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EFFECTS OF CURCUMIN AND FENUGREEK SOLUBLE FIBER SUPPLEMENTS 
ON SUBMAXIMAL AND MAXIMAL AEROBIC PERFORMANCE INDICES IN 

UNTRAINED COLLEGE STUDENTS 

 

Submaximal exercise performance is, in part, limited by the accumulation of 
metabolic byproducts and energy system capacities. Curcumin and the combination of 
curcumin and fenugreek soluble fiber (CurQfen®) have been shown to increase endogenous 
antioxidants and metabolic byproduct clearance as well as reduce inflammation and lipid 
peroxidation, and therefore, may enhance submaximal aerobic thresholds. In addition, 
there is evidence that the galactomannan component of fenugreek, used to enhance 
bioavailability of curcumin, may also have potential physiological effects related to the up 
regulation of free fatty acid oxidation Therefore, the purpose of this study was to examine 
the effects of curcumin and fenugreek soluble fiber supplementation on the ventilatory 
threshold (VT), respiratory compensation point (RCP), maximal oxygen consumption 
(𝑉̇𝑉O2 peak), and time to exhaustion (Tlim) derived from a graded exercise test (GXT). Forty-
five untrained, college-aged, male (n = 24) and female (n = 21) subjects (mean age ± SD: 
21.2 ± 2.5 yr) were randomly assigned to one of three supplementation groups; placebo 
(PLA, n=13), 500 mg·day-1 CurQfen® (CUR, n=14), or 300 mg·day-1 fenugreek soluble 
fiber (FEN, n=18). All of the subjects completed a maximal GXT on a cycle ergometer to 
determine the VT, RCP, 𝑉̇𝑉O2 peak, and Tlim before (PRE) and after (POST) 28 days of daily 
supplementation. The VT and RCP were determined from the V-slope method for the 
ventilation (𝑉̇𝑉E) vs. 𝑉̇𝑉O2 and 𝑉̇𝑉E vs. V̇CO2, respectively. Separate, one-way ANCOVAs 
were used to examine the between group differences for adjusted POST VT, RCP, 𝑉̇𝑉O2 

peak, and Tlim values, with the respective PRE test value as the covariate. The adjusted 
POST VT-𝑉̇𝑉O2 for the CUR  (mean ± SD= 1.593 ± 0.157 L·min-1) and FEN (1.597 ± 
0.157L·min-1) groups were greater than (p= 0.04 and p= 0.03, respectively) the PLA (1.465 
± 0.155L·min-1) group, but the FEN and CUR groups were not different (p = 0.94). The 
one-way ANCOVAs for RCP (F = 3.177, p = 0.052), 𝑉̇𝑉O2 peak (F = 0.613, p = 0.547), and 
Tlim (F = 0.654, p = 0.525) indicated there were no significant differences among groups. 
These findings suggested that CurQfen® and/or fenugreek soluble fiber may improve 
submaximal, but not maximal, aerobic performance indices in untrained subjects.  
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CHAPTER 1. INTRODUCTION 

Curcumin is a polyphenol that targets multiple signaling pathways and has been 

shown to positively influence health at the cellular level (Gupta, 2013). It is an active 

ingredient of a rhizomatous herbaceous perennial plant of the ginger family called turmeric 

and has been widely used as a spice and medicine in various cultures throughout history 

(Boonla, 2014; Gupta 2013). These uses range from colorants, cosmetics, teas, and taste 

enhancers to anti-inflammatory agents and supplements. In populations where curcumin 

(100–200 mg·day-1) is consumed, epidemiological data have indicated the incidences of 

some chronic diseases (e.g., large bowel cancer) are lower, compared with populations of 

non-consumption (Mohandas, 1999; Sinha, 2003). Curcumin has been shown to have 

strong antioxidant, anti-hypertensive, anti-inflammatory, anti-diabetic effects, potential 

body composition benefits, as well as the positive mediation of various cardio-health risk 

markers (Sahin, 2016; Gupta, 2013; Anand, 2007, Santos-Parker, 2017). Curcumin 

supplementation has also been shown to reduce the vascular restructuring and endothelial 

dysfunction prevalent in diabetes, metabolic syndrome, and hypertension (Boonla, 2014; 

Santos-Parker, 2017). In addition, curcumin supplementation has been shown to result in 

an up-regulation of the endogenous nitric oxide (NO) production (Boonla, 2014; Gupta 

S.C., 2013), which mediates endothelial-dependent vasodilation. Therefore, it is possible 

curcumin may enhance blood flow to the working cardiac and skeletal muscles (Santos-

Parker Jessica R., 2017; Boonla, 2014; Gupta S.C., 2013).  

One of the primary limitations to curcumin supplementation is its poor 

bioavailability. Curcumin has a poor absorption, rapid metabolism, and rapid systemic 

elimination (Krishnakumar, 2012; 2014). These characteristics result in the inability for 



 

curcumin supplementation alone to be effective at increasing plasma and tissue 

concentrations of curcumin to physiologically relevant values of 0.1 micromolar in vitro 

(Sharma, 2004).  It has been documented (Anand, 2007) that even at high doses (12g·day-

1), the plasma and tissue concentrations are still lower than the necessary threshold for 

physiological effects. Therefore, approaches to slow digestion of curcumin, increase its 

absorption, and slow its systemic elimination have been examined (Krishnakumar, 2014; 

Lao, 2006; Tu, 2014). For example, curcumin has been combined with piperine, which 

interferes with glucuronidation (Tu, 2014) as well as fenugreek, where the combination 

slows release and protects curcumin from acidic gastrointestinal conditions 

(Krishnakumar, 2012). A liposomal curcumin has also been developed that has been shown 

to slow systemic elimination (Li, 2007). Curcumin, combined with fenugreek soluble fiber 

(galactomannans) has been shown to positively affect the bioavailability of curcumin, by 

increasing the absorption and saturation to up to 20 times compared to curcumin alone 

(Krishnakumar, 2014). 

 The main role of fenugreek soluble fiber in combination with curcumin is to 

increase plasma and tissue concentrations of curcumin by slowing down its digestion and 

elimination (Neelakantan, 2014; Srichamroen, 2008; Krishnakumar, 2012). However, it is 

important to note that galactomannan supplementation alone has potential physiological 

effects (Mathern, 2009; Poole, 2010). Previous investigators have shown significantly 

slower gastric emptying, increased plasma sensitivity, decreased plasma insulin levels, 

decreased hepatic cholesterol concentration, and increased plasma free fatty acid (FFA) 

levels in circulation after 28 days of supplementation of galactomannans from fenugreek 

(Srichamroen, 2008; Mathern, 2009). These effects, particularly decreased plasma insulin 



 

levels and increased FFA levels, have been linked to increased rates of the FFA oxidation 

(Neelakantan, 2014; Romijn J. A., 1985; Srichamroen, 2008). Thus, in addition to 

increasing the absorption of curcumin from the small intestine, fenugreek may also have 

the potential to improve metabolic parameters.  

A number of previous investigators have examined the effects of curcumin on 

indices of vascular function and other markers of cardiovascular health (Gupta, 

2013Boonla, 2014; Cheng, 2001). The purported effects of curcumin on inflammatory 

pathways, nitric oxide production, and anti-oxidative capabilities (Boonla, 2014; Huang, 

2015, Sahin, 2016), have recently lead to the examination of curcumin as an ergogenic aid 

to delay fatigue and enhance recovery from exercise (Huang, 2015; Davis, 2007; McFarlin, 

2016). In general, these studies have demonstrated improvements in measured thresholds 

at submaximal levels (ventilatory threshold and gas exchange threshold). Curcumin has 

been shown to significantly decrease cytokine production in inflammatory pathways as 

well as reduce various markers of exercise-induced muscular damage (EIMD) from 

repeated eccentric muscle actions (Davis, 2007; McFarlin, 2016). These effects have 

resulted in lower decrements in grip strength after fatiguing eccentric exercise (Huang, 

2015) compared with placebo. There is also evidence curcumin may increase glycogen 

stores following 28 consecutive days of supplementation (Huang, 2015) as well as decrease 

the accumulation of metabolic byproducts (i.e., hydrogen ions, ammonia, etc.) (Sahin, 

2016), which may increase the time to fatigue and enhance recovery from longer duration 

(>60 min) exercise (Huang, 2015; Davis, 2007; McFarlin, 2016). For example, Huang et 

al. (2015) showed curcumin supplementation significantly increased swim time to 

exhaustion in mice, dose-dependently, while decreasing injury markers by approximately 



 

fifty percent, when compared to the placebo.  Thus, currently there is evidence curcumin 

may enhance endurance performance and increase time to exhaustion as well as improve 

recovery from EIMD (Huang, 2015; Davis, 2007; McFarlin, 2016).   

Fatigue thresholds such as the ventilatory threshold (VT) and respiratory 

compensation point (RCP) provide a non-invasive assessment of metabolic responses 

during incremental exercise (Beaver, 1986; Gaskill, 2001). Theoretically, the VT 

demarcates the moderate from heavy exercise intensity domain (Burnley & Jones, 2007; 

Gaesser & Poole 1996), and provides information about the exercise intensity above which 

aerobic adenosine triphosphate (ATP) production is supplemented with anaerobic energy 

metabolism. Exercise performed above the VT (within the heavy domain) results in 

increased blood lactate concentration and hydrogen ion (H+) production (Gaesser & Poole, 

1996). The VT reflects the increased ventilation (V̇E), relative to oxygen consumption 

(V̇O2) in response to excess carbon dioxide (CO2) generated from the bicarbonate buffering 

of the H+ (Beaver, 1986). The VT has been used to assess physical fitness in both clinical 

(Thin, 2002) and athletic populations (Malek,  2007) and has been shown to be sensitive to 

training and nutritional interventions (Jones, 2000) 

The RCP, theoretically, demarcates the heavy from severe exercise intensity 

domains and defines the threshold where minute ventilation (V̇E) increases at a greater rate 

than the volume of CO2 (VĊ O2) produced (Beaver, 1986; Bergstrom, 2013). Exercise 

performed above the RCP (within the severe domain) relies on increased rates of anaerobic 

energy metabolism to supplement aerobic ATP production compared with exercise in the 

heavy domain (below the RCP) (Gaesser & Poole, 1996). The RCP reflects the 

hyperventilation that occurs when the bicarbonate buffering system is overwhelmed by the 



 

H+ production (Beaver, 1986) from anaerobic energy metabolism. Exercise performed 

above the RCP is typically not sustainable for more than 20 minutes, while exercise below 

this threshold can be maintained for at least 30 minutes (Bergstrom, 2013). Thus, the RCP 

provides a non-invasive assessment of the highest sustainable exercise intensity 

(Bergstrom, 2013; Gaesser & Poole, 1996) 

Previous studies have indicated the potential for curcumin supplementation to 

increase NO production, decrease metabolic byproduct accumulation (Sahin, 2016), and 

increase time to exhaustion (Tlim) (Huang, 2015; Davis, 2007; McFarlin, 2016). It is 

possible these effects may also improve submaximal fatigue thresholds (VT and RCP) as 

well as increase the 𝑉̇𝑉O2 peak and Tlim on a graded exercise test (GXT).  In addition, there 

is evidence that galactomannan component of fenugreek, used to enhance bioavailability 

of curcumin, may also have potential effects on up regulating FFA oxidation (Srichamroen, 

2008; Neelakantan, 2014). This may delay the reliance on anaerobic energy production and 

the increase the VT. No previous studies, however, have examined the effects of curcumin 

on submaximal and maximal endurance performance markers such as the VT, RCP, 𝑉̇𝑉O2 

peak, and Tlim. Therefore, the purpose of this study was to examine the effects of curcumin 

and fenugreek soluble fiber supplementation on the VT, RCP, 𝑉̇𝑉O2 peak, and Tlim derived 

from a GXT. We hypothesized that 28 days of curcumin and fenugreek soluble fiber 

supplementation would result in increases in the VT, RCP, 𝑉̇𝑉O2 peak, and Tlim compared to 

a placebo.  

 

 



 

CHAPTER 2. LITERATURE REVIEW 

2.1 Curcumin: Mechanisms of Action 

Boonla et al. 2014 

Curcumin (diferuloymethane) has been suggested to have anti-inflammatory, anti-

hypertensive, anti-diabetic and antioxidant properties and has been shown to inhibit 

migration of vascular smooth muscle cells and reduce oxidative stress in hypertensive rats. 

The purpose of this study was to determine whether curcumin can reverse hypertension, 

endothelial dysfunction, and vascular structural remodeling in hypertensive rats. 

Hypertension was induced in male Sprague-dawley rats by clipping the left renal artery 

with a silver clip (0.2mm. The rats were divided into five groups of 16: 1) sham vehicle 

only; 2) sham with 100 mg curcumin (Cur100); 3) Hypertension induced with vehicle; 4) 

Hypertension induced with 50 mg curcumin (Cur50); and 5) Hypertension induced with 

Cur100. A dose of Cur100 in rats corresponded to a 950mg dose for a 60kg human. Dosing 

was maintained for six weeks after a five-day post-surgery recovery. The rats were assessed 

for angiotensin converting enzyme, vascular reactivity testing and enzymes affecting nitric 

oxide production and endothelial dysfunction. The aortas of the rats were embedded and 

stained for morphometric analysis. The results of this study showed that curcumin 

attenuated systolic blood pressure and hemodynamic disturbances in a dose-dependent 

manner, but there were no hypotensive effects for the sham animals. Assessment of the 

isolated aortic rings showed significant impairment in response of acetylcholine (Ach) in 

the hypertension rats compared to the sham; treatment with curcumin significantly 

enhanced ACh response (p<0.05) and had increased nitrite/nitrate levels. In addition, 

curcumin supplementation prevented morphological changes in the hypertension-induced 



 

rats. Curcumin treated rats had attenuated hypertension-induced increases in enzymes that 

remodel the endothelial wall. Finally, angiotensin converting enzyme (ACE) levels 

superoxide production, and protein carbonyl levels that were increased due to hypertension 

treatment were significantly attenuated by curcumin treatment. It was suggested that 

curcumin directly scavenged free radicals and decreased ROS activity.  The main findings 

of this study suggested that curcumin treatment ameliorated blood pressure increases, 

improved endothelial function, and prevented vascular remodeling. The key finding was 

that oral supplementation of curcumin (400mg·day-1 significantly blunted serum creatine 

kinase and inflammatory cytokines concentrations (IL-8 and TNF-α) during recovery post 

EIMD.  

Sahin et al. 2016 

The present study was undertaken in an animal model to investigate the effects of 

the water-soluble curcumin formulation (CurcuWIN) on oxidative stress markers, exercise 

(Ex) time of exhaustion, and the antioxidant status in muscles. A total of 28 Wistar rats 

were divided into four arms: control (no exercise or CurcuWIN), No Ex + CurcuWIN, Ex 

+ no CurcuWIN, and Ex + CurcuWIN. CurcuWIN was administered at 100 mg·kg-1, 

providing 20 mg of CurcuWIN daily for 6 weeks. The CurcuWIN dose at 100 mg·kg-1 was 

chosen based on previously reported value for effective antioxidant activity in rodents (Ma, 

2013; Anand, 2008). The exercise protocols were performed on a motor driven rodent 

treadmill over a 5-day period. The Ex protocol was as follows: day 1 – 10 m·min-1 for 10 

mins, day 2 – 20 m·min-1  for 10 mins, day 3 – 25 m·min-1  for 10 mins, day 4 – 25 m·min-

1  for 20mins,  day 5 – 25 m·min-1  for 30 mins. Animals were euthanized after the last 

exercise within the same hour and the blood, muscle and tissue samples were stored for 



 

injury and oxidative stress markers. The sample size was based on a power of 85% to obtain 

a P-value of 0.05 and seven animals per treatment were examined. ANOVA and Tukey 

tests for post hoc analyses were conducted on each dependent variable between treatments 

and within treatments. The results showed that time to exhaustion was lower for the control 

(no exercise rats, no CurcuWIN) and no exercise rats with CurcuWIN (average of 72 mins) 

versus the exercise rat groups (average of 174 mins), (P<0.01). Within the exercise rats, 

CurcuWIN supplementation significantly affected the time to exhaustion (Ex: 173.45 mins, 

Ex w/ Cur: 185.14mins) (P<0.05). Chronically exercised rats had less cardio-metabolic 

health markers than controls (P<0.001) and the cardio-metabolic health markers in Ex + 

CurcuWIN groups were decreased significantly compared to the other groups. Serum low-

density lipoprotein cholesterol (LDL-C) levels were reduced in the Ex + CW treatment 

groups (7.00±1.55 mg·dL-1) compared to those in the untreated rats (avg: 10.7 mg·dL-1) 

(P<0.0001). The serum lactate levels in the Ex + CW group was decreased compared to all 

other groups (P<0.0001). Curcumin supplementation and exercise significantly (P<0.001) 

decreased muscle oxidative stress metabolites (control: 74.29±7.48 nmol·mg protein, Ex 

w/ Cur: 42.00±2.65 nmol·mg protein) and increased antioxidant enzymes compared to all 

other groups. This study shows that CW supplementation enhances the antioxidant activity 

by upregulating antioxidant enzymes production, downregulating a transcription factor that 

affects multiple inflammatory pathways, and was shown to increase time to exhaustion 

during exercise.  

Summary: 

Curcumin is an extremely versatile chemical noted for its ability to mediate mechanisms 

and cytokines affecting inflammatory pathways, reversing blood pressure, and even 



 

physiological restructuring such as vascular remodeling and endothelial dysfunction. It 

increases response to neurotransmitter acetylcholine, enzymes affecting nitric oxide 

production, and attenuates hypertensive response enzymes (Boonla, 2014). Curcumin also 

has been shown to increase antioxidant capacity by upregulating antioxidant enzymes 

production, positively affect numerous cardio-health markers, decrease low-density 

lipoprotein cholesterol levels, and ameliorate effects of exercise-induced muscle damage 

(Sahin, 2016). Curcumin supplementation also decreases the weight of the epididymal fat 

pad significantly in a murine model (Huang, 2015). While there is a suggested serum 

concentration level for effectiveness, it can be noted that the effects of curcumin 

supplementation are dose-dependent (Boonla,  2014; Huang, 2015; Lao, 2006) 

2.2 Physiological and Performance Effects of Curcumin Supplementation  

Huang et al. 2015 

This study aimed to evaluate the potential benefits of curcumin (CCM) 

supplementation in a mouse model of physical performance test and exhaustive swimming. 

It was hypothesized that CCM supplementation may decrease exercise-induced 

metabolites, energy distribution, and improve physical performance. The dosage of CCM 

given to the rats was based on the daily-recommended dose of CCM at 60 mL·serving-

1·day-1 for humans (mouse CCM dose @12.3 mL·kg-1). The mouse CCM dose (12.3 

mL·kg-1) we used was converted from a human equivalent dose (HED) based on body 

surface area by the following formula from the US Food and Drug Administration: 

assuming a human weight of 60 kg, the HED for 60 (mL) ·60 (kg)-1 = 1 × 12.3 = a mouse 

dose of 12.3 mL·kg-1; the conversion coefficient 12.3 was used to account for differences 



 

in body surface area between mice and humans (Chen, 2014). The mice were split into four 

groups: vehicle, 1 x recommended dosage, 2 x dosage, and 5 x dosage (10 mice per group). 

The dependent variables tested were forelimb grip strength, swim exercise performance 

test, blood biochemical variables related to fatigue and injury, glycogen, and a biochemical 

profile. The differences were analyzed by a one-way ANOVA and the Cochran–Armitage 

test for dose-effect trend analysis. The results showed that grip strength was higher by 1.2 

and 1.34 times in the CCM1x and 5X group respectively compared to the vehicle, with a 

dose-dependent increase on the trend analysis (P<0.0001). The exhaustive swimming times 

in the CCM1x, CCM2x, and CCM5x dosage swim times were longer by 1.98, 2.17, and 

2.22-fold, respectively, to the vehicle. The exercise fatigue biochemical and induced injury 

indicators all showed significant dose-dependent effects in which all were decreased by 

levels averaging approximately 40%, up to 60% (creatine kinase). The muscle glycogen 

levels were significantly increased by 1.39-1.49- fold with CCM supplementation. Finally, 

CCM supplementation also decreased the weight of the epididymal fat pad significantly. 

This study found that CCM supplementation improved exercise performance including 

grip strength and endurance by increasing muscle glycogen content and had significant 

benefits for physiological indicators after exercise.  

Davis et al. 2007 

The purpose of this study was to evaluate the potential benefits of curcumin 

supplementation using an eccentrically biased downhill treadmill running murine model. 

The pilot study from the same research team proved that voluntary and involuntary running 

were significantly reduced for up to 4 days after a bout of downhill running in mice. The 

mice were randomly assigned to four groups of uphill/placebo, downhill/placebo, 



 

uphill/curcumin, and downhill/curcumin with placebo and curcumin given 3 days prior to 

each exercise session. The first experiment was a treadmill run to fatigue at an 8% incline 

or decline. The second experiment was an assessment of voluntary activity on the exercise 

wheel following the exercise bout session. The third arm of the study was analysis of 

muscle cytokine and plasma creatine kinase inflammatory and damage markers. These data 

were analyzed using a 2-way ANOVA. The results showed that downhill running 

significantly reduced treadmill run to fatigue time as compared to the uphill run; curcumin 

blocked over 100% reduction in treadmill times for the downhill, and no supplementation 

effect was shown for uphill running. Curcumin also completely blocked reduction in 

voluntary running times post exercise session.  Plasma creatine kinase was significantly 

elevated following downhill run compared to the uphill run. Curcumin blunted the increase 

for the downhill run (P<0.05), with no effect shown for the uphill run. Finally, curcumin 

feedings blunted the increases in all muscle cytokine levels (IL-β, IL-6, TNFα: 24hr, and 

48hr). The primary results of this study suggested that curcumin may speed recovery of 

voluntary and involuntary running performance following exercise induced muscle 

damage. The study also concluded that since anti-inflammatory properties of curcumin 

directly influence inflammatory regulators and mimic similar activity of non-steroidal anti-

inflammatory drugs, but without many of the same side effects, curcumin could possibly 

replace repeated usage of NSAIDs in addressing inflammatory issues.  

McFarlin et al. 2016 

Curcumin modifies the signaling pathway of inflammatory cytokines and reduces 

its production. This known ability is similar to the effect of non-steroidal inflammatory 

drugs, making curcumin an ideal supplement for the treatment of exercise-induced 



 

muscular damage (EIMD) and delayed onset muscle soreness (DOMS). The purpose of 

this study was to determine the effects of an optimal dosage of bioavailable oral curcumin 

supplementation (400mg·day-1) on subjective quadriceps muscle soreness, serum creatine 

kinase (CK), and serum inflammatory cytokines following 60 repetitions of eccentric-only 

dual leg press exercise at 100% of the 1RM. A pilot study was done to determine the 

optimal dosage of oral curcumin with 200, 400, and 1000mg. A curcumin dose of 

400mg·day-1 (effect size=0.42 compared to placebo) resulted in at least 19% blunting of 

inflammatory cytokines compared to 6% in a 200mg·day-1 dose (effect size=0.20 compared 

to placebo) at one to two days. There was no significant increase in effect size of 

1000mg·day-1 dosage (effect size = 0.44 compared to placebo) compared to the 400 

mg·day-1 dosage (effect size=0.42 compared to placebo). Forty subjects were randomized 

into placebo and supplement (curcumin at 400 mg·day-1) groups. Ten days before 

completing a muscle damaging session, the subjects were required to complete a muscle 

strength test for a 1RM and familiarization for the eccentric session. The subjects were 

given either the supplement or placebo 2 days prior to EIMD and 3 days after. For the 

eccentric session, the subjects completed 6 sets of 10 repetitions with 5 second eccentric 

contractions at a beginning load of 110% of their 1RM. The resistance was reduced by 

2.2kg if subject was unable to maintain the 5 second contraction and continued for 

subsequent sets. The subjects were given 5 mins of passive seated rest between sets. The 

variables for assessment were subjective quadricep muscle soreness, activities of daily 

living soreness, serum creatine kinase, and serum inflammatory cytokines. The results 

showed no significant difference in supplemental effects of muscle soreness for both 

subjective quadriceps and activities of daily living soreness. For serum creatine kinase, 



 

curcumin supplementation resulted in a significant blunted CK response after EIMD 

session day:  Day 1 (-44%), Day 2 (49%), Day 3 (57%), Day 4 (69%) compared to the 

placebo. The curcumin group had a significantly blunted increase in CK after EIMD that 

returned to baseline at day 2 post damage. Curcumin supplementation significantly 

decreased 3 out of the 4 inflammatory cytokines tested with an average of 20% decrease. 

The key finding of this study was that oral supplementation of curcumin (400 mg·day-1) 

significantly blunted serum creatine kinase and inflammatory cytokines concentrations 

(IL-8 and TNF-α) during recovery post EIMD for up to 4 days but had no effect on the 

perceived soreness.  

Summary: 

Curcumin’s anti-inflammatory, anti-oxidative, blood flow facilitative, and a host of other 

benefits has a profound impact on not only the mental and medical applications, but also 

in the realm of performance capability and physiological enhancement during exercise 

(Davis, 2007; Huang, 2015; McFarlin, 2016). In a murine model study, Huang et al. (2015) 

showed dose dependent effects of curcumin supplementation on increased grip strength, 

glycogen stores, and exhaustive swim times as well as decreased markers of fatigue (e.g., 

lactate, ammonia, blood urea nitrogen, and creatine kinase) compared to a placebo.  

Another murine model study showed that during fatiguing exercise, curcumin 

supplementation compared with a placebo, negated the reduction in time to fatigue, 

significantly speed up recovery time, and significantly blunted increases in injury and 

inflammatory pathways in manners mirroring use of non-steroidal anti-inflammatory drugs 

post-activity (Davis, 2007). In addition, McFarlin et al. (2016) reported curcumin 

supplementation significantly blunted injury markers and inflammatory cytokine levels 



 

post eccentric workout session in humans when compared to a placebo but had no effect 

on perceived soreness.  

2.3 Physiological and Performance Effects of Fenugreek Supplementation 

Poole et al. 2010 

The purpose of this study was to determine the effects of a commercially available 

supplement containing Trigonella foe- num-graecum (fenugreek) on strength, body 

composition, power output, and hormonal profiles in resistance-trained males over the 

course of a structured resistance-training program. This study included 49 resistance-

trained males at an average age of 20 years old. This was a double-blind, placebo-controlled 

design with parallel groups matched by weight. The two groups were randomly assigned 

to the placebo (N = 23) or the supplement (N = 26) condition. The independent variables 

were the condition (500mg placebo or 500mg fenugreek supplement) and the time points 

(week 1, week 4, and week 8) and the dependent variables were the estimated dietary 

energy intake, body composition, upper and lower body 1-RM strength, muscle endurance 

(80% of 1RM), anaerobic sprint power, fasting clinical blood profiles, anabolic/catabolic 

hormones, and metabolic hormones (insulin and leptin). The performance measures, 

fasting clinical blood profiles, and hormone levels were assessed at week 1 (prior to 

training), week 4 (mid-training cycle), and week 8 (post-training). All food and fluid 

intakes were recorded four days prior to each testing day. The capsules were ingested once 

per day in the morning on non-training days and before the workout on training days. The 

training protocol consisted of a periodized 4-day per week resistance-training program, 

split into two upper and two lower extremity workouts per week, for a total of 8-weeks. 



 

The results showed a significant increase in lean body mass at week 4 and 8 (P<0.001) 

compared to baseline for the fenugreek group, with no changes observed in the placebo 

group (P<0.005). There were significant decreases in body fat percentages (P<0.001) at 

weeks 4 and 8 in the fenugreek group compared to baseline, but there were no changes for 

the placebo group (P<0.005). A significant group × time interaction (p = 0.008) and main 

effect for time (p < 0.001) was observed between fenugreek and placebo groups for bench 

press 1-RM, however pairwise comparisons revealed no significant differences between 

fenugreek (P<0.001) and placebo (P<0.008) bench press 1-RM’s at any time point. 

Pairwise comparisons indicate significant difference in the fenugreek (334 ± 74 - 419 ± 87 

kg) and placebo groups (316 ± 63 - 364 ± 68kg) for leg press at week 8 compared to 

baseline (P<0.019). A significant main effect for time (p = 0.002) was observed for 

Wingate peak power FEN (1141 ± 222 - 1183 ± 200) to PLA (1091 ± 215 - 1132 ± 237), 

and further pair-wise comparison showed a significant increase in peak power for FEN at 

week 8 (p = 0.008) compared to the placebo. There were no significant interactions or 

effects for clinical blood profiles. No significant between or within group changes occurred 

for any other serum hormone variables (p > 0.05) but free testosterone with significant 

differences between groups at week 4 (p = 0.018) FEN (40 ± 33 - 33 ± 22) and week 8 (p 

= 0.027) FEN (40 ± 33 - 36 ± 22). The findings of this study suggested that ingesting 500 

mg of a commercially available botanical extract once per day for eight weeks in 

conjunction with a structured resistance training program can significantly impact body 

composition and strength in resistance trained males when compared to a placebo.  

Summary: 



 

 Fenugreek (Trigonella foenum-graecum) is an herb widely used and consumed in 

India. Fenugreek is also a commercially used as a supplement with purported benefits on 

increased strength and improved body composition (Poole, 2010). Fenugreek 

supplementation has been shown to increase free testosterone, strength in resistance 

training (e.g., bench press, leg press), and peak power output, and significantly decrease 

body fat percentages, to a greater degree than a placebo, when used in conjunction with 

exercise programs (Poole, 2010). 

 

2.4 Dosage and Bioavailability of Curcumin Supplementation 

Lao et al. 2006 

Few systematic studies have been done on the toxicology of curcumin in humans; 

though up to 8000mg dosing shows minimal toxicity and peak plasma concentration have 

been identified at 1-2 hours after singular dose of 4000mg or higher. (Cheng et al, 2001). 

This study aimed to determine the maximum tolerated dose, safety profile, and resultant 

serum concentration of a single dose of standardized curcumin powder extract obtained 

from Alleppey finger turmeric (C3 Complex™, Sabinsa Corporation). This dosage 

contained a minimum 95% concentration of three curcuminoids: curcumin, 

bisdemethoxycurcumin, and demethoxycurcumin. The sample size consisted of 24 

participants (13 male, 11 female) with a mean age of 34 years and who had not consumed 

any curcumin rich food within the past 14 days. The study had five dosage levels (1000mg, 

4000mg, 8000mg, 10000mg, and 12000mg) with 3 subjects in each level. Safety was 

assessed for 72 hours after dosing where blood specimens were obtained prior to, one hour, 

two hours, and four hours after dosing. The results showed 7 adverse results all at grade 1, 



 

spread evenly among the dosing where grading was based on the National Cancer Institute, 

Common Toxicity Criteria version 2.0 [10]. No toxicity appeared to be dose-related. 

Curcumin was detected only in the serum of two subjects taking the 10000mg and 

12000mg dose levels (10000mg 1hr: 30.4ng·ml-1, 2hr: 39.5ng·ml-1, 4hr: 50.5ng·ml-1; 

12000mg 1hr: 29.7ng·ml-1, 2hr: 57.6ng·ml-1, 4hr: 51.2ng·ml-1). The authors of this study 

concluded there was minimal toxicity of curcumin supplementation up to a 12000mg 

dosage level from a standardized powder extract obtained from Alleppey finger turmeric, 

and low levels of curcumin were only found in doses higher than 8000mg. 

Krishnakumar et al. 2014 

The purpose of this study was to examine an original formulation for enhancing the 

bioavailability of curcuminoids through use of an extensive gel-forming non-digestible 

soluble dietary fiber galactomannan, containing proteins from fenugreek. Curcuminoids 

are impregnated in the soluble fiber matrix to produce microencapsulates that has unique 

binding, enhanced solubility, and degradation protectivity of curcuminoids from the upper 

gastrointestinal tract environment, and facilitation of slow release for better absorption. 

The fenugreek polysaccharide is non-digestible and swells extensively in the upper GI 

tract; the curcumin that is bound to this gel matrix is protected from the enzymes 

responsible for rapid degradation, is very stable, and leaches out very slowly. The 

advantage of this system of delivery over prior art is the negating of the limitation of poor 

bioavailability via oral delivery (20 times greater than that of 95% unformulated curcumin 

absorption), the saturation rate is at a physiologically relevant level (minimum 

concentration of 0.1uM in plasma in vitro), for a considerable duration (5-hour peak 

compared to the 3 hour peak of unformulated curcumin). In addition, 24 hours past dosing, 



 

the curcumin concentration was 0.21ug·g-1, compared to 0.0008ug·g-1 of the unformulated 

curcumin. Therefore, these findings suggested the combination of fenugreek and curcumin, 

enhanced the bioavailability of curcumin.  

Summary:  

Although there are many purported benefits to linked to the consumption of 

curcumin (Boonla, 2014; Sahin, 2016; Gupta, 2013; Huang, 2015), the supplemental form 

of curcumin alone has been shown to have poor bioavailability (Lao, 2006; Krishnakumar, 

2014; Li, 2007; McFarlin, 2016). Curcumin has a poor absorption, rapid metabolism, and 

rapid systemic elimination (Krishnakumar, 2012; 2014; Lao, 2006; Li, 2007) These 

properties result in an inability for efficient consumption without a vehicle to increase its 

bioavailability. It has been documented (Lao, 2006; Anand, 2007) that even at high doses 

(12g·day-1), the plasma and tissue concentrations are still at physiologically irrelevant 

levels; a study by Garcea et al. (2004) states that most curcumin activity required a 

minimum of approximately 0.1 micromolar levels in vitro, the Lao et al. (2006) study 

showed curcumin was only detected in the serum of subjects taking greater than 10000mg 

dosages, and the concentration was still too low (10000mg 1hr: 30.4ng·ml-1 ;12000mg 1hr: 

29.7ng·ml-1)  to be considered to have physiological effects. The study also showed that 

curcumin supplementation of dosing up to 12g has minimal toxicity risk. Therefore, other 

ingredients have been added to curcumin in an attempt to improve its absorption 

(Krishnakumar, 2014; Lao, 2006; Tu, 2014). For example, some manufactures have 

combined curcumin with piperine which interferes with glucuronidation (Tu, 2014), while 

liposomal curcumin or the addition of fenugreek have been used to slow digestion, increase 

absorption, and slow systemic elimination (Anand, 2007). In addition, a gel-forming non-



 

digestible soluble dietary fiber galactomannan (Fenugreek) vehicle that encapsulates the 

curcumin has been used and shown to prevent rapid elimination, slow the release to 

counteract high metabolism, and increased peak saturation for an extended duration 

(Krishnakumar, 2012; 2014). The formulated fenugreek curcumin complex exhibited 20 

times greater absorption and saturation than that of 95% unformulated curcumin 

(Krishnakumar, 2014). These studies indicate a minimum serum concentration 0.1um of 

curcumin (Garcea, 2004) is necessary for curcumin to have physiological effects. Although 

curcumin alone has been shown to have poor bioavailability, serum concentrations have 

been shown to be increased through synergist supplementation combination with 

fenugreek.  

2.5 Anaerobic Thresholds/Gas Exchange Thresholds 

Beaver et al. 1986 

The purpose of this study was to measure the changes in respiratory gas exchange 

during an incremental exercise session and derive an objective mathematical method that 

can reliably locate the anaerobic threshold (AT) based on the buffering of lactic acid, and 

that is independent of the sensitivity of ventilatory control mechanisms. Ten male subjects 

ages 19-39 performed a cycle ergometer incremental exercise to the limit of tolerance in 

which work rate was increase by 15W·min-1 increments. Gas exchange measurements of 

minute ventilation (𝑉̇𝑉E), alveolar 𝑉̇𝑉O2 and 𝑉̇𝑉CO2 were collected and arterial blood analyses 

for lactate and bicarbonate were taken via an indwelling brachial artery catheter. The gas 

exchange analysis was done by the V-slope method and independent experts. The v-slope 

method involves analyzing the behavior of 𝑉̇𝑉CO2 as a function of 𝑉̇𝑉O2 as the lactate 



 

threshold is exceeded in which the buffering of lactic acid via HCO3
- leads to a 

consequential increase of carbon dioxide production. The gas exchange data were also 

analyzed by six experienced reviewers using a visual identification technique; each judge 

independently reviewed ten subjects’ plots of 𝑉̇𝑉E/𝑉̇𝑉CO2, 𝑉̇𝑉E/𝑉̇𝑉O2, end-tidal CO2 pressure, 

end-tidal O2 pressure, and R vs time. The determination of the (AT) was performed by 

dividing the 𝑉̇𝑉CO2 versus 𝑉̇𝑉O2 relationship into two linear segments and fitting them with 

linear regression. The tentative AT is the intersection between the two linear regression 

segments and the point is moved until the two lines best fit the data by maximizing the 

ratio of the greatest distance of the intersection point from the single regression line of the 

data to the mean square error of regression. The estimated 95% confidence intervals of 10 

studies ranged from 0.05L·min-1 to 0.1 L·min-1, averaging 0.07 L·min-1 or ± 3.8% of the 

𝑉̇𝑉O2 at the intersection point. The panel vs the calculated AT differed only by 0.02 L·min-

1 (not significant). Only 5 out of 10 ATs were detected by all the panelists while the V-

slope method yielded ATs for all subject data. Respiratory compensation point (RCP) is 

defined in this study as the intersection between the two linear segments of the data slopes 

in the plot of 𝑉̇𝑉E/𝑉̇𝑉CO2 if the change in slope between them is greater than a preselected 

amount (15% of the initial slope). The mean 𝑉̇𝑉O2 at the respiratory compensation point 

(RCP) was 75% of the 𝑉̇𝑉O2 max and the mean 𝑉̇𝑉O2 for AT was 73% of the mean 𝑉̇𝑉O2 value 

of the RCP. The AT found by the V-slope method occurred at a mean lactate increase of 

0.50 meq·L-1 above the lactate value at LT. The most significant finding for the bicarbonate 

study was that the mean 𝑉̇𝑉O2 at AT (1.83 ± 0.30 L·min-1) was not significantly different 

from the estimated 𝑉̇𝑉O2 at the mean HCO3
- threshold (1.78 ± 0.24 L·min-1). Overall this 

study validates the V-slope method and its reliability, further validates previous studies 



 

that RCP demarcates heavy to severe domains, AT demarcates moderate to heavy domains, 

and indicates that the lactate threshold and AT are not significantly different.  

Bergstrom et al. 2013 

This study examined the relationships between physical working capacity at the 

fatigue threshold (PWCFT), gas exchange threshold (GET), respiratory compensation point 

(RCP), and critical power (CP) to identify and compare possible physiological mechanisms 

underlying the onset of muscular fatigue. The authors hypothesized that the differences 

between these thresholds would reflect the parameters used to estimate them, and there 

would be possible differences in the physiological mechanisms that underlie them. The 

participants consisted of six men and four women (mean ± SD age: 20 ± 1 year; body 

weight 69.9 ± 12.6 kg; height 171.6 ± 9.0 cm). Each participant performed an incremental 

test to exhaustion on a calibrated Lode electronically-braked cycle ergometer at a pedal 

cadence of 70 rev min-1 where testing began at 50W and increased by 30W per minute until 

voluntary exhaustion or the participant’s pedal rate fell below 70 rev min-1 for more than 

10 s, despite strong verbal encouragement. The GET was determined using the V-slope 

method and the RCP was determined using the 𝑉̇𝑉E versus 𝑉̇𝑉CO2 relationship. The PWCFT 

values were determined from 10 s epocs of electromyographic amplitude (EMG AMP) 

signals recorded from the vastus lateralis muscle during each 2 min stage of the test. The 

PWCFT was defined as the average of the highest power output that resulted in a non-

significant (p > 0.05; single-tailed t-test) slope coefficient for the EMG AMP versus time 

relationship, and the lowest power output that resulted in a significant (p > 0.05) positive 

slope coefficient. The CP was the average power output over the final 30 s of the 3-min 

all-out test. The mean differences in fatigue thresholds were analyzed using a one-way 



 

repeated measures ANOVA with least significant difference post-hoc comparisons, and the 

relationships among the PWCFT, GET, RCP and CP were described using Pearson-product 

moment correlations and a zero-order correlation matrix. The PWCFT (197 ± 55 W), RCP 

(212 ± 50 W) and CP (208 ± 63 W) were significantly greater than the GET (168 ± 40 W), 

but there were no significant differences among the PWCFT, RCP and CP. The thresholds 

PWCFT, GET, RCP and CP represented 75 ± 11%, 65 ± 5%, 82 ± 3% and 79 ± 9% of peak 

power respectively; and were shown to be significantly inter-correlated (r = 0.794–0.958).  

The results of the current study indicated: 1) the PWCFT was 17% greater than, but highly 

correlated (r = 0.847) with the GET; 2) the PWCFT was not significantly different from, 

and highly correlated (r = 0.835) with, the RCP and that a similar physiological mechanism 

may underlie the determination of these fatigue thresholds; and 3) the PWCFT and CP were 

not significantly different and moderately correlated.  

Summary: 

The gas exchange method (GET) was developed as an objective mathematical 

method to reliably locate the anaerobic threshold (AT) based on the buffering of metabolic 

acidosis by measuring the changes in respiratory gas exchange during an incremental 

exercise session (Beaver, 1986). This method involved quantifying and analyzing the 

oxygen consumption (𝑉̇𝑉O2) and the carbon dioxide production 𝑉̇𝑉CO2 through the V-slope 

method. The V-slope method plots 𝑉̇𝑉CO2 as a function of 𝑉̇𝑉O2, and separates the data into 

two linear segments, then fits these segments with linear regression. The tentative AT (or 

GET) is the intersection between the two linear regression segments. The respiratory 

compensation point (RCP) was defined as the intersection between the two linear segments 

of the 𝑉̇𝑉E 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑉̇𝑉CO2 relationship (Beaver, 1986). It has been suggested the GET 



 

demarcates the moderate from heavy exercise intensity domains, while the RCP is typically 

greater than 75% of 𝑉̇𝑉O2 max and demarcates the heavy from severe exercise intensity 

domains. The GET, VT and RCP can be determined from the measurement of respiratory 

gas exchange during incremental exercise (Beaver, 1986; Bergstrom, 2013). 
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CHAPTER 3. METHODS 

 

3.1 Experimental Approach 

This study used a randomized, double-blind, placebo-controlled, parallel design with two 

experimental groups and one placebo group. Sixty subjects were randomly assigned to the 

placebo group (PLA, n=13), curcumin+ fenugreek supplement, CurQfen® (CUR, n=14), 

or fenugreek soluble fiber supplement (FEN, n=18). The subjects visited the testing center 

located in University of Kentucky Kinesiology and Health Promotion education facility a 

total of six times; the second and sixth sessions lasted approximately two hours, and there 

were weekly check-in visits (4 total= visits three through six) during the 28-day 

supplementation period. During the first visit, each subject completed a health history 

questionnaire and signed an informed consent. During the second visit, the subjects 

completed a pre-test graded exercise test (GXTpre prior to 28 days of supplementation), 

followed by a 28-day supplementation protocol. The subjects were asked to ingest one dose 

(PL, CUR, or FEN) every day for 28 days and one dose 60 minutes prior to the post-test 

(GXTpost after 28 days of supplementation). The GXT was used to derive the pre-test VT, 

RCP, 𝑉̇𝑉O2peak, and Tlim. Following 28-days of supplementation, each subject completed a 

post-test GXT to derive the post-test (VT), (RCP), 𝑉̇𝑉O2peak, and Tlim. Dietary intakes three 

days prior to test days were recorded with food logs. In addition, supplement compliance 

was recorded with supplementation logs. 



 

3.2 Subjects 

In total, 67 subjects were screened and enrolled in the study. Three of the subjects withdrew 

due to scheduling conflicts, two of subjects were excluded due equipment malfunctions, 

and one subject was excluded due to inability to complete PRE/POST-test as a result of 

illness. Four of the subjects were excluded as they did not exhibit landmarks for threshold 

calculation, and two were excluded due to inability to complete minimal stage requirements 

needed for this test. The subjects were untrained in aerobic exercise and engaged in no 

more than 4 hours of recreational activity per week. To account for variations in low- and 

high- fitness levels, subjects were excluded if they fell below (very poor) or above 

(superior) the 10th percentile of cardiorespiratory fitness based on age and sex, according 

to the American College of Sports Medicine (Thompson, 2014). Five of the subjects had a 

V̇O2peak that was below, and five of the subjects had a V̇O2peak that was above the 10th 

percentile for cardiorespiratory fitness and were excluded from the analyses. Thus, there 

were 45 men (n = ) and women (n = ) (age: 21.2 ± 2.4 yrs; height: 174.4 ± 8.2cm; weight: 

73.1 ± 13.4kg) who completed this study (PLA = 13, FEN = 18, CUR = 14). All of the 

subjects completed a health history questionnaire and met the following criteria: (a) no 

history of medical or surgical events that could significantly affect experimental results or 

increase the subjects risk of injury, these include cardiovascular disease, metabolic, renal, 

hepatic, or musculoskeletal disorders; (b) were not taking any medication that could 

significantly affect experimental results (such as vasodilators/vasoconstrictors); (c) were 

not currently using any nutritional supplements that could significantly affect experimental 

results; and (d) were not presently participating in another clinical trial or ingestion of 

another investigational product. The subjects were instructed to not consume any caffeine 

on the testing day and avoid alcohol consumption for 24 hours prior to testing. The study 



 

was approved by the University’s Institutional Review Board for Human Subjects, and all 

subjects signed a written informed consent document before testing.  

3.3 Supplementation 

A limitation to curcumin supplementation is its low bioavailability. The supplement 

CurQfen® combines curcumin extract and fenugreek to significantly increase plasma 

concentrations of curcumin (Krishnakumar, 2012). Galactomannan soluble dietary fiber 

from fenugreek seeds slows the digestion and rapid elimination of curcumin to allow better 

absorption into the bloodstream, improving absorption by 15.8 times of the curcumin 

standalone (Krishnakumar, 2012). The 500mg CurQfen® capsule contained 190 mg of 

total curcuminoids (curcumin- 81%, demethoxycurcumin - 15.7% and 

bisdemethoxycurcumin - 2.6%) and 300mg FenuMAT (de-bitterised fenugreek dietary 

fiber containing 5 to 80% galactomannans with 2-4% moisture). The fenugreek soluble 

fiber only group was included to account for any extraneous effects of fenugreek soluble 

fiber and contained 300 mg. The subjects consumed one dose daily and received the 

capsules on a weekly basis according to their randomly assigned group of either the PLA, 

CUR, or FEN. The pills were ingested with 16 oz. of water every morning before eating 

for 28 days. The subjects completed a dosing log and checked in weekly with their pill 

bottles to ensure adherence to proper dosing procedures and to receive the following weeks 

supplement. The dosing log was used to check compliance (compliance = (# of doses taken 

/ total # of doses provided] x 100). A compliance rate of > 80% was required for inclusion 

in the data analyses. In addition, during supplementation, the subjects were instructed to 

keep a three-day food and activity log prior to each testing session and were asked not to 

change their diet and activity level during the study. The three-day food logs prior to each 



 

testing day were further analyzed to ensure consistency in diet. A total of 42 of the 45 

subjects (PLA = , FEN = , CUR = ) completed and returned food logs that were used for 

subsequent analyses.  

3.4 Graded Exercise Tests 

Each subject performed an incremental cycle test to exhaustion on an electronically braked 

cycle ergometer (Lode Corival, Groningen, Netherlands) to determine the VT, RCP, 

𝑉̇𝑉O2peak, and Tlim. The subjects were familiarized with the equipment before proceeding 

with the GXT. The ergometer seat height was adjusted so that the subject’s legs reach near 

full extension at the bottom of the pedal revolution. Toe clips were used to maintain pedal 

contact throughout the test and all subjects were equipped with a nose clip and a 2-way 

valve mouthpiece to collect all expired air. A calibrated metabolic cart (TrueMax 2400, 

ParvoMedics, Sandy, UT) was used to collect and analyze the expired gas samples. The 

gas analyzers were calibrated with room air and gases of known concentration prior to all 

testing sessions. The O2, CO2, and ventilatory parameters were expressed as 30 s averages.  

In addition, the heart rate was recorded with a Polar Heart Rate Monitor (Polar Electro Inc., 

Lake Success, NY) that was synchronized with the metabolic cart. A Borg Rating 6-20 of 

Perceived Exertion (RPE) scale was used to quantify the subjective effort of the participant 

at the end of each minute during the test (Borg, 1982). Following a one-minute warm up at 

0 W, the resistance was increased to 50W and increased by 30W every 2 min until the 

subjects were unable to maintain 70 rev·min-1, or until volitional fatigue. This protocol was 

consistent with the study protocol previously used to assess V̇O2 peak, gas exchange and 

ventilatory thresholds, as well as the electromyographic fatigue threshold in college aged 

males (Bergstrom, 2013). The V̇O2 peak was defined as the highest V̇O2 value in the last 



 

30 seconds of the test that met two of the following three criteria: 1) 90% of age-predicted 

heart rate; 2) respiratory exchange rate > 1.1; and 3) a plateau of oxygen uptake (less than 

150 mL·minˉ¹ in V̇O2 over the last 30 seconds of the test). 

3.5 Determination of Fatigue thresholds: VT, and RCP 

The VT was determined from the V̇E versus V̇O2 relationship and defined as the 𝑉̇𝑉O2 value 

that corresponds with the point of non-linear increase in V̇E relative to V̇O2 (Beaver, 1986). 

The RCP was determined using the V̇E versus V̇CO2 relationship and defined as the V̇O2 

value that corresponds with the point of non-linear increase in V̇E relative to V̇CO2 (Beaver, 

1986).  

3.6 Statistical Analyses 

Separate, one-way ANOVAs were used to determine if there were any significant 

differences among the PLA, FEN, and CUR groups for age, height, weight, VT𝑉̇𝑉O2,  

RCP𝑉̇𝑉O2, V̇O2peak, and Tlim among the groups prior to supplementation. The PLA group 

(n = 13) PRE- and POST-test values were used for the calculation of reliability, which 

consisted of the intraclass correlation coefficient model 2,1 (ICC2,1), the standard error of 

the measurement (SEM), and the minimal difference needed to be considered real (MD) 

for each dependent variable (VT𝑉̇𝑉O2, RCP𝑉̇𝑉O2, 𝑉̇𝑉O2 peak, and Tlim) (Weir, 2005). The 

SEM was calculated as the SD x √1 − 𝐼𝐼𝐼𝐼𝐼𝐼; and the MD was calculated as  the SEM x 1.96 

x √2 (Weir, 2005). In addition, three separate paired samples t-test were used to determine 

if there were any significant changes in the dependent variable for the PLA group from 

PRE- to POST-test. Our testing model consists of two independent variables (group and 



 

time). Four separate, one-way ANCOVAs (one for each dependent variable, VT, RCP, 

𝑉̇𝑉O2peak, and Tlim) were used to determine if there were any differences between adjusted 

POST-test values (VT𝑉̇𝑉O2, RCP𝑉̇𝑉O2, 𝑉̇𝑉O2 peak, and Tlim) and the respective PRE-test 

values were used as the covariate. Follow-up analyses consisted of independent samples t-

tests. Separate 2 (Time: PRE and POST) x 3 (Group: PL, CUR, FEN) mixed factorial 

ANOVAs were performed for the total kilocalories and grams for each macronutrient 

(carbohydrates, fats, and proteins). The analyses were conducted using Statistical Package 

for the Social Sciences software (v. 24.0 IMB SPSS Inc., Chicago, IL, USA). An alpha 

level of p ≤ 0.05 was considered statistically significant for all analyses. 

  



 

 

 
CHAPTER 4. RESULTS 

4.1 PRE-test ANOVAs 

The results of the one- way ANOVAs comparing PRE-test values indicated that there were 

no significant mean group differences for the VT𝑉̇𝑉O2 (F= 0.039 p= 0.200), RCP𝑉̇𝑉O2 (F= 

0.148 p= 0.863), 𝑉̇𝑉O2peak (F= 0.068 p= 0.934), or Tlim (F= 0.181 p= 0.835) determined 

from the GXT; or for age (F= 1.753 p= 0.186), height (F= 0.241 p= 0.787), or weight (F= 

1.001 p= 0.376) values (Table 4.2).  

4.2 Reliability Analyses 

A paired samples t-test of the PLA group indicated that there were no significant mean 

differences between PRE- and POST-test for the VT𝑉̇𝑉O2 (t= 1.224 p= 0.244), RCP𝑉̇𝑉O2 

(F= -0.492 p= 0.631), 𝑉̇𝑉O2peak (t= -0.293 p= 0.775), and Tlim  (t= -0.054 p= 0.958). The 

ICC values for the VT𝑉̇𝑉O2, RCP𝑉̇𝑉O2, 𝑉̇𝑉O2 peak, and Tlim were 0.959, 0.917, 0.971, and 

0.957, respectively. The SEM and MD values for the VT𝑉̇𝑉O2, RCP𝑉̇𝑉O2, 𝑉̇𝑉O2peak, and Tlim 

are presented in Table 4.2. 

 

 

 

 

 

 

 



 

Table 4.1  Demographic information (Mean ± SD) and PRE-test values for the ventilatory 
threshold (VT), respiratory component point (RCP), V̇O2 peak, and time to exhaustion 
(Tlim) from the graded exercise test.  

 PLA  FEN CUR 
Age (yrs) 20.5 ± 1.5 20.9 ± 1.4 22.1 ± 3.8 

Height (cm) 175.3 ±  7.6 173.5 ±  7.9 173.7 ±  9.1 
Weight (kg) 71.5 ± 11 76.7 ± 12.9 70.5 ± 16.2 

𝐕̇𝐕O2peak (L·min-1) 2.8 ± 0.7 2.9 ± 0.7 2.8 ± 0.7 
VT (L·min-1) 1.507±0.325 1.480±0.328 1.514±0.440 

RCP (L·min-1) 2.343±0.586 2.435±0.534 2.341±0.568 
Tlim (min) 13.956±2.698 14.48±2.68 14.61±3.58 

PLA (n = 13)= Placebo, FEN (n = 18) = Fenugreek, CUR (n = 14) = CurQfen® 

  



 

Table 4.1  Results of the reliability analyses for the placebo group using PRE-test and 
POST-test values for the ventilatory threshold (VTV̇O2), respiratory compensation point 
(RCPV̇O2), V̇O2 peak,  and time to exhaustion (Tlim). 

Subject PreV̇O2Peak PostV̇O2Peak PreVTV̇O2 PostVTV̇O2 PreRCPV̇O2 PostRCPV̇O2 PreTlim PostTlim 

4 3.782 3.826 1.500 1.520 3.168 3.230 18.02 17.49 
7 2.876 3.164 2.118 2.287 2.623 3.010 15.34 14.51 

10 2.413 2.282 1.310 1.220 2.193 2.078 12.52 11.02 
22 3.537 3.245 1.860 1.730 2.716 2.688 15.00 15.51 
27 2.065 1.921 1.170   0.980* 1.694 1.571 11.01 11.50 
32 3.423 3.509 1.971  1.890 2.533 2.685 15.50 15.52 
36 2.472 2.289 1.400 1.300 1.986 1.911 12.49 11.52 
47 3.614 3.715 1.430 1.484 3.309 3.100 17.51 18.40 
51 2.890 3.127 1.390 1.500 2.180   2.847* 14.01 15.01 
57 1.578 1.403 0.990 0.925 1.330 1.225 8.51 8.01 
62 2.565 2.609 1.626 1.592 2.331 2.078 14.00 13.33 
66 2.057 2.219 1.224 1.162 1.656 1.810 11.51 12.46 
67 3.308 3.464 1.599 1.561 2.739 2.680 16.01 17.00 

Mean 
± SD 

2.814 
±0.691 

2.829 
±0.758 

1.507 
±0.325 

1.473 
±0.372 

2.343 
±0.586 

2.829 
±0.636 

13.96 
±2.70 

13.94 
±2.98 

ICC 0.971 0.959 0.917 0.957 
SEM 0.119 0.066 0.170 0.56 
MD 0.330 0.183 0.471 1.55 

ICC = intraclass correlation coefficient; SEM = standard error of the measurement; MD = 
minimal difference to be considered a real change. (*) denotes an increase or decrease from 
PRE-test to POST-test that exceeded the MD.  

  



 

4.3 Fatigue Thresholds and Maximal Testing Parameters 

4.3.1 Analysis of Covariance  

 The one-way ANCOVA for the VT𝑉̇𝑉O2 values indicated there were significant 

differences among the groups (F = 3.224, p= 0.05) (Figure 4.1). The pairwise comparisons 

indicated a significant difference between the CUR and PLA groups (p= 0.039) and 

between the FEN and PLA (p= 0.025), but no differences between FEN and CUR (p= 

0.943). The adjusted VT𝑉̇𝑉O2 mean (±SD) for the Placebo, FEN, and CUR were 1.465 ± 

0.155 L·min-1 (95% CI= 1.378-1.552 L·min-1), 1.597 ± 0.157 L·min-1 (95% CI= 1.522-

1.671 L·min-1), and 1.593 ± 0.157 L·min-1 (95% CI= 1.509-1.677 L·min-1) (Figure 1). The 

one-way ANCOVAs for 𝑉̇𝑉O2 peak (F = 0.613, p = 0.547), RCP𝑉̇𝑉O2 (F = 3.177, p = 0.052), 

and Tlim (F = 0.654, p = 0.525) indicated there were no significant differences among 

groups (Figures 4.2, 4.3, 4.4 respectively).  

The 3 x 2 mixed factorial ANOVAs resulted in no significant group x time 

interactions (p = 0.430 -0.802), main effects for group (p = 0.222 -0.652), or main effects 

for time (p = 0.335-0.870) for the total kilocalories or macronutrients consumed. 

Supplement compliance was recorded with supplementation logs and demonstrated a mean 

(± SD) compliance rate of 98.6% ± 2.6%. 

 



 

 
Figure 4.1  Adjusted POST-test ventilatory threshold (VT) V̇O2 (mean ± SEM) values (covaried for PRE-
test VTV̇O2 scores) for placebo (PLA), fenugreek (FEN), and the CurQfen® (CUR) groups.  *Significantly 
(p< 0.05) greater than placebo.   
 

 
Figure 4.2 Adjusted POST-test respiratory compensation point (RCP) V̇O2 (mean ± SEM) values (covaried 
for PRE-test RCPV̇O2 scores) for placebo (PLA), fenugreek (FEN), and the CurQfen® (CUR) groups. 
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Figure 4.3  Adjusted POST-test V̇O2 peak (mean ± SEM) values (covaried for PRE-test V̇O2 Peak scores) 
for placebo (PLA), fenugreek (FEN), and the CurQfen® (CUR) groups. 

 

 

 

 
Figure 4.4 Adjusted POST-test time to exhaustion (Tlim) (mean ± SEM) values (covaried for PRE-test Tlim 
scores) for placebo (PLA), fenugreek (FEN), and the CurQfen® (CUR) groups. 
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4.3.2 Individual Responses for Ventilatory Threshold (𝑉𝑉𝑉𝑉𝑉̇𝑉O2)  

One subject of the 13 subjects in the PLA group showed a decrease greater than MD (Figure 

4.5). Four of the 18 subjects in the FEN group (Figure 4.6) and two of the 14 subjects from 

the CUR group (Figure 4.7) showed an increase greater than MD.  

 

 
Figure 4.5  Individual responses for the ventilatory threshold V̇O2 from PRE- to POST-test for the placebo 
(PLA) supplement group. Dashed blue lines indicate an increase and the dashed orange lines a decrease 
from PRE- to POST-test. Solid colored lines indicate an increase/decrease greater than the minimal 
difference. The black line indicates the mean response. 
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Figure 4.6 Individual responses for the ventilatory threshold V̇O2 from PRE- to POST-test for the 
fenugreek (FEN) supplement group. Dashed blue lines indicate an increase and the dashed orange lines a 
decrease from PRE- to POST-test. Solid colored lines indicate an increase/decrease greater than the 
minimal difference. The black line indicates the mean response. 

 
Figure 4.7  Individual responses for the ventilatory threshold V̇O2 from PRE- to POST-test for the 
CurQfen® (CUR) supplement group. Dashed blue lines indicate an increase and the dashed orange lines a 
decrease from PRE- to POST-test. Solid colored lines indicate an increase/decrease greater than the 
minimal difference. The black line indicates the mean response. 
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4.3.3 Individual Responses for the Respiratory Compensation Point (𝑅𝑅𝑅𝑅𝑅𝑅𝑉̇𝑉O2)  

One of the 13 subjects in the PLA group (Figure 8) showed an increase greater than MD 

while there were no subjects who exceed the MD in the FEN (Figure 9) or CUR (Figure 

10) groups. 

 
Figure 4.8  Individual responses for the respiratory compensation point V̇O2 from PRE- to POST-test for 
the placebo (PLA) supplement group. Dashed blue lines indicate an increase and the dashed orange lines a 
decrease from PRE- to POST-test. Solid colored lines indicate an increase/decrease greater than the 
minimal difference. The black line indicates the mean response. 
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Figure 4.9  Individual responses for the respiratory compensation point V̇O2 from PRE- to POST-test for 
the fenugreek (FEN) supplement group. Dashed blue lines indicate an increase and the dashed orange lines 
a decrease from PRE- to POST-test. Solid colored lines indicate an increase/decrease greater than the 
minimal difference. The black line indicates the mean response. 

 

 
Figure 4.10 Individual responses for the respiratory compensation point V̇O2 from PRE- to POST-test for 
the CurQfen® (CUR) supplement group. Dashed blue lines indicate an increase and the dashed orange lines 
a decrease from PRE- to POST-test. Solid colored lines indicate an increase/decrease greater than the 
minimal difference. The black line indicates the mean response. 
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4.3.4 Individual Responses for 𝑉̇𝑉O2 Peak 

None of the 13 subjects in the PLA group showed a change in 𝑉̇𝑉O2peak greater than the 

MD (Figure 11). Two of the 18 subjects in the FEN group (Figure 12) showed a decrease 

greater than the MD and one of the 14 subjects in the CUR Figure 13) showed an increase 

greater than the MD. 

 
Figure 4.11 Individual responses for the V̇O2 Peak from PRE- to POST-test for the placebo (PLA) 
supplement group. Dashed blue lines indicate an increase and the dashed orange lines a decrease from 
PRE- to POST-test. Solid colored lines indicate an increase/decrease greater than the minimal difference. 
The black line indicates the mean response. 
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Figure 4.12  Individual responses for the V̇O2 Peak from PRE- to POST-test for the fenugreek (FEN) 
supplement group. Dashed blue lines indicate an increase and the dashed orange lines a decrease from 
PRE- to POST-test. Solid colored lines indicate an increase/decrease greater than the minimal difference. 
The black line indicates the mean response. 

 
Figure 4.13  Individual responses for the V̇O2 Peak from PRE- to POST-test for the CurQfen® (CUR) 
supplement group. Dashed blue lines indicate an increase and the dashed orange lines a decrease from 
PRE- to POST-test. Solid colored lines indicate an increase/decrease greater than the minimal difference. 
The black line indicates the mean response. 
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4.3.5 Individual Responses for Time to Exhaustion 

There were no subjects in any of the groups that showed and increase or decrease greater 

than MD (Figures 14, 15, 16) for the Tlim.  

 
Figure 4. 14  Individual responses for the time to exhaustion (Tlim) from PRE- to POST-test for the placebo 
(PLA) supplement group. Dashed blue lines indicate an increase and the dashed orange lines a decrease 
from PRE- to POST-test. The black line indicates the mean response. 
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Figure 4.15  Individual responses for the time to exhaustion (Tlim) from PRE- to POST-test for the 
fenugreek (FEN) supplement group. Dashed blue lines indicate an increase and the dashed orange lines a 
decrease from PRE- to POST-test. The black line indicates the mean response. 

 

 
Figure 4.16  Individual responses for the time to exhaustion (Tlim) from PRE- to POST-test for the 
CurQfen® (CUR) supplement group. Dashed blue lines indicate an increase and the dashed orange lines a 
decrease from PRE- to POST-test. Solid colored lines indicate an increase/decrease greater than the 
minimal difference. The black line indicates the mean response. 
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CHAPTER 5. DISCUSSION 

The purpose of this study was to examine the effects of a 28 day dosing period of 

curcumin and fenugreek soluble fiber on submaximal and maximal endurance performance 

indices measured during a GXT. The primary findings were that the VT was greater for the 

CUR and FEN compared to the PLA at post-test, but there were no differences in the RCP, 

𝑉̇𝑉O2peak, or Tlim values. In this study, the VT increased 6.2% (increase = 0.094 L·min-1) 

and 6.7% (increase = 0.099 L·min-1) from PRE- to POST-test for the CUR and FEN, 

respectively, but was not improved for the PLA - 2.2% (decrease = 0.034 L·min-1). To our 

knowledge, no previous studies have examined the effects of curcumin and fenugreek on 

submaximal fatigue thresholds, however, the relative changes (6.2 – 6.7%) in the VT in 

this study were consistent with the 4.1 to 5.4% increases previously reported for the gas 

exchange threshold (GET) after 28 days of arginine supplementation (Camic, 2010). 

Interestingly, these increases in the GET were also not accompanied by changes in 

𝑉̇𝑉O2peak. Thus, the results of the present study showed increases in a submaximal fatigue 

threshold (VT) for both CUR and FEN, without changes in maximal endurance 

performance (𝑉̇𝑉O2peak, Tlim, and RCP), that were consistent with previously reported 

(Camic, 2010) changes of a similar threshold after a nutritional intervention.  

5.1 Supplementation Effects on a Submaximal Endurance Performance Threshold 

The sensitivity of the VT to curcumin and fenugreek supplementation is likely related 

to the mechanisms underlying the fatigue threshold. Although there is conflicting evidence 

regarding the true underlying mechanism(s) for the breakpoints in the V̇E versus V̇O2 and 



 

V̇CO2 versus V̇O2 relationships that define the VT and GET, respectively, these thresholds 

have been demonstrated across multiple studies ((Beaver, 1986; Wasserman, 1973; 

Gaesser, 1996) and are likely related to the accumulation of metabolic byproducts (i.e., H+, 

inorganic phosphate, ammonia, and potassium) of muscular contractions. Thus, the VT and 

GET demarcate the moderate from the heavy exercise intensity domains and reflect the 

point of increased reliance on anaerobic ATP production, as the aerobic system can no 

longer fully support the energy demands of the exercise intensity (Powers, 2015). One of 

curcumin’s purported physiological benefits is the up regulation of enzymes involved in 

nitric oxide (NO) production and enhanced acetylcholine-induced vasodilation (Boonla, 

2014; Santos-Parker, 2017). Nitric oxide bolsters tissue respiration and endothelium-

dependent vasodilation by relaxing smooth muscle cells in the vasculature (Maiorana, 

2003; Chen, 2008). In addition, curcumin supplementation has been shown to reduce the 

accumulation of metabolic byproducts (lactate and ammonia) of muscular contraction 

(Davis, 2007; Huang, 2015) in rodents. It is possible the reduction of these metabolites 

after curcumin supplementation were a result of increased NO production and enhanced 

endothelium-dependent vasodilation (Boonla, 2014). Similar to these responses, the 

increases in the GET previously reported after arginine supplementation were hypothesized 

to be related to the amino acids essential role in the synthesis of NO production and the 

subsequent vasodilatory response to enhance metabolic byproduct clearance (Camic, 2010; 

Wasserman, 1973). Thus, it is possible the increases observed in the VT for CUR group 

were related to increased metabolic byproduct clearance from NO induced vasodilation. 

Future studies should focus on the measurement of metabolic byproducts and their 



 

relationship with the VT in humans supplemented with varying levels of curcumin, to 

observe any dose-dependent responses.  

Fenugreek soluble fiber, also known as galactomannan, was added to curcumin 

(CurQfen®) to increase the bioavailability of the supplement (Krishnakumar, 2012). 

Theoretically, galactomannans slow digestion, especially in the small intestine, resulting 

in a greater absorption of curcumin and greater plasma curcumin concentrations 

(Krishnakumar, 2014). However, galactomannans from fenugreek have also been shown 

to have physiological effects after 28 days of supplementation. Two of the purported 

benefits of chronic galactomannan supplementation are an increased plasma free fatty acid 

(FFA) concentration in circulation and decreased plasma insulin levels (Neelakantan, 

2014; Srichamroen, 2008). It has been shown (Romijn, 1985) that FFA oxidation rates 

were increased by greater concentrations of FFA in circulation. During exercise in the 

moderate domain (i.e., below the VT), FFA’s are the primary energy substrate for aerobic 

ATP production. Thus, greater plasma FFA in circulation may increase the rate of FFA 

utilization, potentially delaying the reliance on anaerobic glycolytic metabolism and 

attenuating metabolic byproduct accumulation. Furthermore, supplementation of 

galactomannans from fenugreek has been shown to increase plasma insulin sensitivity, 

decrease plasma insulin levels, and decrease blood glucose levels in mice models, and has 

been replicated in human models for both fasting and post oral glucose tests (Neelakantan, 

2014). Insulin suppresses lipolysis by directly inhibiting transcription of lipase via the 

mTOR pathway (Meijssen, 2001; Chakrabarti, 2013). Increased insulin sensitivity and 

subsequent decreases in insulin levels would, theoretically, increase lipolysis and favor fat 

mobilization. Previous investigators have reported a significant, positive relationship 



 

between insulin sensitivity and oxidative capacity (Bruce, 2003; Srichamroen, 2008). Thus, 

it is possible the VT was improved in the FEN group from increased FFA oxidation that 

delayed reliance on anaerobic glycolysis and attenuated the accumulation of metabolic 

byproducts. Future studies should further examine the effects of fenugreek, in particular, 

the galactomannan component, on FFA concentrations and insulin sensitivity to determine 

its relationship with submaximal exercise performance indices.  

5.2 Synergistic Effects of Curcumin and Galactomannan Soluble Fiber 

It is also possible the purported effects of fenugreek were responsible, at least in 

part, for the increases in VT for the CUR group (CurQfen® = curcumin + fenugreek: 

300mg). Due to the poor bioavailability of curcumin, it is difficult to achieve plasma 

curcumin levels of physiological effect without a bioavailability booster such as fenugreek 

or piperine (Krishnakumar, 2012; 2014). Therefore, we could not isolate the individual 

effects of curcumin in this study. Based on the purported effects of curcumin and 

fenugreek, it would seem logical that the combination of both would exhibit synergistic 

effects to improve performance. Unexpectedly, both the CUR and FEN group 

demonstrated a greater VT at post-test compared to the placebo, but the VT was not 

different between the CUR and FEN. In this study, the 500 mg dose of of CurQfen® 

contained 190mg of curcuminoids and 300mg of fenugreek soluble fiber (75-80% 

galactomannans). It is possible at this relative dosage that any differences between the 

supplementation groups (CUR and FEN) were too small to detect. Future studies should 

examine the effects of supplementation with various doses of curcuminoids, without 

additional fenugreek fiber, to determine if there are any differences between curcumin and 

fenugreek supplementation on the VT. In addition, future studies should examine the 



 

effects of supplementation fenugreek fiber alone and curcumin in combination with other 

ingredients (to increase absorption), such as piperine, to determine if there are similar 

changes in submaximal endurance performance indices. 

5.3 Supplementation Effects on the Respiratory Compensation Point and Maximal 
Endurance Indices  

Curcumin and fenugreek soluble fiber supplementation had no effects on the RCP, 

V̇O2peak, or Tlim in this study. The RCP is defined as the breakpoint in the V̇CO2 versus 

V̇E relationship and has been suggested to reflect the involuntarily hyperventilation 

associated with metabolic acidosis due to the failure of regional buffering systems (e.g., 

carnosine and sodium bicarbonate) (Powers, 2015). Theoretically, the RCP demarcates the 

heavy from severe exercise intensity domains and is typically identified at intensities 

greater than 75% of V̇O2 max in healthy, active adults (Beaver, 1986). By this definition, 

the VT and GET may be more sensitive to changes affecting aerobic adaptations or 

interventions such as oxygen supply and substrate availability, while the RCP may be more 

sensitive to changes affecting anaerobic metabolic system buffering capacities (Takano, 

2000; Beaver, 1986; Gaesser & Poole, 1996). Thus, it is possible that NO mediated 

vasodilation and increased FFA concentrations as a result of curcumin and fenugreek 

supplementation, respectively, were effective to improve aerobic metabolic system 

efficiency and the VT, but did not alter the cellular and blood buffering capacities (e.g., 

carnosine and sodium bicarbonate, respectively) that would increase the RCP. 

Furthermore, the lack of change in V̇O2peak and Tlim after curcumin or fenugreek 

supplementation may also be related to the mechanisms of action of the supplements and 

the mode of testing. Specifically, previous literature has demonstrated that increased local 



 

vasodilation did not equate to a higher local and systemic V̇O2peak during maximal 

incremental studies (Calbet, 2006). Thus, the potential NO mediated vasodilation and 

increased metabolic byproduct clearance as a result of curcumin supplementation would 

likely not alter V̇O2peak. In addition, curcumin supplementation has been reported to 

increase glycogen stores by 1.39-1.49- fold in mice (Huang, 2015). Because our 

incremental test was designed to encourage failure and V̇O2Peak within 15 min, it is 

unlikely that the muscle or liver glycogen stores were depleted and, therefore, would not 

limit these parameters (V̇O2peak and Tlim). The primary action of galactomannans to slow 

digestion, increase insulin sensitivity, and decrease blood glucose to promote FFA 

oxidation appeared to be ineffective at altering measures of maximal performance after 28 

days of supplementation in this study. These findings are supported by previous literature 

that reported no effects on V̇O2max after eight weeks of FEN supplementation (Gholaman,  

2018) Thus, in the healthy, untrained subjects, it seems that chronic non-stimulant, spice 

related nutritional supplementation affects submaximal thresholds that demarcate the 

moderate from heavy domains but are not effective for higher thresholds or maximal 

performance indices (V̇O2peak and Tlim). Future studies should examine the effects of 

curcumin and/or fenugreek on Tlim at a submaximal intensity, such as the VT, to examine 

potential effects to improve the sustainability of aerobic exercise.  

5.4 Individual Responses  

Typically, overall conclusions regarding the effectiveness of an intervention are drawn 

from mean responses, however, the MD analyses in this study indicated there were a small 

percentage of subjects that respond strongly to CUR and FEN supplementation. In this 

study, although there were significant effects of supplementation on the mean VT 



 

responses at post-test for the FEN and CUR groups (Figures 5 and 6, p = 0.025, p= 0.039 

respectively, compared to PLA) and the mean responses of the groups were similar (CUR 

= 6.2%, FEN = 6.7), only 22% of subjects exceeded minimal difference (MD) to be 

considered a real increase in the FEN group and 14% subjects exceeded MD in the CUR 

group. Conversely, no subjects in the PLA demonstrated an increase in the VT that 

exceeded the MD, while 7.7% exceeded the MD to be considered a real decrease. In this 

study, the MD for the VT was 0.183 L·min-1 and was calculated from the placebo group 

pre- to post-test reliability analyses. The MD defines “the difference needed between 

separate measures on a subject for the difference in the measures to be considered real” 

(Weir, 2005, P. 238) and speaks to the sensitivity of the test in distinguishing a “real” 

change from variation or error in measurement. Although there were a greater number of 

subjects in the FEN group who exceeded the MD compared to the CUR group, 71.4% of 

the subjects in the CUR supplemented group demonstrated a small increase from pre- to 

post-test, compared to 66.6% of the subjects in the FEN group, while only 30.7% 

demonstrate a small increase for the PLA group. The inherent limitation of simplifying 

results to the mean response is the assumption that all individuals have the same metabolic 

structure and capacities, where biological variability and biological noise such as circadian 

rhythm, nutritional intake, and motivation were not accounted for (Lampe, 2013; Swinton, 

2018) Thus, the current findings demonstrated a small percentage (14-22%) of strong 

responders (exceeded the MD) and a larger percentage (67-72%) of subjects who 

demonstrated small increases that did not exceed the MD drove the mean responses for the 

CUR and FEN groups.  



 

The further understanding of the underlying mechanisms related to the high, low, and 

non-responders would likely require the measurement of additional biomarkers. We did 

not measure any physiological markers outside of resting blood pressure, heart rate, and 

patient self-reported medical history to confirm that the subjects were healthy and 

asymptomatic of any metabolic, cardiovascular, renal, or pulmonary diseases. However, 

baseline measurement of other markers such as arterial stiffness, lipid profiles, total 

cholesterol, fasting glucose level, and plasma insulin may have better informed the 

likelihood to demonstrate responses to an intervention. Based on previous evidence 

(Boonla, 2014; Srichamroen, 2008; Sahin, 2016; Neelakantan, 2014), it appears subjects 

with above average arterial stiffness, hypertension, endothelial dysfunction, and insulin 

resistance may be more sensitive to the effects of curcumin and fenugreek soluble fiber 

interventions.  It is possible that the subjects who exceed the MD in this study might have 

had biological differences affecting sensitivity to the nutritional interventions. In addition, 

the responsiveness to an intervention is also likely related to an individuals’ genotype. For 

example, genetic predisposition has been shown to influence differences in low and high 

responders regarding hypertrophic responses specific to resistance exercise (Roberts, 

2018). Subjects that were homozygous for a specific genotype or alleles expression were 

observed to experience greater or lower degrees of hypertrophy (Roberts, 2018). These 

observations were centered on hypertrophy responsiveness; however, it is possible that 

genetic variances may make an individual more receptive to the effects of nutritional 

interventions and/or aerobic exercise interventions. Additionally, it is possible that the diet 

of responders during the 28 days of supplementation might have further enhance the 

effectiveness of supplementation.  Based on the current findings, we recommend that 



 

interventions are examined not only by the mean response, but also on an individual-by-

individual basis to provide further information on the sensitivity of the interventions (e.g., 

CurQfen® and/or galactomannans supplementation) to affect performance outcomes. 

Furthermore, baseline measurement of arterial stiffness, lipid profiles, total cholesterol, 

fasting glucose level, and plasma insulin in addition to individual responses and a full 28 

day log of caloric consumption should be considered to further explain the proportion of 

population that may demonstrate a meaningful or real change.  

Factors related to study design might also help explain the individual variability in 

response to CurQfen® and/or galactomannans supplementation. Specifically, the relatively 

low percentage of responders (i.e., exceeded the MD) in this study may be related to the 

duration of the supplementation period, the relative dosage of supplementation, and/or the 

exclusion of an exercise intervention. It is possible a longer supplementation period and/or 

a higher relative dosage are necessary for the effects of curcumin and/or galactomannan’s 

to fully manifest as previous investigators have indicated a dose-dependency (Mathern, 

2009; Boonla, 2014; Huang, 2015; Lao, 2006). Furthermore, this study did include an 

exercise intervention or examine the benefits of curcumin on recovery or inflammation. 

Previous studies that examined have curcumin supplementation in conjunction with 

exercise have demonstrated a greater magnitude of change compared to a PLA when the 

two intervention are combined (Davis, 2007; Huang, 2015; Sahin, 2016). These effects 

have been attributed to curcumin’s anti-inflammatory effects and enhanced recovery  

(Boonla, 2014;  Davis, 2007; Huang, 2015)). Thus, future studies should examine longer 

supplementation periods (>6 weeks) of curcumin and galactomannan at higher relative 

doses (>500mg·day-1) in conjunction with an exercise training protocol to determine if the 



 

effects on the VT in this study for a few subjects (14 – 22%) are extended to a larger portion 

of the sample.  

5.5 Limitations 

One of the primary limitations of the current study was the dependence on subject 

compliance. The subjects were not confined to the laboratory throughout the 

supplementation and testing periods, therefore, sleep and the dietary intake outside of the 

three days prior to pre- and post-testing were not accounted for. However, there were no 

differences in the macronutrient and total caloric intakes from the self-reported three-day 

food logs at pre- and post-test. Having a measurement of physical activity and diet of the 

months prior to testing would have provided a baseline to determine if these habits changed 

during the intervention period.  In addition, many of our subjects were college aged and it 

is possible that academic calendar and social stressors might influence their pre- to post-

test responses. Furthermore, the laboratory availability for testing was limited and the time 

of day for pre- to post-test was kept consistent as much as possible but not always identical. 

To control for these limitations as much as possible, we accounted for any prior 

supplementation through the health history review as well as encouraged subjects not to 

change exercise or dietary habits during enrollment.  

5.6 Conclusion 

The current findings indicated 28 days of CUR and FEN supplementation improved 

a submaximal threshold (VT), but did not alter the RCP, Tlim, or V̇O2Peak. The changes in 

the VT are supported by previous literature and are most likely related to the vasodilatory 

properties of curcumin and the increased FFA availability from fenugreek soluble fiber 



 

(Boonla, 2014; Davis, 2007; Huang, 2015; Neelakantan, 2014; Mathern, 2009; Romijn, 

1985; Srichamroen, 2008) Previous investigators have indicated that curcumin had a small 

effect on V̇O2peak in mice, and these effects may be amplified with the addition of an 

exercise intervention (Davis, 2007; Huang, 2015). Thus, the lack of change in the RCP, 

V̇O2peak, and Tlim in this study may be related to the inclusion of only a supplementation 

intervention without exercise. Potentially examining these same markers with an exercise 

intervention group might yield significant results that were not demonstrated from 

supplementation alone. The primary implications of the current study are that CurQfen® 

and fenugreek soluble fiber demonstrated equal effects on a submaximal exercise intensity. 

These findings demonstrate the potential for these nutritional interventions to delay fatigue 

and improve aerobic performance in healthy, asymptomatic individuals.  
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