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ABSTRACT OF THESIS

Optimal Gateway Placement in Low-cost Smart Cities

Rapid urbanization burdens city infrastructure and creates the need for local govern-

ments to maximize the usage of resources to serve its citizens. Smart city projects

aim to alleviate the urbanization problem by deploying a vast amount of Internet-

of-things (IoT) devices to monitor and manage environmental conditions and infras-

tructure. However, smart city projects can be extremely expensive to deploy and

manage partly due to the cost of providing Internet connectivity via 5G or WiFi to

IoT devices. This thesis proposes the use of delay tolerant networks (DTNs) as a

backbone for smart city communication; enabling developing communities to become

smart cities at a fraction of the cost. A model is introduced to aid policy makers

in designing and evaluating the expected performance of such networks and results

are presented based on a public transit network data-set from Chapel Hill, North

Carolina and Louisville, Kentucky. We also demonstrate that the performance of

our network can be optimized using algorithms associated on set-cover and Influ-

ence maximization problems. Several optimization algorithms are then developed to

facilitate the effective placement of gateways within the network model and these al-

gorithms are shown to outperform traditional centrality-based algorithms in terms of

cost-efficiency and network performance. Finally, other innovative ways of improving

network performance in a low-cost smart city is discussed.

KEYWORDS: smart cities, delay tolerant network, iot, placement optimization
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Chapter 1 Introduction

1.1 Background

Urbanization, which refers to the migration of people from rural areas to urban com-

munities, has increased rapidly in the past few decades placing an extra burden on

the infrastructure in urban areas. An urban area typically refers to a community

where the population density exceeds 1,000 persons per square mile [1]. Currently,

55% of the world’s population live in urban communities, and this percentage is pro-

jected to rise to 68% by 2050, with approximated 6.7 Billion people living in urban

areas [1]. Policy makers are thus tasked with finding more effective methods for

managing limited public resources to meet the needs of its citizens.

Smart city initiatives have been proposed as a way to alleviate the challenges aris-

ing from urbanization. Smart city projects involve the deployment of a vast number

of Internet-of-things (IoT) devices across communities to monitor and manage envi-

ronmental conditions and public infrastructure. These IoT devices, which includes

devices like weather sensors, traffic monitors and parking meters/monitors generate

a significant amount of data. The data generated these sensors typically needs to be

collected and forwarded to remote servers located in the cloud for processing. The

need for data retrieval in smart cities has thus necessitated research into the design of

communication network architecture for smart cities that can forward data generated

by sensors to the cloud in an efficient and reliable manner. Transforming a city into

a smart city has also proven to be very expensive. For example, cities such as San

Diego, New Orleans, London, and Songdo have either proposed or invested in smart

city projects that cost between $30 Million and $40 Billion [2–5]. The high cost has

made many city governments reluctant to invest in smart city projects [6, 7], espe-

cially when there aren’t very strong guarantees about the sustainability and impact of

such projects. Therefore, finding ways to significantly reduce the cost of transforming

traditional cities into smart cities is critical.
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Currently, most smart city solutions that make use of IoT devices (many of which

may be outdoors) rely on cellular network connectivity for collecting the data gen-

erated by these sensors [8]. The reason for the popularity of cellular networks is

that it guarantees data delivery with relatively little network latency. The main dis-

advantage of cellular connectivity however is the additional operating cost incurred

as a result of the data subscription costs associated with each sensor [8]. This cost

becomes significant when dealing with hundreds or even thousands of sensors to be

deployed within a city. Also, since such sensors would be connecting to the same

cellular base stations as those being used by mobile phones of citizens, these IoT

devices can quickly lead to network congestion in cities and poor user experiences.

Hence, other alternative and cost-effective methods of data retrieval in smart cities

need to been explored.

In this thesis, we propose a low-cost network architecture that can serve as an

alternative to cellular connectivity for data retrieval in smart cities. The architecture

leverages the pre-existing mobility of people and vehicles in a city to create an oppor-

tunistic communication network for delivering IoT data to the cloud. Our network

does not require subscription fees hence reducing the cost of maintaining a smart city.

1.2 Thesis Overview

Chapter 2 provides a detailed description of our proposed network architecture for

low-cost smart cities and a mathematical model for estimating the upper bound

for delivery latency. In Chapter 3, we develop a simulator for our network that

uses real-world public transportation timetables to help in evaluating the various

performance metrics. In Chapter 4, we consider several optimization problems present

in our network architecture and we propose several of algorithms for solving these

problems. Finally, in chapter 5 we discuss future directions of this work including

classifying sensor data into categories, exploring pedestrian incentivization strategies,

and integrating pedestrian mobility into network simulations.

Copyright© Oluwashina Madamori, 2019.
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Figure 1.1: An urban area
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Chapter 2 Using Delay Tolerant Networks as a Backbone for Low-cost

Smart Cities

2.1 Introduction

The term “delay-tolerant networking” or “delay-tolerant network”, abbreviated as

DTN, refers to a type of network architecture that relies on a store-carry-forward

paradigm to transmit data packets from a source node to a destination node with the

aid of forwarding/intermediary nodes in the network. A DTN typically consist of some

mobile nodes, where communication between nodes is subject to frequent disruption

and disconnection resulting in long delays and intermittent connectivity [9]. The first

major research work to propose DTNs was by Kevin Fall in 2003 [10], which has

motivated subsequent research in the field of DTN including applications in wild life

management, agriculture, and vehicular communication [11–13].

In this chapter, we propose a low-cost DTN-based network architecture that could

potentially serve as an alternative to cellular connectivity for IoT devices in smart

cities. Our network architecture leverages the pre-existing mobility of pedestrians

and public vehicles to create opportunistic communication networks for delivering

IoT data to the cloud. The goal is to provide city planners with a viable and cheaper

alternative to Internet connectivity for IoT devices in smart cities, by eliminating or

reducing the associated Internet subscription fees.

However, previous research [14] has shown that the two main limitations of DTNs

compared to cellular networks are: (i) low and unpredictable probability of delivery,

and (ii) high and unpredictable network latency. Therefore, in order for a DTN-based

architecture to serve as a backbone for smart city communication, the aforementioned

limitations need to be addressed. Addressing these limitations would help city devel-

opers ensure that such a network meets quality of service (QoS) requirements [15].

To demonstrate that DTNs can serve as a backbone for smart city communication,

we develop a mathematical model to characterize the entities participating in our
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network and how these entities interact with one another. The model can also help

policy makers understand how changes in their transit system with respect to transit

scheduling, gateway deployment, sensor placement, ridership levels, and number of

participating citizens can impact performance in their low-cost smart city. The rest of

the chapter is structured as follows: Section 2.2 describes the tools used in this work

to capture data-sets from real-world public transit systems. Section 2.3 describes

the proposed model. Section 2.4 provides preliminary results. Finally, Section 2.5

describes the next steps in this work and the need for incentivization strategies that

can be used to maximize delivery probability and minimize latency.

2.2 Understanding City Public Transportation

Many cities currently provide highly reliable information on the Internet about their

public transit network. Popular sources include OpenMobilityOrg which contains

General Transit Feed Specification (GTFS) data [16] and NextBus [17]. These data

includes static information that specify bus routes, stops, and operating schedules. In

addition, OpenMobilityOrg and NextBus provide real-time information about GPS

location and expected arrival times of buses within various city transit networks. To

validate the model presented in this work, the NextBus API was used to obtain data

about the bus routes in the city of Chapel Hill, North Carolina. The data retreived

contained descriptions of bus routes, trip directions, and stops per route for all buses

in operation during the month of July, 2018. The characteristics of Chapel Hill public

transportation are listed in Table 2.1.

Table 2.1: Chapel Hill Public Bus Characteristics

Numbers of routes 32
Distance of routes µ = 15.70 km, σ2 = 7.32 km

Stops per route µ = 72.6, σ2 = 52.44

Buses per route µ = 1.79, σ2 = 1.00

5



Figure 2.1: Opportunistic communication for low-cost smart cities

2.3 Modeling Low-cost Smart Cities

A smart city consists of many entities. The entities along with assumptions about

their characteristics are as follows:

• Bus routes - are taken by buses. Due to the recurring nature of buses visiting

the same stop, can be represented by circles, each with a circumference corre-

sponding to the total distance for that route. In addition, the locations of all

buses, bus stops, gateways, and on-route sensors are restricted to points on a

circle representing a bus route.

• Buses - move along predefined routes on a fixed schedule, hence, the specific

geographic position of any bus can be calculated at any time. Buses are also

expected to move at a constant average velocity (including stops) throughout

a route trip, thus assigning every bus a fixed round-trip time. Buses have

buffer/queue sizes of infinity and do not use any type of drop-policy for stored

data.
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• Pedestrians - people who sign-up to join the low-cost smart city using their

smartphones. Data packets from sensors are forwarded to their smartphones

using Bluetooth 5 when they come within transmission range of a sensor. The

data is stored on the phone until the pedestrian comes within transmission

range of a bus or gateway and forwards the data to corresponding node.

• Sensors - broadly classified into two categories based on their location: on-

route and off-route sensors. On-route sensors are those located at stop-lights,

street-lights, and bus stops; and are within transmission range of buses travel-

ling on a bus route. Any sensor that is not an “on-route sensor” is classified as

an off-route sensor. Off-route sensors have an additional parameter associated

with them called the “pedestrian arrival rate,” which specifies the likelihood of

a participating pedestrian coming in contact with the sensor. Although pedes-

trians are not essential for retrieving on-route sensor data, they are vital in the

retrieval of off-route sensor data. In addition, individual data packets generated

by sensors are considered to be small, allowing sensor buffer/queue size to be

infinity and no drop policy needed.

• Gateways - stationary, always-on, always-connected devices that forward data

directly to the cloud. Not all bus stops are gateways, but rather gateways are

placed at select bus stops. Gateways act as the final destination for all data

generated by sensors.

Assumptions

The model makes several assumptions about the DTN within a smart city. Each bus

route has at least one gateway, and buses operate round the clock everyday. Further-

more, a connection is always established between the sensor and bus (or pedestrian)

whenever a bus (or pedestrian) passes a sensor, and all data at the sensor is trans-

ferred to the bus (or pedestrian). In addition, there is no routing from pedestrian to

pedestrian or from bus to bus.

7



As the model is further developed some of the aforementioned assumptions will

be relaxed. Figure 2.1 summarizes the interactions between entities in the model.

Estimating delivery latency

On-route sensors: The expected delivery latency TD-on for any data produced at a

sensor at an arbitrary time t is represented by:

TD-on = TSB + TBG (2.1)

TSB =
distance from bus location to sensor at t

average bus velocity
(2.2)

TBG =
distance from bus location to gateway at t+ TSB

average bus velocity
(2.3)

and the upper bound max(TD-on) for delivery latency will be:

max(TD-on) ≈ 2× circumference of route

average bus velocity
(2.4)

Off-route sensors: For off-route sensors, there are two additional stages between

when the sensor data is generated and when it is delivered at the gateway.

TD-off = E
[
TSP

]
+ E

[
TPB

]
+ TSB + TBG (2.5)

Where E
[
TSP

]
is the expected time it takes a participating pedestrian to encounter

the sensor after the data is generated in time t0, and E
[
TPB

]
is the expected duration

it takes for that pedestrian to board (or encounter) a bus. Also, the upper bound

max(TD-off) for delivery latency will be:

max(TD-off) = max(TSP ) + max(TPB) + max(TD-on) (2.6)

2.4 Preliminary Results

Using the tools described in Section 2.2 to generate a data-set for Chapel Hill, North

Carolina along with a 2016 Chapel Hill transit passenger survey [18], a light-weight

8



simulator1 was developed to find the expected performance of transforming Chapel

Hill into a low-cost smart city. The simulator is unique because it uses basic input

parameters such as the number or routes, number of buses and stops, etc. for Chapel

Hill (or any city) and returns an upper-bound of network performance. The input

parameters for the simulation are listed in Table 4.3.

Table 2.2: Parameters used in the Simulation
Simulation seeds 0:1:99
Simulation duration 48 hours
Number of routes 32
On-route sensors per route 2 to 8
Gateways per route (G) 1 to 2
Number of bus stops per route (S) µS = 72.6, σ2

S = 52.44
Number of Buses per route 1 to 2
Bus velocity (including stops) 17.47 to 21.47 km/h
Sensor data generation rate 10 minutes to 2 hours
Number of buses 38
Number of off-route sensors 100
Circumference of routes µ = 15 km, σ2 = 7 km
Pedestrian to sensor arrival delay µ = 2 hours, σ2 = 30 mins

P of Pedestrian to Gateway delivery max(G)
µS

≈ 0.03

Sensor buffer/queue size ∞
Bus buffer queue/size ∞

The results in Figure 4.1 are for all messages generated and delivered within the

simulation period of 48 hours for 100 simulations where the seed was changed from

0 − 99. Regarding Figure 2.2a, half of the on-route sensor data had a delay of 10

minutes (median) or less before it made it from the sensor onto a bus. Half of the

on-route sensor data then had a delay of 15 minutes (median) or less before it made

it from a bus to the gateway. As expected, the delays of off-route sensor data in

Figure 2.2b was larger as it requires two additional steps (sensor to pedestrian and

pedestrian to bus stop) for message delivery. The median time for sensor to pedestrian

was 30 minutes while the time from pedestrian to bus stop was 12.5 hours.

In the results, delivery rate is defined as the ratio between messages delivered

and the total number of messages generated for each sensor within the simulation

1The code for the simulator is available on GitHub - https://github.com/netreconlab/

smartcomp19

9
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(a) (b)

(c) (d)

Figure 2.2: (a) Box plot of delivery delay for on-route sensors, (b) Box plot of delivery
delay for off-route sensors, (c) Histogram of delivery rate for on-route sensors, (d)
Histogram of delivery rate for off-route sensors.
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duration. Figure 2.2c depicts that all of the on-route sensor data had a delivery rate

of 0.96 or higher. This is due to an assumption in Section 2.3 that data can always

be transmitted from sensor to bus once contact is made, regardless of the speed of

the bus. The aforementioned assumption is built upon another assumption stated in

Section 2.3 that stated data packets are small and can be delivered using Bluetooth

5. Figure 2.2d shows that most of the off-route sensors had a delivery rate of 0.5 or

less. Low delivery rates of off-route sensor data is expected since it is dependent on

pedestrians to pick up and deliver the data. Pedestrian mobility is not as predictable

as bus mobility, and pedestrian transit ridership rate varies widely as described in

the Chapel Hill Transit survey [17].

2.5 Future Work

Section 2.4 highlighted the poor network latency and low delivery probability of off-

route sensors. Most sensors in a smart city will not have the benefit of being placed

on-route. Improving off-route sensor performance is the most critical step for DTN’s

to serve as a viable option as a backbone in smart cities. Policy makers have signif-

icant influence over the number of active public transportation vehicles, schedules,

and location of sensors and gateways. They have less control over the number of

people who use public transportation, particularly when it comes to pedestrian inter-

mobility between public transportation entities. To drive inter-mobility of pedestrians

and non-public transportation vehicles such as ride-share vehicles and taxis to pickup

off-route sensor data, the development of effective methods that strategically incen-

tivize people is essential for increasing network performance in a low-cost smart city.

Incentives can be generated from needs in network performances and used to drive

data requests across the network using a human over-the-loop paradigm [19]. Clas-

sifying data types across the network to understand expected delays, and tuning the

latency restrictions imposed by the infrastructure will also drive future research.

Copyright© Oluwashina Madamori, 2019.
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Chapter 3 A GTFS-based simulation tool

3.1 Introduction

In recent years, research in the field of vehicular communication networks (VCNs)

has grown rapidly. Interest has been spurred by advancements in the fields of au-

tonomous vehicles, electric vehicles, internet-of-things, and smart cities. VCNs refer

to networks comprising of vehicular mobile nodes such as cars, buses and trains that

communicate with other vehicles or embedded devices using device-to-device commu-

nication. Vehicles typically have to be equipped with a mini-computer and wireless

radio to enable them to facilitate communication. Some VCNs may also be classi-

fied as a vehicular delay-tolerant network (VDTN). VDTNs are similar to Vehicular

Ad-hoc Networks (VANETs) except for the fact that unlike VANETs, VDTNs can

still forward data from source to destination even when no end-to-end path exists

between the source and destination nodes at any particular time instance.

One current challenge when conducting research in VCNs and VDTNs involves

how to effectively evaluate the performance of the network architecture. These net-

works are typically designed to work with a large number of nodes, and so in order

to carry out real-world experiments, vasts numbers of IoT devices and other equip-

ment would have to be deployed on a large scale, which is financially expensive [20].

Even when such real-world experiments are carried out, they are often short lived,

lack sufficient variety of hardware, lack geographic diversity, and are very limited in

scale [20]. One alternative to using real world experiments is strictly utilizing models

and simulations. However, the validity of such simulations is highly dependent on

how well the simulation environment represents real-world environments and creating

such highly representative simulation environments is difficult.

In this chapter, we develop a novel simulation tool1 that models a vehicular com-

munication network consisting of data generators (sensors), intermediate carriers

1The code for the simulator is available on GitHub - https://github.com/netreconlab/low_
cost_smart_city_optimization
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(buses), and destination devices (gateways) within any real-world city, by directly

using real transit network information provided in the General Transit Feed Spec-

ification (GTFS) format [21]. The simulation tool makes direct use of real transit

network information provided in GTFS format [4]. Given that each city has a unique

transport network, we are able to analyze the network performance on a city-by-city

basis rather just a generalized analysis. In this chapter, we consider a model iden-

tical to that presented in Chapter 2, the difference being that in this model, we do

not consider off-route sensors and pedestrians. This omission is due to extra com-

plexity involved in integrating the unpredictable nature of pedestrian mobility into

our simulation; and data retrieval for off-route sensors is highly dependent on pedes-

trian mobility. However, including off-route sensors and pedestrian mobility will be

a future direction of this work.

Related Works

A number of test-beds and simulation tools have been developed by the research

community and presented in literature to facilitate research in the field of VCNs

and VDTNs. In H. Soroush et al [22] the authors create the DOME testbed, to give

researchers access to transit buses already equipped with necessary equipment, so that

external researchers can upload their communication protocols to the buses remotely

and conduct experiments within a real-world environment without having to invest

in additional infrastructure. In [23], the authors also design a adhoc testbed using

busses. Although real-world deployments of various network architectures provide

the most accurate results, oftentimes these results are not sufficiently generalized due

to insufficient geographic diversity as well as the limited scale of the experiments. In

addition, real-world deployments are typically financially expensive.

Hence, one popular alternative to real-world evaluations has been the use of math-

ematical models and simulations. Some of the advantages of this approach include:

very little financial cost, the ability to easily scale up experiments, and the heterogene-

ity of geography and hardware parameters during experiments. Examples of some

widely used open-source generic simulators in the field of vehicular communication
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and DTN include the ONE simulator [24] and ns-3 [25]. However, it can be difficult

to fully incorporate real-world data into the simulation environment of these generic

simulators, or adapt the environment to match the designed network model. Hence,

several works in literature use custom-built simulators for their models. In [26], the

authors designed a simulation environment for VANETS and intelligent traffic lights

to notify vehicles of traffic and warning messages using Adhoc On-Demand Distance

Vector (AODV). In [27], the authors conduct a feasibility study by setting up a sim-

ulation framework that relies purely on opportunistic interactions between taxi cabs.

The lower accuracy of simulation environments, when compared to real-world envi-

ronments is a factor that often undermines the integrity and validity of results.

The major contribution of this chapter is the development a simulator for our net-

work model that closely emulates the movement of real world transit vehicles, hence

we are able evaluate the performance of our network across many cities, while also

maintaining high result accuracy.

3.2 Dataset

Many public transit agencies serving various cities already provide highly accurate

data that describes their transit networks. The data typically includes the location

of routes, stops, and vehicle schedule information. Often, the data is also publicly

accessible on Internet platforms such as OpenMobilityOrg [16]. Although transit data

has been represented in many formats/specification, by far the most popular format

is the GTFS. GTFS handles both static information such specify bus routes, stops,

and trip timetables; and real-time information about the current location and speed

of vehicles in the network [21].

GTFS provides public transit agencies with a standard format for publishing their

transit data in an inter-operable manner so that it can be interpreted by various

third-party applications. GTFS is an open-source data specification that has been

widely adopted and used by hundreds of transit agencies all over the world. It is also

used by navigation software such as Google Maps to provide users with static and

real-time information about transit routes. Thus, by building a simulation tool that
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incorporates GTFS static information, we are able to evaluate the performance of our

low-cost smart city model for hundreds of cities around the world.

3.3 Simulation Design

In order to be able to analyze the overall viability of our network model, as well

as compare the performance of various gateway placement optimization algorithms

discussed in Chapter 4 we developed a light-weight simulation tool written in Python.

The tool takes advantage of the real-world public transit timetables to create a more

realistic environment for evaluating the network. In this section, we describe various

components of our simulation tool.

Transit feed to graph conversion:

We convert the GTFS transit feed data for a transit agency into a directed graph.

The conversion is done using an open-source library called peartree [28]. The graph

contains: (i) Nodes representing stops, and with each node containing the departure

times for all vehicles from that stop, (ii) Edges representing a bus path from one stop

to another. The edge weight is the average time it takes for a vehicle to get from

source node to destination node.

Sensor Placement:

Sensors are placed at randomly selected stops in the transit network. Each stop has a

maximum of one sensor and the total number of sensors to be placed in the network

is defined for each simulation. In addition, each sensor is assigned a time value

representing the frequency at which data is generated by the sensor. This frequency

value is randomly assigned to the sensor based on a uniform distribution.

Gateway Placement:

Gateways are placed in the network using a intuitive algorithm. First, each bus stop

is ranked based on the number of routes being serviced by that stop. Gateways are
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then placed at each stop in order of decreasing rank until all routes have a gateway

located on at least on of its stops. More intricate ways of gateway placement is further

discussed in Chapter 4.

Compute data delivery delay:

For each data packet generated at a sensor, the shortest duration it takes for the data

packet to get to get to a gateway is computed. First, a subgraph (consisting of only

stops in a single route) is extracted from the main graph for each route. Next, we

iterate through each route the sensor is on and compute the shortest path length from

the sensor to any gateway on that route. Since the edge weight is the average travel

time for vehicles between a node pair, the shortest path length computed represents

the estimated time taken for a vehicle forward the data to a gateway after departing

from the sensor. We calculate the total estimated delay by adding the shortest path

length to the waiting time between when the data is generated and the next vehicle

for the route arrives at the stop where the sensor is located. After iterating through

all routes for the sensor, a path is selected based on the path with the shortest total

estimated delay as the path through which the data will travel and thus obtain its path

length as the estimated end-to-end delay for the data packet generated. Algorithm 1

presents the pseudocode for computing the delay for each data packet generated.

Algorithm 1 Pseudocode for Computing data delivery delay

1: procedure ComputeDelay(routes, sensor, time)
2: delay ←∞
3: for r ∈ routes do
4: Gr ← GetRouteSubgraph(r)
5: for gateway ∈ r.gateways do
6: length← DijkstraShortestPath(Gr, sensor, gateway) .
7: if length then
8: wait← TimeTillNextArrival(sensor, route, time) .
9: if wait then
10: delay ← min(delay, length+ wait)

11: return delay
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Storing results for analysis:

For each simulation, important information such as generation time, delivery time,

delivery path, vehicle wait time, and vehicle travel time for each data packet generated

during simulation is recorded and stored in JavaScript Object Notation (JSON) file.

This helps with carrying out post-simulation analysis after the simulation has ended

without having to re-run simulations.

3.4 Results

Simulations were conducted using GTFS feeds provided by four transit agencies in the

United States namely; (i) Chapel Hill Transit (CHT) in Chapel Hill, (ii) King County

Metro (KCM) in Seattle, (iii) Metropolitan Transportation Authority in New York,

and (iv) Southeastern Pennsylvania Transportation Authority (SEPTA) in Pennsyl-

vania.

Table 3.1: Simulation Parameters

Random generator seeds 0:1:9
Simulation start time 00:00:00
Simulation end time 23:59:59
Number of Sensors 5%× |stops|
Sensor data generation frequency (minutes) U(1, 120)

For each transit network, a simulation is ran for a 24-hour time period for the

busiest day of the week based on its GTFS feed. The simulation parameters used for

each simulation is shown in table 3.1. Figure 3.1 shows a snapshot of an interactive

map of Chapel Hill overlaid with route, sensor, and gateway locations. The black lines

represent routes in the network, while red circles and blue squares represent sensors

and gateways, respectively. Clicking on any sensor of interest can give a summary

of all relevant information regarding that sensor for the duration of the simulation.

Figure 3.2 represents the distribution of the average (mean) delivery delay per data

packet generated for various transit agencies.
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Figure 3.1: Snapshot of an interactive map overlaid with route, sensor, and gateway
locations

3.5 Conclusion

In this chapter, we presented a tool that utilizes GTFS static feeds and graph theory

to run simulations for VDTNs within smart cities. Results are stored using the JSON

format for future analysis. City feeds from Chapel Hill, Seattle, Pennsylvania and

New York for demonstrative simulations. In future works, more analyses will be

completed to support the validity of simulation results. We will also implement other

gateway placement optimization techniques based on different criteria. Finally, we

will investigate what impact various characteristics of a transit network have on the

performance of DTNs in our network model.
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Figure 3.2: Distribution of average delivery delay per sensor for various transit net-
works

Copyright© Oluwashina Madamori, 2019.
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Chapter 4 Optimal Gateway Placement in Low-cost Smart Cities

4.1 Introduction

The decision of where to place gateways in a city is a significant problem in a low-

cost smart city. It is significant because gateways serve as the only medium through

which any sensor data is sent to the cloud. Furthermore, gateways are required to be

always-on, always-connected devices, and in some cases even have edge computing

capabilities for processing data before forwarding to the cloud. This means that a

power source may be needed at the location of the gateway. Direct high-speed internet

access also needs to be available at the gateway location, as well as other expensive

resources including CPU, RAM, and persistent storage. All of aforementioned gate-

way requirements means that for each additional gateway, an extra cost is required.

Since the primary objective of the proposed network model is to enable smart cities

at a fraction of the cost, the fewer the number of gateways required in the network

to achieve desirable network performance, the lower the setup and maintenance cost

will be.

In this chapter we: (i) formulate three gateway placement optimization problems

in our network architecture, (ii) identify optimization problems in literature that are

special cases of our optimization problem, (iii) develop several algorithms for solving

the optimization problems highlighted, and finally (iv) compare the results of our

algorithms with traditional network centrality measures

4.2 Related Works

Placement optimization algorithms are typically specific to each network architecture

and model. Some previous works on placement optimization for networks similar to

ours include Krause et al. [29] which exploited the principle of submodularity to

tackle the problem of sensor placements in water distribution networks. In [30, 31],

the authors explore several optimization techniques for access point placement in
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wireless mesh networks.

The problem of gateway placement is similar in a few ways to finding the most

significant stops in a transit network. In the field of network analysis, there exist

several popular centrality measures. These centrality measures are usually computed

by a real-valued function and reflects a node’s significance or importance within the

given network [32]. The centrality measures have been used in many kinds of networks

including the Internet, social networks, biological networks, and transportation net-

works. Unfortunately, centrality measures work best with simple static networks [33]

and not dynamic networks. Since our network model is more complex, containing

not just nodes (stops) and edges(trips), but also vehicle schedule information across

each node, centrality measures may not prove very useful for optimizing gateway

placement. Hence, for the optimization problems considered in this chapter, we ex-

plore other solutions. We also compare our solutions to two centrality measures,

“betweenness centrality” and “in-degree centrality.”

4.3 Problem Formulation

In this chapter, we consider two gateway optimization objectives relevant to enabling

low-cost smart cities. We assume that the cost associated with installing a gateway

is constant regardless of the location being considered.

Maximal Sensor Coverage (MSC)

The first optimization problem considered is Maximizing Sensor Coverage (MSC).

The objective is to find the minimum/smallest set of locations to install gateways

such that there is at least one direct path in the network from all possible sensor

locations to a gateway. This would ensure that all sensors, regardless of where they

are placed on the transit network will have a chance of having its data delivered.

A typical bus transit network consists of several routes through which vehicles

move. Each route comprises of a set of stops. These stops are locations where

vehicles (buses) on the route stop to pick up passengers. It is very common for two or
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more routes share similar stops. Therefore, we can define our MSC problem as such:

Given a set of routes R, and a list of stops, L, each with a subset of routes, Rl ⊆ R,

that use that stop (each element of R is associated with at least one stop), find the

minimal set of stops required to cover all routes. This problem can be reduced to a

minimal set cover problem. In the set cover problem, we are given a universal set U,

such that |U | = n, and a family of subsets S1, ..., Sk ⊆ U . A set cover is a collection

C of the subsets S1, ..., Sk whose union is the is the universal set U . Formally, C is a

set cover if
⋃
Si∈C Si = U . To find the minimal set cover, the objective is to minimize

|C|.

The reduction is fairly intuitive. In our case the universal set is the set of all

routes R = U , and the family of subsets are the set of routes each stop services,

L = S. Given a decision variable, xl ∈ {0, 1}, which indicates whether a stop in L is

picked, the ILP formulation is thus:

minimize
∑
l∈L

xl st (4.1)∑
l:r∈L

xl ≥ 1 ∀ r ∈ R (4.2)

xl = {0, 1} ∀ l ∈ L (4.3)

The problem of finding the optimal set cover solution is NP-Complete (one of

Karp’s 21 NP-complete problems). Nevertheless, the greedy approach is able to

find a solution close to the optimal set cover. It is bounded above by a O(logen)

approximation to optimal solution of the set cover problem, where n is the number

of routes in the network. The greedy MSC algorithm is described in Algorithm 2.

At each iteration, we find the gateway candidate that provides the largest increase in

the number of routes covered, and add it to the gateway set. This process is repeated

until all routes have been covered by the gateway set.

Minimal Delivery Delay (MDD)

The next optimization problem considered is the Minimal Delivery Delay problem

(MDD). Here, the objective is to select the set of locations to place gateways such

that the average network latency for data generated across the network is minimized,
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Algorithm 2 Maximal Sensor Coverage (MSC)

Input — routes R, route subsets S
Output — selected gateway set G

1: procedure GREEDY-MSC(R, S)
2: X ← R
3: G← ∅
4: while X 6= 0 do
5: Select an Si ⊆ R that maximizes |Si ∩X|
6: X ← X \ Si
7: G← G ∪ Si
8: return G

without exceeding a budget constraint. In considering network latency, we account

for both delivered and undelivered data. We assign a penalty value to data that is

undelivered, as explained in Section 4.3. The budget constraint refers to the number

of gateways that can be added to the network. Also, the gateway selection process

is conducted without prior knowledge of the stops in which the sensors will placed in

the city.

In formulating the problem, we consider each potential gateway location to possess

a influence value, which describes its impact on the network latency if it is added to

an existing set of gateways. Hence, our problem objective is to select a set of gateways

below a specified cardinality, that together decreases the network latency the greatest.

Given a decision variable, yl ∈ {0, 1}, which indicates whether a stop was selected as

a gateway, a budget constraint, B and an latency impact parameter, Il ∈ I associated

with every stop l ∈ L, the ILP formulation is thus:

maximize
∑
l∈L

ylIl st (4.4)∑
l∈L

yl ≤ B ∀ l ∈ L (4.5)

yl = {0, 1} ∀ l ∈ L (4.6)

In developing our algorithm for this problem, we use a technique similar to the

Influence Maximization (IM) problem. IM problems typically involve the task of

selecting a small subset of nodes in a network to serve as seeds for the propagation

of some entity (such as information or product adoption) so that the entity spreads
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to the largest number of nodes in the network [34]. Influence Maximization (IM)

algorithms have been applied in social network analysis such as viral marketing,

disease modeling, and public health interventions [35, 36]. Kempe et al. (2003) [34]

formalized the IM problem as: Given a network with n nodes and given a propagation

process on that network, choose a set of nodes called the seed set S of size k < n that

maximizes the number of nodes in the network that are ultimately influenced. Solving

this problem turns out to NP-Hard. Over the years, researchers have developed

several approximate solutions. However, our problem differs from the traditional IM

problem because the set of nodes we want to select are not seed/source nodes but

destination nodes (gateways). Therefore, in solving our problem, we define our own

influence function below and then modify two well-known approximation algorithms;

(i) Greedy and Cost-Effective Lazy Forward (CELF) [37].

Influence Function

Current IM algorithms require an influence function that simulates the propagation

process and computes the marginal influence that each potential seed has on the

overall propagation. Therefore for our algorithm, we have to develop an influence

function (σ) that computes the expected latency across the network for any potential

set of gateways.

The influence function makes use of the network simulation described in Sec-

tion 3.3 to calculate the network latency. In addition, given that there is no prior

knowledge of what stops sensors would be located when selecting gateways, we com-

pute the network latency over multiple sensor placement scenarios rather than just

one, through a Monte Carlo simulation. This method increases the likelihood of the

influence function returning an unbiased estimation of network latency for a specific

set of gateways. Hence, we generate a set of sensor placement scenarios, in which

each scenario is essentially a simulation environment consisting of the transit net-

work graph, where n sensors are randomly placed at various stops, and each sensor

randomly assigned a message generation frequency.

We define the influence of a set of gateways as the degree to which network latency
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is reduced by the set. Therefore, the lower the value of the latency, the greater the

influence value of the gateway(s). The influence value calculated by subtracting the

latency from the simulation’s upper bound value for latency. The upper bound value

is the maximum latency possible in the network, and in our case we pick a fixed value

outside the range of simulation window. This upper bound value is also the penalty

value for data that is undelivered.

Influence Function Submodularity

We postulate that our influence function is a monotonically increasing sumbmodular

function.

Definition: Given a finite ground set, U , and a set function f : 2U −→ R, f is a

submodular function if ∀ A ⊆ B ⊆ U, a ∈ U \B.

f(A+ a)− f(A) ≥ f(B + a)− f(B) (4.7)

Let the ground set be the set of latency impact parameters (stop influence), I,

associated with each stop, l ∈ L, such that Il ≥ 0 ∀ Il ∈ I. All possible gateway

placement sets can be represented by P ⊆ U such that the budget is met, |P | ≤ B.

Also, let f(P ) be the maximum influence, that can be acquired from a gateway

placement set, P . It is easy to see that the f(∅) = 0 because, the maximum influence

acquired from the empty set is 0. Hence, f is normalized. Next, we ask the question:

Is f(P ) monotonically increasing?

Let A and B be possible placement sets such that A ⊆ B ⊆ U , ∀ A f(A) ≤ f(B).

Suppose f(B) < f(A), then there has to be an element, which when added to the

gateway placement set, A, results in a decreased f(A). Since Il ≥ 0 ∀ Il ∈ I, no

such element exists. Thus, it is monotonically increasing. Since it is monotonically

increasing, we proceed to ask the question: Is f(P ) submodular?

Contradiction: Assume that f(A + a) − f(A) < f(B + a) − f(B). Then there

has to be an element, a, for which the marginal increase in influence derived from

adding a to set A is less than that of adding a to set B. This is not possible because

A ⊆ B and is monotonically increasing, thus the entire influence of A is captured in
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B. As a result, if an element causes a marginal influence increase of x when added

to set B, the marginal increase on set A has to be greater or equal to x. Hence, it is

submodular.

Greedy Algorithm

Since the problem is reduced to the maximization of a monotone submodular function,

the greedy algorithm for IM provides a (1 − 1/e) - approximation [37]. Hence, our

greedy algorithm is theoretically guaranteed to choose a gateway set whose network

latency will be at least 63% of the network latency of the optimal gateway set. Our

greedy algorithm is described in Algorithm 3. It starts with an empty gateway set

S = ∅. In each iteration, the greedy heuristic chooses a new gateway u from the

non-gateway nodes V \ S with largest (marginal) influence gain σ(S ∪ v)− σ(S) and

adds u to S. The algorithm stops after selecting k gateways.

Algorithm 3 Greedy Minimal Delivery Delay

Input — network graph N, influence function σ, budget k
Output — selected gateway set G

1: procedure GREEDY-MDD(N, σ, k)
2: G← ∅
3: while |G| < k do
4: u← arg max v∈V \G σ(G ∪ v)− σ(G)
5: G← G ∪ {u}
6: return G

CELF Algorithm

Although the greedy algorithm is much quicker than a brute-force approach, greedy

algorithm is still very slow when used on realistically sized transit networks. CELF

algorithm has a significantly reduced the running time despite returning the exact

same set of gateways as our greedy algorithm [38].

CELF exploits the submodular property of our influence function. CELF elimi-

nates the need to compute the marginal influence value of all potential gateways at

each iteration. In the first round, we calculate the influence for all gateway candidates
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(like Greedy), select the gateway with the greatest influence, and store the influence

values the other candidates in a max heap. In subsequent iterations, the marginal

influence for the top gateway candidate in the heap is computed and added back to

the heap. If the gateway candidate remains at the top of the heap, then it must

have the highest marginal influence of all gateway candidates due to the sub-modular

property of the influence function. If a different candidate is on top of the heap, the

process continues until a candidate remains on top after two iterations, after which

that candidate is added to the gateway set. This process is repeated until the gateway

budget has been met.

Algorithm 4 CELF Minimal Delivery Delay (CELF-MDD)

Input — network graph N, influence function σ, budget k
Output — selected gateway set G

1: procedure CELF-MDD(N, σ, k)
2: G← ∅
3: Q← ∅
4: for v ∈ N.nodes do
5: u← v
6: u.gain = σ({v})
7: add u to Q in descending order of u.gain

8: while |G| < k do
9: u← Q.top
10: if u.flag = |G| then
11: G← G ∪ {u}
12: Q← Q \ u
13: else
14: u.gain← σ(G ∪ {u})− σ(G)
15: u.flag ← |G|
16: Re-sort Q in descending order of u.gain

17: return G

4.4 Numerical Evaluation

In order to evaluate the accuracy of our optimization algorithms, we make use of

the GTFS data of two bus transit agencies; Chapel Hill Transit (CHT) in Chapel

Hill, North Carolina, and Transit Authority of River City (TARC) in Louisville,

Kentucky [16]. Chapel Hill is a relatively small town with measuring 55 km sq (21.3
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sq miles) and an estimated population of about 60,988. Louisville, on the other

hand, is a much larger city with a population of 620,118 and land area of 171.70

km sq (66.29 sq miles) [39]. The difference in city size also translates to the public

transport network present in both cities as highlighted in Table 4.1 and Figure 4.1a.

Table 4.1: Bus Network Characteristics CHT and TARC

Statatistics CHT TARC
Routes 26 46
Stops 571 4391
Total trips 1252 1917
Betweenness centrality avg. 0.04896 0.00829
In-degree centrality avg. 0.00210 0.00025

(a) (b)

Figure 4.1: (a) Map of CHT bus-stop locations in Chapel Hill, (b) Map of TARC
bus-stop locations in Louisville.

Maximizing Coverage

Figures 4.2 and 4.2 give insight into the performance of the MSC Algorithm described

in 4.3 when compared to two traditional graph centrality measures namely the results

from betweenness centrality (BC), and in-degree centrality (IC). For the centrality

measures, we picked each gateway in order of decreasing centrality, until all routes
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were covered. Figure 4.2 indicates the rate of increase in route coverage compared

to the number of gateways selected. We see that MSC outperforms BC and IC

significantly for both CHT and TARC. For CHT, MSC requires just 4 gateways to

cover all routes in the network, compared to 18 and 25 gateways in IC and BC,

respectively. For a larger network like TARC, MSC requires 13 gateways to cover all

routes in the network, compared to 257 and 459 gateways in IC and BC, respectively.

Table 4.2 also highlights the delivery ratio for each algorithm. Since the three

algorithms (MSC, BC, and IC) cover all routes, the delivery ratio is essentially the

same. Delivery ratio is less than 100% because delivery also depends on a bus arriving

at a sensor within the simulation time window. This means that for some data packets

generated, especially in the later stages of the simulation, there may no longer be

buses moving on that route causing the data packet to remain undelivered.

(a) (b)

Figure 4.2: (a) MSC performance for CHT, (b) MSC performance for TARC.

Table 4.2: Results of MSC, BC and IC
CHT TARC

Algorithms Cost
Delivery
ratio (%)

Cost
Delivery
ratio (%)

MSC 4 86.0512 13 87.0903
BC 25 84.4760 459 87.8831
IC 18 85.9515 237 88.4032
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Table 4.3: Simulation and Scenerio Parameters
Random generator seeds 0:1:9
Simulation start time 1:00:00
Simulation end time 24:00:00
Latency upper bound (hours) 25
Number of sensors 30%× |stops|
Sensor data generation frequency (minutes) U(1, 120)
Number of sensor scenarios 5
Number of sensors for scenarios U(30, 40)

Minimizing Latency

We evaluate the effectiveness of the CELF-MDD algorithm (described in Section 4.3)

at minimizing the overall message delay in the network model. We first compare the

difference in run-time efficiency between Greedy-MDD and CELF-MDD. Figures 4.3a

and 4.3b show the average number of lookups and running-times for a gateway budget

of up to 15 when working with the CHT network. The number of lookups at each

budget refers to the number of times the influence function needs to be computed

before a gateway was selected at that stage. Greedy-MDD grows linearly because for

each iteration, the influence gain for all gateways that haven’t been selected has to

be computed. However for CELF-MDD, the number of lookup grows much slower

due to it leveraging results from past computation as discussed in Section 4.3.

(a) (b)

Figure 4.3: (a) Graph showing the number of lookups for Greedy-MDD and CELF-
MDD, (b) Graph showing the number of running time for Greedy-MDD and CELF-
MDD
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(a) (b)

Figure 4.4: (a) Average network latency for CHT, (b) Average network latency for
TARC.

Finally, we compare the performance of CELF-MDD to BC and IC in terms

of network latency minimization. For each algorithm we select the first k set of

gateways generated by the algorithm where k represents the budget. Simulations are

then run with that gateway set using the simulation parameters outlined in Table 4.3.

Figure 4.4a and 4.4b illustrates the average network latency at various budgets for

CHT using each algorithm. The simulations were run using the parameters specified

in Table 4.3. Similar to our influence function in 4.3, we assign the same upper bound

value specified in Table 4.3 as the penalty value (delay) for undelivered data.

For CHT, we observe that CELF-MDD consistently outperforms both BC and

IC by ≈ 20 minutes or higher. We also observe very little decrease in delay after

first 5 gateways have been selected when using CELF-MDD. For TARC, we observe

that CELF-MDD consistently outperforms both BC and IC by 45 minutes or higher.

We also observe very little decrease in delay after first 3 gateways have been selected

when using CELF-MDD.

4.5 Conclusion

In this chapter, the problem of how to efficiently place gateways in low-cost smart

cities was addressed. We introduced several optimization algorithms and compared

them to traditional network centrality measures. We carried out our experiment
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using public transport networks in two cities in the United States; Chapel-Hill and

Louisville. Finally, we presented results which show our algorithms outperforming

traditional centrality measures for two performance metrics, coverage at minimal

cost, and network latency.

Copyright© Oluwashina Madamori, 2019.
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Chapter 5 Conclusion and Future Works

In this thesis, we have presented a network model that leverages the existing mobility

of people and vehicles within a city to form an opportunistic and delay-tolerant

network for collect data from wireless sensors in a cost efficient manner. First we

grouped sensors in smart cities into two types: on-route sensors and off-route sensors,

and showed that for on-route sensors, the network latency and delivery probability is

tolerable. Next we designed a tool and takes full advantage of available public transit

timetables of many cities to provide estimates on the network latency of our proposed

model for on-route sensors.

Future directions of this research include modelling pedestrians and transit riders

and integrating it into simulation environments to make the models more robust.

Also, due to the poor network performance of off-route sensors in a low-cost smart

city, the development of effective methods of incentivization for people is essential

for DTN’s to serve as a viable option as a backbone in smart cities. Classifying

data types across the network to understand expected delays and tuning latency

restrictions imposed by the infrastructure will also drive future research.

Copyright© Oluwashina Madamori, 2019.
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