2i 1
u 0 0 3i 4 0
u 0 3i 0 0 0
u 7 4i 0 0 0 7i 1
u 2i 1 0 0 6i 1 0
u 0 0 0 0 6i 1
u 0 0 0 0 7i
u 0 0 8 8i 4 0
u 0 0 0 0 9i

 

 
 




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 6 7 8 9u u u u

0 0 0 0
0 0 0 0
0 0 8 0
0 0 8i 4 0

6i 1 7i 0 9i
0 0 0 0
0 0 0 4i 2
0 0 0 7
0 4i 2 7 0








   . 

 Clearly P is a symmetric matrix with diagonal entries 
zero. 

 Now we give the matrix Q associated with V. 

Q =  

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

u u u u u u u u u
u 0 0 0 4 6 0 0 0 0
u 0 0 9 7 4i 0 0 0 0 0
u 0 9 0 0 0 0 5i 2 0 0
u 4 7 4i 0 0 9 0 0 2 0
u 6 0 0 9 0 5 8 0 9
u 0 0 0 0 5 0 0 0 0
u 0 0 5i 2 0 8 0 0 0 4
u 0 0 0 2 0 0 0 0 9i 9
u 0 0 0 0 9 0 4 9i 9 0










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  Q is also a symmetrix complex valued matrix with 
diagonal entries zero. 

 It is pertinent to make the following observations. 

i) The matrices P and Q are both 9  9 square matrices 
and symmetric about the origin. 

ii) Let P =  (aij) and Q = (bij) we see if aij is complex then 
bij is real as P and Q are quasi dual complex valued 
matrices i  j, 1  i, j  9. 

 Next we define conjugate of complex valued graphs and 
bigraphs. 

 Before we proceed onto define the above said concepts 
we wish to bring out the following facts. 

 Suppose A is any symmetric n  n matrix with diagonal 
entries as zero and entries are either zero or complex or real 
numbers then we can associate a complex valued graph with no 
loops. 

 We will just illustrate this situation by a line or two. 

Example 2.28.  Let A be a 4  4 matrix given in the following. 

 A = 

0 3 i 2 0
3 i 0 0 1 4i

2 0 0 12
0 1 4i 12 0

 
   
 
 

 
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 We see A is a complex valued matrix. Now corresponding to 
this matrix A we have the following complex valued graph G 
described by the following figure 2.115. 

 

 

 

Figure 2.116 

 Now we try to get the weighted matrix M associated this 
complex valued graph G in thefollowing; 

M = 

1 2 3 4

1

2

3

4

v v v v
v 0 3 i 2 0
v 3 i 0 0 1 4i
v 2 0 0 12
v 0 1 4i 12 0


 



  . 

It is clearly seen the matrix A and M are identical. Next we give 
yet another example. 

Let B = 

0 3 1 i 0 2i 1
3 0 2 1 i 0 5i

1 i 2 0 0 4 1 2i
0 1 i 0 0 1 i 0
2i 0 4 0 0 7
1 5i 1 2i 1 i 7 0

 
  
  
 

  
 
 

   
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 We the 6  6 complex valued matrix. We get the corresponding 
complex valued graph which is as follows. 

 

 

 

 

 

Figure 2.117 

 Clearly if we obtain the weighted matrix associated with 
the complex valued graph K then we see the weighted matrix 
and the complex valued matrix B are identical. In view of all 
these we give the following theorem. 

Theorem 2.7. Let M be a n  n symmetric complex valued 
matrix with diagonal entries as zero. Then there is a unique 
complex valued graph with n vertices whose weighted matrix is 
identical with M and vice versa. 

 Proof is direct and hence left as an exercise to the reader. 

 Now let us consider a 7  7 complex valued matrix D 
whose diagonal terms are zero where  
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D = 

0 2 2 i 0 2 0 1
0 0 0 5i 0 3 7i 0
0 2i 0 3i 1 0 5 2i

4 i 0 0 0 0 4i 2
1 4i 2 1 i 3i 0 1 i 0
3i 0 2i 5 0 0 0 7
4 7i 1 0 5i 2 i 2i 1 0

 
  
 
  
   
 

 
    

 

Now using this D as the weighted matrix we can obtain a 
complex valued directed graph H with seven vertices given by 
the following figure. 

 

 

 

 

 

 

 

 

Figure 2.118 
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  It is easily verified that we see the weighted matrix M of 
the complex valued graph H given in figure is such that M = D. 

 Hence the claim clearly H is a directed graph so only the 
matrix D is not symmetric about the main diagonal. However as 
all the main diagonal entries are zero we see the complex valued 
directed graph got using D has no loops. 

 Before we make relevant conclusions give yet another 
simple example. 

 Let E be a 5  5 complex valued matrix with all the main 
diagonal entries to be zero given in the following. 

E = 

0 2 i 0 0 7
0 0 7 i 2 0
3 0 0 0 5 i

6 i 0 1 i 0 0
0 4 0 5i 2 0

 
  
 
 
  

  

. 

 Now the complex valued graph S associated with the 
complex valued matrix E as the weighted matrix is as follows. 
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Figure 2.119 

 Clearly the weighted matrix of the complex valued 
directed graph S will have the matrix identical with the complex 
valued matrix E. 

 In view of all these we have the following theorem. 

Theorem 2.8. Let B a n  n complex valued matrix all of whose 
diagonal entries are zero and the matrix B is not symmetric 
about the diagonal. To each such B there is a complex value 
directed graph H and vice versa. 

 Proof is direct and hence left as an exercise to the reader. 

 Now we this concept proceed to define and develop 
similar concept for complex valued bigraph in the following. 

S = 

v1 2+i 

3 

v3 5+i 

7 

v5 

v3 

v2 

2 

7+i 

6+i 

4 

1+i 

5i+1 
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  Suppose we have a 7  5 complex valued matrix P given 
in the following. 

 P = 

3 0 1 0 0
0 i 0 2 i 1
1 0 1 i 0 0
0 2 0 1 1 i
0 0 0 0 8
6 0 4i 0 0
0 0 0 2i 1 0

 
  
 
 

 
 
 
 
  

  

we now show we can have a unique complex valued bigraph 
associated with it. 

 

 

 

 

 

 

 

Figure 2.120 

v1 

v2 

v3 

v4 

v5 

v6 

v7 

u5 

u4 

u3 

u2 

u1 

= K 

3 
1 

i 

2 
1+i 

2+i 

1 

1+i 8 

1 6 

2i+1 

4i 
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  It is easily seen that the weight matrix of the K is identical 
with the matrix P. 

 We now consider the complex valued matrix Q is as 
follows. 

Q = 

2 i 0 0 0 0 6 0 0 8 i
0 0 1 i 0 0 0 i 0 0
0 0 0 7i 0 0 0 2 0
0 5 0 0 8 i 0 0 0 0
2 0 1 0 0 1 i 0 1 6
0 1 2i 0 9 1 3i 0 7 0 0
9i 0 0 0 0 0 0 0 0
0 i 0 1 i 0 0 0 1 i 0

  
  
 
 

 
 
 

  
 
 

   

 

 Clearly Q is a complex valued matrix. 

 Now we obtain the complex valued bigraph H associated 
with the complex valued matrix Q. 
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Figure 2.121 

 It is easily verified that the weight matrix associated with 
the complex valued bigraph H is a complex valued matrix 
identical with Q. 

 In view of all these we give the following result. 

9i 

v8 

u1 

u2 

u3 

u4 

u5 

u6 

u7 

u8 

u9 
1+i 

6 

8+i 
v7 

v6 

v5 

v4 

v3 

v2 

v1 
2 

5 

1+i 

7i 

10 

6 5 

i 

2 

1 

1+2i 

2+i 

9 
1+i 

i 
1+i 
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 Theorem 2.9. Let M be a m  n matrix (m  n) which is 
complex valued. Related with M is a complex valued bigraph G 
for which M serves as the weight matrix of G and vice versa. 

 The reader is left with the task of proving the result. 

 It is interesting note that only in case of complex valued 
graphs with weights we have a provision to define the conjugate 
of the complex valued graph. 

 We will first illustrate this situation by some examples. 

Example 2.29. Let G be the complex valued graph with weights 
be given by the following figure. We first find the weight matrix 
M which is complex valued. 

 

 

 

 

 

 

Figure 2.122 

5+i 

v9 

v8 
12i-1 

v7 
8i 

v5 
9 

7-i 

v2 4+i v1 

3+4i 

v4 
3 v3 

G =  

9i 2 

4i-1 
v6 
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 The complex valued weight matrix M associated with the 
complex valued graph G is as follows. 

M = 

1 2 3 4 5 6

1

2

3

4

5

6

7

8

9

v v v v v v
v 0 4 i 0 0 0 3
v 4 i 0 0 3 4i 0 0
v 0 0 0 5 2i 0 0
v 0 3 4i 5 2i 0 9 0
v 0 0 0 9 0 0
v 3 0 0 0 0 0
v 0 9 0 0 8i 0
v 0 0 0 0 0 2
v 0 0 9i 0 0 0


 


 

 

7 8 9v v v
0 0 0
9i 0 0
0 0 9i
0 0 0
8i 0 0
0 2 0
0 12i 1 0

12i 1 0 5 i
0 5 i 0


 



 

is the complex valued weight matrix of the complex valued 
graph G. 

 We define complex conjugate of the complex valued 
graph G denoted by G  is got by finding the complex conjugate 
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 of the complex valued matrix M, since M is symmetric about 
the main diagonal are need not get the transpose of it just the 
complex conjugate will do. Thus in case of a undirected 
complex valued graph G we see its complex conjugate is just 
the complex valued graph got using the conjugate matrix of M. 

 Now we find the complex conjugate of the matrix M say 

M . 

M  = 

1 2 3 4 5

1

2

3

4

5

6

7

8

9

v v v v v
v 0 4 i 0 0 0
v 4 i 0 0 3 4i 0
v 0 0 0 5 2i 0
v 0 3 4i 5 2i 0 9
v 0 0 0 9 0
v 3 0 0 0 0
v 0 9 0 0 8i
v 0 0 0 0 0
v 0 0 9i 0 0


 


 





  

6 7 8 9v v v v
3 0 0 0
0 9 0 0
0 0 0 9i
0 0 0 0
0 8i 0 0
0 0 2 0
0 0 12i 1 0
2 12i 1 0 5 i
0 0 5 i 0





 
  


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 We see M is just the complex conjugate of M. 

 Now we proceed onto give the complex valued graph H = 

( G ) associated with M  the matrix in the following. 

 

 

 

 

 

 

 

 

Figure 2.123 

 We see both the graphs look alike only there are changes 
in the edge weights. 

 Let H be the complex valued graph K given by the 
following Figure. 

 

v9 

–9i 

–12i–1 

5–i 

v8 
2 –8i 

v7 

9 

9 
v4 

3 – 4i 

v2 v1 4 – i 

v3 5 – 2i 

3 

v6 
v5 



Complex Valued Graphs and their Properties  131 
 

 
  

 

 

 

 

 

Figure 2.124 

 The weight matrix M associated with the complex valued 
graph K is as follows. 

M = 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

v v v v v v v
v 0 3i 1 6i 0 0 0 0
v 3i 1 0 2 0 0 0 0
v 6i 2 0 9 i 8 3i 7 0
v 0 0 9 i 0 0 0 9 9i
v 0 0 8 3i 0 0 4 0
v 0 0 7 0 4 0 i
v 0 0 0 9 9i 0 i 0




 
 




  

 Now we find the complex conjugate of M. Let M be the 
complex conjugate of M. 

v1 3i-1 v2 

2 

v3 

v5 

v6 
v7 

v4 

9i+9 

i 

4 

8+3i 
7 

9+i 

6i 
K = 
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M  = 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

v v v v v v v
v 0 1 3i 6i 0 0 0 0
v 1 3i 0 2 0 0 0 0
v 6i 2 0 9 i 8 3i 7 0
v 0 0 9i 0 0 0 9 9i
v 0 0 8 3i 0 0 4 0
v 0 0 7 0 4 0 i
v 0 0 0 9 9i 0 i 0

  
 
  







 

 

 Now we give the complex valued graph associated with 

M  which will be known as the complex conjugate graph Kof 
the graph K which is the complex conjugate of the complex 
valued graph K. 

 

 

 

 

 

 

 

 

Figure 2.125 

v6 –i v7 

v4 

9–9i
7 

4 

v5 

8 – 3i 

v3 

2 

v2 v1 

–6i 

9–i  K= 

–3i – 1 
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 Which is the complex conjugate of the complex valued graph K. 

 In view of all this we have the following result. 

Theorem 2.10. Let K be any complex valued graph. If M is the 

complex valued matrix associated with K and M the complex 

conjugate of M then K is the corresponding conjugate complex 

valued graph associated with M . 

 So to every complex valued graph G we have the 
conjugate complex valued graph and G  vice versa. 

 Now we proceed onto find the complex valued directed 
graph. 

Example 2.30. Let G be a complex valued directed graph given 
by the following Figure. 

 

 

 

 

 
Figure 2.126 

v5 

3 7–i 5 

v3 

4i 

v1 v2 
3+i 

2i 

7 

9+i 

v6 
v4 

v7 

3 – i 
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  Let M be the complex valued weighted matrix associated 
with G given in the following 

M = 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

v v v v v v v
v 0 3 i 0 0 0 2i 0
v 0 0 0 0 0 0 0
v 4i 0 0 0 0 0 0
v 0 0 0 0 0 0 0
v 0 0 5 0 0 3 0
v 0 7 3 i 9 i 0 0 7 i
v 0 0 0 2 0 0 0



  

 

 The complex conjugate matrix M  of M is as follows. 

M = 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

v v v v v v v
v 0 0 4i 0 0 0 0
v 3 i 0 0 0 0 7 0
v 0 0 0 0 5 3 i 0
v 0 0 0 0 0 9 i 2
v 0 0 0 0 0 0 0
v 2i 0 0 0 0 3 0
v 0 0 0 0 0 7 i 0










 

Now we find the complex valued directed graph H associated 

with M . 
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Figure 2.127 

 H is define as the complex conjugate directed graph of the 
complex  valued directed graph G and usually it is denoted by
G   

 We just give one more example of this situation. 

Example 2.31. Let K be the complex valued directed graph 
given by the following Figure. 

  

v1 v3 

v5 

v5 

v4 
9–i 

7+i 

3 

2 

3+i 

v6 

H =  
-2i 

3–i 

-4i 

7 

v2 5 
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Figure 2.128 

 Let S be the weighted complex valued matrix associated 
with the complex valued directed graph K. 

S = 

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

v v v v v v v v
v 0 7 i 0 0 0 9i 0 0
v 0 0 3i 0 0 0 0 0
v 0 0 0 4 9 9i 0 0 0
v 0 0 0 0 5 i 0 0 0
v 0 0 0 0 0 3 0 0
v 0 0 0 0 0 0 0 0
v 0 0 0 0 0 9 i 0 0
v 0 0 3i 0 0 0 2 4i 0









 

v2 
v4 

5-i 4 
3i 

7+i 

v1 

3i v8 

v7 

2+4i 

9-i 
v6 

9i 

v3 
v5 

3 

9+9i = K 
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  It is  clear S is only a complex valued matrix with 
diagonal entries zero. However S is not a symmetric matrix. 
Now we find the conjugate of the complex valued matrix S. 

 Further as the diagonal entries are zero both K and the 
complex conjugate directed graph of K will have no loops. 

 Further S  = ( tS ). 

 We now find the transpose conjugate of S and denote it 
by S-. 

S  = 

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

v v v v v v v v
v 0 0 0 0 0 0 0 0
v 7 i 0 0 0 0 0 0 0
v 0 3i 0 0 0 0 0 3i
v 0 0 4 0 0 0 0 0
v 0 0 9 9i 5_ i 0 0 0 0
v 9i 0 0 0 3 0 9 i 0
v 0 0 0 0 0 0 0 2 4i
v 0 0 0 0 0 0 0 0


 


 



 

We now describe the complex conjugate directed graph K
associated with Sby the following Figure. 
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Figure 2.129 

 We make the following observation when we compare K 

and Kwe see the direction are oriented in the opposite way 
from vertex to vertex. For instance in K we have from vertex v1 

to v2 with edge weight 7 + i where as in Kwe see the direction 
is from vertex v2 to v1 with edge weight 7  - i. 

 Similar change in orientation of each and every node is 

observed. Also the complex values in K  are the complex 
conjugate of the values in K. 

 Thus we see given any complex valued directed graph K 

we can always get a conjugate complex directed graph Kof K. 

 Next we study the complex conjugate of a complex 
valued bigraph G. 

v1 

v2 
7–i 

v4 

5+i 
9-9i 

4 
v3 

v5 

v6 

v7 
9+i 

2–4i 

v8 

K= 
–9i 

–3i 

3 

–3i 
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  Here also we wish to keep on record given any s  t 
complex matrix we can always find the related complex valued 
bigraph and vice versa. 

 Let P be the complex valued weighted bigraph given by 
the following Figure. 

 

 

 

 

 

 

 

 

Figure 2.130 

 The related complex valued weighted matrix M 
associated with the complex valued bigraph P is as follows. 

v1 

v2 

v3 

v4 

v5 

v6 

3+6i 

9 
7i 

4+3i 
10 

9–i 

8 
7i–1 

3+i 
4 

u1 

u2 

u3 

u4 
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M = 

1 2 3 4

1

2

3

4

5

6

u u u u
v 0 3 i 0 0
v 0 7i 1 8 0
v 4 0 0 9 i
v 0 10 0 4 3i
v 7i 0 9 0
v 0 0 0 3 6i









 

 Now M is the weight complex valued matrix of the 
complex valued weighted bigraph P. 

 We find M the complex conjugate of M. 

M  = 

1 2 3 4 5 6

1

2

3

4

v v v v v v
u 0 0 4 0 7i 0
u 3 i 1 7i 0 10 0 0
u 0 8 0 0 9 0
u 0 0 9 i 4 3i 0 3 6i


  

  

 

 Now M  is a complex valued matrix the complex valued 

weighted bigraph P associated with M  is as follows. 
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Figure 2.131 

 We see in case of complex valued bigraph P the complex 
conjugate of P yield a 4  6 complex valued weighted matrix. 

 Study in this direction is interesting and this work is left 
as an exercise to the reader. 

 Now one is interested in the following if G is a complex 
valued weighted graph with associated complex valued matrix 

M and G  the complex conjugate graph of G and M the 

conjugate complex valued weight matrix of G . We want to 

study the product matrix G G  and G G and the corresponding 
graphs. 

 This we illustrate by an example. 

u1 

u2 

u3 

u4 
9 

8 

3–6i 

v6 

v5 

v4 

v3 

v2 

v1 3–i 

–i+7i 

4 

9+i 
4–3i 

–7i 
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 Example 2.31.  Let G be a complex valued weighted graph 
given by the following figure. 

 

 

 

 

Figure 2.132 

 Let M be the complex valued weighted matrix associated 
with G. 

 M = 

1 2 3 4 5

1

2

3

4

5

v v v v v
v 0 3 i 0 0 1 i
v 3 i 0 1 i 1 0
v 0 1 i 0 2 i 4
v 0 1 2 i 0 0
v 1 i 0 0 0 0

 
 

 




 

The complex conjugate of M denoted by M ; 

 

0 3 i 0 0 1 i
3 i 0 1 i 1 0

M 0 1 i 0 2 i 4
0 1 2 i 0 0

1 i 0 0 0 0

  
   
   
 

 
  

. 

v1 3–i v2 

1 

v4 

1– i 
1+i 

4 

v5 

v3 
2 – i 
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 We now find M  M and M   M 

M  M  = 

1 2 3 4 5

1

2

3

4

5

v v v v v
v 12 0 4 2i 3 i 0
v 0 1 3 2 i 3 i 6 8i
v 4 2 i 7 1 i 0
v 3 i 3 i 1 i 6 8 4i
v 0 2 2i 0 0 2

 
   
 

   


 

 We see M  M  results in a complex matrix whose 
complex value graph will lead to loops. So at this juncture we 
say this process of finding conjugate and producting may not in 
general end finitely.  

 Thus we have only limitations to find them. 

 Now having worked with complex valued graphs its 
conjugate we now proceed onto develop or just make a mention 
of finite complex number graphs in a systematic way and justify 
how at times finite complex number graphs may be better than 
the usual complex numbers. 

 Throughout this chapter C(Zn) = {a + biF / a, b  

Zn};C(Zn) = {a + biF / 2
Fi = 1 a, b  {0, 1}} = {0, 1, iF, 1 + iF}, 

C(Z3) = {a + biF /  2
Fi  = 2, a, b  Z3} and so on. 
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  We see if v1 and v2 are two vertices then  

  

Figure 2.133 

where a  C(Z5), a can be complex or real only condition being 

that 2
Fi  = 4, a = x, and b = yiF  C(Z5) x, y  Z5. 

 So we will as in case of usual complex valued graphs 
denote the complex edge by ie , ie   C(Zn) and ei  Zn if ei has 

no line on it. 

 We see  

 

 

 

Figure 2.134 

where 2iF, 4, 2 + 3iF  C(Z6) = {a + biF / a, b  Z6, 2
Fi = 5}. 

Similarly, 

 

 

v1 v2 a 

4 v2 v3 

2+3iF 

v1 

2iF 
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Figure 2.135 

 The edge values are from C(Z7) = {a + biF / a, b  Z7, 2
Fi  

= 6}. 

 Clearly G is a complex valued weighted graph which is 
not directed. 

 We give the weight matrix M which is complex valued 
associated with the graph G. 

 M = 

1 2 3 4 5 6

1 F

2 F

3 F F F

4 F F

5 F

6 F F

v v v v v v
v 0 0 2 0 0 1 i
v 0 0 4i 0 0 0
v 2 4i 0 3 i 0 2 2i
v 0 0 3 i 0 2 i 0
v 0 0 0 2 i 0 0
v 1 i 0 2 2i 0 0 0



 
 


 

 

 It is clear the weight complex matrix is a symmetric 
matrix with diagonal entries to be zero. M is a symmetric 
complex valued matrix. 

 

v5 

= G 

v2 

2+2iF 

2 v1 

1+iF 

4iF 

v3 

3+iF 

2+iF 
4iF + 1 v6 
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  New consider the directed weighted finite complex 
number graph H with edge weights from C(Z9) = {a + biF / a, b  
 Z9, 

F

2i = 8} given by the following figure; 

 

 H =  

 

 

Figure 2.136 

 The complex valued weighted matrix N associated with 
the complex valued graph H is as follows. 

N = 

1 2 3 4 5 6 7 8

1 F

2 F

3 F

4

5 F

6 F F

7

8 F

v v v v v v v v
v 0 3 i 8 0 0 0 0 0
v 0 0 0 2i 0 0 0 0
v 0 2i 8 0 3 0 0 0 0
v 0 0 0 0 0 0 2 0
v 0 0 0 8i 0 0 0 0
v 0 0 0 6i 0 0 4 i 0
v 0 0 0 0 0 0 0 0
v 0 0 2 0 0 i 0 0







 

 Clearly N is a complex valued matrix with diagonal 
entries to be zero, however this matrix is not symmetric along 
the main diagonal. 

v3 

v8 

2 

2iF + 8 

v1 v2 3+iF 

2iF 
8 

3 
6iF 

2 

v6 iF 4+iF v7 

v4 

v5 

8iF 
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  We next proceed onto give some illustrations of complex 
valued weighted bigraph using weights from C(Z10) by the 
following Figure. 

 

 

 

 
Figure 2.137 

 The corresponding complex valued weight matrix B 
associated with the Figure. 

B = 

1 2 3 4 5

1 F

2

3 F

4 F F F

5 F F

6 F

v v v v v
v 3 i 0 0 0 0
v 0 4 0 0 0
v 8 3i 0 0 0 0
v 0 5i 8i 9 3 7i 0
v 0 0 2i 0 9i
v 0 0 0 1 i 0




 



 

 Now all properties associated with the complex valued 
weighted bigraphs can be obtained for finite complex valued 
weighted bigraphs. 

v1 

v2 

v3 

v4 

v5 

v6 u5 

u4 

u3 

u2 

u1 
3+iF 

4 8+3iF 

5iF 

8iF+9

3+7iF 

9iF 

iF+1 
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  We now find the complex conjugate of the weight matrix 
associated with the finite complex valued weighted graph. 

 Let S be the finite complex valued weighted graph G 
given by the Figure. Weighted are from C(Z10) 

 

 

 

 

 

Figure 2.138 

 The corresponding complex valued weight matrix M 
associated with the Figure. 

M = 

1 2 3 4 5

1 F

2

3 F

4 F

5 F

6 F

7 F

8 F

v v v v v
v 0 8 0 0 2 5i
v 8 0 0 3 0
v 0 0 0 7i 0
v 0 3 7i 0 0
v 2 5i 0 0 0 0
v 0 0 9 3i 0 0
v 0 0 0 0 9i
v 0 0 0 4 6i 0








 

v1 

v2 
8 

3 
v3 

9+3iF 

7iF 

v4 2+iF v5 
9iF v7 

2+5iF

3+iF 4+6iF 9+iF 

v8 v6 

G =  
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 6 7 8

F

F

F

F

F F

F

v v v
0 0 0
0 0 0
9 3i 0 0
0 0 4 6i
0 9i 0
0 3 i 0
3 i 0 9 i
0 9 i 0





 



 

Clearly M is a symmetric complex valued matrix with diagonal 
elements zero. 

 Let M  be the complex conjugate of the complex valued 
matrix. 

M  = 

1 2 3 4 5

1 F

2

3 F

4 F

5 F

6 F

7 F

8 F

v v v v v
v 0 8 0 0 2 5i
v 8 0 0 3 0
v 0 0 0 3i 0
v 0 3 3i 0 0
v 2 5i 0 0 0 0
v 0 0 9 7i 0 0
v 0 0 0 0 i
v 0 0 0 4 4i 0






  
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6 7 8

F

F

F

F

F F

F

v v v
0 0 0
0 0 0
9 7i 0 0
0 0 4 4i
0 i 0
0 3 9i 0
3 9i 0 9 9i
0 9 9i 0





 



 

 Now we give the weighted complex valued graph G  

associated the complex conjugate matrix M is as follows. 

 

 

 

 

 

 

Figure 2.139 

 We see all the complex valued weights get the conjugate 

value except the weight 2 + 5iF as F2 5i  = 2 + 5iF since F5i  = 

5iF in C(Z10). Thus we can as in case of usual complex valued 

v1 

v2 
8 

3 
v3 

3iF 

v4 2+9iFv5 
iF v7 

2+5iF 

3+9iF 9+9iF

v8 v6 

G  = 9+7iF 
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 graphs get the conjugate graphs get the conjugate in case of 
finite complex valued graph also. 

 Next we give the example of finite complex valued 
weighted directed graphs in the following. 

 Let G be the finite complex valued weighted directed 
graph with weights from C(Z9) = {a + biF / a, b  Z9; 2

Fi  =8} 

given by the following figure. 

 

 

 

 

 

 

 

Figure 2.140 

 Let M be the weighted complex valued matrix associated 
with H. 

7+5iF 

1+iF 

v8 v7 

6 

v9 

8iF H = 

v1 
v2 3+iF 

iF 

v3 

2 
v4 

5 

v5 v6 

3+iF 8 
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M = 

1 2 3 4 4

1 F

2 F

3

4

5

6 F

7

8 F

9

v v v v v
v 0 3 i 0 0 0
v 0 0 i 0 0
v 0 0 0 2 0
v 0 0 0 0 0
v 0 0 0 5 0
v 3i 1 0 0 0 0
v 0 0 0 0 0
v 0 0 1 i 0 0
v 0 0 0 0 0







 

5 6 7 8 9

F

F

F

v v v v v
0 0 0 0 8i
0 8 0 0 0
0 0 0 0 0
0 3i 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 7 5i 6
0 0 0 0 0
0 0 0 0 0





 

Clearly main diagonal elements of M are zero.  

 However the weighted complex valued matrix M of H is 
not symmetric about the main diagonal. 

 Now we find the finite complex conjugate of M and 

denote it by M .  
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  We also determine the finite complex conjugate directed 

weighted graph associated with M  and it is nothing but the 

finite complex valued graph H  which is the conjugate of H. 

 

 

 

 

 

 

Figure 2.141 

 

 Now M the complex valued weighted matrix of H is the 
same as the finite complex conjugate of the matrix M. 

v1 

v2 

8 
8iF 

3+8iF 

H =  

v9 

6iF+1 

v8 v7 7+4iF 

iF v3 
2 

v4 

v5 v6 1+6iF 
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 1 2 3 4 5 6

1 F

2 F

3 F

4

5

6 F

7

8

9 F

v v v v v v
v 0 0 0 0 0 6i 1
v 3 8i 0 0 0 0 0
v 0 8i 0 0 0 0
v 0 0 2 0 5 0
v 0 0 0 0 0 0
v 0 8 0 0 1 6i 0
v 0 0 0 0 0 0
v 0 0 0 0 0 0
v i 0 0 0 0 0






 

7 8 9

F

F

v v v
0 0 0
0 0 0
0 1 8i 0
0 0 0
0 0 0
0 0 0
0 0 0
7 4i 0 0
6 0 0





 

 We see M has also the main diagonal entries to zero.  

 Further M  is not symmetric as the complex valued graph 
is a weighted directed one. 

 Next we give one example of a finite complex valued 
weighted bigraph K with entries from C(Z12) and describe it by 
the following figure.  
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  We also find the finite complex valued weighted matrix 
associated with K. 

 

 

 

 

 

 

 

 

Figure 2.142 

 Now we give the finite complex valued weighted matrix 
N of the finite valued weighted bigraph K. 

v1 

u1 

u2 

u3 

u4 

u5 

u6 

v7 

v2 

v3 

v4 

v5 

v6 

9+iF 

8+9iF 

9 

10iF 

2+9iF 

9+iF 

10 2 

11+iF 

4+3iF 



156 Complex Valued Graphs for Soft Computing 
 
 
 

N = 

1 2 3 4 5 6

1 F

2 F F

3 F F

4 F

5

6 F

7 F

u u u u u u
v 9 i 0 9 0 0 0
v 0 2i 10i 0 0 0
v 8 9i 0 0 2 9i 0 0
v 0 0 0 9 i 0 0
v 0 0 10 0 2 0
v 0 0 0 0 0 11 i
v 0 0 0 0 4 3i 0



 





  . 

Clearly N is a complex valued weighted matrix of the complex 
valued weighted bigraph. Now we find the complex conjugate 
of N. 

N  = 

1 2 3 4 5 6 7

1 F F

2 F

3 F

4 F F

5 F

6 F

v v v v v v v
u 9 11i 0 8 3i 0 0 0 0
u 0 10i 0 0 0 0 0
u 9 2i 0 0 10 0 0
u 0 0 2 3i 9 11i 0 0 0
u 0 0 0 0 2 0 4 9i
u 0 0 0 0 0 11 11i 0

 

 




 

 We now find the complex valued weighted bigraph 
associated with N . Let K  be that bigraph 
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Figure 2.143 

 Thus for any finite valued weighted bigraph H we can 
always find a conjugate finite valued weighted bigraph H and 
the correspond complex conjugate matrix. 

 Now having see examples of finite complex valued 
weighted bigraphs we now proceed onto describe the concept of 
finite complex valued wheel by some examples. 

  

u1 

v1 

v2 

v3 

v4 

v5 

v6 

u2 

u3 

u4 

u5 

u6 

9+11iF 

10iF 

9 

2iF 

2+3iF 
10 

2 

11+11iF 4+9iF 

K  = 

9 

9+11iF 

v7 
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  Let W5  =   

K  

 

and 

 

 

 

 

                            Figure 2.144 

Where ei  Zn and ie C(Zn) \ Zn. 

 We know Figure 2.141 (a) is the quasi dual of (b) and 
vice versa. Here also as in case of complex number in case of 
finite complex numbers also they occur in pairs viz the wheel 
and quasi dual component of it. 

 The major difference between the complex valued 
matrices and the finite complex valued matrices is these 
matrices after producing with each other become a fixed point 

e5 

e4 e3 

e2 

e1 

6e  

10e

8e  

7e

9e

5e

4e 3e

2e

1e

e6 

e10 

e8 

e7

e9
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 or a limit cycle however this property is not guaranteed in case 
of complex valued graphs. 

 We can akin to complex valued rooted trees can build also 
finite complex valued rooted trees. 

 We will illustrate this situation by an example or so 
example. 

 

 

 

 

 

Figure 2.145 

 We see the complex valued rooted tree has real roots and 
T is not an imaginary rooted tree. 

 Clearly this finite complex valued rooted tree is not a 
complex or imaginary rooted binary tree. 

 The constituent part of these finite complex valued rooted 
trees are 

 

v0 
2 3 

v2 

7 
v5 3iF 

v8 v7 

3 
v6 

v1 
4+iF 

v3 
8 IF+4 

v10 v11 v12 

3 1 
v9 

v13 v14

2 
7iF

v4 
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Figure 2.146 

 

 If the finite complex valued rooted tree is a binary tree 
then certainly it will have only two constitutional parts. 

 So it goes without saying if T is a finite complex valued 
rooted trinary tree it will have three constitutional trees 
associated with it hence for any finite complex valued rooted 
trinary tree will have n constitutional trees associated with it. 

 Consider the finite complex value trinary tree. 

  

v0 

v9 

v14

v1 
v4 

v13

v12
v11 v10

v1 

v2 

v4 

v8 

v6 

v9 
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Figure 2.147 

 Interested reader can study finite complex valued graphs 
in an analogous way without any difficulty. 

 Further we can also develop all other properties.  

 

 

 

Figure 2.148 

  

v0 

e3 

e2 

v3 

4e  

e5 

6e

8 1e 

vK+2vK+1
vK

et 
et-1 

v1 

e1 

v2 

e1 e2 

v0 

v1 v2 e3 

G = 
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 The only major difference between the complex valued graphs 
and finite complex valued graphs is that in the case of complex 
valued graphs we can have infinite number of them with  

 e1, e2, e3 C = {a + bi / a, b  R, i2 = –1}. 

 However if the some G is taken with the edge values e1, 
e2, e3   C(Z10) then we can have finite number of them. This is 
the marked difference between the finite complex valued 
weighted graphs and the usual complex valued graphs. 

 The above results also hold good in case of complex 
valued bigraphs suppose we have  finite complex valued 
weighted graph  we have a finite complex valued matrix M 
associated with it. 

 Conversely given a finite complex valued weighted graph 
we will have the weighted matrix associated with it. 

 The above result is also true in case of finite complex 
valued bigraphs. 

 In the following we propose some problems to the reader. 
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 Problems 

1. Find all non isomorphic complex valued graphs with 
same number of edges and same numbers vertices 
(Assume six vertices and K6 complex graph) 

2. Show for any complex valued graph can in general have 
subgraphs which are real provided the complex valued 
graph is not a pure complex valued graph. 

3. Give examples of complex valued graph with four 
vertices and all possible types of edges. 

 a) How many such complex valued graphs exists? 

 b) Show these complex valued subgraphs can be real. 

 c) Show these complex valued subgraphs can also be 
pure imaginary. 

4. Let G = {V, E} be the complex valued graph. 

 

 G =  

 

Figure 2.149 

i) Find all subgraphs of G which are real. 

v3 7i 2+9i v6 

3 
v2 

2+i 
3i+i 

2 

v1 

4+5i 

v5 

6 3i 

v4 
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 ii) Find all subgraphs of G which are pure imaginary. 

iii) Find all subgraphs of G which are complex valued. 

5. Let G be the complex valued weighted graph given by the 
following figure; 

 

 

 

 

 

Figure 2.150 

i) Find all real subgraphs of G. 
ii) Find all complex valued subgraphs of G. 
iii) Find the complex valued weighted matrix M associate 

with G. 

iv) Find the complex conjugate matrix M of the complex 
valued matrix M. 

v) Find the complex conjugate graph of G and prove M  
is the weighted complex matrix associated with it. 

6. Let K be the complex valued weighted graph given by the 
following figure; 

10-i 

v7 

v3 

G =  

v8 

9 -8 

4-i 
i 

v6 

5+4i 

v9 

v5 

3 
2+i 

10i 
v2 

v1 10-i 

7+8i 

v4 
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Figure 2.150 

i) Find the quqsi dual complex valued graph of K. 
ii) How many quasi dual complex valued graphs are 

associated with the complex valued graph K? 
iii) Study questions (i) to (v) of problem (5) for this K. 

7. Given any complex valued symmetric matrix M with zero 
diagonal entries prove we have a unique complex valued 
weighted graph associated with it. 

8. Let P be the complex valued matrix (symmetric with 
diagonal entries zero). 

 i) Find the complex valued weighted graph G associated 
with P. 

v8 

v5 

3+2i 

2–i 

v3 

v7 

4+i 

v2 
v1 18 4i+8 

v10

v11

v9 

8 
10 K 

12+3i 

9+2i 

v4 7i–4 
8i–1 

v6 
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 P = 

0 3 i 7i 0 9i 1 2
3 i 0 0 10i 1 0 8i 4
7i 0 0 0 7i 8
0 10i 1 0 0 2i 1 4
9i 1 0 7i 2i 1 0 3i
2 8i 4 8 4 3i 0

  
    
 
 

  
   
 

   

. 

 ii) Find the complex conjugate of P and the associated 
complex valued graph K. 

 iii) Is K = G ? Justify ! 

9. Prove if G is a complex valued directed graph then the 
complex valued matrix associated is not a symmetric one. 

10. Let G be a complex valued weighted directed graph given 
by the following figure? 

 

 

 

 

 

Figure 2.151 

i) Findthe complex valued weighted matrix M 
associated with G. 

9i 

v6 

9i+1 

v7 8+8i 

v1 

v2 

3–i 

2+4i v8 

9i–1 
v3 

v5 9+10i 

v9 

v4 

7–

5 
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 ii) Prove M is not a complex valued symmetric matrix. 

iii) Find the complex conjugate matrix M of the matrix 
M. 

iv) Find the complex valued directed graph K associated 

with the matrix M . 
v) Prove K = G .  

11. Let G be the complex valued weighted bigraph given by 
the following Figure 2.152. 

a) Find  the complex valued matrix P associated 
with the bigraph with G. 

 

 

 

 

 

 

 

Figure 2.152 

v1 

u1 

10+2i 

u2 

u3 

u4 

u5 
16i–1 

7–4i 
v8 

v7 

v6 

9 v5 

3 v4 

v3 
9+i 

11 

v2 
4–i 

8 

10–i 
12+4i 

8i 
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 i) Find the complex valued weighted matrix M 

associated with G. 

ii) Find the complex conjugate matrix M  of the matrix 
M. 

iii) Is M  M  defined? 

iv) Find the complex conjugate bigraph G  associated 

with the complex conjugate matrix M . 
v) Obtain any other special feature associated with the 

complex valued bigraph. 

12. Let H be the complex valued matrix given in the 
following. 

H = 

1 2 3 4 5 6

1

2

3

4

5

6

7

8

9

10

11

u u u u u u
v 3 4i 0 2 0 0 7i 1
v 0 4 i 0 8i 1 7 0
v 0 12 9 i 0 8 i 9
v 10 0 0 3 0 0
v 7 8i 0 2 i 2 3 i 5i
v 0 6i 7 8i 1 4
v 7i 0 0 0 0 8i 1
v 0 5i 1 2 i 0 3 i 0
v 1 i 0 0 1 i 0 4i
v 0 2 3 4i 1 3
v 1 6i 0 8i 1 0 7 i 0

 
 

 

  



  

 

  

   . 

a) Find the complex valued weighted bigraph associated 
with the complex valued matrix H. 
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 b) Find H  the complex conjugate of the complex matrix 

H. 
c) Find the complex valued bigraph P associated with 

the complex valued matrix H . 
d) Is P the complex conjugate bigraph of the bigraph K? 
e) Obtain any other special feature associated with P, K 

and H. 

13. Prove wheels of the form Wn = K1 + Cn – 1 occur in pairs 
in case of complex valued edges. 

14. Find the two wheels. W20 = K1 + C19. 

15. What are the special and interesting features one can 
associate with complex valued graphs? 

16. Obtain some special applications of these complex valued 
graphs. 

17. If some of the vertices of a complex valued graph is also 
complex what are the distinct features that can be 
associated with it in comparison with usual complex 
valued graphs whose vertices are real. 

18. Can we have a directed complex valued bigraph? 

19. What are the special and distinct features associated with 
complex valued rooted tree? 

20. Can complex valued rooted trees be used in data mining? 
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 21. What are the special applications one can associate with 

complex valued rooted trees? 

22. Give an example of a complex valued rooted binary tree 
with imaginary root. 

23. Give an example of a complex valued rooted tree which 
has all its leaves to be imaginary. 

24. Let T be a complex valued rooted tree given by the 
following figure. 

 

 

 

 

 

 

 

Figure 2.153 

a) Find all the constituted trees associated with T. 
b) How many leaves are imaginary. 

e1 
2e  

e3 

e4 

e7 e6 5e

8e 9e

e10 e11 

e12 

e13 e14 

e15 

e26 
e27 

e25 

e24 e23 

e19 e16 

e17 18e  
20e e21 e34 35e

e32 33e

e31 e30 

28e
e29 

e22 



Complex Valued Graphs and their Properties  171 
 

 
 c) How many of the constitutional trees have imaginary 

roots? 

25. Find some innovative applications of complex valued 
graphs. 

26. Is every edge we use in our graphs practical models a real 
edge? 

27. Why neutrosophic edge that is edges which cannot be 
defined exists, in graphs how can one define graphs with 
edge values to be complex valued? 

28. Can we say in social networking complex valued 
weighted edge has a major role to play? Justify your 
answer! 

29. Prove complex valued graphs can find applications in the  
medical diagonistic problems. 

30. Let G be the finite complex valued graph given by the 
following figure with edge weights from C(Z15). 
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Figure 2.154 

i) Find the complex valued weighted matrix M 
associated with G. 

ii) Find the complex conjugate matrix M of M. 

iii) Find the complex valued graph associated with M . 

iv) Find M  M and M  M. 

v) Is M  M  = M  M? 
vi) Find are subgraph of G. 
vii) How many subgraphs of G are real? 
viii) How many subgraphs of G are complex? 

31. Let G be the finite complex valued graph given by the 
following figure with entries from C(Z5) = {a + biF / a, b 
 Z5, 2

Fi = 4} 

 

v10 v11 
2iF - 4 

3+2iF 12+9iF v9 

v6 

v3 
v4 14iF + 1 

2-iF  
3iF-3 

4+3iF 

v1 v2 3iF 

2 

8iF +7 
v5 

v8 

3iF +2 

v7 
8-4iF 
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Figure 2.155 

where 1e , e2, 3e , e5, 6e  and e4  C(Z5). 

i) Keeping the complex edge as a complex edge and 
real edge as a real edge how many graphs can be 
obtained similar to G.  
 
 
 
 
 
 
 
 

Figure 2.156 

 
(Hint we say G is similar to K if  that is edge 
weights which are complex continue to be complex 
and those are real continue to be real.  

v4 

v1 v2 

v3 

2iF 

1+iF

4+3iF

1 2 

v5 

3 

v4 

v1 v2 

v3 

3e  

6e

1e

e5  =  G 

v5 

e3 
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 The number of edges and vertices are maintained to  be same 
only values of the edges vary )? 

ii) Prove the collection in (i) is only finite. 

32. Let G be a complex valued weighted directed graph  
given by the following figure with edge weights from 
C(Z6) = {a + biF / a, b  Z6; 2

Fi = 5} 

 

 

 

 

 

Figure 2.157 

i) Find the weighted finite complex valued matrix M 
of G. 

ii) Find all real valued subgraphs of G. 
iii) Find all complex valued subgraphs of G. 

iv) Find M  the finite complex conjugate matrix of the 
finite complex matrix M. 

v) Find the complex valued graph H associated with 

the finite complex valued matrix M . 

v1 v9 

v2 

iF 

3+iF 

2 
v3 

2+iF 

iF+1 

v4 

v5 
v7 

5 

v6 

3+4iF 

1+5iF 

3+3iF 
v8 

2+4iF 
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 vi) Is H the complex conjugate graph of G? 

vii) Find all real valued subgraphs of H. 
viii) Is the number of real valued subgraphs of G and H 

the same? 
ix) Will the number of complex valued subgraphs of 

both G and H be the same? 
x) Will the subgraphs of G be the same as the 

subgraphs of H? Justify ! 
xi) Obtain any other special feature associated with the 

complex valued graphs G and H. 
xii) Will all the subgraphs of G (and H) be again a 

directed subgraphs? Substantiate your claim. 

33. Let K be a finite complex valued graph with edge weights 
from C(Z8) = {a + biF / a, b  Z8, 2

Fi  = 7} given by the 

Figure 2.153. 

K = 

 

 

 
 

 

Figure 2.158 

v9 v7 

4+1 
7 

v10 

v1 

4 

v2 3+iF 

6iF 

v3 

v4 

7+iF 6+2iF 

3+6iF v5 

v6 

3iF  iF 
6 

v8 
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 i) Find the weighted matrix M associated with K. 

ii) Find all subgraphs of K which has real edges. 
iii) Find all subgraphs of K which has complex edge 

weights. 

iv) Find M  the complex conjugate matrix of M. 
v) Find the complex valued graph associated with M. 
vi) Find 

10 times

M M M   . 

vii) Find 
10 times

M M K M  . 

34. Let S be the finite complex valued directed weighted 
graph given by the following example. 

 

 

S = 

 

 

 

Figure 2.159 

 The finite complex valued directed weighted graph takes 
the weights form C(Z10) = {a + biF / a, b  Z10; 2

Fi  = 9} 

v6 

v8 
2+5iF 

9 

v1 
v2 

v3 
2+5iF 

7+2iF 

v7 

6iF

5 

7 
v5 

v4 

8+iF 
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 i) Find the finite complex valued weighted matrix M 

associated with the finite complex valued directed 
weighted graph S. 

ii) Find the finite complex conjugate M of the matrix 
M. 

iii) Determine the finite complex valued graph K 

associated with M . 
iv) Is K = S? 
v) Is K a directed finite complex valued graph? 

35. Let M be a finite complex valued matrix given in the 
following with entries from C(Z18). 

M = 

1 2 3 4 5 6

1 F F F

2 F F

3 F F

4 F F F

5 F F F

6 F

7 F F F

8 F F F F F

u u u u u u
v 3 2i 0 0 14i 2 10i 9
v 0 9 9i 3 i 0 0 0
v 2 17i 0 0 8 0 1 i
v 9 2i 8 1 3i 9i 0
v 10i 0 4i 0 7 2i
v 0 1 i 0 1 0 3
v 2 0 2 i 0 1 i i
v 1 i 1 9i 9i 2 i 0 1 9i

 
 

 



 

   

 

i) Find the finite complex valued weighted bigraph G 
associated with M. 

ii) Find the finite complex conjugate M  of M. 
iii) Find the finite complex valued weighted bigraph K 

associated with M . 
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 iv) Is K the complex conjugate bigraph of G and vice 

versa? 
v) Obtain any other special feature associated with M, 

M , K and G. 

36. Let P be a non symmetric finite complex number matrix i 
given in the following. 

P = 

1 2 3 4 5 6 7

1 F F F

2 F F F

3 F F

4 F F F

5 F F F

6 F F F

7 F F F

v v v v v v v
v 0 3 i 0 9 2i 0 8i 0
v 2i 0 8 i 0 7 0 1 i
v 0 1 i 1 0 1 3i 2 4
v 1 5i 0 2i 7i 0 0 0
v 0 0 0 2i 1 i 9i 0
v 3 8i 4 i 0 0 0 0 7 i
v 2 i 0 3 i 1 5i 2 4 0

 
 

 



  
  

 

where  the entries are from C(Z10) = {a + biF / a, b  Z10, 
2
Fi  = 9} 

i) Find the complex valued graph G associated with 
the matrix P. 

ii) Does the graph  G contain loops? 
iii) Is the graph G a directed one? 

iv) Find Pthe complex conjugate of P. 

v) Find the complex valued graph H associated with P
. 

vi) Is H the conjugate of G and vice versa? 
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 37. Let M be the finite complex valued graph with entries 

from C(Z9) = {a + biF / a, b  Z9, 2
Fi = 8} given in the 

following. 

M = 

1 2 3 4 5 6 7

1 F F

2 F F F

3 F F

4 F F F

5 F F F

6 F F

7 F F

v v v v v v v
v 0 2 i 0 8i 0 7 0
v 1 i 0 2i 0 7 8i 0 4
v 0 8 0 1 i 0 i 0
v 0 0 2 5i 0 4i 0 1 i
v 8i 1 0 0 3 i 0 1 4i 0
v 0 3 i 2 0 4 0 5i
v 0 0 0 2i 1 0 1 4i 0


 


 

  


 

 

i) Find the complex valued graph G associated with 
the complex valued matrix M. 

ii) Is G a directed complex valued graph? 

iii) Find M  the complex conjugate of M. 
iv) Find the directed complex valued graph H 

associated with M . 
v) Is H the complex conjugate graph of the graph H? 

38. Define and describe the complex valued wheels. 

39. Prove there are two such complex wheels Wn for any 
given positive n. 

40. Show in case of real wheel Wn it is easily one. 
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 41. Show in case of finite complex valued wheel also we have 

two Wn
’s for a given n. 

42. Are these complex valued wheels quasi dual complex 
valued ones? Justify. 

43. Give an example of a complex valued wheel W11. 

44. Give an example of a finite complex valued wheel W18 
entries from C(Zn) = {a + biF / a, b  Zn, 2

Fi = (n – 1)}. 

45. Give an example of a disconnected complex  valued finite 
graph. 

46. Prove for any given complex valued symmetric matrix M 
with diagonal zero we have a weighted complex valued 
graph G which is not directed and vice versa. 

47. Prove if M in problem 46 has diagonal entries then the 
graph G has loops. 

48. Prove the complex matrix M in problem (46) has a unique 

complex conjugate M . 

49. Prove M  the complex conjugate of M has a unique 
complex valued graph associated with it. 

50. Let S be a finite complex value matrix given in the 
following with entries from C(Z12) = {a + biF / a, b  Z12, 

2
Fi  = 11}; 
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S = 

1 2 3 4 5

1 F F

2 F F

3 F F

4 F

5 F F F

6 F

7 F F F F

u u u u u
v 10 i 0 3i 0 6
v 0 3i 4 0 4i 0
v 2 6 2 i 0 1 i
v 0 0 0 1 8i 0
v 7i 1 9i 4 0 3i
v 0 0 0 8i 7 0
v 4 3i 4i 2 i 0 7 7i




 





  

 

i) Find S  the complex conjugate of S. 
ii) Find the complex valued bigraph H associated with 

S. 
iii) Find the complex valued bigraph K associated with 

S . 

iv) Prove if S is the complex conjugate of S then the 
complex valued bigraph H is the complex conjugate 
of the bigraph K and vice versa. 

51. Give examples of perfect complex valued graphs. 

52. Give an example of a complex imaginary rooted tree. 

53. Give an example of a complex tree which has no 
imaginary leaves. 

54. Give an example of a comlex valued tree which has all of 
its leaves to be imaginary. 

55. Give an example of a complex valued trinary tree with 6 
layers. 
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 56. Give an example of a complex valued n-ary tree T (n = 7) 

with 3 layes. 

 i) How many nodes are in T? 

 ii) How many of them are leaf nodes? 

iii) Enumerate any of the special features associated 
with T. 

57. Give an example of a K8 with complex values as edge 
weights. 

58. How many K4 exists if the edge weights are from C(Z5) = 
{a + biF / a, b  Z5, 2

Fi = 4}? 

59. How many of the complex valued graphs K4 given in 
problem 58 are quasi dual of each other? 

60. Enumerate all special and interesting features associated 
with complex valued graphs Kn (n  3). 

61. Enumerate all special features associated with the 
complex valued graph K3,3. 

62. How many such K5’s and their dual can be made if the 
edge weights are from C(Z8)? 

63. Define complex valued outer maximal planar graphs and 
illustrate them by examples. 



Complex Valued Graphs and their Properties  183 
 

 
 64. How many complex valued trees exists with six vertices? 

65. How many trees with six vertices exist? 

66. Compare the problems (64) and (65) for the trees. 

67. How are these complex valued rooted trees different from 
the usual trees which are not rooted? 

68. Define the notion of complex semi irreducible and a 
complex irreducible graph. 

69. Can we give edge weights for graphs in question (68)? 

70. Give a real world example were the edge weights can be 
complex. 

71. Let G be a complex valued graph given by the following 
Figure. 

 

 

 

 

Figure 2.160 

i) Find the complex conjugate of the graph G. 

4i

v6 
v5 

v4 

v3 
v2 

8-i 5+3i 
v1 v10 

v9 

9-2i 

v8 v7 

6 

v11 
4 3-i 

v12 

11i 
8 9-10i 

7+i 
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 ii) Find the weighted matrix M of the complex valued 

graph G and its complex conjugate M of M. 

iii) Find the complex valued graph associated with M . 

iv) Prove in general M  M   M   M and the 

complex valued graphs associated with M   M (or 

M  M ) do not inherit all properties of the graph 
G. 

81. Let K5,5 be the complex valued weighted graph. 

 

  

 

 

 

 

Figure 2.161 

i) Give edge weights as elements from C and find the 
complex conjugate of K5,5. 

ii) For a given complex weight graph find the quasi dual. 
iii) Give weights for the edge such that the subgraphs K4,4 

and K3,3 are pure complex that is purely imaginary. 

v5 v6 

v7 

v8 

v9 

v10 

v1 

v2 

v3 

v4 
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 82. Obtain any other special feature associated with finite 

complex valued weighted graphs and find all possible 
application. 

83. Construct strong complex valued graphs which has both 
the vertices and edges to be complex. 

84. Can complex weighted rooted tree be used in image 
processing? 

85. Give an example of complex weighted regular bigraph G. 

86. Is such G’s 1-factorable? Justify your glaim. 

87. Define and describe a complete n-partite complex 
weighted (edge) graphs. Is it possible they these graphs 
satisfy the classical properties? 

88. Define union of any two distinct imaginary walks joining 
two vertices a cycle contains. 

89. Describe and develop the notion of a complex valued 
graph and its dique is also complex valued. 

90. Describe by an example a complex valued out tree and the 
converse in tree. 

91. If G is the complex valued out tree will the in tree 
associated with G be real? 
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 92. Give an example of a complex valued graph with 5 

components. 

93. Give an example of a connected complex valued graphs. 

94. When a walk is imaginary between some two vertices. 
What are the possibilities it can be used in the 
applications? 

95. Prove when graph theory is used in sociology complex 
valued graphs are more appropriate than real valued 
graphs. 

96. Can complex valued graphs (that is edge weights 
complex) be used in biology? 

97. Can complex valued graphs  be used in problems in social 
media? 

98. Can complex valued  graphs be used in linguistics? 

99. Can complex vertex graphs be used in artificial neural 
networks?s 

100. Prove the cognitive maps can also have complex vertices 
and complex edges!. 



 

Chapter Three 

 

APPLICATIONS OF COMPLEX VALUED 

GRAPHS 

  

 In this chapter we authors give the possible and probable 
applications of complex valued graphs and strong complex 
valued graphs. 

 A systematic study of complex valued graphs was carried 
out in the earlier chapter. Our concentrations in this study is 
mainly focused on how this new structure can be applied to 
mathematical complex models. 

 So in the first place we will see how the cognitive 
structure can have complex nodes and complex edges. 

 Infact authors wish to state that when one can 
indeterminate edges why not imaginary edges. Imagined 
feelings or imagined feelings of suffering from diseases, 
imagined grievances against people or against relations etc.; 
exists in human actions as well as in the feelings. So pain can be 
imaginary, hatered can be imaginary, sometimes the very 
thought processing at a particular period and for a particular 
situation may be imaginary. 
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 So the concept of imaginary node (vertex of a graph) and 
imaginary edge weight (in the graph) that is connecting two 
nodes is also possible. 

 So such situations arise in the case of social networks 
analysis, soft computing, medical diagnostics and personality 
assessments. 

 Another place where the imaginary nodes function in the 
human are redefined as follows. When we say the neuron is 
imaginary it does not mean the existence of the neuron is 
imaginary. It is only imagined what  that node has the capacity 
to imagine so many things which may not even exist only in 
imagination it is said to be imaginary. 

 For instance this is the apt situation in case of an artist or 
poet or a writer for that matter. So in his brain there will be 
neurons which perform imaginary activities and the neurons are 
also defined by us to be connected imaginarily and produce 
imaginary impulses. 

 So with this explanation we instead of fuzzy cognitive 
maps have also fuzzy imaginary cognitive maps where the 
directed graphs associated with this new structure will utilize 
only strong complex valued weighted directed graphs. 

 This will be first mathematical model which we are 
developing using the strong complex valued weighted graphs. 

 We define a graph to be a strong complex valued 
weighted directed graph if in the usual directed graph some of 
the vertices are imaginary and some of the edge weights are 
imaginary. 
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Example 3.1. The strong complex valued graph is given by the 
following figure; 

 

 

 

 

Figure 3.1 

 The vertex 1v  is complex and the rest of the vertices are 

real. Only the edges 1e  and 6e  are complex and the rest of the 

edge weights are real. 

 Now we will be using this sort of strong directed complex 
valued graphs to describe, define and develop the notion of 
fuzzy imaginary cognitive maps. 

 In the first place we want to once again recall and 
reregister that fuzzy imaginary cognitive maps functions akin to 
fuzzy cognitive maps with a difference the state of a node can 
be imaginary i or 1 + i and the edge weights can also be i or 1 + 
i. To this end we make the following definition. 

 Throughout our discussions of Fuzzy Imaginary 
Cognitive Maps (FICMs) model we assume the state can be ‘0’ 
off; 1, imaginary 1 + i and purely imaginary i. 

 We define Fuzzy Imaginary Cognitive Maps (FICMs) 
model as fuzzy imaginary signed directed graphs with feed 
back. 

e2v5 

v3 
v4 

v2 

e4 
e3 

e5 

e7 
1v

1e

6e
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 The directed edge eij from causal concept Ci to concept Cj 
measures how much Ci causes Cj, it may be pure imaginary i or 
imaginary 1 + i or real 1 or no relation 0. The time - varying 
concept Ci (t) can measure the non negative occurrence of some 
fuzzy event perhaps the medical investigation of a hypochondria 
(patient) or a criminal investigation or a caste based education 
system. FICMs model the world as a collection of classes and 
causal relations between classes.  

 For more about FCMs and the development of FCMs 
please refer [15]. However it is pertinent to keep on record that 
the notion of Neutrosophic Cognitive Maps was developed in 
[15] and has been used in several real world problems [15]. 

 Simple FCMs have edge values {-1, 0, 1} and Fuzzy 
Imaginary Cognitive Maps take edge weights from {0, i, 1, 1 + 
i} or S = {0, -i, -1, i, 1, 1 – i, -1 – i, 1 + I, -1 + i}. 

 This study is interesting for certainly there are certain 
concepts in which Ci causes Cj in an imaginary way. Here also 
feedback precludes the graph search technique used in artificial 
intelligence expert systems and causal imaginary trees. 

 FICMs feedback also allows causal adaptation laws. 

 ijm  = –mij + SiSj + iS jS     (1) 

 ijm  = –mij + iS jS     (2) 

where Sj and Sj  are binary signal functions, mij are synaptic 
coefficient FICMs take the edge values from S. 
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 In case of FICMs also the causal feedback loops abound 
in thick tangles. Feed back makes possible the graph search 
techniques used in artificial - intelligence expert systems and 
causal trees. 

 Akin to FCMs, FICMs feedback allows experts to freely 
draw causal pictures of their problem which allows causal 
adaptation laws mentioned in (1) and (2) with appropriate 
modifications to infer causal links from sample data. FICMs 
feedback also forces us to discard graph search forward and 
specially backward chaining. Instead one can view FICMs also 
as a dynamical system and its equilibrium behavior as a forward 
evolved inference.  As in case of FCMs one can also add two or 
more FICMs to produce a new FICMs as law of large numbers 
ensures the reliability of information with the experts sample 
size. 

 As in case of FCMs in FICMs also we pass on a vector 
forming a result after each pass. 

 The result (resultant) vector is thresholded and updated at 
each pass which settles down as a fixed point or a limit cycle or 
hidden pattern. 

 The limit cycle inference as in case of FCMs in case of 
FICMs also summarizes the joint effects of all the interacting 
fuzzy imaginary knowledge. 

 Suppose we have 6  6 causal connection matrix M that 
represents the FICM in the following figure; 

 



192 Complex Valued Graphs for Soft Computing 
 
 
 
 
 

 

 

 

 

 

Figure 3.2 

where C1, C2, C3, C4, C5 and C6 are nodes associated with an 
hypochondria patient who complains of the following 
symptoms who had been admitted in the hospital for fracture 
near the wrist. 

 In the following we briefly describe each of the nodes. 

 C1 - pain in the hand 

 C2 - Pain in shoulder + neck 

 C3 - Feels giddy 

 C4 - Complains of stomach upset 

 C5 - Complains of problems related to heart 

 C6 - Feels tired or depressed. 

 Clearly we see some of the nodes or concepts associated 
with this problem is imaginary or purely imaginary. 

G = 

C1 

i 

C3 

C4 

C2 

C6 

C5 1 

1+i 

1 

1+i 

1–i 

1 

1 
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 Secondly when the nodes / concepts itself happens to be 
imaginary or purely imaginary the causal relation can also be 
imaginary or purely imaginary. 

 Now we find the effect of the on state of some state 
vector from. 

 X = {(a1, .., a6) / ai  {0, 1, i, 1 + i}; 1  i  6}  

 Let x = (1, 0, 0, 0, i, 0)  X. 

 To find the effect of x on the dynamical system M got 
using the complex valued directed graph G. 

 M =    

1 2 3 4 5 6

1

2

3

4

5

6

C C C C C C
C 0 1 i 0 0 0
C 0 0 0 1 0 0
C 0 0 0 1 i 1 0
C 0 0 0 0 0 1
C 0 1 i 0 0 0 1 i
C 0 0 0 1 0 0



 

   

 

 We find the effect of x on M. 

 xM =  (0, 2 + i, i, 0, 0, i – 1)  (1, 1, i, 0, i, i) = x1 (say) 

( denotes the resultant vector has been updated that is the 
vectors which were initially in on state is kept in the onstate be 
it a imaginary state or real state).  
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Now we threshold as if a + ib = 

1 if a b and a 0
i if a b and b 0
0 if a 0 and b 0
1 i if a b, and a 0

  
  
  
   

 

 Now we find the effect of the resultant vector x1 on M 

 x1M = (0, 2 + i, i, 2i, i, i – 1)  (1, 1, i, i, i, i) = x2 (say). 

Now we find the effect of x2 on M 

x2M = (0, 2 + i, i, 3i – 1, i 3i – 1)  (1, 1, i, i, i, i, i) = x3 (say). 

 Clearly as x2 = x3 the hidden pattern of the state vector    
(1, 0, 0, 0, i, 0) is a fixed point given by (1, 1, i, i, i, i). 

 So only the state the patient may have pain in the 
shoulder and neck may be true and all other symptoms 
experienced by the hypochondria patient is imaginary as seen 
from the hidden pattern. 

 Interested reader can work with other nodes. Thus the 
FICMs model can be used in medical diagnostics when some 
imaginary symptoms are suffered by the patient. 

 Such study may also be extended in patients who are 
mentally ill in case of paranoia patients and so on where they 
suffer from imaginary persecution. 

 For we can more say the symptoms are imaginary for 
they believe they are so. 
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 So in medical diagnostics the FICMs can play a vital role 
when an element of imaginary feelings or sufferings are 
associated with the patient. 

 Thus we have described the new fuzzy mathematical 
model which can also measure the imaginary trait in it. For in 
reality the functioning of the brain that the synaptic connections 
from one neuron to another can also be imaginary. 

 Till date the FCMs or TAMs or FAMs or BAMs models 
can only measure the real trait of the problem However the 
indeterminancy concept when involved have been well studied 
using NCMs [15] etc. For more about the above mentioned 
concept please refer [15].    

 Now we work on the FICMs model where we analyse 
some C1, C2, C3, C4, C5 and C6 concepts or nodes which can at 
any arbitrary time take the value 0 or 1 or i state only, that is 
zero state or off state on state, 1 and pure imaginary state i and 
the imaginary state 1 + i. 

 Now using these six concepts / nodes C1, C2, C3, C4, C5 
and C6 we give the corresponding complex valued the directed 
graph G associated with the dynamical system. 

 Once again we state that the edge weights can be from the 
set {–1, 1, – i, i, 0, 1 + i, - 1 + i, 1 – i, –1 – i} 

 We see the state vectors are from the space   = {(a1, a2, 
a3, a4, a5, a6) / ai  {0, 1, i,  1 + i}, i = 1, …, 6}. 

 The elements in X will be called as the state vectors of 
the dynamical system. 
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Figure 3.3 

 The connection matrix of this fuzzy imaginary dynamical 
system is as follows. 

M = 

1 2 3 4 5 6

1

2

3

4

5

6

C C C C C C
C 0 i 0 0 0 0
C 0 0 0 1 0 0
C i 0 0 0 0 1
C 0 0 1 0 0 0
C 0 1 i 0 0 0 0
C 0 0 0 1 i 0 0





 

. 

Consider an initial state vector x = (1, 0, 0, 0, i, 0)  X.  To find 
the effect of x on the dynamical system M. 

 xM = (0, 2i – 1,0, 0, 0, 0)  (1, i, 0, 0, i, 0) = y1 

( denotes the state vectors has been updated and thresholded 
as follows (if in a + bi   a  2 put 1 and if b  2 put 1 if a is –ve 
put 0 and if b is negative put 0)). 

C1 

C3 

G =  

C2 

C5 

C6 

C4 

–i 
–1 

1+i 
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1 

–1+i 

1 

i 
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 Now we find the effect of y1 on the dynamical system M. 

y1M = (0, 2i – 1, 0, i, 0, 0)  (1, i, 0, i, i, 0) = y2 (say) 

y2M = (0, 2i – 1, - i, i, 0, 0)  (1, i, 0, i, i, 0) = y3 (= y2 say) 

We see the resultant is a fixed point given by (1, i, 0, i, i, 0). 

 So the on state of C1 and C5 state is imaginary we only 
get the C4 state on which is pure imaginary. 

 Consider a initial state vector x = (0 1 0 0 1 0), to find the 
effect of x on M  is as follows. 

xM  =  (0, 1 + i, 0, 1, 0, 0)  (0 1 + i, 0, 1, 1, 0) = y1 (say) 

y1M  =  (0, 1 + i, –1, 1 + i, 0, 0)  (0, 1 + i, 0, 1 + i, 1, 0)  

 = y2 (say) 

y2M = (0, 1 + i, –1 – i, 1 + i, 0, 0)  (0, 1 + i, 0, 1 + i, 1, 0) 

 = y3 (say) 

 But y3 = y1 so the resultant vector is a fixed point given 
by (0, 1 + i, 0, 1 + i, 1, 0). 

 We see the on real state C2 takes the value 1 + i, C4 comes 
to on state and takes the value 1 + i. 

 Interested reader can work with other initial state vectors 
and find the resultant to be either a fixed point or a limit cycle. 

 Thus we call the resultant fixed point or the limit cycle to 
be the hidden pattern of the complex dynamical system. 
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 We are sure after a finite number of iterations we will to 
arrive at a fixed point or a limit cycle. 

 We will give yet another example before we proceed onto 
describe the complex - neutrosophic cognitive maps model. 

Example 3.2. Let G be a directed complex valued graphs with 
7-concepts / nodes given by C1, C2, C3, …, C7 with edge 
weights from the set {–1, 1, –i, i, 0, 1 + i, –1 + i, –1 – i, 1 – i} 
given by the following figure (it is pertinent to record at this 
juncture that all these examples do not cater to any real valued 
problems they are only examples). 

 

 

 

 

 

 

 

Figure 3.4 

 Now we find the complex valued connection matrix M 
which serves as the dynamical system of G. 

C1 

i 

C3 

C6 

1+i 

C2 

C4 

C7 

C5 

1 1+i 

–1 

1 

–i 

1 

i 

–1 
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M = 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

C C C C C C C
C 0 0 0 1 i 0 0 0
C 0 0 1 0 0 0 0
C i 0 0 0 0 0 0
C 0 1 0 0 1 0 0
C 0 0 0 0 0 0 0
C 0 0 1 i 0 1 0 0
C 0 0 0 1 i i 0





 


. 

 Now we use X = {(a1, a2, a3, a4, a5, a6, a7) / ai  {0, 1, i, 1 
+ i}, 1  j  7} to be the collection of all initial state vectors. 

 Let x = (1, 0, 0, 0, 0, 0, 0)  X. To find the effect of x on 
the dynamical system M. 

xM  = (0, 0, 0, 1 + i, 0, 0, 0)  (1, 0, 0, 1 + i, 0, 0, 0) = x1 (ay) 

x1M  = (0, –1, –1, 1 + i, 1 + i, 0, 0)  (1, 0, 0, 1 + i, 1 + i, 0, 0)  

 = x2 (say) 

x2M  = (0, -1 – i, 0, 1 + i, 1 + i, 0, 0)   

  (1, 0, 0, 1 + i, 1 + i, 0, 0) = x3 (say). 

Clearly the hidden pattern of the initial state vector is a fixed 
point given by (1, 0, 0, 1  + i, 1 + i, 0,0). 

 Let x = (i, 0, 0, 0, 0, 0, 0) to find the effect of x on the 
dynamical system M. 

xM = (0, 0, 0, i – 1, 0, 0, 0)  (i, 0, 0, i, 0, 0, 0) = y1 

y1M = (0, –i, 0, i – 1, i, 0, 0)  (i,  0, 0, i, i, 0, 0) = y2 (say); 
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y2M = (0, –i, 0, 1 – 1, i, 0, 0)  (i, 0, 0, i, i, 0, 0) = y3 (say). 

 Clearly y2 = y3 hence the hidden pattern is a fixed point 
given by (i, 0, 0, i, i, 0, 0). When we compare if C1 = 1 then the 
nodes C4 and C5 become imaginary takes values 1 + i and 1 + i 
only.  

 If C1 = i then the nodes C4 and C5 comes to on state 
which is purely imaginary taking values i and i  respectively. 

 Let us consider the initial state vector x = (0, 0, 1, 0, 0, 1, 
0)  X.  

 To find the effect of x on M. 

 xM = (i, 0, 1 + i, 0, –1, 0, 0)  (i, 0, 1 + i, 0, 0, 1, 0) = y2. 

We now find the effect of y2 on M. 

y2M  = (i – 1, –i, 1 + i, i – 1, i – 1, 0, 0)  (i, 0, 1 + i, i, i, 1, 0)  

 = y3. 

y3M  = (i – 1, –i, 1 + i, i – 1, i – 1, 0, 0)  (i, 0, 0, 1 +  i, i, 1, 0)  

 = y4 (say). 

 Clearly y4 = y3 hence the hidden pattern is a fixed point 
given by (i, 0, 1 + i, i, i, 1, 0). 

 This is the way we can obtain the resultant vectors for a 
given initial state vector. 

 Let us consider x = (0, 0, 0, 1 + i, 0, 0, 0)  X; to find the 
effect of x on M. 
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 xM = (0, – 1 – i, 0, 0, 1 + i, 0, 0) 

 y1  (0, 0, 0, 1 + i, 1 + i, 0, 0) = y1 

y1M  = (0, –1 – i, 0, 0, 1 + i, 0, 0)  (0, 0, 0, 1 + i, 1 + i, 0, 0)  

 = y2 (say); 

 Clearly y2 = y1 so the hidden pattern is a fixed point given 
by (0, 0, 0, 1 + i, 1 + i, 0, 0). 

 Now we find the hidden pattern of the initial state vector 

 x = (0, 0, 0, 0, 0, 0, 1)  X. 

 To find the effect of x on the dynamical system M 

xM  = (0, 0, 0, 1, – I, i ,0)  (0, 0, 0, 1, – I, I, 0)  (0, 0, 0, 1, 
0, I, 1) = y1  

y1M  = (0,  –1, i – 1, 1, 1 – i – i, i, 0)  (0, 0, i, 1, 1, i, 1)  

 = y2 (say) 

y2M  = (–1, –1, i – 1, 1, 1,  i, 0)  (0, 0, i, 1, 1, i, 1)  

 = y3 (say) 

 Thus the hidden pattern is a fixed point given by  

 (0, 0, i, 1, 1, i, 1). 

 We can in case of FICMs also define both the notion of 
combined disjoint FICM, and combined overlap FICMs models. 

 Suppose we have some 8 attributes say C1,C2,C3,C4 ,C5,C6 
C7 and C8 and two experts work on the problem.  
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 First expert works with the attributes C1 C4 C5 C7 and C8 
and the second expert works with C2, C3 and C6 attributes then 
we can get the combined disjoint FICMs  as {C1, C4, C5, C7, C8} 
 {C2, C3, C6} =  in the following way.  

 Let M, be the matrix of the complex valued graph G, 
given by 

 

 

 

 

 

 

Figure 3.5 

Let M1 the connection matrix associated with G1 be as follows. 

M1   = 

1 4 5 7 8

1

4

5

7

8

C C C C C
C 0 0 i 0 0
C 1 i 0 0 0 1
C 0 0 0 1 i 0
C 0 i 0 0 0
C 0 0 0 i 0


 



 

 Let G2 be the complex valued directed graph given by the 
second expert which is as follows. 

 

C5 

–i 

C1 C4 

C7 

C8 

1 

–1+i 

G1 = i 

1+i 
i 
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Figure 3.6 

 Let M2 be the connection matrix associated with G2 

M2 = 

2 3 6

2

3

6

C C C
C 0 0 i
C 1 0 0
C 0 1 i 0

 

Using the connection matrices M1 and M2 we combine them in a 
special way and obtain M which serves as the dynamical system 
of the combined disjoint FICMs. 

 Fuzzy (complex) imaginary cognitive maps model. For 
the construction and more on the structure of them and the 
working of it please refer [Ele. Socio]. 

 Now we give M in the following M = M1  M2  

G2  = 

C2 C3 

1 

C6 

i 1+i 
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M = 

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

C C C C C C C C
C 0 0 0 0 i 0 0 0
C 0 0 0 0 0 i 0 0
C 0 1 0 0 0 0 0 0
C 1 i 0 0 0 0 0 0 1
C 0 0 0 0 0 0 1 i 0
C 0 0 1 i 0 0 0 0 0
C 0 0 0 i 0 0 0 0
C 0 0 0 0 0 0 i 0


 





. 

 Now interested reader can find the hidden pattern for any 
initial state vector using the disjoint combined FICMs.  

 Here we briefly describe the overlap combined FICMs by 
an example. 

 Suppose there are some six attributes C1, C2, C3, C4, C5, 
C6 associated with the problem P. Let two experts work on the 
problem. The first expert uses the nodes S1 = {C1, C3, C4 and 
C6} and the second expert uses the nodes S2 = {C2, C5, C3 and 
C4}. Clearly S1 S = {C3, C4} so the nodes attributes of the 
two experts overlap. Now we give the directed  complex valued 
graph G1 given by the first expert. 

 

 

 

 

Figure 3.7 

C1 

  G1=    1+i  

C6 

C3 

C4 

1 

i 

–1 

1+i 
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Let G2 be the weighted directed complex valued graph given by 
the second expert which is as follows. 

 

 

  

 

Figure 3.8 

Let N1 be the connection matrix associated with the graph G1 

N1 = 

1 3 4 6

1

3

4

6

C C C C
C 0 i 0 1 i
C 0 0 0 1 i
C 1 0 0 0
C 0 0 1 0






 

 It N2 be the connection matrix associated with the graph 
G2 

N2   = 

2 3 4 5

2

3

4

5

C C C C
C 0 1 0 1 i
C 0 0 1 i 1 i
C 0 0 0 i
C 0 0 0 0


  . 

Now the overlap matrix N1 and N2 is given by N. The obtaining 
of N using N1 and N2 is elaborately described in [18]. 

C2 

       G2=    1 

C3 

C5 

C4 

1–i 

i+1 

i+1 

i 
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N = 

1 2 3 4 5 6

1

2

3

4

5

6

C C C C C C
C 0 0 i 0 0 1 i
C 0 0 1 0 1 i 0
C 0 0 0 1 i 1 i 1 i
C 1 0 0 0 i 0
C 0 0 0 0 0 0
C 0 0 0 1 0 0




  



    . 

 N will serve as the overlap combined FICMs dynamical 
system. Interested reader can work the resultant using initial 
state vectors from Y = {(x1, …, x6) / xj  {0, 1, i, 1 + i}; 1  j  
6}.  

 Thus at this juncture the authors want to make clear that 
something is imaginary is very different from something is 
indeterminate so such type of fuzzy models have become 
mandatory. 

 Next we proceed onto describe the Fuzzy Imaginary 
Relational Maps model (FIRMs model). This model is akin to 
Fuzzy Relational Maps model and Neutrosophic Relational 
Maps model. Here some of the concepts may be imaginary, 
purely imaginary apart from some of them being real. 

 We first describe them. Already in the earlier chapter we 
have defined complex valued bipartite graph.  

 Now we construct / describe methodically the Fuzzy 
Imaginary Relational Maps (FIRMs) model.  

 For more about FRMs and NRMs model refer [15]. 
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 Fuzzy Imaginary Relational Maps (FIRMs) are built as in   
Fuzzy Imaginary Cognitive Maps (FICMs) model just described 
in this chapter. In FICMs the causal associations between 
concepts nodes imaginary or otherwise is among concurrently 
active units is analysed. 

 Only as in case of FRMs and FIRMs  we demand that the 
very causal associations to be divided into two disjoint units. 
For instance the relation between a mental patient and a 
psychiatrist or the relation between a doctor and a hypochondria 
patient. Novelist and the imaginary characters, children and 
their imaginary world and so on. 

 All novels are not real several times the role is played by 
the imaginary characters. Thus the need for Fuzzy Imaginary 
Relational Maps (FIRMs) model is mandatory. 

 Thus we can abstractly define a Fuzzy Imaginary 
Relational Maps (FIRMs) model to be a complex valued graph 
or a map from D to R where D = {D1, …, Dn} denotes the 
domain space of nodes and R = {R1, R2, …, Rm} denotes the 
range space of nodes. The node of D = {(x1, …, xn)} | xj = 0 or i 
or 1 or 1 + i for j = 1, 2, …, n} and Y = {(y1, …, ym) | yk = 0 or 1 
or i or 1 + i, k = 1, 2, …, m} denotes the on state 1 or off state 0 
or imaginary state 1 + i or the purely  imaginary state i. 

 Let Di and Rj denote the two nodes of a FIRM. The 
directed edge from Di to Rj denotes the causality of Di on Rj 
called relations. Every edge of an FIRMs model is weighted 
with a value in the set {0, i, 1, 1 + i}. Let eij denote the edge 
weight, if eij = 0 then there is no effect of Di on Rj, if eij = 1 the 
effect of Di on Rj is such that increase or decrease in Di causes 
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increase or decrease in Rj respectively of eij = i then the 
causality of Di on Rj is purely imaginary. If eij = 1 + i then the 
causality of Di on Rj is imaginary. We do not go for values like 
–1, i, –1 + i, –1 – i, and 1 – i. However it is also possible to 
define relations or causalities in that form also. 

 The nodes of a FIRM are called as fuzzy imaginary nodes 
with edge weights from the set {0, 1, i, 1 + i} will be defined as 
simple FIRMs. 

 Let D1, …, Dn be the nodes of the domain space D and 
R1, R2, R3, …, Rm be the nodes of the range space R of an 
FIRMs model. 

 Let the complex valued matrix E be defined as E =  (eij) 
where eij is the weight of the directed edge Di Rj (or Rj Di) 
taking entries from the set {0, 1, i, 1 + i}. E is defined as the 
complex valued relational matrix of the FIRMs model. 

 Also E can be often termed as the dynamical system 
associated with the FIRMs. 

 As in case of FRMs model  and FIRMs model also for the 
given  nodes D1, D2, …, Dn and R1,  ..., Rm; A = {(a1, …, an) / aj 
 {0, i, 1, 1 + i}; 1  j  n} is defined as the instantaneous state 
vector which shows the on or off or imaginary or purely 
imaginary position of the nodes at any instant. 

 Similarly B = {(b1, …, bm) / bj  {0, 1, i, 1 + i}; 1  j  
m} is defined as the instantaneous state vector which shows the 
on or off or imaginary or purely imaginary state of the nodes at 
that instant. 
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 Let D1, …, Dn and R1, R2, …, Rm be the nodes of an 
FIRMs model. Let DjRj (or RjDi) be the edges of an FIRMs 
model, j = 1, 2, …, m and i = 1, 2, …, n.  Let the edges form a 
directed cycle.  

 An FIRM is said to be a cycle if it possesses a directed 
cycle. An FIRM is said to be a cyclic if it does not possess any 
directed cycle. 

 An FIRM as in case of a FRM is said to be FIRM with 
cycles is defined to be a FIRM with feedback and when there is 
a feedback in the FIRM that is when the causal relations flow 
through a cycle in a revolutionary manner the FIRM is called a 
complex dynamical system. 

 Let Di Rj (or Rj Di), (1  i  n and 1  j  m) when Di or 
Rj is switched on and if causality flows through edges of the 
cycle and if it again causes Di (or Rj) we say the complex 
dynamical system goes round and round. This is true for any 
node Rj (or Di); 1  i  n and 1  j  m. The equilibrium state of 
this complex dynamical system is defined as the hidden pattern. 

 The equilibrium state of the complex dynamical system is 
a unique pair of state vector then it is a fixed point pair. If the 
FIRM settles down with on state vector or respectively in form 
then this equilibrium is a limit cycle pair. 

 We will describe this by an example. 

Example 3.3. Let {D1, D2, D3, D4, D5, D6} = D denotes the six 
symptoms suffered by an hypochondria patient.  
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R = {R1, R2, R3, R4, R5} are the four possible medication the 
doctor wishes to prescribe. 

 The description of nodes D1, …, D6 is described. 

 D1 - The patient has fever. 

 D2 - The patient suffers from chronic cold and 
cough. 

 D3 - The patient says he feels giddy but has not 
fainted even once in the past medical history. 

 D4 - He says he has heart problems but his ECG and 
BP are very normal. 

 D5 - The patient complains of urinary infections but 
the tests showed negative. 

 D6 - The patient complains of disturbed sleep. 

 The descriptions of the range nodes R1, R2, …, R5 are as 
follows. 

 R1 - Medication to stop fever. 

 R2 - Medication for old and cough. 

 R3 - Medical to help over come heart problems. 

 R4 - Medication for urinary infection. 

 R5 - Medication for calming down the patient. 
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 It is important to keep on record doctor cannot fully rely 
on the patient feelings as h e is an hypochondria. Secondly the 
doctor cannot say to him his symptoms are imaginary. 

 At the same times should treat him with least damage to 
health as well with some care to his real symptoms. So the 
symptoms D3, D4, D5 and D6 can be purely imaginary or 
imaginary. D3 can be a real symptoms as he suffers symptoms 
D1 and D2. 

 The expert doctor follows the following simple directed 
complex valued bigraph G relating to the nodes D1, …, D6 and 
R1, R2, …,  R5. 

 

 

 

 

 

 

 

 

Figure 3.9 

This expert who is a doctors feels so and supplies the 

complex valued bigraph G. 

D1 
1 

D2 

D3 

D4 

D5 

D6 

R1 

R2 

R3 

R4 

R5 

1 
1+i 

1+i 1+i 
i 

1+i 
1 

i 

1 

1 
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Let S denote the related complex valued weighted 

matrix of the bigraph G which is as follows. 

S = 

1 2 3 4 5

1

2

3

4

5

6

R R R R R
D 1 0 0 1 i 1 i
D 0 1 0 1 i 0
D 0 0 i 0 1 i
D 0 0 1 i 0 1
D 0 0 0 i 1
D 0 0 0 0 1

 





  . 

 This expert feels might be the patient cough (or throat 
problem) with fever may be related to urinary problems so 
connects D1 with R4 as well as with R5 to put him to rest so that 
temperature may come down. However the doctor feels that it 
may be 50% real and 50% imaginary in both cases. 

 Likewise we can interpret the experts view on the 
problem. However in mind the doctor may feel the nodes D3, 
D4, D5 and D6 must be purely imaginary or imaginary that is 
values i and 1 + i respectively. 

 Now we try to work with the on state on the node 

 x = (1, 0, 0, 0, 0, 0)  A that the node D1 is on with real 
value 1 and rest of the nodes are in the off state. 

 Consider the effect of x on S; 

 xS =  (1, 0, 0, 1 + i, 1 + i) = y1 say  

 y1St =   (1 + 4i, 2i, 2i, 1 + i, 2i, 1 + i)   
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   (i, i, i, 1 + i, i, 1 + i) = x1 (say) 

 x1S =  (i, i,  4i, – 3 + 2i, 5i)  (i, i, i, i, i) = y2 (say) 

 y2St = (3i – 2, 2i – 1, i – 2, 2i – 1, -1 + i, i)   

   (i, i,  i, i, i, i) = x2 (say) 

 x2S = (i, i, -2 + i, -3 + 2i, 5i – 2)  (i, i, i, i, i) = y3 (say) 

Clearly y3 = y2. 

 Now we see the on state of the node the hypochondria 
patient suffers from fever results in imaginary state of each and 
every node. 

 At this juncture we wish to express the very idea that the 
hypochondria patient is suffering from fever itself is imaginary 
consequently the all other symptoms given by the patient are 
only imaginary when discussed with some experts about this 
issue they said one can suffer mild temperature if they feel and 
think all the time they suffer from the fever symptom. 

 As mind rules the body in general this is always possible. 
Further the doctor has to be very careful in prescribing 
medication. He can choose to provide some vitamins and avoid 
giving heavy dosage of medication for fever. It can be a low 
dosage. Only this can be a solution to treat this patient. 

 Only the hidden pattern pair when the only state fever 
was on resulted in the imaginary pair {(i, i, i, i, i, i), (i, i, i, i, i)}. 

 So all the symptoms are imaginary so the doctor has to 
deal this situation in a very very careful way. 
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 For when the fever is caused by feeling any sort of high 
medication to lower the fever may lower the normal temperature 
which may result in the risk of patients’ health. 

 Under these condition the doctor should judiciously use 
his expertise and be careful in treating such patients. Further the 
resultant is not even a limit cycle pair only a fixed point pair. 

 This FIRMs maps can play a vital role in medical 
diagnosis as the data when applied in the FIRMs model are 
handy and the latter model is used when the concepts under 
discussion can be divided into two disjoint classes. 

 Further the FIRMs  model can be realized as the 
generalization of FICMs model and the graphs associated with 
FICMs will be complex valued weighted directed graphs 
whereas in case of FIRMs the graphs are complex valued 
weighted bigraphs. In all cases the study is innovative and 
important as there are always imaginary concepts in the 
cognitive structure of the human mind as well as the connection 
or the edge weights can also be imaginary. Infact the use of 
strong complex valued directed graphs (or bigraphs) has 
become mandatory. 

 Thus these two models FICMs and FIRMs can be 
realized as the generalization of FCMs and FRMs respectively 
where the concepts / nodes can be imaginary as well as the edge 
weights can be imaginary. 

 Next we proceed onto define for the first time the notion 
of complex neutrosophic valued graphs whose edge weights are 
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from the set {ai + bI + ci + diI / a, b, c, d  R, i2

 = –1, I2 = I, (iI)2 
=  – I} = S = R  i  I. 

 Before the systematic definition is provided we give the 
some examples of this situation. 

Example 3.4. Let G be a graph given by the following figure 
which has v1, v2, …, v9 to be the vertices and edge weights are 
from S. 

 

 

 

 

 

 

 

 

Figure 3.10 

 Clearly G has no loops further G is not a directed graph. 
The edge weights are from S so it can be real, complex 
indeterminate or complex indeterminate. 

 For neutrosophic graphs in general please refer [21]. 

 Clearly G is not a directed graph it has no loops.  

v1 i+3I 

   3i+2 

v9 

9+i+2I 
v6 

4 1+2I+3iI 

v2 

v3 
1+2I+3i+4iI 

2+3I 

9i 

2+i 

v7 
10+2iI v5 

7+4I 

v4 

–5I 
G = 
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 We prove one example of a complex neutrosophic 
(neutrosophic complex) valued directed graph which will have 
the edge weights from  

S  = {R  I  I} = {a + bi + cI + diI / d, a, b, c  R, i2 = –1 
and I2 = I}. G will have no loops. 

Example 3.5. Let G be a directed graph with vertices v1, v2, v3, 

v4, v5 and v6 and edge weights from S given by the following 
figure; 

 

 

 

 

 

 

Figure 3.11 
 

 Clearly G is a complex - neutrosophic directed graph with 
edge weights from S. 

 In view of all these we now present the definition of the 
neutrosophic-complex valued graph systematically. 

Definition 3.1. Let G be a graph with n vertices v1, v2, …,vn and 
some m edges with edge weights from {R  i  I = {a + bi + 
cI + diI / a, b, c, d  R, i2 = –1, I = I2 and (iI)2 = –I}. 

v1 
v2 3+i+6I 

2+7I+i+5iI 

6I+2 
v4 

v3 

7+5i 

v5 

v6 

4+2I 

2I+5iI 

i–4+5iI 

2I+i 

= G 
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 We call G to be a complex - neutrosophic (neutrosophic 
complex) edge weights graphs if atleast one edge takes weights 
a + bi + cI + diI where not all of b c or d zero atleast any two 
from the set {b, c, d} are non zero. 

 We do not demand this for all edges if atleast one edge 
takes weight as a + bi + cI + diI (a, b, c, d  R \ {0}) or a + bi + 
cI + diI (b, c, d  R \ {0} or c, d  R \ {0} or d, b  R \{0}). 

 The edges are directed and weighted we call the graph to 
be a neutrosophic-complex valued directed graph. 

 We can for any complex-neutrosophic valued graph find 
subgraphs. It is pertinent to record that all subraphs need not be 
complex-neutrosophic valued graph they can be real edged 
graphs or complex edged graph or neutrosophic edged graph or 
complex - neutrosophic edged graphs. 

 Example 3.6. Let  G be the complex-neutrosophic valued 
graph given by the following Figure. G has 10 distinct vertices 
and the edge weights are from S = {R  I I = a + bi + cI + 
diI where a, b, c, d  R, i2 = –1, I2 = I and (iI)2 = –I}. 

 

 

 

  

 

 

I+i 

v5 

v4 4I+2 v2 
v1 

2 9 

v3 

2i+5I 
v6 

v9 
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We now enumerate some of the graphs of G in the following; 

 

  
3+i v1 v2 = H2 

v7 

6i 
2 

4I+2 v2 v4 

= H3 

v3 

9 
7I 

–5 

v7 v3 

= H4 

v8 

9 

10+5I 

7I v3 v4 

= H5 

v6 

2 

2i+5I v5 

I+i 

3+i 

v1 v2 
= H1 
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                                  Figure 3.13 

2i+5I v6 v5 

= H6 
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and so on. 

 We make the following observations. 

 H1 is a pure complex valued subgraph. 

 H2 is a complex valued subgraph. 

 H3 is a neutrosophic valued subgraph of G. 

 H4 is again a neutrosophic valued subgraph of G. 

 H5 is a complex-neutrosphic valued subgraph of G. 

 H6 is also a complex neutrosophic valued subgraph of G. 

 H7 is a real valued subgraph. 

 H8 is again a real valued subgraph of G. 

 H9 is a neutrosophic valued subgraph of G. 

 From this the following observations are made; 

i) If G is a complex-neutrosophic graphs all 
subgraphs need not be complex-neutrosophic 
subgraphs evident from some of H8, H9, H7, H1, 
H2, H3 and H4 are not complex - neutrosophic 
subgraph. 

ii) G has real valued subgraphs evident from 
subgraphs H7 and H8. 

iii) G has pure complex valued subgraphs. H1 is one 
such subgraph. 
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iv) G has neutrosophic valued subgraphs evident 
from subgraphs given in the figures H3 and H4. 

v) We observe G has all types of subgraphs. 

 Hence we have the following theorem. 

Theorem 3.1.  Let G be any complex-neutrosophic valued 
graph. All subgraphs of G in general need not be a complex 
neutrosophic valued subgraphs. 

 The reader can give proof by constructing examples. 

 We have already given one example to this effect. 

 Now we give the related weighted matrix of 
neutrosophic-complex valued graphs. 

 It is pertinent to recall that a matrix is said to be a 
complex neutrosophic valued matrix M if at least one of its 
entries is of the form a + bi + cI + dIi with {b and c} or {c and 
d} or {b and d} or {b and c}  R \ {0}. Otherwise M is not a 
complex neutrosophic valued graph. 

 Now we will give the association of a weight complex 
neutrosophic matrix with a complex-neutrosophic valued graph 
G. 

Example 3.7.  Let G be a complex neutrosophic valued graph 
given by the following figure. 
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Figure 3.14 

 

 The weighed matrix M associated with the complex  
neutrosophic valued graph G is as follows. 

M =   

1 2 3 4

1

2

3

4

5

6

7

8

v v v v
v 0 3 i 9I 0
v 3 i 0 0 7I 2Ii i 4
v 9I 0 0 3i
v 0 7I 2Ii i 4 3i 0
v 0 8 7iI 0 0
v 0 0 0 5iI
v 0 0 0 8
v 0 0 0 0


   

  


 

7iI + 8 

2Ii + 4i + 2I 

4 + I 

2i+I 

5iI 

v2 

v1 

9I 

v3 

v7 

8 

v4 

7I+ 2Ii + i+4 

3 + i v5 

v6 

v8 

3i 
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5 6 7 8v v v v
0 0 0 0
8 7iI 0 0 0
0 0 0 0
0 5iI 8 0
0 4i 2I 2Ii 0 0
4I 2I 2Ii 0 0 4 I
0 0 0 2i I
0 4 I 2i I 0



 
  


 

  . 

We see M is a 8  8 complex-neutrosophic valued weighted 
matrix associated with M. 

 Clearly M is symmetric about the main diagonal and the 
diagonal entries are zero. Thus we can record without any 
hesitation that if G is just a neutrosophic complex valued graph 
which is not directed the associated weighted matrix M of  G is 
a symmetric matrix and the main diagonal entries are zero.  

 Now we proceed to describe the complex neutrosophic 
valued weighted matrix of a complex neutrosophic valued 
directed graph K. 

Example 3.8. Let K be a complex neutrosophic valued weighted 
directed graph given by the following figure; 

 

 

 

 



224 Complex Valued Graphs for Soft Computing 
 
 
 
 

 

 

 

 

Figure 3.15 

Let N be the associated weight matrix of the complex valued 
neutrosophic graph K. 

N = 

1 2 3 4 5

1

2

3

4

5

6

7

8

9

v v v v v
v 0 2I i 0 0 0
v 0 0 3i 8 9i 2I 3iI 4 0
v 0 0 0 0 0
v 0 0 0 0 2i 4
v 0 0 5I 0 0
v 3 i 5I 0 0 0 0
v 0 0 0 0 0
v 0 0 0 0 0
v 0 0 0 0 0


   



 

 

3+i+5iI 

v2 
v1 9i+2I+3iI+4 v4 

2i+4 

v5 

5I v3 

3+7i 
11 11I+5 

v8 1+5i+9iI v7 

7I 
v6 

v9 

7+8i+4I 

2I+i 
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6 7 8 9v v v v
0 0 0 0
0 0 0 0
0 3 7i 0 0
0 0 0 0
0 11 11I 5 0
0 7I 0 0
0 0 1 5i 9iI 0
0 0 0 0
0 7 8i 4I 0 0





 

 

 

 Clearly N is a neutrosophic complex valued matrix which 
is not symmetric and the main diagonal entries of N are zero. 

 Now we proceed onto describe the conjugate of a 
complex-neutrosophic numbers in S = {R i I} = {a + bi + 
cI + dIi | a, b, c, d  R, i2 = –1, I2 = I, (iI)2 = –I}. 

 Let x = a + bi + cI + diI  S to find the conjugate of x.  
We denote the conjugate by x  and x  = a – bi + cI – diI.  
Clearly if x = 4 + 8I then x  = 4 + 8I if x = 9 then x  = 9.  

If x = I – 3i + 9 then the conjugate of x is given by  

 x  = I + 3i + 9.  

 Thus given any neutrosophic complex valued graph we 
can find the conjugate graph. 

 To this end we have to find the weight matrix of the 
graph and find. The conjugate of that complex – neutrosophic 
valued matrix then obtain the corresponding graph of that 
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matrix else if one is well versed in finding the conjugate of the 
graph it can be done directly also. 

 For instance if G is the complex valued graph. 

The conjugate graph of  G is as follows. 

 

 

 

 

Figure 3.16 

The conjugate graph of G is as follows. 

 

 

 

 

 

 

Figure 3.17 
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Clearly G  is the conjugate of G. 

 Now we proceed onto give the neutrosophic - complex 
valued weighted matrix M associated with G. Then we will find 
M  the conjugate matrix of M and also the matrix N of G . 

M = 

1 2 3 4 5

1

2

3

4

5

v v v v v
v 0 5i 2 I 2i 1 3I i I 0
v 5i 2 I 0 7i I 5 0
v 2i 1 3I 7i I 0 0 3i 1 4iI
v i I 5 0 0 2i 3iI
v 0 0 3i 1 4iI 2i 3iI 0

    
  
    
 

  

   

Now we find M  the conjugate of M. 

M  = 

1 2 3 4 5

1

2

3

4

5

v v v v v
v 0 2 5i I 1 2i 3I i I 0
v 2 5i I 0 7i I 5 0
v 1 2i 3I 7i I 0 0 3i 1 4iI
v i I 5 0 0 2i 3Ii
v 0 0 1 3i 4iI 2i 3iI 0

     
   
      
   

    

 

 Next we find  the weighted neutrosophic - complex 
valued matrix N associated with G . 
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N = 

1 2 3 4 5

1

2

3

4

5

v v v v v
v 0 2 5i I 3I 1 2i i I 0
v 2 5i I 0 7i I 5 0
v 3I 1 2i 7i I 0 0 3i 1 4iI
v i I 5 0 0 2i 3Ii
v 0 0 3i 1 4iI 2i 3iI 0

     
   
      

   
    

 

 

 It is easily verified that N = M .  Thus we see either we 
can generate the conjugate complex - neutrosophic matrix using 
M and get the corresponding conjugate neutrosophic complex 
graph or get the conjugate neutrosophic - complex graph and 
then obtain the corresponding conjugate neutrosophic - complex 
valued matrix. 

 However it is pertinent to keep on record that the 
conjugate neutrosophic-complex graph is easily got if it is not 
directed however one has to be careful if the complex-
neutrosophic graph is directed.  

This is illustrated by the following example. 

Example 3.9. Let G be a complex-neutrosophic directed graph 
H given by the following figure; 
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Figure 3.18 

 Now we proceed onto obtain the corresponding complex 
neutrosophic weighted matrix M associated with the graph H. 

K = 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

v v v v v v v
v 0 3I 2i I 0 0 0 0 0
v 0 0 0 0 0 0 0
v 0 7i 0 8I 8 i 0 0
v 3iI 2i 0 0 0 0 0 4 5i
v 0 0 8 i 0 0 0 3 i

6I 2Ii
v 0 0 0 4i 2I 0 0

4i 3
v 0 0 0 0 0 0 0

 


  

 



 

. 

 We now find the related conjugate complex -neutrosophic 
matrix K  of K in the following. 

3+i 

v1 

v2 

v3 

v5 

v7 v6 

v4 
–3iI+2i 

4i–2I 

6I–2Ii+4i+3 

 4+5i 

8I 

7i 3I–2i+1 

8+i 
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K  =  

1 2 3 4 5 6 7

1

2

3

4

5

6

7

v v v v v v v
v 0 0 0 3iI 2i 0 0 0
v 3I 2i 1 0 7i 0 0 0 0
v 0 0 0 0 8 i 0 0
v 0 0 8I 0 0 4i 2I 0
v 0 0 8 i 0 0 0 0
v 0 0 0 0 0 0 0

6I 2Ii
v 0 0 0 4 5i 3 i 0

3 4i


  


 




 

 

  . 

Now we find the corresponding complex-neutrosophic 
conjugate graph H associated with matrix K . 

 

 

 

 
 

 

Figure 3.19 

We see the orientation of H  is reversed in direction in 
comparison with H. 

 However the directed edges remain the same the direction 
is changed and weights also are changed they happen to be the 
complex conjugate of the weights given in H. 
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–4i+2I 

6I+2Ii+3–4i 

 4-5i 

8I 

–7i 3I+2i+1 

8–i 



Application of Complex Valued Graphs  231 
 
 
 Thus we can see the conjugate of complex-neutrosophic 
graph which are directed behave differently from the other 
graphs. 

 Now having seen examples of complex-neutrosophic 
graphs both directed and otherwise we will proceed onto give 
their applications in appropriate models. 

Example 3.10. Let us consider the problem in which the 
synaptic relation connecting any of the concepts can be real or 
imaginary or neutrosophic. Suppose there are some 8 concepts 
say C1, C2, C3, C4, …,C8. The directed neutrosophic complex 
weighted graph G with C1, C2, …,C8 as nodes are given by the 
following figure; 

 

 

 

 

 

 

 

 

Figure 3.20 
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 Let M denote the complex neutrosophic valued 
(weighted) connection matrix M associated with the complex-
neutrosophic valued directed weighted graph G. 

M = 

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

C C C C C C C C
C 0 1 i I 0 0 0 0 0 0
C 0 0 0 1 0 0 0 0
C 0 1 I iI 0 0 0 0 0 0
C iI 0 0 0 0 0 0 0
C 0 I 0 0 0 0 0 0
C 0 0 i I 0 0 0 0 I iI
C 0 0 0 i 1 1 i Ii 0 0
C 0 0 0 0 0 0 1 i 0

 

 

 
 



 

Let X = {(a1, a2, a3, …, a8) / ai  {0, 1, I, 1 + I, i, i + 1, iI, 1+iI,   
1 + I + I, 1 + I + iI, 1 + I + iI, I + I + iI, 1 + I + i + iI I + I, I + iI,   
I + iI}; 1  i  8} be the collection of all complex - neutrosophic 
valued state vectors} associated with the complex-neutrosophic 
valued model M. 

 Let x = (1, I, 0, 0, 0, 0, 0, iI) be the initial state vector 
from the collection of complex neutrosophic valued state 
vectors X. 

 To find the effect of x on M. 

 xM =  (0, 1 + i + I, 0, I, 0, 0, iI – I, 0)   

   (1, 1 + i + I, 0, I, 0, 0,  iI, iI) = x1 (say) 

“” denotes the complex-neutrosophic valued state vector has 
been updated. 
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 We now consider 

 x1M = (iI, 1 + i + I, 0, 1 + i, iI, iI – 1 – I, iI – I  0)   

   (iI, 1 + i + I, 0, 1 + I, iI, iI, iI, iI) = x2 (say) 

 Now we find the effect of the complex - neutrosophic 
valued vector x2 on the dynamical system M. 

 x2M = (iI – I, iI – I + iI, iI, iI – I, 1 + i + I – I, iI, iI – I – I,    
iI – I, iI – I)  (iI, iI, iI, 1 + i, iI, iI, iI, iI) = x3 (say). 

  We find the effect of x3 on M and so on.   

 We follow this procedure until we arrive at a fixed point 
or a limit cycle. 

 This depending on the hidden pattern we interpret the 
complex - neutrosophic valued resultant vector.  

 Since the elements in the set x is finite we are sure to 
arrive at the hidden pattern after a finite number of iterations. 

 Thus interested reader can find the hidden pattern for 
different sets of complex neutrosophic valued state vectors. 

 Let x = (0, 1, 0, 0, 0, 0, 0, 0)  X, to find the effect of x 
on M. 

xM = (0, 0, 0, 1, 0, 0, 0, 0)  (0, 1, 0, 1 0, 0, 0, 0) = x1 (say) 

x1M = (iI, 0, 0, 1, 0 0 0 0)  (iI, 1, 0, 1, 0, 0, 0, 0) = x2 (say) 

x2M = (iI, iI – I + iI, 0, 1, 0, 0, 0, 0)  (iI, iI, 0, 1, 0, 0, 0, 0) = 
x3 (say)  
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x3M =  (iI, iI – I + iI, 0, iI, 0, 0, 0, 0)  (iI, iI, 0, iI, 0, 0, 0, 0) 

x4M =  (–I, iI – I + iI, 0, iI, 0, 0, 0, 0)  (0, iI, 0, iI, 0, 0, 0, 0)  

 = x5 (say) 

x5M = (–I, 0, 0, iI, 0, 0, 0, 0)  (0, 1, 0, iI, 0, 0, 0, 0) = x6 (say) 

x6M = (–I, 0, 0, 1, 0, 0, 0, 0)  (0, 1, 0, 1, 0, 0, 0, 0) = x7 (say). 

We see x7 = x1 so the hidden pattern in this case is a limit cycle 
given by 

 x1  x2  x3  x4  x5  x6  x1  … 

 Thus the hidden pattern is a real state vector from x. 

 So on state of x2 makes only x4 to on state however no 
state takes up the neutrosophic value or a complex value or a 
complex neutrosophic value. 

 We call this type of model as fuzzy complex - 
neutrosophic cognitive maps model shortly as FCNCMs model.  

 We have seen the hidden pattern of the FCNCMs model 
can be real, complex, neutrosophic or complex neutrosophic 
depending on the initial state vector. 

 It is given as a simple problem for the reader to prove if x 
 X is a real state vector will the resultant vector be also real? 

 Let us now consider the initial state vector which is 
purely imaginary. 

 x = (0, i, 0, 0, 0, 0, 0, 0)  X. 
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 The effect of x on M is given by 

xM = (0, 0, 0, i, 0, 0, 0, 0)  (0, i, 0, i, 0, 0, 0, 0) = y1 (say) 

y1M = (–I, 0, 0, I, 0, 0, 0, 0)  (0, i, 0, i, 0, 0, 0, 0) = y2 (say) 

 Clearly y1 = y2 so the hidden pattern is a fixed point given 
by (0, i, 0, i, 0, 0, 0, 0) which is all pure imaginary. 

 Now consider the initial state vector 

 x = (0, I, 0 0 0 0 0 0)  X which is pure neutrosophic  

xM = (0, 0, 0 I, 0, 0, 0, 0)  (0, I, 0, I, 0, 0, 0, 0) = y1 (say) 

y1M = (iI, 0, 0, I, 0, 0, 0, 0)  (iI, I, 0, I, 0, 0, 0, 0) = y2 (say) 

y2M  = (iI, iI – I + iI, 0, I, 0, 0, 0, 0)  (iI, iI, 0, I, 0, 0, 0, 0)  

 = y3 (say) 

y3M  = (I, iI – I + iI, 0,iI, 0, 0, 0, 0)  (iI, iI, 0, iI, 0, 0, 0, 0)  

  = y4 (say). 

 Clearly y3 = y4 hence the hidden pattern is a fixed point 
given by 

 y3 = (iI, iI, 0, iI, 0, 0, 0, 0) which is pure complex 
neutrosophic however we started the initial state vector (0, I, 0, 
0, 0, 0, 0, 0) which is only pure neutrosophic. 

 Next we proceed onto work with the initial state vector 
which is pure neutrosophic complex, given by x = (0, iI, 0, 0, 0, 
0, 0, 0)  X.   
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We find the hidden pattern related with this x. 

xM = (0, 0, 0, iI, 0, 0, 0, 0)  (0, iI, 0, iI, 0, 0, 0, 0) = y1 (say). 

y1M = (–I, 0, 0, iI, 0, 0, 0, 0)  (0, iI, 0, iI, 0, 0, 0, 0) = y2 (say). 

 Clearly y1 = y2 so the hidden pattern of the state vector x 
is a fixed point given by (0, iI, 0, iI, 0, 0, 0, 0). 

 Consider the resultant it is also pure complex 
neutrosophic. 

 Next we consider 

 x = (0, 1 + I, 0, 0, 0, 0, 0, 0)  X is the initial state vector 
which is neutrosophic.  

The effect of x on M is given by xM = (0, 0, 0, 1 + I, 0, 0, 0, 0) 
 (0, 1 + I, 0, 1 + I, 0, 0, 0, 0) = y1 (say). 

 The effect of y1 on M is y1M = (iI + iI, 0, 0, 1 + I, 0, 0, 0, 
0)  (iI, 1 + I, 0, 1 + I, 0, 0, 0, 0) = y2 (say). 

y2M = (iI + iI, iI – I + iI, 0, 1 + I, 0, 0, 0, 0)  (iI, iI, 0, 1 + I, 0, 
0, 0, 0) = y3 (say). 

y3M = (iI + iI, iI – I + iI, 0, iI, 0, 0, 0, 0)  (iI, iI, 0, iI, 0, 0, 0, 
0) = y4 (say) 

y4M  = (-I, iI – I + iI, 0, iI, 0, 0, 0, 0)  (0, iI, 0, iI, 0, 0, 0, 0)  

 = y5 (say). 

y5M  = (-I, 0, 0, iI, 0, 0, 0, 0)  (0, 1 + I, 0, iI, 0, 0, 0, 0)  
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 = y6 (say) 

y6M  = (-I, 0, 0, 1 + I, 0, 0, 0, 0)  (0, 1 + I, 0, 1 + I, 0, 0, 0, 0)  

 = y7 (say) 

 Clearly y1 = y7 thus the hidden pattern of the given initial 
state vector is a limit cycle given by (0, 1 + I, 0, 1 + I, 0, 0, 0, 
0). 

 Thus y1  y2  y3  y4  y5  y6  y7 (= y1)  

Let x = (0, I + 1, 0, 0, 0, 0, 0, 0) be the initial state vector given 
by the imaginary on state of C2 and all other nodes are zero. 

 Let us find the hidden pattern of x using on the dynamical 
system M. 

xM  = (0, 0, 0, 1 + i, 0, 0, 0, 0)  (0, 1 + i, 0, 1 + i, 0, 0, 0, 0)  

 = y1 (say) 

y1M =  (iI – I, 0, 0, 1 + i, 0, 0, 0, 0)  

   (iI, 1 + I, 0, 1 + i, 0, 0, 0, 0) = y2 (say). 

y2M = (iI – I, iI – I + iI, 0, 1 + i, 0, 0, 0, 0)  

  (iI, iI, 0, 1 + I, 0, 0, 0, 0) = y3 (say). 

y3M = (iI – I, iI – I + iI, 0, iI, 0, 0, 0, 0)  (iI, iI, 0, iI, 0, 0, 0, 0)  

      = y4 (say). 

y4M = (–I, iI – I + iI, 0, iI, 0, 0, 0, 0)  (0, iI, 0, iI, 0, 0, 0, 0)  

 = y5 (say). 
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y5M = (–I, 0, 0, iI, 0, 0, 0, 0)  (0, iI, 0, iI, 0, 0, 0, 0) = y6 (say). 

 Clearly y6  = y5 hence the hidden pattern is a fixed point 
which is purely complex neutrosophic different from the on 
state of the initial state vector. 

Let x = (0, i + I, 0, 0, 0, 0, 0, 0) be the initial state vector in X. 

 To find the effect of x on M 

xM  = (0, 0, 0, i + I, 0, 0, 0,0)  (0, i + I, 0, i + I, 0, 0, 0, 0)  

 = y1 (say). 

y1M = (-I + iI, 0, 0, i + I, 0, 0, 0, 0)  (iI, I + I, 0, i + I, 0, 0, 0, 
0) = y2 (say). 

y2M = (iI – iI, iI – I + iI, 0, i + I, 0, 0, 0,0)  (iI, i + I, 0, i + I, 0, 
0, 0, 0) = y3. 

 Clearly y2 = y3 thus the hidden pattern of the state vector 
x is a fixed point given by (iI, i + I, 0, i + I, 0, 0, 0, 0). 

 Let x = (0, 1 + i + I, 0, 0, 0, 0, 0, 0)  X, be the initial 
state vector given. To find the effect of x on M 

xM = (0, 0, 0, 1 + i + I, 0, 0, 0, 0)  (0, 1 + i + I, 0, 1 + i + I, 0, 
0, 0, 0) = y1 (say). 

y1M = (iI – I + iI, 0, 0, 1 + i + I, 0, 0, 0, 0)  (iI, 1 + i + I, 0, 1 + 
i + I, 0, 0, 0, 0) = y2 (say). 

y2M = (iI – I + iI, iI – I + iI, 0, 1 + i + I, 0, 0, 0, 0)  (iI, iI, 0, 1 
+ i + I, 0, 0, 0, 0) = y3 (say). 
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y3M = (iI – I + iI, iI – I + iI, 0, iI, 0, 0, 0, 0)  (iI, iI, 0, iI, 0, 0, 
0, 0) = y4 (say). 

y4M  = (–I, iI – I +iI, 0, iI, 0, 0, 0, 0)  (0, iI, 0, iI, 0, 0, 0, 0)  

 = y5 (say). 

y5M  =  (–I, iI – I + iI, 0, iI, 0, 0, 0, 0)  (0, iI, 0, iI, 0, 0, 0, 0)  

 = y6 (say). 

 Clearly y6 = y5 thus the hidden pattern is a fixed point 
given by (0, iI, 0, iI, 0, 0, 0, 0). 

 Now we find the hidden pattern of the initial state vector. 

x = (0, 1 + i + I + iI, 0, 0, 0, 0, 0, 0)  X. 

xM = (0, 0, 0, 1 + i + I + iI, 0, 0, 0, 0)  (0, 1 + i + I + iI, 0, 1 + 
i + I + iI, 0, 0, 0, 0) = y1 (say). 

y1M =(iI – I + iI – I, 0, 0, 1 + i + I + iI, 0, 0, 0, 0)  (iI, 1 + I + I 
+ iI, 0, 1 + i + I + iI, 0, 0, 0, 0) = y2 (say). 

y2M = (iI + iI – I, 0, 0, 1 + iI + i + I, 0, 0, 0, 0)  (iI, 1 + i + I + 
iI, 0, 1 + I + I + iI, 0, 0, 0, 0) = y3 (say). 

 Clearly since y3 = y2 the hidden pattern is a fixed point 
given  by (iI, i + 1 + I + iI, 0, 1 + i + I + iI, 0, 0, 0, 0). 

 Consider x = (0, 1 + I + I, 0, 0, 0, 0, 0, 0)  X; to find the 
effect of x on M. 

xM = (0, 0, 0, 1 + I + i, 0, 0, 0, 0)  (0, 1 + i + I, 0, 1 + I + I, 0, 
0, 0, 0) = y1 (say) 
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y1M = (iI – I + iI, 0, 0, 1 + i + I, 0, 0, 0, 0)  (iI, 1 + i + I, 0,     
1 + i + I, 0, 0, 0, ) = y2 (say) 

y2M = (iI + iI – I, Ii – I + Ii, 0, 1 + i + I, 0, 0, 0, 0)  (iI, iI, 0, 1 
+ i, + I, 0, 0, 0, 0) = y3 (say) 

y3M = (iI – I +iI, iI – I +iI, 0, iI, 0, 0, 0, 0)  (iI, iI, 0, iI, 0, 0, 0, 
0) = y4 (say). 

y4M  = (–I, iI – I + iI, 0, iI, 0, 0, 0, 0)  (0, iI, 0, iI, 0, 0, 0, 0)  

 = y5 (say). 

y5M = (–I, iI – I + iI, 0, iI, 0, 0, 0, 0)   (0, iI, 0, iI, 0, 0, 0, 0)  

 = y6 (say). 

 Clearly y6 = y5 so the hidden pattern is a fixed point given 
by (0, iI, 0, iI, 0, 0, 0, 0). 

 It is interesting and important to make the following 
observations. 

i) In case of FCMs we can for a on state of a node  
get only on state of the other nodes and the node 
which is in the on state initially. 

ii) In the case of FINCMs we see the on state of a 
node can after a series of iterations arrive at a 
complex state 1 + i or pure imaginary state i, 
neutrosophic state I + 1 or pure neutrosophic 
state I or neutrosophic imaginary state 1 + i + I + 
iI or 1 + i +I or pure neutrosophic imaginary state 
i + I, iI or i + I + iI. 
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 Thus the node which was on as pure imaginary i may at 
the point of limit cycle or a fixed point result in any one of the 
terms from the set  

P = {1, i, 1 + i, I, 1 + I, i + I, 1 + I + i, 1 + i + iI, iI, 1 + iI + I, i + 
i + iI, 1 + i + iI + I, I + i, i + iI, I + iI}. 

 Thus we see the advantage of using FCNCMs model at 
appropriate places. 

 The above example has clearly shown how the hidden 
patterns vary in the set P for any one of the elements of P as the 
state of the node. 

 Now at this juncture we wish to mention about the 
concept of Combined Fuzzy Complex Indeterminate Cognitive 
Maps model analogous to the Combined Fuzzy Cognitive Maps 
model. 

 This is the case when two or more experts work on the 
same problem with the same number of concepts or nodes. 
More about such study please refer [15]. 

 Next we proceed onto study the notion of complex 
neutrosophic valued weighted bigraphs. Consider the following 
definition. 

 Let G be a weighted bigraph.  If the edge weights are 
from the set S ={a + bi +cI + diI / a,  b, c, d  R; i2 = –1,            
I2 =  I and (iI)2 = –I} then we define G to be a complex-
neutrosophic valued weighted bigraph. 

 We will provide some examples of them. 
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Example 3.11. Let K be a complex neutrosophic valued 
weighted bigraph with edge weights from S = {a + bi + cI + diI 
/ a, b, c, d  R; i2 = -1, I2 = I and (iI)2 = -I} given in the 
following. 

 

 

 

 

 

 

 

 

Figure 3.21 

 The connection matrix M associated with the bigraph K is 
as follows 

M =  

1 2 3 4 5 6 7

1

2

3

4

5

R R R R R R R
D 0 8i 4 0 7 0 0 0
D i I 8iI 0 6I 0 0 0 0
D 0 0 0 0 i 7 5i I 0
D 0 0 2i 5 I 0 0 0
D 0 0 0 0 0 2 i iI iI 5I 2i


 

 


   

. 

D1 

K = 
D2 

D3 

D4 

D5 

R1 

R2 

R3 

R4 

R5 

R7 

R6 

8i+4 i+I+8iI 

7 
6I 

2i 
5+I 

i+7 

5i+I 

2+i+iI 

iI+5I+2i 
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 We can for this matrix M find the conjugate which is 
denoted by M is as follows. 

M  = 

1 2 3 4 5

1

2

3

4

5

6

7

D D D D D
R 0 I i 8iI 0 0 0
R 8i 4 0 0 0 0
R 0 6I 0 2i 0
R 7 0 0 5 I 0
R 0 0 7 i 0 0
R 0 0 I 5i 0 2 i iI
R 0 0 0 0 iI 5I 2i

 
 





  

  

 

 Now we find the bigraph K associated with the complex 
valued weighted (connection) matrix M . 

 

 

 

 

 

 

 

 

 
Figure 3.22 

K = 

R1 

R2 

R3 

R4 

R5 

R6 

R7 

D1 

D2 

D5 

D4 

D3 

I–i–8iI 

–8i+4 

6I 

7 
–2i 

7–i 

I–5i 5+I 

2–i–iI 

–iI+5I–2i 
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 We also in the models which we are going to construct 
use the notion of transpose of a connection matrix M of the 
bigraph K.  

 Now let Mt be the transpose of the matrix M. 

Mt = 

1 2 3 4 5

1

2

3

4

5

6

7

D D D D D
R 0 i I 8iI 0 0 0
R 8i 4 0 0 0 0
R 0 6I 0 2i 0
R 7 0 0 5 I 0
R 0 0 i 7 0 0
R 0 0 5i I 0 2 i iI
R 0 0 0 0 iI 5I 2i

 




  

 

  . 

 Clearly Mt is not the same as M  the conjugate of M. 

 Now based on all these we proceed onto define the notion 
of Fuzzy Complex Neutrosophic Relational Maps (FCNRMs) 
model. 

Definition 3.2. Fuzzy Complex Neutrosophic Relational Maps 
(FCNRMs) models are constructed analogous to Fuzzy 
Complex Neutrosophic Cognitive Maps (FCNCMs) models 
described and discussed earlier in this chapter. 

 In FCNCMs we promote correlations between causal 
associations among concurrently active units. But in FCNRMs 
we divided just like FRMs the very causal associations into two 
disjoint units for example the relation between a teacher and a 
student or relation between an employee or employer or a 
relation between a doctor and a patient. 
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 Here when we use FCNRMs model the causal relation 
between a drug addict and a counselor or a doctor and a mental 
patient and so on. 

 Such study is very innovative and new for we have 
introduced Neutrosophic Relations Maps (NRMs) model, 
Neutrosophic Complex Relational Maps model and so o n. 

 Here we introduce Fuzzy Complex Neutrosophic 
Relational Maps model (FCNRMs model). 

 A FCNRM is a directed bigraph or a map from D to R 
where D is the domain space of nodes; D = {(x1, x2, …, xn) / xj 
 {0, 1, i, I, 1 + i, 1 + I, iI, 1 + iI, i + I, i + iI, I + iI, 1 + i +I, 1 + 
i + iI, 1 + I + iI, 1 + I + i + iI, I + i + iI}, 1  j  n} and R = {(y1, 
y2, …, ym) / yi  {0, 1, I, I, iI, 1 + I, 1 + I, 1 + iI, I + I, I + iI, I + 
iI, 1 + i + I, 1 + i + iI, 1 + I + iI, i + I + iI, 1 + i + I + iI}; 1  i  
m}. This represents causal relation between D and R. 

 Let Di and Rj denote that two nodes of a FCNRM. The 
directed edges from Di to Rj denotes the causality of Di on Rj 
called relations. Every edge eij in the FCNRM is weighted with 
a number in the set {0, 1, i, I, iI, 1 + i, 1 + I, 1 + iI, i + I, i + iI, I 
+ Ii, 1 + I + i, 1 + I + iI, 1 + i + iI, i + I + iI, 1 + I + iI + i} = P. 

 Let eij be the weight of the edge DiRj, eij  P. 

 The weight of the edge DiRj is determined as that of FRM 
or NRM or FCRM. 

 Let D1, …, Dn be the nodes / concepts of the domain 
space D of an FCNRM and R1, R2, …, Rm be the nodes of the 
range space R of an FCNRM.  
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 Let the complex neutrosophic valued matrix with E = (eij) 
where eij is the weight of the edge DiRj (or Rj Di) E is defined as 
the relational complex neutrosophic matrix of the  FCNRM. 

 Like FCRMs all operations can be performed on E = (eij) 
using A = {(a1, …, an) / ai  {0, 1, i, I, iI, 1 + I, 1 + i, 1 + iI, i + 
I, i + iI, I + iI, 1 + I + i, 1 + I + iI, 1 + iI + I, i + I + iI, 1 + i + I + 
iI} 1  i  n the instantaneous state complex-neutrosophic 
vectors of the domain space which, denotes the on, off, 
imaginary neutrosophic, pure imaginary, pure neutrosophic, 
imaginary - neutrosophic, pure imaginary neutrosophic position 
of the nodes. 

 Likewise B = {(b1, b2, …, bm) / bi  {0, 1, i, I, 1 + i, 1 + I, 
iI, 1 + iI, i + I, i + iI, I + iI, 1 + i + I, 1 + i + iI, 1 + I + iI, I + i + 
iI, 1 + i + I + iI}, 1 i  m} are instantaneous state vector of the 
range space and it denotes to on-off, imaginary, neutrosophic, 
etc. The functioning of FCNRMs are akin to FRMs, NRMs and  
so on. 

 Similarly we see FCNRMs is said to be cyclic if it 
possess is directed cycle. An FCNRMs is said to be acyclic if it 
does not possess any directed cycle. 

 An FCNRMs with cycles is said to be a FCNRMs with 
feedback when there is a feedback in the FCNRMs when the 
causal relations flow through a cycle in a revolutionary manner 
the FCNRM is called a dynamical system. 

 The equilibrium state of the dynamical system is a unique 
state vector, then it is called a fixed point. Consider an FCNRM 
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with R1, R2, …, Rm and D1, D2, …, Dn as nodes. For example let 
us start the dynamical system by switching on R1 (or D1). 

 Let us assume the FCNRM settles down with R1 and Rm 
(or D1 and Dn) on; that is the state vector remains as (1 + i + I, 0, 
0, 0, I + iI + 1) in R (or (1 + i + iI, 0, 0, …, 0, iI + 1 + i) in D). 
This state vector is called the fixed point. 

 Similarly limit cycle of a FCNRM is defined akin to 
FRMs. 

 Further the method of determining the hidden pattern of 
FCNRMs is similar to that of FRMs. 

 Another important factor which we wish to define in case 
of FCNRMs is the combined FCNRMs. Like finite number of 
FRMs can be combined to get a joint effect of all the FRMs we 
can combine a finite number of FCNRMs to get a joint effect of 
all FCNRMs. 

 Let E1, E2, …, Es be fuzzy complex or imaginary 
neutrosophic relational matrices of s FCNRMs (FINRMs) with 
nodes R1, R2, …, Rm and D1, D2, …, Dn then the combined 
FINRM (RCNRM) is represented by the fuzzy imaginary 
neutrosophic relational matrices E = E1 + E2 + … + Es. 

 Thus as in case of combined FRMs we can also work 
with combined FINRMs (or FCNRMs) in the same with 
appropriate simple modification. 

 Mostly this model will find more applications in the 
medical diagnostics. This will be explained by the following 
model. 
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Example 3.12. Let us consider the problem of counseling a drug 
addict we give D1, D2, D5 to be attributes symptoms associated 
with the drug addict and R1, R2, R3, R4 and R5 are the remedies 
supplied by the psychiatrist. 

 We will describe each of the nodes / concepts by a line or 
two. 

D1 Dazzled state All the time in the drowsy state 
D2 Suffers from illusion 

imaginary suffering 
Attempted to murder his girl 
friend when questioned said he 
was attacked by wolves - lives on 
illusions 

D3 Never does any work All the line under the influence of 
drugs so fails to do any routines 
even basic hygiene brushing teeth 
etc. 

D4 Does not eat well As liver and vital organs are 
damaged does not eat regularly 
craves only for drugs. 

D5 Mood Swing Mood swing is so high never 
polite with family or elders of the 
family easily takes every thing as 
offence steals money and 
valuables from home and friends. 

D6 Cause why he leads 
this way of life 

This remains an indeterminate for 
parents and close friends who are 
not drug addicts are not in a 
position to unravel his mind. 
Some think it may be some 
imaginary grievance. 
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 Now we briefly describe the attributes related to the 
treatment. 

R1 Isolation The patient must be isolated from 
the bad company and bad habits. 
So isolation becomes mandatory 

R2 Recovery This is not easily predictable only 
an indeterminate 

R3 Real problems The real problems faced by the 
patient may be imaginary or and 
n indeterminate one. 

R4 Councilling etc or 
treatment 

Can be executed only if the 
patient is in a partial state of good 
mind. If absolutely in a different 
state nothing can be done. 

R5 Family support Unless family support is obtained 
it is not possible for any form of 
treatment a friend or family 
member must be with the drug 
addict throughout the treatment 
as a moral support. 

 

 Now we just describe the model in the form of a complex 
neutrosophic weighted bigraph. 
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Figure 3.23 

 Taking this experts which is a complex neutrosophic 
valued bigraph now we obtain the connection matrix M which 
serves as the dynamical system of the problem. 

M = 

1 2 3 4 5

1

2

3

4

5

6

R R R R R
D I i I 1 0 0
D 0 0 0 I 1
D 0 0 0 0 1
D 0 I I 0 0
D 0 0 0 0 1
D 1 0 0 0 0



. 

Consider the initial state vectors X and Y of the dynamical 
system. 

D1 

I 

D2 

D3 

D4 

D5 

D6 

R1 

R2 

R3 

R4 

R5 

i+I 

1 

I I 

I 1 
1 
1 



Application of Complex Valued Graphs  251 
 
 
 X = {(a1, a2, a3, a4,a5, a6) /  ai  {0, 1, i, 1 + i, I, iI, 1 + I, 
1+ iI, i + I, i + iI, I + iI, 1 + I + I, 1 + I + iI, 1 + i + iI, i + I + iI, 1 
+ I + i + I + iI}, i2 = –1, I2 = I,  (iI)2 = –I, 1  i  6} and Y = 
{(b1, b2, b3, b4, b5) / bj  {0, 1, i, 1 + i, iI, I, 1 + I, 1 + iI, i + I, i + 
Ii, I + iI, 1 + I + i, 1 + I + iI, 1 + iI, i, i +  I + iI, 1 + I + i + iI}, 1 
 j  5}. 

 Let x = (1, 0,  0, 0, 0, 0)  X; to find the effect of x on the 
dynamical system M 

xM = (I i + I, 1, 0, 0) = y1 

y1Mt = (2I + 2iI, 0, 0, iI + 2I, 0, I)  (I + iI, 0, 0, I, 0, I) = x1 

x1M = (2I + iI, 2Ii + I, 2I + iI, 0, 0)  (I, Ii, I, 0, 0) = y2 (say) 

y2Mt  = (Ii + I, 0, 0, I +Ii, 0, I)  (Ii + I, 0, 0, I + Ii, 0, I)  

 = x2 (say) 

x2M = (2I + Ii, 3Ii + I, 2I + 2Ii, 0, 0)  (I, Ii I + Ii, 0, 0) = y3 say 

y3Mt = (2Ii + I, 0, 0, 2Ii + I, 0, I)  (Ii, 0, 0, Ii, 0, I) = x3 (say) 

x3M = (Ii + I, –I + Ii + Ii, 2I, 0, I)  (I + Ii, Ii, Ii, 0, I) = y4 (say) 

y4Mt = (I + Ii – I + Ii + Ii, I, I, 2Ii, I I + Ii)  (Ii, I, I, Ii, I, I + Ii) 
= x4 (say) 

 Interested reader is left with the task of finding the hidden 
pattern which may be fixed point pair or a limit cycle pair. 

 Infact if we have several such FINRMs (FCNRMs) with 
same number of domain nodes and same number of range nodes 
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then as in case of FRMs we can find the combined FCNRMs (or 
FINRMs) and work with the combined FCNRMs to obtain the 
hidden pattern pairs. 

 Other types of combined FICMs and FINCMs are defined 
in the following. 

 As in case of FCMs we in case of FICMs define a special 
type of combined FICMs which we will describe. We can also 
obtain a special type of combined FICMs also analogous to 
FCMs or NCMs. 

 Let us consider some n attributes C1, C2, …, Cn where Cj 
can take the states 0 or 1 or i or 1 + i; j  {0, 1, 2, …, n}. 

 Suppose on the problem some take s1 attributes, some 
other take s2 attributes and the sr

th expert takes sr number of 
attributes 3  s1, s2, …, sr  n then we obtained the special type 
of combined FICMs in the following way; which is first 
describe by the following example. 

 Let us consider some 16 attributes / nodes associated with 
the problem. Let the nodes be denoted by C1, C2, …, C12 where 
Cj’s can take values 0 or i or 1 or 1 + i only; 1  j  12. 

 Suppose there are 3 experts who wish to work on the 
problem and all of them choose to work with the FICMs only 
but select only a fixed number of attributes from the set of 12 
attributes. 

 Now we apply the combined disjoint block FICMs model 
with the only difference FICMs replaced by the FICMs. 
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 The first expert works with the nodes {C1, C3, C8, C10}, 
the second expert has choosen the nodes {C4, C7, C11, C12} to 
work with the problem. 

 Finally the 3rd expert has choosen to work with {C2, C5, 
C6, C9} as the nodes. 

 Now we give the complex - neutrosophic directed graphs 
associated with each of the 3 experts in the following 

 

 

 

 
 

Figure 3.24 

 G1 is the complex-neutrosophic valued directed graph 
given by the first expert. 

 G2
 is the complex - neutrosophic valued directed graph 

given by the second expert in the following. 

 

 

  

 

Figure 3.25 

C1 C3 

C8 

1+i 

C10 
I+i 

I+iI+1 

1+I 

G2 = 

C4 C7 

C11 

i 

C12 
1+I 

I+iI+1 

1+i 

G2 = 

i+ 1 
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 Let G3 be the complex valued directed bigraph given in 
the following using the nodes {C2, C5, C6, C9}; 

 

 

 

 

 

Figure 3.26 

The complex - neutrosophic valued matrices associated with the 
graph G1, G2 and G3 are supplied below. 

 Let M1 be the complex valued matrix associated with the 
graph G1. 

M1 = 

1 3 8 10

1

3

8

10

C C C C
C 0 1 I 0 1 I iI
C 0 0 0 0
C 1 i 0 0 0
C 0 0 I i 0

  




 

 Let M2 be the connection complex neutrosophic valued 
matrix associated with the complex neutrosophic directed 
weighted graph G2 

C2 C5 

C6 C9 

iI+1 

1+I+i 

G3 = 

1 

I+i 

1+i 
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M2 = 

4 7 11 12

4

7

11

12

C C C C
C 0 1 i 0 0
C 0 0 i 1 0
C i 0 0 1 I
C 1 I iI 0 0 0





 

. 

 Let M3 be the complex-neutrosophic valued connection 
matrix associated with the complex-neutrosophic weighted 
value graph G3. 

M3 = 

2 5 6 9

2

5

6

9

C C C C
C 0 1 I i 0 0
C 0 0 0 0
C 0 1 0 0
C 1 iI i I 1 i 0

 

  

. 

 We will use the complex neutrosophic valued dynamical 
systems and find the effect of some initial state vectors. 

 Let X1 = {(a1, a2, a3, a4) / aj  {1 + i, i, I, iI, 0, 1 + I, i + I, 
I + iI, 1 + iI, I + iI, 1 + i + I, 1 + i + iI, 1 + I + iI, i + I + iI, 1 + i 
+ I + iI}, 1  j  4} = C1  C3  C8  C10 

 Let X2 = {(a1, a2, a3, a4) / aj  {0, 1, iI, I, I, 1 + I, 1 + I, 1 + 
iI, I + I, I + iI, i + Ii, 1 + I + I, 1 + I + iI, 1 + iI + I, I + iI + i, 1 + 
I + iI + i} 1  j  4} = C4  C7  C11  C12 

 Let X3 = {(a1, a2, a3, a4) / aj  {0, 1, I, i, iI, 1 + I, 1 + i, iI 
+ 1, i + I, i + iI, iI + I, 1 + i + I, 1 + i + iI, I + i + iI, 1 + I + iI, 1 
+ i + I + iI};1  j  4} = C2  C5  C6  C9. 
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 Now just for the sake of illustration we find the effect of 
x  X1 on the dynamical system M1. 

 Let x = (i, 0, 0, 0)  X to find the effect of x on M1 

 xM1 = (0, i + I, 0, i – 1 – I)  (i, i + I, 0, i) = y1 (say) 

y1M1 = (0, i + iI + 2I, Ii – 1, i – 1 – I)  (i, I, Ii, i) = y2 (say) 

y2M1 = (Ii – I, i + iI, –1 + iI, i – 1 – I)  (Ii, i + Ii, Ii, i) \ 

 = y3 (say) 

y3M1 = (Ii – I, Ii + Ii, -1 + iI, Ii – I – I) (Ii, Ii, iI, Ii) = y4 (say) 

y4M = (iI – I, Ii + Ii, iI – I, Ii – I – I)  (iI, Ii, Ii, iI) = y5 (say) 

Since y4 = y5 we see the hidden pattern is a fixed point given by 

 (iI, Ii, Ii, Ii)     I 

For the node C1 in the pure imaginary state i. 

 Next let us work with the on state of the node C7 in the 
state of initial vectors X2 using the dynamical system M2. 

 Given a = (0, 1, 0, 0)  X2 that C7 state is on with 1. To 
find the effect of a on the dynamical system M2. 

aM2 = (0, 0, 1 + I, 0)  (0, 1, 1 + i, 0) = a1 

a1M2  = (i – 1, 0 1 + I 1 + iI + I + i)  (i, 1, 1 + I, 1 + iI + I + i)  

 = a2 (say). 
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 The effect of a2 on the dynamical system M2 is given by 

a2M2 = (2i + 5iI – I, i – 1, i + 1, 1 + I + i + iI)  (iI, I, i + 1,  

 1 + i + I + iI) = a3 (say) 

 The effect of a3 on the dynamical system M2 is given by 

a3M2 = (i – 1 + 1 + i + I + iI + I + iI + iI + iI + iI – I + iI – I,  

iI – I, i – 1, 1 + I + i + iI)  (iI, iI, i, 1 + I + i + iI) = a4 (say) 

 The resultant of a4 on M2, a4M2 = (-1 + 1 + I + i + iI + I + 
I + I + Ii + Ii + iI + iI – I – I, iI – I, I – 1, i + iI)  (iI, iI, i, i + iI) 
= a5 (say). 

The effect of a5 on M2 is a5M2 = (–1 + i + I – I + iI + iI – I,  

iI – I, –1 + i, i + iI)  (iI, iI i, i + iI) = a6 (say) 

 Clearly a6 = a5 so the hidden pattern is a fixed point given 
by  

 (iI, iI, i, i + iI) – II  

when C7 was on with 1. 

 Next we find the effect of the on state of C9 in the 
indeterminate state I on M3. 

 Let b = (0, 0, 0, 0, I)  X3, to find the effect of b on the 
dynamical system M3 

 bM3 = (I + iI, iI + I, I + Ii, 0)  (I + iI, I + iI, I + iI, I) = 
b1 (say). 
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 We find the effect of b1 on the dynamical system M3 

 b1M3 = (I +iI, I + I + iI + iI + iI – I + iI + I + iI + I, I + iI + 
iI – I, 0)  (I + iI iI, iI, I) = b2 (say). 

The effect of b2 on M3 is given by 

 b2M3 = (I + iI, –1 + iI + iI + iI + iI + I, iI – I 0)  (I + iI, 
iI, iI, I) = b3 (say) 

 Since b3 = b2 clearly the hidden pattern is given by a fixed 
point 

 (I + iI, iI, iI, I)    III 

When the node C9 is in the indeterminate state I. 

 Now we find the combined block fuzzy imaginary - 
neutrosophic cognitive maps model connection matrix M using 
the matrices M1, M2 and M3. 
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So M = 

1 2 3 4 5 6

1

2

3

4

5

6

7

8

9

10

11

12

C C C C C C
C 0 0 1 I 0 0 0
C 0 0 0 0 1 i I 0
C 0 0 0 0 0 0
C 0 0 0 0 0 0
C 0 0 0 0 0 0
C 0 0 0 0 1 0
C 0 0 0 0 0 0
C 1 i 0 0 0 0 0
C 0 1 iI 0 0 i I 1 i
C 0 0 0 0 0 0
C 0 0 0 i 0 0
C 0 0 0 1 I iI 0 0


 


  

 

 

7 8 9 10 11 12C C C C C C
0 0 0 1 i iI 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 i 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 i 0
0 0 0 0 0 0
0 0 0 0 0 0
0 I i 0 0 0 0
0 0 0 0 0 1 I
0 0 0 0 0 0

 








 . 

 Now we call M the disjoint block dynamical system of 
the disjoint block combined FINCMs model. 
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 Now the initial state vectors associated with M are given 
by 

X = {(a1, a2, …, a12) / aj  {0, 1, I, iI, 1 + I, 1 + iI, 1 + I, I + I, I 
+ iI, i + iI, 1 + I + i, 1 + I + iI, 1 + i + iI, i + I + iI, 1 + i + I + iI}; 
1  j  12}. 

 Now we find the effect of s = (i, 0, 0, 0, 0, 0, 1, 0, I, 0, 0, 
0)  X. 

 The effect of s on the dynamical system M is given by 

 sM = (0, I + iI, i + iI, 0, I + iI, I + iI, 0, 0, 0, i – 1 – I, 1 + 
i, 0)  (i, I + iI, i + iI, 0, I + iI, I + iI, 1, 0, I, i, 1 + I, 0) = s1 say 

s1M = (0, I + iI, i + iI, i – 1, I + iI + I + iI – I + iI + I + iI + iI + I, 
I + iI, 0, iI – 1, 0, i – 1 – I, 1 + i, 1 + i + I + iI)  (i, I + iI, I + iI, 
i, iI, I + iI, 1, iI, I, i, 1 + i, 1 + i + I + iI) = s2 (say). 

 Now we find the effect of s2 on M. 

s2M = (iI – I, I + iI, i + iI, i – 1 + 1 + I + I + iI + I + iI + I + iI + 
iI – I + iI – I, 5iI + 3I, I + iI, i – 1, iI – 1, 0, I – 1 – I, 1 + I, 1 + I 
+ I + iI)  (iI, I + iI, i + iI, iI, iI, I + iI, i, iI, I, i, i, 1 + i + I + iI) 
= s3 (say). 

 We now find s3M; 

s3M = (iI – I, I + iI, iI + i + iI + iI, i – 1 + 1 + i + I + iI + I + iI + 
I + iI + iI – I + iI – I, I + iI + I + iI – I + iI + I + iI + I + iI, I + Ii, 
iI – I, iI – 1, 0,iI – 1 – I, i – 1, i + iI  (iI, I + iI, iI, iI, I + Ii, iI, 
iI, I, iI, i, I + i + 0) = s4 (say). 

 One can calculate the effect of s4 on M and so on. 
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 Interested reader can compare the resultant or hidden 
pattern of s on the dynamical system M and compare it with 
equations I, II and III given earlier. 

 Let us consider t = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0)  X. 

 To find the effect of t on the dynamical system M 

tM = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 + I, 0)  (0, 0, 0, 0, 0, 0, 1, 0, 
0, 0, 1 + I, 0) = t1 (say). 

 We find the resultant of t1 on M. 

t1M = (0, 0, 0, i – 1, 0, 0, 0, 0, 0, 0, 1 + I, 1 + i + I + iI)  (0, 0, 
0, i, 0, 0, 1, 0, 0, 0, 1 + i, 1 + i + I + iI) = t2 (say). 

 The effect of t2 on M; 

t2M = (0, 0, 0, i – 1 + 1 + i + I + iI + I + iI + I + iI + iI – I + iI – 
I, 0, 0, 1 – i, 0, 0, 0, 1 + i, 1 + I + i + iI)  (0, 0, 0, iI, 0, 0, 1, 0, 
0, 0, 1 + I, 1 + I + i + iI) = t3 (say). 

t3M = (0, 0, 0, i – 1 + 1 + I + I + iI + I + I + iI + iI + iI + iI – I – 
I, 0, 0, iI – I, 0, 0, 0, 1 + I, 1 + I + iI + i)  (0, 0, 0, iI, 0, 0, iI, 0, 
0, 0, 1 + I, 1 + I + iI + i) = t4 (say). 

 We now determine t4M = (0, 0, 0, i – 1 + 1 + i + I + iI + I 
+ iI + I + iI + iI + iI – I – I, 0, 0, iI – I, 0, 0, 0, iI – I, 1 + I + i + 
iI)  (0, 0, 0, iI, 0, 0, iI, 0, 0, 0, iI, 1 + i + I + iI) = t5 (say) 

 One can find the effect of t5 on M and find the hidden 
pattern to be a  fixed point. 
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 Next we will just describe the overlap combined FINCMs 
briefly. 

 Let C1, C2, …, Cn be n attributes associated with the 
problem. Suppose ‘r’ experts work with the problem using some 
subset Si of attributes from the set {C1, C2, C3, …, Cn} such that 
Si  Sj   for all i, j  {1, 2, …, r} where S1, S2, …, Sr are the 
subsets associated with the ‘r’ experts using FINCM’s model.  
As in case of combined overlap FCMs we will in the case of  
the combined overlap FINCMs model also obtain the resultant. 
FCMs model takes the state vectors  values from {0, 1} where 
as in case of FINCMs model the entries are from{0, 1, i, I, iI, 1 
+ i, 1 + I, 1 + iI, i + I, i + Ii I + Ii, 1 + I + I, 1 + i + Ii, Ii + I + 1, 
1 + I + I + Ii, I + I + Ii}.   

With this appropriate difference we can build this new model 
and find the hidden pattern. 

 This task is left as an exercise to the reader. 

 On similar lines we can define combined disjoint block 
FINRMs also. 

 However disjoint combined FRMs and combined disjoint 
NRMs models have been defined and developed in [15].  

 It is further contemplated that we can adopt these fuzzy 
imaginary valued graphs in the Artificial Neural Networks 
(ANN), Back Propagation Network (BPN), perceptron etc.; with 
appropriate modifications. 

 As  weights are from C = {a + bi / a, b  R, i2 = –1} the 
complex field we see the sighmoidal functions be it binary or 
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bipolar with complex values can be adopted without any 
difficulty. 

 The main difference  in this case being that the 
connection matrix or the weight matrix being complex valued. 

 Here it is pertinent to keep on record that if we use 
complex - neutrosophic valued graphs then we cannot in general 
use them in building the some these soft models which exploit 
the sigmoidal functions as derivative of the indeterminate I 
cannot be defined. However these can be used when the model 
is discrete one. This is the only limitations at this juncture. 

 These types of models in case of both supervised and 
unsupervised data are elaborately dealt in the forthcoming book. 

 In this book we have applied the imaginary valued 
directed graphs and bigraphs to soft models like FICMs and 
FIRMs. 

 However it is pertinent to record at this juncture we can 
use the complex neutrosophic valued directed graphs as well as 
bigraphs in the construction of soft models like FINCMs and 
FINRMs where mainly unsupervised data is involved. 

 Such models will be a boon in the study or analysis of 
medical diagnostics or evaluation of personality tests and so on. 

 In this chapter appropriate examples are used to illustrate 
this situation. However we wish to keep on record that these 
examples are not related with any real world data we have given 
them only for illustrations. 
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 Further it is a challenge for the researchers to find more 
applications of these new models. 

 Certainly these models will be very well suited in the 
social network problems and community net work problems, 
where the analysis as well as the unsupervised data is full of 
complex (imaginary notions) and indeterminate concepts / 
relations. So only in this books such types of graphs are 
constructed mainly for this purpose. 

 Here we suggest a set of problems for the reader which 
will enhance the understanding of this work in a better way. 

Problems 

1. Give an example of a complex valued directed graph G 
with 5 vertices and 8 edges. 

 i) How many such graphs can be obtained? 

 ii) Find the weighted complex matrix M of G. 

iii) Find M  the conjugate of M. 
iv) Show G  the directed complex valued graph 

associated with M  is the conjugate of the graph G. 
v) Obtain any other special feature associated with G 

and M. 

2. Let G be the directed complex valued graph associated 
with a FICMs model given in the following. 
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Figure 3.27 

i) Find the complex dynamical system M, that is  
the connection complex valued matrix associated 
with G. 

ii) If x = (1, 0, I, 0, 0, 0, 0,1)  {(a1, a2, …, a8) 
where ai  {0, 1, I, 1 + i}, 1  i  8} = X find the 
effect of x on M. 
a) Is the resultant or hidden pattern a fixed point 

or a limit cycle? 

 iii) Find the hidden pattern of a = (0, 0, 1, i, i, 0, 0, 0) 
 X using M. 

3. Use the FICM’s model in a practical problem and derive 
the importance of the same. 

i 
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C4 
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C5 

C6 

i 1–i 
1+i 

1 

C7 
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–1 –i 
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4. What are the special features associated with the FICMs 

model? 

5. Prove in certain medical diagnostics models FICMs plays 
a better role than FCMs and NCMs. 

6. Give an illustrative real world model in which FICMs 
play a better role than FCMs and NCMs. 

7. Give an example of a problem in which only FCMs 
model alone can be used and FICMs model has no role to 
play. 

8. Give an example of a real world problem in which only 
NCMs model alone can be used and FICMs model has no 
role to play. 

9. Can we say FICMs model can play a role in getting the 
mental map of a drug addict? 

10. What are the main problems encountered in solving or 
using FICMs model? 

11. Describe a Fuzzy Imaginative (Imaginary or complex) 
Relational Maps (FIRMs) model. 

12. Compare a FIRMs model with FRMs model. 

13. Give a real world problem in which FRMs model cannot 
be replaced by FIRMs model. 

14. Give a real world problem in which FIRMs model alone 
is mandatory. 
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15. Give a real world problem in which only NRM model is 

appropriate. That is FRM and FIRMs cannot  be used. 

16. Determine all the draw backs as well as merits of the 
FIRMs model. 

17. Suppose 3 experts work on a problem using FICMs 
model with same number of concepts with associated 
complex valued matrices M1, M2, M3.  

 Prove M = M1 + M2 + M3 can be defined as the 
Combined FICMs (CFICMs) model analogous to CFCMs 
model. 

18. Apply the CFICMs model in a real world problem using 
atleast more than six experts. 

19. Define and develop the notion of Combined Fuzzy 
Imaginary Relational Maps (CFIRMs) model. 

20. Illustrate CFIRMs model using atleast some five experts. 

21. What are the advantages of using CFIRMs? 

22. Prove if there are say some n domain attributes and m 
range attributes and if r experts work using the FIRMs 
and s of the experts work using FRMs then also we can 
combine them and get the CFIRMs model related with 
the r + s experts. 

23. Illustrate this situation in problem 22 by some examples 
from the real world problem. 
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24. Let G be a complex - neutrosophic weighted directed 

graph given by the following figure. 

 

 

 

 

 

 

 

 

 

 

Figure 3.28 

i) Find all subgraphs of G. 
ii) Which of the subgraphs of G complex-

neutrosophic valued? 
iii) Find all subgraphs which are real. 
iv) Find all neutrosophic valued subgraphs. 
v) Find all complex valued subgraphs. 
vi) Find the weighted matrix M associated with G. 
vii) Find the conjugate of M  of M. 
viii) Find K the complex neutrosophic valued graph 

associated with M  
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ix) Find G  of G.  Prove G  = K. 
x) Obtain any other special feature associated with 

G. 

xi) Find M  M  and  M   M. 

xii) Is M M  = M   M? 
xiii) What is the nature of the graphs associated with 

M  M? 

25. Let S be the complex - neutrosophic value directed 
weighted graph given by the following figure. 

 

 

 

 

 

 

 

 

 

Figure  3.29 

 Study questions (i) to (xiii) of problem (25) for this graph 
S. 
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26. Let R be the complex neutrosophic weighted bigraph 

given by the following figure; 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 3.30 

i) Study questions (i) to (xiii) of problem (25) for 
this R. 

ii) Prove every subgraph of R is also a bigraph. 
iii) Associate with R a Fuzzy Imaginary 

Neutrosophic Relational Maps connection matrix 
M. 
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iv) Give a set of domain space and range space of 
state vectors find the resultant. 

v) Find Mt. Is Mt = M ? Justify 

27. Find a real world problem where FIRMs models are more 
suited than the FRMs models. 

28. Give an illustration in the real world problem where 
FINRMs models are more suited than the FIRMs model 
and NRMs models. 

29. Show in many medical diagnostic problems FIRMs and 
FINRMs are more suited by constructing a real world 
problem. 

30. Give an example of a real world problem in which only 
FCMs models are well suited than FICMs or FINCMs or 
NCMs model. 

31. Give an example of a real world problem in which only 
NCMs models are best suited than FNICMs and FICMs 
models. 

32. Enumerate the distinct and special features associated 
with FICMs and FINCMs models. 

33. Find the main difference between the FICMs and 
FINCMs models. 

34. Give an example of a real world problem where FIRMs 
model is very apt than other models. 
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35. When complex numbers play a vital role in all problems 

how can one justify the absence of complex valued 
graphs? 

36. When we use any graph structure in mathematical model 
do we have the graph in a concrete way? 

37. Give a real world problem in which FINRMs model is 
more apt from the FRMs and NRMs models. 

38. Let H be the complex neutrosophic valued weighted 
graph given by the following figure. 

 

 

 

 

 

 

Figure 3.31 

i) Find all subgraphs of H. 
ii) Prove H cannot have subgraphs with real 

weights. 
iii) Find the weight matrix or connection matrix M of 

the complex neutrosophic weighted directed 
graph H. 

iv) Find the conjugate M of M. 
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v) Find the complex neutrosophic weighted graph 
conjugate to the graph H. 

39. Define the notion of complex neutrosophic valued wheel, 
Wn 

40. Compare complex valued wheel Wn with the complex 
neutrosophic valued wheel Wn. 

41. Can we say complex neutrosophic weighted wheels Wn 
also occurs in pairs for a fixed n? 

42. Give an example of a complete complex neutrosophic 
valued graph. 

43. Derive all special features associated with complex 
neutrosophic weighted complete graph and compare them 
with usual read valued graph. 

44. Let S = {C1, C2, …, C20} be two attributes. Suppose 5 
experts work using subsets of S adopt FICMs model such 
that the subsets are disjoint? 

 i)  Obtain the combined disjoint FICMs model  
using S. 

 ii) How many different such combined disjoint 
FICMs model can be obtained? 

iii) Compare the resultant of each experts separately 
with the combined resultant using the disjoint 
combined FICMs model. 
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45. Derive all special features associated with combined 

disjoint FICMs. 

46. Describe the important features associated with the 
combined overlap FICMs model. 

47. Let S = {C1, C2, …, C18} be the set of attributes whose 
state can be 0 or 1 or I or 1 + i. 

 Let S1 = {C1 C5 C10 C18}, S2 = {C2, C7, C15, C9, C16, C17}, 

 S3 = {C1 C3, C6, C7, C5, C8, C11}and 

 S4 = {C12, C13, C14, C15, C16, C10} be the attribute the four 
experts work using FICMs. 

i) Find the combined overlap FICMs model and 
find the resultant of  
i)  x = (1, 0, i, 0, …, 0) and  
ii)  y = (0, 0, 0, …, 1 + i, 0, 1). 

48. Apply in a real world problem the notion of disjoint 
combined FINCMs model.  

49. Discuss the merits and demerits of disjoint combined 
FINCMs in comparison with combined FINCMs and 
overlap combined FINCMs. 

50. Does there exists real world problems for which overlap 
combined FINCMs are more suited than disjoint 
combined FINCMs and combined FINCMs model ?s 

51. Obtain all special and distinct features enjoyed by overlap 
combined FINCMs. 
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52. Show if there are 5 different experts working on a 

problem using FINCMs such that the collection forms a 
disjoint combined FINCMs prove if N1, N2, N3, N4 and 
N5 are 5 distinct dynamical systems associated with the 
FINCMs and if N is the disjoint combined FINCMs 
dynamical system and if xi is an initial state vector with 
Ci node in the on state. 

 Will the effect of Ci node on a Ni give the same set of on 
state vector as that N? Justify.  
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