-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Kyutacar : Kyushu Institute of Technology Academic Repository

°e NMNIEXRFFHEEURI LY

Kyutacar

°
.
Kyushu I ite of Technology Academic Repository

Consistent Offline Update of Suspended Virtual
Machines 1n Clouds

00 Kourai Kenichi, Shiota Yuji

journal or 2019 IEEE Intl Conf on Dependable, Autonomic
publication title |and Secure Computing, Intl Conf on Pervasive
Intelligence and Computing, Intl Conf on Cloud
and Big Data Computing, Intl Conf on Cyber
Science and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech)

year 2019-11-04

URL http://hdl._handle.net/10228/00007502
doi: info:doi/10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.00025

https://core.ac.uk/display/275885792?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Consistent Offline Update of Suspended Virtual Machines in Clouds

Kenichi Kourai
Department of Computer Science and Networks
Kyushu Institute of Technology
Fukuoka, Japan
Email: kourai@ksl.ci.kyutech.ac.jp

Abstract—In Infrastructure-as-a-Service clouds, there exist
many virtual machines (VMs) that are not used for a long time.
For such VMs, many vulnerabilities are often found in installed
software while VMs are suspended. If security updates are
applied to such VMs after the VMs are resumed, the VMs easily
suffer from attacks via the Internet. To solve this problem,
offline update of VMs has been proposed, but some approaches
have to permit cloud administrators to resume users’ VMs. The
others are applicable only to completely stopped VMs and often
corrupt virtual disks if they are applied to suspended VMs. In
addition, it is sometimes difficult to accurately emulate security
updates offline. In this paper, we propose OUassister, which
enables consistent offline update of suspended VMs. OUassister
emulates security updates of VMs offline in a non-intrusive
manner and applies the emulation results to the VMs online.
This separation prevents virtual disks of even suspended VMs
from being corrupted. For more accurate emulation of security
updates, OUassister provides an emulation environment using
a technique called VM introspection. Using this environment, it
automatically extracts updated files and executed scripts. We
have implemented OUassister in Xen and confirmed that the
time for critical online update was largely reduced.

Keywords-security updates, virtual machines, VM introspec-
tion, clouds

I. INTRODUCTION

Infrastructure-as-a-Service (IaaS) clouds provide users
with virtual machines (VMs). Users can create their VMs
and install various software such as favorite operating sys-
tems and servers. While they can easily create VMs as
necessary, many VMs are not used for a long time [1].
Unused VMs are usually stopped or suspended because only
running VMs are charged in laaS clouds. When a VM is
stopped, the system running in the VM is shut down. In
contrast, when a VM is suspended, its current state is saved
to storage. This is analogous to hibernation of physical
machines. Since it takes time to shut down the systems
and boot stopped VMs and various caches for performance
improvement are lost in VMs, it is desirable to suspend
VMs if possible and resume them as fast as possible when
necessary.

In either case, while VMs are not running, many vulner-
abilities are often found in installed software. If such VMs
start running after a long time, they easily suffer from attacks
via the Internet. In traditional systems, security updates are

Yuji Shiota
Department of Creative Informatics
Kyushu Institute of Technology
Fukuoka, Japan
Email: rabbitsl 14 @ksl.ci.kyutech.ac.jp

applied after VMs are booted or resumed. However, this
online update is at high risk because VMs are attacked while
security updates are being applied online. Security updates
are accumulated in proportion to a not-running period and
it takes a long time to apply many security updates. To
solve this problem, offline update of VMs has been proposed
[1]-[3], but some of the approaches have to permit cloud
administrators to temporarily boot or resume users’ VMs
to apply security updates [3]. This is often undesirable in
public clouds. The other approaches are applicable only to
stopped VMs [1], [2]. If they are applied to suspended VMs,
virtual disks are often corrupted. In addition, it is sometime
difficult to accurately emulate security updates offline only
by mounting virtual disks of VMs [1].

In this paper, we propose OUassister for enabling consis-
tent offline update of suspended VMs. OUassister emulates
security updates of VMs offline in a non-intrusive manner,
whereas it applies the emulation results to the VMs online.
This separation between offline and online tasks prevents vir-
tual disks of even suspended VMs from being corrupted and
keeps the integrity of the virtual disks. Since this online task
is minimum, the online update time can be much shorter than
that in traditional online update. To apply security updates
offline more accurately, OUassister provides an emulation
environment using a technique called VM introspection [4].
Using VM introspection, it emulates a special filesystem
providing system information and several system calls. Then,
OUassister automatically extracts updated files by using
the union filesystem [5] and executed scripts by hooking
system calls. When VMs are resumed and become online,
OUassister updates the virtual disks and executes extracted
scripts inside the VM.

We have implemented OUassister in Xen [6]. OUassister
constructs an emulation environment with Transcall [7],
which we have developed for monitoring VMs from the out-
side using VM introspection. Transcall was extended so as
to obtain information inside suspended VMs and save pack-
age scripts to be executed. Moreover, OUassister extracts
updated files with aufs [8], which is one implementation of
the union filesystem. Using OUassister, we confirmed that
the apt command in Ubuntu could be executed offline and
several packages could be updated correctly. In addition, we

VM
w || update
download manager
A
read write
| v
virtual
disk
Figure 1. Online update.

showed that the online update time after a VM was resumed
became much shorter.

The rest of this paper is organized as follows. Section II
describes the issues in security updates of VMs and Sec-
tion III proposes OUassister. Section V reports experimental
results using OUassister. Section VI discusses related work
and Section VII concludes the paper.

II. SECURITY UPDATES OF VMS

Security updates of the systems in VMs consist of two
phases, as illustrated in Fig. 1. First, the update manager
running in VMs downloads security updates, i.e., software
packages, from the Internet. If one package depends on
others, the update manager downloads those packages as
well. Second, it extracts files from the packages and locates
them in virtual disks of VMs. If some of the already installed
packages are uninstalled, the update manager removes files
that have been installed by those packages. In addition, it
executes package scripts before and after the installation
or removal of files if necessary. For example, the scripts
start and stop servers and update databases. Since security
updates are performed inside running VMs, this is called
online update.

Unfortunately, there exist many unused VMs in laaS
clouds [1]. If unused VMs are running, the update manager
has a chance to apply security updates. However, unused
VMs are often stopped or suspended because only running
VMs are charged in most of the IaaS clouds. The difference
between stopped and suspended VMs is whether the state of
a VM is saved or not. If a VM is stopped, the system inside
the VM is shut down and the state of the VM is abandoned.
In contrast, if a VM is suspended, its state such as CPUs,
memory, and devices is saved to storage. The saved state is
restored when a VM is resumed. Suspending VMs is more
desirable than stopping them because suspended VMs can
become online more quickly and keep peak performance just
after resumption by reusing various caches such as the file
cache inside VMs.

When VMs are booted or resumed after a long time,
performing online update is at high risk because many
vulnerabilities are usually found in software installed in

stopped VM

)
| |
' i
update i !
download | manager ! |
A ! 1
! H
read write TTT T T TTTTT
L » virtual
disk
Figure 2. Traditional offline update.

the VM. If attacks against found vulnerabilities are widely
spread, the VMs suffer from the attacks immediately after
they are connected to the Internet. Since VMs have to
connect to the Internet and download security updates, it
is difficult to prevent attacks via the Internet. If there are
many security updates, it takes a long time to apply them
and the probability of attacks becomes higher.

To solve this problem of online update, offline update of
VMs has been proposed [1]-[3]. One approach is to update
VMs in an execution environment isolated for security
updates [3]. It downloads security updates to a local server
in advance, boots or resumes VMs in the execution envi-
ronment, and applies security updates by using the update
managers running in the VMs. It enables secure updates
because VMs are not connected to the Internet. In addition,
it is applicable not only stopped VMs but also suspended
VMs. However, users have to permit cloud administrators
to boot or resume VMs and apply security updates. This is
often undesirable in public IaaS clouds because users and
cloud administrators belong to different organizations. Also,
it is costly to construct and maintain the dedicated execution
environment for security updates.

The other approach is to directly modify virtual disks of
stopped VMs [1], [2], as illustrated in Fig. 2. This approach
downloads security updates outside VMs offline. One tool [2]
stores the downloaded security updates in the virtual disks.
Then, it applies the stored updates just after VMs are booted
and become online. This tool enables offline update of
stopped VMs, but it is not applicable to suspended VMs. If it
modifies virtual disks of suspended VMs, the disks are often
corrupted. This is because the guest operating system in
VMs caches filesystem state read from virtual disks. Unlike
stopped VMs, such caches in memory are saved on VM
suspension and restored on the resumption. Therefore, the
integrity cannot be kept between the old caches and the
modified virtual disks after VMs are resumed.

Another tool [1] not only downloads security updates but
also applies them to the virtual disks offline as much as
possible. Like the above tool, this tool cannot be used for
suspended VMs because it can corrupt the virtual disks.
In addition, this tool runs the update manager offline in
an emulated environment, but the emulation is incomplete.

emulation
environment

update

download manager

/
1
H
1
i
H
1
1
1
1
1
1
1
1
1
H
|
\

suspended VM resumed VM

resume
write

cache

\d

..............

Figure 3.

It is reported that the tool failed to apply several security
updates because the proc filesystem used in the emulation
environment was different from that in VMs. The proc
filesystem is dynamically generated by the operating system
and returns system information.

IIT. OUASSISTER

To enable consistent offline update of suspended VMs,
this paper proposes OUassister. Fig. 3 illustrates the proce-
dure of security updates in OUassister. OUassister runs the
update manager in its emulation environment outside a VM.
It can run the update manager securely because the provided
emulation environment is well maintained outside vulnerable
VMs. The update manager first downloads security updates
from the Internet and then applies those security updates
offline. At this time, OUassister emulates security updates
to a VM, instead of directly applying them. It records
information on files updated by the update manager. Since it
prevents the update manager from modifying a virtual disk
of the VM, the integrity of the virtual disk is kept even if
the VM is suspended and various caches are saved. Even
if this offline task takes time, the risk of the updated VM
does not increase because the VM are kept offline during
the update emulation.

When the VM is resumed and becomes online later, OUas-
sister just applies the emulation results to the VM. It first
transfers information on updated files to the VM. Then, it
creates, modifies, and removes files in the virtual disk inside
the VM. Since the VM itself updates its virtual disk using
various internal caches, the integrity of the virtual disk is
kept. If security updates contain scripts to be executed before
or after updating files, OUassister executes these scripts in an
appropriate timing inside the VM. The scripts are recorded
when the update manager applies security updates in the
emulation environment offline. Since the update manager
does not run online in the VM, this online task is much less
than traditional online update.

Using VM introspection [4], OUassister provides a more
accurate emulation environment for security updates of VMs
offline. VM introspection is a technique for securely access-
ing the internal state of VMs from the outside. This emula-

virtual virtual
disk disk

Offline update in OUassister.

tion environment provides the same filesystems including the
proc filesystem as well as regular files and directories. The
proc filesystem is a pseudo filesystem dynamically generated
by the operating system kernel and strongly depends on the
system running in a VM. For example, the proc filesystem
contains information on the configuration of the operat-
ing system and running processes. Therefore, OUassister
dynamically creates the proc filesystem by analyzing data
structure in the kernel memory of a VM. In addition,
OUassister emulates several system calls executed by the
update manager to return system information in a VM.

OUassister automatically extracts files updated by the
update manager using the union filesystem [5] in the em-
ulation environment. The union filesystem can create a lay-
ered filesystem by stacking multiple filesystems. OUassister
stacks an empty filesystem on top of the filesystem used
in a VM. Then, it records created, modified, and removed
files and directories in the upper layer. In addition, OUas-
sister automatically extracts scripts executed by the update
manager by hooking system calls. Since the update manager
issues a system call when it executes a script contained in
security updates, OUassister saves a script file specified by
the system call.

As such, OUassister can achieve mostly offline update of
suspended VMs by combining offline emulation with online
application. This idea is similar to the previous work [1],
which updates virtual disks of VMs offline and executes
only scripts online. One difference is that the offline task
in OUassister is not intrusive to VMs at all. OUassister
does not update any files in virtual disks from the outside
of VMs to prevent virtual disks of suspended VMs from
being corrupted. Also, it does not have to permit cloud
administrators to update users’ VMs although it needs the
permission only for reading the storage and memory of the
VMs. If it is not desirable to grant even this permission,
remote VM introspection [9] can be applied to run the update
manager in trusted remote hosts. The other difference is that
the execution environment emulated in OUassister is more
similar to that inside VMs. This can reduce the possibility
that the update manager fails to apply security updates by
the environmental differences.

VM
update manager suspended

trap system call
| Transcall |

7 N Y ———

t I] '

system ca i - guest 08 |

host OS B

Figure 4. Update emulation using Transcall.

IV. IMPLEMENTATION

We have implemented OUassister for Ubuntu Linux run-
ning on top of Xen. We ran the update manager in the priv-
ileged VM called DomO using the emulation environment
provided by OUassister. We assumed the apt command in
Ubuntu as an update manager, but we believe that OUassister
can apply the other update managers, e.g., yum in CentOS.

A. Accurate Emulation Environment

OUassister constructs an execution environment for accu-
rately emulating security updates using Transcall [7]. Tran-
scall is a tool that we have developed for monitoring VMs
outside them using VM introspection, as shown in Fig. 4.
It provides the shadow filesystem for transparent access to
the virtual disk of a VM. Using the shadow filesystem, the
update manager can access files and directories in the VM
as if it ran inside the VM. In addition, Transcall provides
the shadow proc filesystem for accessing system information
on the guest operating system in the VM, e.g., processes
and networks. The shadow proc filesystem is created by
analyzing the kernel memory of the VM and obtaining
necessary data in the guest operating system. This filesystem
is implemented using FUSE [10]. Since Transcall does not
support suspended VMs, we run Transcall after resuming a
VM but before restarting it. When the emulation of security
updates is completed, that almost resumed VM is simply
destroyed.

Also, Transcall emulates some of the system calls issued
by the update manager running in the emulation envi-
ronment. For example, when the update manager issues
the uname system call for obtaining information on the
guest operating system, Transcall obtains data in the guest
operating system and returns it. For most of the system
calls, e.g., related to filesystems and networks, Transcall
just redirects the invocation to the host operating system
in Dom0 on which Transcall is running.

B. Extracting Updated Files

To extract files and directories updated by the update
manager, OUassister uses aufs [8]. Aufs enables multiple

read overwrite remove create
A
\4 \4 \4
upper) ,])
branch (flle B) (flle .wh.C) (flle D)
A
copy
lower .) !
branch (flle A) (flle B) (flle C)
Figure 5. Extracting files from the upper branch.

directories called branches to be overlaid transparently. It
merges files and directories of branches and provides files
of an upper branch in a higher priority. OUassister mounts
the virtual disk of a VM to a directory and configures that
branch to read-only. In contrast, it configures a branch for
maintaining updated files to read-write. Then, it gives a
higher priority to the read-write branch. As a result, the read-
only branch becomes lower and the read-write one becomes
upper.

When the update manager writes data to the directory
mounted with aufs, the data is always written to the upper
branch, as shown in Fig. 5. If a target file does not exist,
aufs creates the file in the upper branch. If the file exists in
the lower branch, aufs copies the original file to the upper
branch. In any case, the lower branch is not modified and
the integrity of the virtual disk is kept. When the update
manager reads a file, aufs provides a file in the upper branch
if an updated file exists. Otherwise, aufs provides a file in
the lower branch. As such, OUassister can give an illusion
of updating the virtual disk to the update manager.

When the update manager removes a file or directories in
the lower branch, aufs creates a special file called a whiteout
file in the upper branch. A whiteout file indicates that the
corresponding file in the lower branch is removed. The name
of a whiteout file is .wh. <filename> where <filename>
is the name of a removed file. If there is a whiteout file
in the upper branch, the update manager cannot access
the corresponding file or directory in the lower branch. As
such, OUassister can give an illusion of removing files or
directories in the virtual disk. Since files or directories in
the lower branch are not really removed, the integrity of the
virtual disk is kept.

After security updates are applied to the directory
mounted with aufs, updated files and directories are ex-
tracted in the upper branch. First, OUassister searches all
the directories used for the upper branch and obtains the
paths of whiteout files. Then, it creates a list of removed
files and directories and removes the whiteout files. Next,
OUassister creates an archive of updated files and directories
and compresses it.

C. Extracting Scripts

During update emulation, OUassister also extracts exe-
cuted scripts, e.g., maintainer scripts in Ubuntu packages
and package-specific scriptlets in RPM packages. Such
package scripts are executed before or after installation and
uninstallation. OUassister does not execute package scripts
offline but saves them. To achieve this, it hooks the execve
system call issued by the update manager using Transcall
and obtains the path in which a script is located and the
arguments to the script. If the path is for a package script,
OUassister saves that script file with its arguments. Then,
it rewrites the path in the execve system call to a dummy
program, i.e., /bin/true, to prevent the script from being
executed offline.

This script extraction is a task specific to the package
management system. For Ubuntu packages, OUassister ex-
tracts four types of scripts: pre-installation and pre-removal
scripts and post-installation and post-removal scripts. The
path of a script is <package_name> . <script_type> in
the package directory or <script_type> in the temporary
directory. <script_type> is preinst, prerm, postinst,
or postrm.

D. Applying Emulation Results

OUassister applies the results of offline emulation to the
virtual disk of a target VM just after the VM is resumed
and becomes online. First, OUassister transfers the archive
of updated files and directories to the VM using the local
network. Then, it decompresses the archive, extracts files,
and copies them to the virtual disk inside the VM. Second,
OUassister transfers the list of removed files and directories
to the VM. In the VM, it removes files and directories from
the virtual disk on the basis of the list.

Also, OUassister executes saved package scripts while
applying emulation results. The scripts are executed with
saved arguments in a saved order. Before applying the
updates in files and directories, OUassister executes saved
pre-installation and pre-removal scripts. For example, these
scripts stop servers and unload kernel modules. After apply-
ing the updates in files and directories, OUassister executes
saved post-installation and post-removal scripts, which start
servers and load kernel modules, for example.

To prevent the resumed VM from being attacked while ap-
plying emulation results, OUassister temporarily disconnects
the VM from the Internet. It configures the local firewall of
the host operating system in Dom0 so that the VM cannot
communicate with the Internet, as illustrated in Fig. 6. Note
that it allows communication only with OUassister because
OUassister needs to transfer emulation results to the VM.
After applying emulation results, OUassister removes the
added firewall rules. As a result, the VM cannot communi-
cate with the Internet for a while just after resumed, but it is
acceptable if the time of applying emulation results is short
enough.

Dom0O resumed VM

A
OUassister \0C" a0 |yl OUassister

’ y

firewall |qd---cccccoooooo___]
: external

: communication

|

\ 4
Intevrnet virtual
disk

Figure 6. Online application in an isolated network.

V. EXPERIMENTS

We examined the effectiveness of offline update in OUas-
sister. For comparison, we executed traditional online update
inside a VM, which we call in-VM update. In the experi-
ments, we used a PC with an Intel Xeon E5630 processor,
6 GB of memory, 250 GB of HDD, gigabit Ethernet. We
ran Xen 4.1.3 and Ubuntu 12.04 LTS in Xen’s Dom0. We
used a VM with one virtual CPU, 512 MB of memory, and
4 GB of virtual disk. We also ran Ubuntu 12.04 LTS in the
VM. During the offline task in OUassister, we suspended
the VM.

We executed four types of software updates using the
apt command: (1) installing the nginx web/proxy server,
(2) uninstalling it, (3) updating the OpenSSL library, and
(4) updating the package list. Since the nginx-full package
depended on five packages, its installation and uninstallation
caused those of six packages in total, respectively.

A. Update Time

First, we measured the online update time, which is the
time needed for applying software updates inside a running
VM. For OUeassister, the online update time is the time for
only the online task performed after a VM is resumed. For
traditional in-VM update, it is the time for the entire security
updates including package download. As shown in Fig. 7,
OUassister could reduce the online update time successfully.
In-VM update took 10-23 seconds to apply each software
update, while OUassister required only 2.5-5.9 seconds. The
online update time in OUassister was 11-57% of in-VM
update.

Next, we measured the total update time, which is the
sum of the offline and online update time, when we used
OUassister. The time with its breakdown is shown in Fig. 8.
Emulating software updates and archiving updated files
were done offline, while applying emulation results was
done online. The emulation time is the time for emulating
software update offline and it was 7.7-12 seconds. One
reason why the time was shorter only in uninstalling nginx
is that uninstallation did not need to download packages

W
o

Il OUassister 1
Il in-VM N

i

N
(%)
I

n
o
I

online update time (sec)
s &
T T

nginx ginx openssl list
install unlnstall update update
Figure 7. The online update time.
30 ‘
| [mE emulation
25~ |H archive b
| |EEM application |
g 201 B
<o
> f J
E 151 i
Q
g2 L J
B
S0 -
5 - —
0 - n "
nginx nginx openssl list
instal uninstall update update

Figure 8. The breakdown of the total update time in OUassister.

from the Internet. The archive time is the time for creating
a compressed archive of files and directories updated by
the update manager and it was proportional to the file size.
As shown in Fig. 9, the size of files modified by installing
and uninstalling nginx was much smaller than that of files
modified by updating openssl| and the package list.

Compared with Fig. 1, the total update time in OUassister
became shorter than that in in-VM update when we installed
and uninstalled nginx. This is because applying software
updates inside the VM suffered from virtualization overhead,
particularly in terms of its disk and network. In contrast,
the total time was longer in OUassister when we updated
openssl and the package list. Possible reasons are the
overhead of handling larger archives and larger emulation
overhead.

B. Extracted Files and Scripts

We examined the files and scripts extracted after the
results of update emulation in OUassister. Fig. 10 shows
the number of updated files and directories. Updated files
included the data, cache, and log of the package management
system and the database for man as well as files contained
in the updated packages. While no file was removed in the

150 ‘

I original
125- ' compressed

il

file size (MB)
~
a
T

N ()
o o
T T
L

nginx nginx openssl| list
install un|nsta|| update update
Figure 9. The size of updated files and directories.

250

I updated
200 |MEE removed

150
. I I |
0 I

nginx nginx openssl| list
install unlnstall update update

of files and directories

o
o
T

Figure 10. The number of updated files.

nginx installation, one file was removed in the openssl
update. For nginx, the total number of updated and removed
files in uninstallation was less than that in installation.
Compared with Fig. 9, the total size of updated files did
not depend on the number.

Fig. 11 shows the breakdown of scripts extracted when
OUassister emulated software updates. The number of
scripts depended on the number of updated packages. Six
packages were installed and uninstalled for nginx, respec-
tively, while only one package was updated for openssl.
Interestingly, when nginx was uninstalled, not only pre- and
post-removal scripts but also post-installation scripts were
extracted. This is because the post-installation script of man-
db was executed and its database was updated.

C. Accessed Files in the Proc Filesystem

To show that our accurate emulation environment for the
update manager is necessary, we examined accessed files
in the shadow proc filesystem, which provides dynamically
generated system information in a VM. Table I shows the
files accessed by the apt command. For the first two files and
one directory, the contents depend on the kernel configura-
tion. Since the kernel can be different between the inside and

Table T
FILES IN THE SHADOW PROC FILESYSTEM ACCESSED BY APT.

file description

/proc/filesystems
/proc/sys/kernel/ngroups_max

a list of filesystems supported by the kernel

the maximum number of process’s group memberships
information on IPv6

status information on the process with pid

a symbolic link to the init process’s root directory
information on the process accessing the proc filesystem

/proc/sys/net/ipv6/
/proc/[pid]/stat
/proc/1/root/
/proc/self/
12
I I preinst
10~ B prerm |
t Il postinst| |
sl B postrm | |
(2]
2]
3 6 -
6 F 4
H*
a4 |
1 I 7
0 n - n
nginx nginx openssl| list
instal uninstall update update

Figure 11. The breakdown of extracted scripts.

the outside of a VM, emulation is required for the correct
behavior of the apt command. For the fourth file, it is also
necessary that the apt command examines processes running
inside a VM. In contrast, the remaining two directories do
not require emulation. The root directory of the init process
does usually not change. Since the apt process does not
really run inside a VM, /proc/self should point to the
process running outside a VM. In fact, Transcall creates a
symbolic link of /proc/self to information on the apt
process outside a VM.

VI. RELATED WORK

Ivanti Patch for Windows [2] (formerly known as Shavlik
NetChk Protect) enables offline update of VMs. It directly
writes security updates in the virtual disk of a VM. When
the VM starts running, it automatically executes the security
updates stored in the virtual disk. This tool requires applying
security updates online, but it can download security updates
offline. This leads to less online update time and decreases
the attack surface during security updates. In addition, this
tool can prevent attacks by disconnecting a vulnerable VM
from the Internet during security updates. However, it is not
applicable to suspended VMs because the integrity of the
virtual disk cannot be kept.

Niiwa [1] is another tool for offline update of VMs.
It directly updates the virtual disk of a VM by applying
security updates outside the VM. In addition, it enables
offline execution of the scripts contained in security updates
as much as possible. First, it classifies scripts into ones

that can be executed offline and the others. It rewrites
scripts that cannot be executed offline and executes modified
ones. If scripts cannot be rewritten appropriately, Niiwa
executes them online. However, this tool has to give cloud
administrators permissions for updating the virtual disks of
VMs. Worse, it cannot be applied to suspended VMs.

Microsoft Virtual Machine Servicing Tool [3] runs VMs
in a dedicated execution environment and applies security
updates inside the VMs. In the execution environment, the
local server downloads security updates whenever new ones
are issued. When updating not-running VMs, the tool moves
the VMs to the execution environment and boots or resumes
them. The VMs download security updates securely from the
local server and update themselves. After security updates
are applied, the tool stops or suspends the VMs again and
moves them back to the original host. This tool can be also
applied to suspended VMs, but cloud administrators need
permission for accessing users’ VMs.

Aufs-based upgrade [11] in Ubuntu can simulate and test
release upgrades. It creates a writable overlay on top of the
root directory except for the home directory. If the upgrade
does not work well, it is easily canceled by simply removing
the upper branch of aufs. However, this tool does not have
a mechanism for merging the upper and lower branches to
eliminate the overhead of aufs after a successful upgrade.
Solaris Live Upgrade [12] can minimize the downtime and
risk when security updates are applied and the system is
upgraded. It creates a copy of the root filesystem and
modifies files in it. Using ZFS, the copy is performed only
for modified files by the copy-on-write mechanism. If the
system does not work well after updates, it can be reverted
to the previous state immediately using the original root
filesystem.

The overlay filesystem [13] is newer implementation of
the union filesystem. Recently, it is used as a storage backend
of Docker containers [14]. To simplify the implementation
and optimize the performance, it limits the number of
stacked layers only to two. Since OUassister requires only
two layers, i.e., the filesystem used in a VM and that
for updated files, it can use the overlay filesystem instead
of aufs. Using the overlay filesystem can reduce the time
needed for extracting files from security updates offline.

VM introspection was first proposed for intrusion detec-
tion in Livewire [4]. Livewire provides operating system

libraries to run intrusion detection systems customized for it.
Many systems using VM introspection have been proposed,
but only VMST [15] and our Transcall [7] can run existing
tools without modification for monitoring a VM. VMST runs
monitoring tools in one dedicated VM for each target VM
and redirects introspection-related memory access inside the
dedicated VM to the memory of the target VM. Therefore,
it needs to prepare as many dedicated VMs as simultane-
ously updated VMs. In contrast, Transcall needs only one
dedicated process for emulating trapped system calls and
one FUSE process for the shadow proc filesystem. When
many VMs are updated simultaneously, the architecture of
Transcall is preferable.

VII. CONCLUSION

In this paper, we proposed OUassister for enabling consis-
tent offline update of suspended VMs. OUassister emulates
security updates of VMs offline more accurately using VM
introspection. Then, it extracts updated files by using the
union filesystem and executed scripts by hooking system
calls. When VMs are resumed and become online, OUas-
sister just applies the emulation results to the VMs. Since
OUassister does not modify virtual disks of VMs at all
while the VMs are suspended, the integrity of the disks is
kept. We have implemented OUassister in Xen, Transcall,
and aufs. We confirmed that OUassister enabled successful
offline update of suspended VMs and achieved shorter online
update time.

One of our future work is to examine the performance
degradation of VMs due to the application of many security
updates on VM resumption. We expect that the performance
degradation is much smaller than online update. For this
purpose, we need to investigate how many security updates
are created in certain periods. Another direction is to apply
OUassister to suspended VMs in other virtualized systems,
e.g., KVM, vSphere, and Hyper-V. Since we have already
developed Transcall for KVM [16], we could port OUassis-
ter to KVM easily. In addition, it is desirable to integrate the
technique of script rewrite used in Niiwa [1] into OUassister.
Such integration can reduce the online execution time of
package scripts.

ACKNOWLEDGMENT

The research results have been achieved by the “Resilient
Edge Cloud Designed Network (19304),” the Commissioned
Research of National Institute of Information and Commu-
nications Technology (NICT), Japan.

REFERENCES

[1] W. Zhou, P. Ning, X. Zhang, G. Ammons, R. Wang, and
V. Bala, “Always Up-to-Date: Scalable Offline Patching of
VM Images in a Compute Cloud,” in Proc. Annual Computer
Security Applications Conf., 2010, pp. 377-386.

[2] Ivanti, “Patch for Windows Servers,” https://www.ivanti.com/
products/patch-management.

[3] Microsoft Corporation, “Virtual Machine Servicing Tool
(VMST) 2012, https://technet.microsoft.com/en-us/library/
jj149757 .aspx.

[4] T. Garfinkel and M. Rosenblum, “A Virtual Machine Intro-
spection Based Architecture for Intrusion Detection,” in Proc.
Network and Distributed Systems Security Symp., 2003, pp.
191-206.

[5] J. Pendry and M. McKusick, “Union Mounts in 4.4BSD-lite,”
in Proc. USENIX 1995 Technical Conf., 1995, pp. 25-33.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the Art of
Virtualization,” in Proc. Symp. Operating Systems Principles,
2003, pp. 164-177.

[71 T. Tida and K. Kourai,
http://www.ksl.ci.kyutech.ac.jp/oss/transcall/.

“Transcall,”

[8] J. Okajima, “Aufs5 — Advanced Multi Layered Unification
Filesystem Version 5.x,” http://aufs.sf.net.

[9] K. Kourai and K. Juda, “Secure Offloading of Legacy IDSes
Using Remote VM Introspection in Semi-trusted Clouds,” in
Proc. IEEE Int. Conf. Cloud Computing, 2016, pp. 43-50.

[10] N. Rath, “libfuse: The Reference Implementation of the Linux
FUSE (Filesystem in Userspace) Interface,” https://github.
com/libfuse/libfuse.

[11] M. Vogt, “AufsBasedUpgrades — Ubuntu Wiki,” https://wiki.
ubuntu.com/AufsBasedUpgrades.

[12] Oracle Corporation, “How to Upgrade and Patch with Oracle
Solaris Live Upgrade,” Oracle White Paper, 2010.

[13] M. Szeredi, “Overlay Filesystem,” https://www.kernel.org/
doc/Documentation/filesystems/overlayfs.txt.

[14] Docker, Inc., “Docker: Build, Ship, and Run Any App,
Anywhere,” https://www.docker.com/.

[15] Y. Fu and Z. Lin, “Space Traveling across VM: Automatically
Bridging the Semantic Gap in Virtual Machine Introspection
via Online Kernel Data Redirection,” pp. 586-600, 2012.

[16] K. Kourai and K. Nakamura, “Efficient VM Introspection
in KVM and Performance Comparison with Xen,” in Proc.
Pacific Rim Int. Symp. Dependable Computing, 2014, pp.
192-202.

