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Abstract: As action recognition undergoes change as a field under influence of the recent deep learning trend, and while research 
in areas such as background subtraction, object segmentation and action classification is steadily progressing, 
experiments devoted to evaluate a combination of the aforementioned fields, be it from a speed or a performance 
perspective, are far and few between. In this paper, we propose a deep, unified framework targeted towards suspicious 
action recognition that takes advantage of recent discoveries, fully leverages the power of convolutional neural 
networks and strikes a balance between speed and accuracy not accounted for in most research. We carry out 
performance evaluation on the KTH dataset and attain a 95.4 percent accuracy in 200 milliseconds computational 
time, which compares favorably to other state-of-the art methods. We also apply our framework to a video surveillance 
dataset and obtain 91.9 percent accuracy for suspicious actions in 205 milliseconds computational time. 
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1 INTRODUCTION 

The past few years have witnessed significant progress in 

the field of action recognition, with new research in areas 

such as background subtraction, object segmentation and 

action classification coming out at an increasing pace, and 

more and more applications to automatic video classification 

and video surveillance being found. Moreover, the recent 

deep learning trend has brought about a data-based change 

in how these areas are approached, with a focus on large 

datasets and generalization to all kinds of scenes. 

However, while deep learning has been and is being 

applied to an increasing number of fields, not many attempts 

have been made at combining these efforts into a unified 

framework, and practically no evaluations have been 

recently carried out to measure both speed and performance 

of commonly-used techniques. In this paper, we explore the 

current state-of-the-art computer vision techniques, focusing 

on optical flow estimation, background subtraction and 

action classification, propose a unified action recognition 

method that takes advantage of all these advances and apply 

it to abnormal scenes. 

The paper is structured as follows. In Section 2, we 

describe prior research on related fields and outline methods 

relevant to our research. In Section 3, we delve into the 

framework’s implementation and provide a step-by-step 

explanation from video input to final action classification. 

Finally, Section 4 is devoted to experimenting, complete 

with background regarding choice of training and test 

datasets, as well as interpretation of results. 

2 RELATED WORK 

2.1 Background subtraction 

Depending on performance needs, one might simply use 

frame differencing, or a dynamic method [1] [2] to estimate 

the background of a given scene. These methods are usually 

used on a whole frame or two frames at a time and may 

require prior knowledge of the processed scene. One 

technique which does not follow that paradigm is deep 

background subtraction [3], which operates by dividing a 

frame into small pixel-centered patches and classifying these 

as background or foreground patches. It should be noted that 

focusing on these pixel-centered patches instead of the whole 

scene does not hamper performance. Also, contrary to 

expectations, using only a small number of frames (25 to 50) 

suffice to obtain very good to excellent results and allows for 

camera stabilization and shadow removal among other 

benefits. 

2.2 Optical flow 

Optical flow estimation has traditionally been done using 

differential methods, be they sparse like the Lucas-Kanade 

method [4], or dense like the Farnebäck method [5] and the 

TV-L1 method [6]. While speed and accuracy vary wildly 

across these kinds of methods, a major drawback common to 

all of them is lack of generalization to large data. One 

breakthrough in this domain is FlowNet [7], an optical flow 

estimation method that uses convolutional neural networks 

to take advantage of large datasets. FlowNet 2.0 [8], an 

improved iteration standing as the current state-of-the-art, 

has also been released, as well as a dataset aimed at stereo 



optical flow estimation [9]. It is worth pointing out that while 

datasets used for training purposes are artificial (with some 

created with 3D modeling software), the resulting models 

generalize surprisingly well to real-world data. 

2.3 Action classification 

Action classification relies mostly on extracting features. 

These can either be handcrafted like Motion History Images 

[10], Motion History Volumes [11] or Directional Motion 

History Images [12] [13] [14] and processed using SVMs for 

example, or automatically computed using neural networks 

such as two-stream convolutional networks [15], which 

combine both static features and optical-flow-powered 

dynamic features to achieve great video recognition 

performance. Temporal segment networks [16] expand on 

that concept in an original way, by operating on small 

snippets instead of a large, possibly unrepresentative part of 

the video. This technique leads to state-of-the-art results on 

various datasets and changes the way we are thinking about 

how to handle video inputs to a convolutional neural network. 

3 THE FRAMEWORK 

The present research will be focusing on action 

recognition using deep background subtraction, deep optical 

flow estimation, and two-stream convolutional networks. 

3.1 Deep background subtraction 

We use the method described in [3] to achieve efficient 

background subtraction with the use of convolutional neural 

networks. More specifically (assuming we are inputting a 

grayscale video): 

1. We construct a simple background model of the 

video input by computing a temporal average of each 

pixel. 

2. We generate for each input frame a 3-channel frame, 

where the first channel is the untouched input, the 

second channel is the background model, and the 

third channel is left empty. 

3. We extract for each pixel of the generated frame a 

square patch centered around that pixel, and we feed 

it to the neural network. 

4. The neural network, if training, learns from the input 

patches, given pixel-precise ground truth; if 

predicting, it classifies each patch as either 

background or foreground. 

5. We generate the foreground video based on the 

above classification results and pass it on to the 

optical flow estimation part of the framework. 

 

Results of the above steps on sample frames can be seen 

in Fig. 1. The background model, while retaining faint traces 

of motion, is sufficiently accurate for an uncluttered scene. 

The 3-channel frame shows the static background as brown, 

and motion (including removed shadows) as red. 

3.2 Optical flow estimation 

We rely on FlowNet 2.0 [8] for deep optical flow 

estimation. A variety of pre-trained models were made 

available by the University of Freiburg 

(https://github.com/lmb-freiburg/flownet2), all differing in 

speed and accuracy. We aim for maximum accuracy and 

choose the “FlowNet2” model. The resulting output is usable 

as-is. However, the raw optical flow for a single frame pair 

is over 100 kilobytes, which is inconvenient when training 

the action classifier since GPU memory is quite limited. 

To work around this, we use post-estimation      

optical flow compression inspired by dense_flow 

(https://github.com/yjxiong/dense_flow) to push file size 

down to less than 2 kilobytes. Compression here means 

saving optical flow information to two grayscale images, 

each representing an axis, and computed using Equation (1), 

where ݔ is the estimated optical flow value for the working 

axis, ݂ሺݔሻ the computed image, and ߙ a parameter acting 

as an optical flow bound. 

݂ሺݔሻ ൌ ቐ
ݔ																									0 ൏ െߙ
255 ∗

௫ାఈ

ଶఈ
|ݔ|								 ൏ ߙ

ݔ																							255 ൐ ߙ

  (1) 

Example results can be seen in Fig. 2., with the images 

to the left representing the horizontal axis, and the images to 

the right the vertical axis. We can observe significant 

improvements when optical flow estimation is preceded by 

deep background subtraction. 

 

 
Fig. 1. Deep background subtraction on a sample frame 



 
Fig. 2. Sample optical flow estimation (left optical flow 
images represent the horizontal axis, right optical flow 

images represent the vertical axis) 
 

 3.3 Action classification 

While action classification can be performed using a 

variety of more or less deep methods, in this paper, we adopt 

two-stream convolutional networks as a simple yet modular 

way to accurately recognize human actions. To summarize 

the method described in [15] and [17]: 

1. We alternately stack a number of optical flow frame 

pairs (representing both axes) and feed them into a 

convolutional network for training or classification. 

2. We augment the optical flow input before the first 

layer for improved training and classification. 

3. We begin from step 1 again for a number of times 

(and choosing different optical flow frames) and 

average the obtained training losses or predictions. 

4 EXPERIMENTS 

This section is devoted to testing our action recognition 

framework using multiple sets of networks and parameters. 

Subsection 1 will describe the hardware and software 

environment we worked under. Subsection 2 will be about 

the datasets used as well as training and test details. 

Subsection 3 is the results’ section, with computational time 

required and comparisons to state-of-the-art methods are 

included. 

4.1 Working environment 

Our hardware working environment is as follows: 

- Processor: Intel Core i7-6950 @ 3GHz, 10 cores, 20 

logical processors 

- Physical memory: 128 GB 

- GPU: NVIDIA GeForce GTX 1070, 1920 CUDA 

cores, 8 GB memory 

As for software, we use Ubuntu 16.04 as our operating 

system, as well as stock and custom versions of Caffe [18]. 

4.2 Datasets, training and test details 

For training and predicting in the case of deep 

background subtraction, we use the same network as in [3], 

which is LeNet-5 [19] slightly modified to get better results 

and trained on the 2014 motion detection database available 

at ChangeDetection.net [20]. More specifically, we use the 

shadow detection dataset and focus on shadow removal as it 

is most relevant to our human action dataset. We use 48 

frames for training and 6 frames for testing. Other motions, 

such as camera jitter and zooming, will be the object of 

further research. We let the training run for 100,000 iterations, 

with a batch size of 20,000 and an initial learning rate of 0.01 

that decreases asymptotically. 

As for action classification, we use the VGG-19 network 

[21] and the ResNet-18/ResNet-101 networks [22]. We let 

training run for 90,000 iterations (differing from [17] as we 

only use one GPU), with an initial learning rate of 0.005 that 

is divided by 10 each 30,000 iterations. We use a batch size 

of 50 for VGG-19, 88 for ResNet-18 and 15 for ResNet-101. 

We first apply the framework to the KTH dataset [23] and 

choose the VGG-19 and ResNet-18 networks. We split the 

dataset into a training set comprising two-thirds of the videos, 

and a test set comprising one-third of the videos. It is worth 

noting that while comparisons to state-of-the-art methods 

will be made later in the paper, the way the KTH dataset is 

split can lead to up to a 10% difference in accuracy [24], 

which can make comparisons less reliable that they seem. 

We then carry out a second experiment on a video 

surveillance dataset used in [25], where a camera installed at 

the Grand Central Station of New York captured an hour-

long video at 1 frame per second that has been subsequently 

annotated with trajectories of 12,684 pedestrians. Example 

trajectories can be found in Fig. 3 and Fig. 4. 

 

 
Fig. 3. Example of a suspicious trajectory 



 
Fig. 4. Example of an ordinary trajectory 

 

We manually annotated each trajectory as either 

suspicious (940 trajectories) when the pedestrian seemed to 

follow a non-linear or premeditated path, or ordinary (11,744 

trajectories) when the pedestrian did not seem to follow any 

kind of structured path. To extract the region of interest for 

each trajectory, we first applied deep background subtraction 

to each relevant frame, then cropped the frame to a 20x60 

patch centered around the spatial coordinates of the person 

of interest. We choose the ResNet-101 network for this 

experiment to allow for better generalization. 

Finally, the output of the optical flow estimation method 

we used depends on the value of the bound parameter. For 

the KTH dataset, experimenting led us to choose a value of 

5, striking a balance between small and large motions, a 

value we kept for the video surveillance dataset as the 

movements were uniform enough that the parameter value 

did not affect results. 

4.3 Results 

Results of the experiment can be found in Table 1 and 

Table 2. We also include computational time required per 

frame in Table 3, as well as accuracy comparisons to state-

of-the-art methods for the KTH dataset in Table 4. 

While the method we propose is not suitable for real-time 

action recognition (5 frames per second against typically 30 

or 60 frames per second required), we believe it could be 

used for purposes such as video surveillance and suspicious 

action recognition, where a few seconds’ delay is usually 

acceptable. 

 
Table 1. Results of the experiment on the KTH dataset 
Action VGG-19 

network 

ResNet-18 

network 

Walking 97.9% 99.3% 

Boxing 100% 96.5% 

Running 86.7% 86.1% 

Jogging 95.5% 91% 

Handclapping 100% 99.3% 

Handwaving 92.4% 93.7% 

Total 95.4% 94.3% 
 

Table 2. Results of the experiment for the video 
surveillance dataset (confusion matrix) 

Real/predicted behavior Ordinary Suspicious 

Ordinary 80.3% 19.7% 

Suspicious 8.1% 91.9% 

 
Table 3. Framework computational time 

Operation Time required 

Background subtraction 75 milliseconds 

Optical flow estimation 30 milliseconds 

Action classification (VGG-19) 95 milliseconds 

Action classification (ResNet-18) 75 milliseconds 

Action classification (ResNet-101) 100 milliseconds 

Total (VGG-19) 200 milliseconds

Total (ResNet-18) 180 milliseconds

Total (ResNet-101) 205 milliseconds

 
Table 4. Comparison to state-of-the-art methods (KTH) 
Method Accuracy 

Schuldt et al. [23] 71.7% 

Han et al. [26] 93.1% 

Kim et al. [27] 95.3% 

Ahsan et al. [12] 95.6% 

Our method (VGG-19) 95.4% 

Our method (ResNet-18) 94.3% 

5 CONCLUSION 

In this paper, we proposed a unified action recognition 

framework combining background subtraction, optical flow 

estimation and action classification all in a single ready-to-

use solution. We tested our method using the KTH and 

ChangeDetection.net datasets, and the LeNet-5, VGG-19 

and ResNet-18 networks. We attained a 95.4 percent 

accuracy in 200 milliseconds computational time, which 

compares favorably to other state-of-the art methods. We 

also carried out a second experiment on the video 

surveillance dataset in [25] and obtained 91.9 percent 

accuracy for suspicious actions. 

Various topics are open to future research. Using a larger 

dataset for deep background subtraction would help in 

detecting larger and wider motion changes. Relying on 

different models for optical flow estimation would enable 

one to choose more efficiently between maximizing either 

speed or accuracy. Finally, using larger human action 

datasets such as UCF101 [28], HMDB-51 [29] and Youtube-

8M [30], as well as experimenting with temporal segment 

networks [16] and other convolutional networks may lead to 

better action classification accuracy. 
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